汽车专业毕业设计外文翻译
汽车检测与维修专业汽车制动系统毕业论文外文文献翻译及原文
![汽车检测与维修专业汽车制动系统毕业论文外文文献翻译及原文](https://img.taocdn.com/s3/m/9cb391fe9b89680203d82546.png)
毕业设计(论文)外文文献翻译文献、资料中文题目:汽车制动系统文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:汽车检测与维修班级:姓名:学号:指导教师:翻译日期: 2017.02.14Automobile Brake SystemThe braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).When stepping on the brakes, the driver commands a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes.Two complete independent braking systems are used on the car. They are the service brake and the parking brake.The service brake acts to slow, stop, or hold the vehicle during normal driving. They are foot-operated by the driver depressing and releasing the brake pedal. The primary purpose of the brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by when a separate parking brake foot pedal or hand lever is set.The brake system is composed of the following basic components: the “master cylinder” which is located under the hood, and is directly connected to the brake pedal, converts driver foot’s mechanical pressure into hydraulic pressure. Steel “brake lines” and flexible “brake hoses” connect the master cylinder to the “slave cylinders” located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes” and “pads” are pushed by the slave cy linders to contact the “drums” and “rotors” thus causing drag, which (hopefully) slows the car.The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder (Figure).Basically, all car brakes are friction brakes. When the driver applies thebrake, the control device forces brake shoes, or pads, against the rotating brake drum or disks at wheel. Friction between the shoes or pads and the drums or disks then slows or stops the wheel so that the car is braked.In most modern brake systems (see Figure 15.1), there is a fluid-filled cylinder, called master cylinder, which contains two separate sections, there is a piston in each section and both pistons are connected to a brake pedal in the driver’s compartment. When the brake is pushed down, brake fluid is sent from the master cylinder to the wheels.At the wheels, the fluid pushes shoes, or pads, against revolving drums or disks. The friction between the stationary shoes, or pads, and the revolving drums or disks slows and stops them. This slows or stops the revolving wheels, which, in turn, slow or stop the car.The brake fluid reservoir is on top of the master cylinder. Most cars today have a transparent r reservoir so that you can see the level without opening the cover. The brake fluid level will drop slightly as the brake pads wear. This is a normal condition and no cause for concern. If the level drops noticeably over ashort period of time or goes down to about two thirds full, have your brakes checked as soon as possible. Keep the reservoir covered except for the amount of time you need to fill it and never leave a cam of brake fluid uncovered. Brake fluid must maintain a very high boiling point. Exposure to air will cause the fluid to absorb moisture which will lower that boiling point.The brake fluid travels from the master cylinder to the wheels through a series of steel tubes and reinforced rubber hoses. Rubber hoses are only used in places that require flexibility, such as at the front wheels, which move up and down as well as steer. The rest of the system uses non-corrosive seamless steel tubing with special fittings at all attachment points. If a steel line requires a repair, the best procedure is to replace the compete line. If this is not practical, a line can be repaired using special splice fittings that are made for brake system repair. You must never use copper tubing to repair a brake system. They are dangerous and illegal.Drum brakes, it consists of the brake drum, an expander, pull back springs, astationary back plate, two shoes with friction linings, and anchor pins. The stationary back plate is secured to the flange of the axle housing or to th e steering knuckle. The brake drum is mounted on the wheel hub. There is a clearance between the inner surface of the drum and the shoe lining. To apply brakes, the driver pushes pedal, the expander expands the shoes and presses them to the drum. Friction between the brake drum and the friction linings brakes the wheels and the vehicle stops. To release brakes, the driver release the pedal, the pull back spring retracts the shoes thus permitting free rotation of the wheels.Disk brakes, it has a metal disk instead of a drum. A flat shoe, or disk-brake pad, is located on each side of the disk. The shoes squeeze the rotatin g disk to stop the car. Fluid from the master cylinder forces the pistons to move in, toward the disk. This action pushes the friction pads tightly against the disk. The friction between the shoes and disk slows and stops it. This provides the braking action. Pistons are made of either plastic or metal. There are three general types of disk brakes. They are the floating-caliper type, the fixed-caliper type, and the sliding-caliper type. Floating-caliper and sliding-caliper disk brakes use a single piston. Fixed-caliper disk brakes have either two or four pistons.The brake system assemblies are actuated by mechanical, hydraulic or pneumatic devices. The mechanical leverage is used in the parking brakes fitted in all automobile. When the brake pedal is depressed, the rod pushes the piston of brake master cylinder which presses the fluid. The fluid flows through the pipelines to the power brake unit and then to the wheel cylinder. The fluid pressure expands the cylinder pistons thus pressing the shoes to the drum or disk. If the pedal is released, the piston returns to the initialposition, the pull back springs retract the shoes, the fluid is forced back to the master cylinder and braking ceases.The primary purpose of the parking brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by the driver when a separate parking braking hand lever is set. The hand brake is normally used when the car has already stopped. A lever is pulled and the rear brakes are approached and locked in the “on” position. The car may now be left without fearof its rolling away. When the driver wants to move the car again, he must press a button before the lever can be released. The hand brake must also be able to stop the car in the event of the foot brake failing. For this reason, it is separate from the foot brake uses cable or rods instead of the hydraulic system.Anti-lock Brake SystemAnti-lock brake systems make braking safer and more convenient, Anti-lock brake systems modulate brake system hydraulic pressure to prevent the brakes from locking and the tires from skidding on slippery pavement or during a panic stop.Anti-lock brake systems have been used on aircraft for years, and some domestic car were offered with an early form of anti-lock braking in late 1990’s. Recently, several automakers have introduced more sophisticated anti-lock system. Investigations in Europe, where anti-lock brakin g systems have been available for a decade, have led one manufacture to state that the number of traffic accidents could be reduced by seven and a half percent if all cars had anti-lock brakes. So some sources predict that all cars will offer anti-lock brakes to improve the safety of the car.Anti-lock systems modulate brake application force several times per second to hold the tires at a controlled amount of slip; all systems accomplish this in basically the same way. One or more speed sensors generate alternating current signal whose frequency increases with the wheel rotational speed. An electronic control unit continuously monitors these signals and if the frequency of a signal drops too rapidly indicating that a wheel is about to lock, the control unit instructs a modulating device to reduce hydraulic pressure to the brake at the affected wheel. When sensor signals indicate the wheel is again rotating normally, the control unit allows increased hydraulic pressure to the brake. This release-apply cycle occurs several time per second to “pump” the brakes like a driver might but at a much faster rate.In addition to their basic operation, anti-lock systems have two other things in common. First, they do not operate until the brakes are applied with enough force to lock or nearly lock a wheel. At all other times, the system stands ready tofunction but does not interfere with normal braking. Second, if the anti-lock system fail in any way, the brakes continue to operate without anti-lock capability. