数学课程标准中核心概念的解读

合集下载

对义务教育阶段数学课程标准中十大核心概念的认识

对义务教育阶段数学课程标准中十大核心概念的认识

对义务教育阶段数学课程标准中十大核心概念的认识义务教育阶段数学课程标准中的十大核心概念是数学教育的重要组成部分,对于学生数学素养的培养具有重要意义。

这些核心概念包括数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想、以及应用意识和创新意识。

下面我将对每个核心概念进行详细的阐述。

1.数感:数感是指对于数的感知和领悟能力,如对于整数、小数、分数和百分数的理解和运用。

数感的培养有助于学生更好地理解和应用数学知识,提高解决问题的能力,同时也有助于发展学生的数学思维。

2.符号意识:符号意识是指对于数学符号的理解和运用能力,如对于加法、减法、乘法和除法等符号的掌握和运用。

符号意识的培养有助于学生更好地理解和运用数学符号,提高数学表达和交流的能力。

3.空间观念:空间观念是指对于空间和几何图形的理解和想象能力,如对于平面图形、立体图形、对称和旋转等概念的理解和运用。

空间观念的培养有助于学生更好地理解和运用几何知识,提高空间思维和想象能力,同时也为后续的几何学习打下基础。

4.几何直观:几何直观是指通过几何图形和图象的观察和理解,帮助人们理解和解决数学问题的一种思维方式。

几何直观的培养有助于学生更好地理解数学问题,提高解决问题的能力,同时也为后续的数学学习和职业发展打下基础。

5.数据分析观念:数据分析观念是指对于数据的分析和理解能力,如对于统计图表、概率和频率等概念的理解和应用。

数据分析观念的培养有助于学生更好地理解和运用数据,提高数据处理和分析的能力,为后续的学习和工作打下基础。

6.运算能力:运算能力是指对于数学运算的理解和运用能力,如对于加减乘除等运算的理解和运用。

运算能力的培养有助于学生更好地理解和运用数学运算知识,提高计算和解决问题的能力。

7.推理能力:推理能力是指通过已知的数学事实或前提,推导出新的数学结论或证明某一命题的能力。

推理能力的培养有助于学生更好地理解数学中的逻辑关系,提高数学思维的严谨性和准确性。

数学课程的核心理念

数学课程的核心理念

数学课程的核心理念篇一:数学课程标准十大核心理念《数学课程标准(2011年版)》10个核心概念《数学课程标准(2011年版)》数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识、创新意识。

这10个核心概念,揭示了课程具体内容与基本数学思想之间的联系。

对此,广大教师在教学实践中应当加以充分的关注。

1.数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。

建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

2.符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。

知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。

符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。

3.空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。

4.几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。

5.数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。

体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。

一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。

6.运算能力是指能够根据法则和运算正确的进行运算的能力。

培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。

7.推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。

小学数学课标十个核心概念解读

小学数学课标十个核心概念解读

小学数学课标十个核心概念解读在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

从这10个核心概念中不难看出,核心概念不是指具体的内容本身,而是指内容本身所反映出来的基本思想、思维方法,也是学生在数学学习中应该具备的感悟、观念、意识、能力等.核心概念反映了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。

与《实验稿》相比,在这10个核心概念中,有4个是新增加的,它们分别是几何直观、运算能力、模型思想、创新意识;有3个是名称或内涵发生较大变化的,它们分别是数感、符号意识、数据分析观念;剩下的3个,既保持了原有名称,也基本保持了原有内涵。

(一)为什么要设计核心概念在这次课程标准修订过程中,有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调.从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。

这是一个渗透在整个标准的研制过程中.第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来.(二)核心概念的理解1、数感《标准》去掉了原来《实验稿》中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。

《标准》将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。

《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。

数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系.这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。

数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,能以数学的思维研究现实,能用数学的方法解决实际问题。

小学数学新课程标准中十个核心概念

小学数学新课程标准中十个核心概念

小学数学新课程标准中十个核心概念及认识这十个核心概念是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

它们之间是密切联系的,所以核心概念有一个承上启下的作用。

上面连着目标,下面联系着内容,是非常严重的,所以也把它称为核心概念。

1.数感数感是一种感悟,是对数量、对数量关系结果估计的感悟;学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本的。

2.符号意识关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识。

因为符号感更多的是感知,是一个最基本的层次。

而符号意识对学生理解要求更高一些。

在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。

就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。

还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。

所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论。

符号意识有助于学生理解符号的使用,是数学表达和数学思考的严重形式。

符号所起的作用,从算术到代数过渡是非常关键的,所以帮助孩子从算术到代数过渡发展的过程中,培养学生的符号意识,是一个非常严重的载体。

3.空间观念空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。

4.几何直观几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把繁复的数学问题,变得扼要、形象,有助于探索解决问题的思路,预测结果。

5.数据分析观念数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。

10个核心概念的解

10个核心概念的解



1、符号意识包含的内容
主要是指能够理解并且运用符号表示数、 数量关系和变化规律。 由简单到复杂,有具体到抽象。 (数符号—运算符号—字母表示数—字母表 示数量关系—符号关系式表示数学变化规 律)

数学符号的表达是多样化的,关系式、 表格、图像等,都是表达数量关系和 变化规律的符号工具。
在下列横线上填上合适的数字、字母或图形,并 说明理由。 1, 1, 2; 1, 1, 2; , , ; A, A, B; A, A, B; , , ; □ ,□ ,□□ ;□ ,□ ,□□ ; , , ; 对于有规律性的事物,无论是用数字还是字母 或图形都可以反映相同的规律,只是表达形式不 同。

“会根据给出的有正比例关系的数据在方格 纸上画图,并会根据其中一个量的值估计 另一个量的值。 ”
※彩带每米售价3.2元,购买2米,3米,……, 10米彩带分别需要多少钱?在方格纸上把 与数对(长度,价钱)相对应的点描出, 并且回答下列问题: (1)所描的点是否在一条直线上? (2)估计一下,买1.5米的彩带大约要花多 少元? (3)小刚买的彩带长度是小红的3倍,他所 花的钱是小红的几倍?
依据语言的描述画出图形等。(第
三学段)
课程内容
第一学段
图形的运动 1. 结合实例,感受平移、旋转、轴对 称现象
在下列现象中,哪些是平移现象?哪些是旋 转现象? (1)汽车方向盘的转动; (2)火车车厢的 直线运动; (3)电梯的上下移动; (4)钟摆的运动。


2. 能辨认简单图形平移后的图形
3小时
357千米
79千米
?千米
这是苏教版小学数学教材 四年级下册第93页第5题。
解:(600-64 5) 70 =280 70 =4(天)

数学课程标准若干核心概念的理解与把握

数学课程标准若干核心概念的理解与把握
如,十几减9 退位减法本质? 算理是什么? 相关核心概念:运算能力 其他核心概念:数感?推理 ?
二、核心概念的理解与案例
(一)数感的理解与案例
1.《标准》中的描述与理解
《标准》采用外延描述的方式表述什么是数感,避免了一些 概念上不清楚的认识。可以重点从几个方面理解: 数的理解与表示;恰当地运用数解决问题。 2. 有关数感的案例:
三、教学中如何体现核心概念
(二)理解相关内容中蕴含的核心概念
核心概念体现 在具体的教学内容之中;
某些核心概念重点体现在特定领域内容之 中 (如数感、空间观念 )
一个内容可能蕴含多个核心概念 ;
讨论: 相关内容中体现 哪些核心概念?
一、课桌有多长 测量的本质如何理解? “课桌有多长?”是什么意 思? 与数感有关系吗? 数感:“关于数与数量的 感悟” 空间观念:
3. “核心概念”反映了数学的本质和价值。 体现数学相关内容所蕴含思想与方法。
思考: 具体要求中体现 哪些核心概念?
如,确定位置 确定位置的本质如何理解? “淘气坐在哪个位置?”是 什么意思? 与空间观念有关系吗? 空间观念:“物体的方位与 位置关系” 还有什么核心概念?
思考: 具体内容中体现 哪些核心概念?
2. 案例展示:
用字母表示数的呈现方式—具体事物,抽象符号,两种方式对 比(1),(2) 。
(符号表达与解释算理)
3. 教学中体现符号意识的案例分析 教学片段:赵震,用字母表示数 视频案例( 成艳斌,用字母表示数)
案例分析: (1)为学生提供恰当的情境(思考:用三角形、数青蛙和父子
年龄三种不同情境有什么不同); (2)在过程中体验字母表示数的重要性;
思考:运算能力重在理解算理,重视通法,恰当对待简便运 算,允许算法多样。

小学数学课程标准核心概念解读

小学数学课程标准核心概念解读

小学数学课程标准》中的十个核心概念2011版的《小学数学课程标准》规定了在数学课程中理应注重核心概念,这些核心概念对于过于教师们整体把握数学课程是非常重要的。

与《实验稿》相比,在10个核心概念中,有4个是新增加的,它们分别是运算水平、模型思想、几何直观、创新意识;有3个是名称或内涵发生较大变化的,它们分别是数感、符号意识、数据分析观点;剩下的3个,保持了原有名称和原有内涵。

下面是对这些核心概念的解读:一、数感《标准》将数感定义为一种感悟,既包括了感知又包括了领悟,既有感性的理解又有理性的思维。

并将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果估计。

二、运算水平运算水平是《标准》中新增加的核心概念。

《标准》中指出:“运算水平主要是指能够根据法则和运算律准确地实行运算的水平。

培养运算水平有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题等。

”三、符号意识《标准》中“符号感”更名为“符号意识”,更增强调学生主动理解和使用符号的心理倾向。

四、空间观点具体来说,学生的空间观点包括向个方面:第一,转化。

即二维图形和三维图形之间的转化。

第二描述。

即描述图形的运动和变化,或者依据语言的描述画出图形。

第三,想象。

即想象出物体的方位和相互之间的位置关系。

五、几何直观几何直观是新增加的核心概念。

《标准》中指出:“几何直观主要是指利用图形描述和分析问题。

借助几何直观能够把复杂的数学问题变得简明、形象,有助于探索解决问题的思想,预测结果。

几何直观能够协助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。

”六、数据分析观点《标准》将:“统计观点”更名为“数据分析观点,点明了统计的核心是数据分析。

更加突出了统计与概率独特的思维方法:体会数据中蕴涵着信息,根据问题的背景选择合适的方法,通过数据分析体验随机性。

七、推理水平《标准》和《实验稿》一样,强调了“获得数学猜想----证明猜想”的全过和,以及在这个过程中的合情推理和演绎推理。

数学课程标准中的十个核心概念

数学课程标准中的十个核心概念

在《义务教育阶段数学课程标准(修订稿)》中十个核心概念的内涵在标准当中,设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

1、数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。

建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

2、符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。

知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。

符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。

3、空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。

4、几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。

5、数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。

体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。

一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。

6、运算能力是指能够根据法则和运算正确的进行运算的能力。

培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。

7、推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。

演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算,是这样一个过程。

小学数学课程标准的核心概念

小学数学课程标准的核心概念

小学数学课程标准的核心概念小学数学课程标准的核心概念是指在小学数学教学中,学生需要掌握的基本概念和原理。

这些核心概念是小学数学学习的基础,对学生的数学学习和思维能力的培养起着至关重要的作用。

本文将围绕小学数学课程标准的核心概念展开讨论,希望能够为广大数学教师和家长提供一些参考和帮助。

首先,小学数学课程标准的核心概念包括数的认识、数的运算、数的应用、几何图形、数据的收集和表示等内容。

在数的认识方面,学生需要掌握自然数、整数、分数、小数等的概念,理解数的大小和大小关系,掌握数的读写和数的顺序等基本技能。

在数的运算方面,学生需要学会加法、减法、乘法、除法等基本运算,掌握运算法则和运算性质,能够进行简单的计算和推理。

在数的应用方面,学生需要学会应用数学知识解决实际问题,如时间、长度、质量、容积等的计量和换算,能够运用数学方法进行推理和论证。

在几何图形方面,学生需要认识各种基本几何图形的名称、性质和特点,学会进行简单的几何变换和构造,能够解决与几何图形相关的问题。

在数据的收集和表示方面,学生需要学会收集和整理数据,用图表和图形表示数据,进行简单的统计和分析。

其次,小学数学课程标准的核心概念还包括数学思维和解决问题的能力。

数学思维是指学生在数学学习和解决问题过程中所表现出来的思维方式和能力。

在小学数学教学中,培养学生的数学思维是至关重要的,这包括逻辑思维、空间想象、抽象思维、推理能力等方面。

学生需要通过数学学习,培养自己的逻辑思维能力,善于分析和归纳问题,善于利用数学知识解决实际问题。

同时,学生还需要培养自己的空间想象能力,善于观察和描述几何图形,善于进行几何推理和证明。

此外,学生还需要培养自己的抽象思维能力,善于进行抽象思维和数学建模,善于将实际问题抽象成数学问题进行求解。

最后,学生还需要培养自己的推理能力,善于进行数学推理和论证,善于用数学方法解决实际问题。

总之,小学数学课程标准的核心概念是小学数学学习的基础,是学生数学学习和思维能力的重要内容。

课程标准(2011版)中八大核心概念

课程标准(2011版)中八大核心概念

小学数学课程标准(2011版)中八大核心概念包括:1.数感2.符号意识3.空间观念和几何直观4.数据分析观念5.运算能力6.推理能力7.模型思想8.应用意识和创新意识一、数感。

数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。

建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

二、符号意识。

符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。

三、空间观念。

空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。

四、几何直观。

几何直观主要是指利用图形描述和分析问题。

借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。

五、数据分析观念。

数据分析观念主要是指了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。

六、运算能力。

运算能力主要是指能够根据法则和运算律正确地进行运算的能力。

培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。

七、推理能力。

推理能力的发展应贯穿在整个数学学习过程中。

推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。

在解决问题的过程中,合情推理用于探索思路,发现结论;演绎推理用于证明结论。

八、模型思想。

模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。

建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。

下面我谈谈对数感和创新意识的理解数感是一种内隐的、非结构的程序性知识,他不是与生俱来的,数感的形成也不是一蹴而就的,不是通过一节课、一个单元或一个学期的教学就能完成的,而是在学习过程中逐步体验和建立起来的,需要长时间逐渐培养。

数学课程标准中十大核心概念的理解

数学课程标准中十大核心概念的理解

数学课程标准中十大核心概念的理解数学课程标准中设计了十个核心概念,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

1.数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。

建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

2.符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。

建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。

3.空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。

4.几何直观主要是指利用图形描述和分析问题。

借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。

5.数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。

6.运算能力主要是指能够根据法则和运算律正确地进行运算的能力培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。

7.推理能力的发展应贯穿在整个数学学习过程中。

推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。

推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。

数学课程标准十大核心理念及四基四能

数学课程标准十大核心理念及四基四能

《数学课程标准(2011年版)》10个核心概念及四基四能《数学课程标准(2011年版)》数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识、创新意识。

这10个核心概念,揭示了课程具体内容与基本数学思想之间的联系。

对此,广大教师在教学实践中应当加以充分的关注。

1.数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。

建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

2.符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。

知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。

符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。

3.空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。

4.几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。

5.数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。

体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。

一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。

6.运算能力是指能够根据法则和运算正确的进行运算的能力。

培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。

7.推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。

关于《课程标准(2011版)》十个核心词的解读

关于《课程标准(2011版)》十个核心词的解读

关于《课程标准(2011版)》十个核心词的解读第一个改变是“双基”变“四基”。

原来是数学基础知识与基本技能,现在是基础知识、基本技能、基本思想和基本活动经验。

这样的改变意味着什么?第一意味着:我国数学教育优良传统得到肯定。

双基就是我国数学教育的优良传统,中国数学教育确实是有许多值得夸耀、值得向全人类推荐、推广的经验。

第二意味着:回归“结果”与“过程”并重的理念。

基础知识与基本技能隐含着结果,而基本思想需要在过程中渗透,基本活动经验也需要在教学过程中去积累,所以新增的这两点暗含着过程的意味。

第二个改变是六个核心词变为十个核心词。

核心词之一——数感一、对数感的认识什么是数感?11版课标是这样阐述的:数感主要是关于数与数量、数量关系、运算结果估计等方面的感悟。

建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

将数感表述为感悟,揭示了这一概念的两重属性:既有“感”,如感知,又有“悟”,如悟性、领悟。

曹培英老师的解释更通俗易懂,他说就如同球员的球感,篮球运动员有篮球感,足球运动员有足球感,歌手有乐感等一样,简单地说就是对数的理解和感觉。

11版课标将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果估计。

二、怎样培养数感?数感既然是对数的一种感悟,它就不会像知识、技能的习得那样立竿见影,它需要在教学中潜移默化,积累经验,经历一个逐步建立、发展的过程。

1.“数”出数感培养学生的数感在第一学段是重点,也就是一至三年级。

学龄儿童通过日常生活中有意、无意的数数活动,知道了用数可以表示多少,在数数的过程中,他们就积累了这样的经验:数数的顺序不会改变数的结果;数的过程中下一个数比前一个数多一;数数中的最后一个数不但代表这个数,也代表了这组物体的总数。

这些都是在培养学生的数感。

2.“读”出数感不仅是整数,分数也能读出数感。

如32,读作三分之二;读出数感,我的理解就是在读数的过程中理解数的意义。

新课标的十个核心概念

新课标的十个核心概念

(方法性要求)

五、数据分析观念
数据分析观念:
3.通过数据分析,体验随机性:(体验性要求) ①对同样的事物,每次收到的数据可能不同; ②只要有足够的数据,就可以从中发现规律。
五、数据分析观念
数据分析观念的培养:
1.明确数据分析对于促进学生的发展具有重要 的作用; 2.树立利用数据的意识,掌握一些分析数据的 方法和模型; 3.关注“数据分析观念”的实际背景。
新课标的十个核心概念
(一)为什么要设计核心概念
(1)
核心概念,涉及到学生在学习中应该建 立和培养的关于数学的感悟、观念、意识、 思想、能力等,是义教阶段数学课程最应 该培养的数学素养,也是促进学生发展的 重要方面。
(一)为什么要设计核心概念
(2)
核心概念是这类课程内容的核心或聚 焦点,它有利于我们把握课程内容的线索 与层次,抓住教学中的关键,并在数学内 容的教学中有机地去发展的数学素养。
五、数据分析观念
数据分析观念: (数据分析是统计的核心)
1.
了解在现实生活中,有许多问题应当先做 调查研究,搜集数据,通过分析做出判断, 体会数据中蕴含的信息;
(过程性或活动性要求) ;
五、数据分析观念
数据分析观念:
2. 了解对于同样的数据可以有多种分析方法, 需要根据问题的背景选择合适的方法;
四、几何直观
希尔伯特在《直观几何》中描述的三个维度:
1.利用图形帮助发现、描述问题; 2.利用图形帮助探索、寻找解决问题的思路; 3.利用图形帮助理解和记忆得到的结果。
四、几何直观
4.几何直观的培养 :
①在教学中使学生逐步养成画图的好习惯;
②重视变换——让图形动起来;
③学会从“数”与“形”两个角度认识数学; ④要掌握、运用一些基本图形解决问题。

小学数学课标十个核心概念解读

小学数学课标十个核心概念解读

小学数学课标十个核心概念解读在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

从这10个核心概念中不难看出,核心概念不是指具体的内容本身,而是指内容本身所反映出来的基本思想、思维方法,也是学生在数学学习中应该具备的感悟、观念、意识、能力等。

核心概念反映了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。

与《实验稿》相比,在这10个核心概念中,有4个是新增加的,它们分别是几何直观、运算能力、模型思想、创新意识;有3个是名称或内涵发生较大变化的,它们分别是数感、符号意识、数据分析观念;剩下的3个,既保持了原有名称,也基本保持了原有内涵。

(一)为什么要设计核心概念在这次课程标准修订过程中,有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调。

从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。

这是一个渗透在整个标准的研制过程中。

第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来。

(二)核心概念的理解1、数感—《标准》去掉了原来《实验稿》中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。

《标准》将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。

《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。

数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系。

这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。

数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,能以数学的思维研究现实,能用数学的方法解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学课程标准中核心概念的解读在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

在目标里边,可以看到了对这些核心概念的一些具体解释,相当于目标的一些要素。

但是同时也能发现它们之间是密切联系的,所以核心概念有一个承上启下的作用。

上面连着目标,下面联系着内容,是非常重要的,所以也把它称为核心概念。

(一)为什么要设计核心概念在这次课程标准修订过程中,除了前面说的这些理念,怎么设计这个课程标准,也进行了一个讨论,在提出设计的过程中有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调。

从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。

这是一个渗透在整个标准的研制过程中。

第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来。

记得当时在讨论的时候,就在过去义务教育的基础上,能不能用一些词,把这些东西彰显出来,经过讨论,提出了十个核心概念。

(二)核心概念的理解1.数感数感在实验稿里边就提出来,在修订稿里边又进一步明确了数感的含义。

在这里边,有这样两句话,来帮助理解数感。

数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。

这是一层含义,是一种感悟,对那些数量、数量关系和估算结果的估计这种感悟。

然后第二句话的含义是建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

这两层意思都是数感,什么是数感?数感是一种感悟,是对数量、对数量关系结果估计的感悟;第二层意思就是数感的功能。

学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本。

数感的学习,其实是和数的抽象,数的应用相连的。

支撑数感的数学内容有很多,比如说,单位,在一个情景中,碰到一些量,总要选择一个单位来刻画它,这样一种感悟,对建立数量刻画是非常重要的。

对于单位的感觉,对于数量级的感觉,这个是非常重要的。

比如说让学生去体验,去称一个人的重量要用什么单位,称一个铅笔的重量用什么单位,称一头大象的重量用什么单位,选择不同的单位,也是一种数感。

当然在如何培养数感的问题上,老师们在教学中还有很多的工作要去做,数感一定要创造这样一些机会,它不像数的运算,对于基础知识和基本技能,老师们可能更容易去用一种训练的方法来让学生们去学习,而形成数感是一个长期的过程,不是一天两天就能够让学生感受的到的,或者说能够在这方面有很好的感觉,需要在活动当中,逐渐的去积累,对数的这样一种认识。

换句话说要积累相关的经验,所以这点,可能还需要老师在教学当中给予更多的关注。

2.符号意识关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识。

因为符号感更多的是感知,是一个最基本的层次。

而符号意识对学生理解要求更高一些。

在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。

就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。

还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。

所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论。

符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要形式。

符号意识在整个学习数学中是很重要的。

首先说,数学有这样的说法,一种是语言,数学的语言,有几个基本的特征,一种是数学的普通话,即通常所说的自然语言,一种是图形语言,这是数学里独特的东西。

另外就是符号语言,作为语言,符号语言是数学里一个完整的东西,某种意义上是一个体系,所以从这个角度来说,提升符号意识,对于学习数学,是非常重要的。

因为符号可以简洁、准确的表达一些东西,交流起来就方便。

如何理解符号的体系?最基本、最熟悉的符号就是数字,是用十个数字加进位,就能把周围世界通常所说的集合元素的多少表达清楚。

所以,当讨论问题的时候,等量关系和不等量关系,包括依赖关系,这些都是数学中最基本的关系,都可以用符号表示。

符号所起的作用,从算术到代数过渡是非常关键的,所以帮助孩子从算术到代数过渡发展的过程中,培养学生的符号意识,是一个非常重要的载体。

到了初中,就刻画一类的问题,方程,一次方程,二次方程,二元一次方程组,它就帮概括出一类的数学问题,使得在研究数学问题的过程中,非常的方便。

同时又为形成模型奠定了基础,无法想象没有符号怎么去刻画模型。

3.空间观念和几何直观空间观念是原来大纲里有的,现在是在原来的基础上做了进一步的刻画。

具体是这么描述的,空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。

这是对于空间观念的一个刻画。

空间观念和几何直观这两个概念,有的时候容易混淆在一起,放在一起介绍,就可以更清楚了解它们之间的联系区别。

几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。

刚才空间观念,有这么几个纬度。

第一, 就是图形和实物之间的关系,这是一个很重要的纬度。

第二,就是标准中所刻画的即通常所说的方向感。

关于空间观念是实物和图形之间的关系,是两个方向的关系,这就是说,通过实物,根据实物来抽象出几何图形,这是一个方向。

另外一个就是根据几何图形想象出所描述的实际物体,在这里边一个是抽象,一个是想象,在具体的事物,其实说图形,说几何图形,比如说,长方形、正方形、平行四边形、三角形,在现实世界中,是没有这些图形的,它都是一些具体的实物,你看到一个盒子,你看到一个桌子,说这个盒子的表面是长方形,但是你要想象出,抽象出它的表面是一个长方形,这是一个抽象的过程。

另外一个就是图形的运动。

刚才讲图形的运动,讲图形课程标准这个从实验稿里边,开始加了一些图形的平移、旋转这样的一些运动。

空间观念在某种意义上,是学习几何,当然也包括代数,因为一旦认识纬度,代数里头也有很多的运算对象是高维的,所以对于这样一种理解,也是非常重要的事情。

用最通俗的话说几何直观,就是看图想事,看图说理,就是几何直观,说的挺形象。

为什么要强调几何直观,也从数学最基本的研究对象说起,数学最主要的在中学,进入小学阶段,主要的研究对象,一个就是图形,一个就是数、字母。

该如何从学习图形中获得最大的好处,这是作为数学工作者应该想的一件事情。

引用希尔伯特写的一本书《直观几何》,其中谈到的几个基本观点。

他在序言里头写了这样三层维度。

第一层意思,图形可以帮助刻画和描述问题。

一旦用图形把一个问题描述清楚,就有可能使这个问题变得直观、简单。

第二个层意思,图形可以帮助发现、寻找解决问题的思路。

第三层意思,图形可以帮助表述一些结果,可以帮助记忆一些结果。

如何帮助学生建立几何直观,第一要充分的发挥图形给带来的好处。

第二,要让孩子养成一个画图的好习惯。

第三,重视变换,让图形动起来,把握图形与图形之间的关系。

第四,要在学生的头脑中留住些图形。

培养几何直观就不会落空,所以这一次加了几何直观能力,加了几何直观这个关键词,对于学习数学来说,是挺重要的一件事情。

4.数据分析观念数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。

体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。

一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。

数据是统计学习的一个重要内容,所以对数据的分析是统计的核心知识,这个数据分析观念,就是实际上数据分析观念,主要让学生能够体会到数据的作用,运用数据可以做什么,怎么来做,可能这是通俗一点来说,数据分析观念的一个基本的含义。

当然可能数据分析观念,究竟怎么样让学生去体会其中的,刚才谈到这几个方面,还需要老师们去在教学当中去体会,在教学当中去贯彻。

5.运算能力运算能力,标准中是这样说的,只要是指能够根据法则和运算进行正确的运算的能力。

培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题。

运算始终是中小学教学里边非常重要的组成部分,对数的认识,数的运算,一直都占很大的篇幅,另外也是学生学习数学的一个重要的标志。

关于数学的价值取向,数学是不是就是要求运算快,现在引起越来越多的人质疑。

过去的数学求快,现在有了计算机,所有的运算都可以用计算机帮忙实现,我们应该培养学生什么能力,所以在质量监测中,很多人提质疑。

首先要保证学生有足够的时间去做,看看他会还是不会,这是主要的;第二个补充,运算能力不能仅仅是算个数,应该就是更宽的来考虑这件事情,包括对于运算对象的认识,包括对于为什么要做这个运算,就是这些运算的背景是什么,运算法则和运算规律的、方法的选择,包括运算在哪些地方有用,学运算的目的是要解决一些问题,所以仅仅停留在运算的巧和快,可能误导了对运算的理解。

6.推理能力推理能力是标准实验稿中就提出的一个核心概念,在修改稿当中,仍然也保留了这样一个核心概念。

经过这几年的实验,老师们对推理能力,应该有了一个比较全面的认识,以往在谈推理的时候,老师首先想到就是演绎推理和逻辑推理,而现在推理能力实际上包含了两个方面。

首先推理是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理,合情推理的外延包含了两个大方面,一个是合情推理,一个是演绎推理。

演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算。

换句话说,从思维形式的角度,是从一般到特殊的过程,在几何的证明当中,实际上都是这样一种推理形式。

合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。

和演绎推理不一样的是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测,是一个可能性结论。

但是合情推理在数学整个发展过程当中,包括在学生学习数学和今后的未来的社会生产实践和生活当中,都是特别重要的。

合情推理进入的视野,并且加以强调。

举两个比较重要的事情来支持这个合情推理的重要性。

相关文档
最新文档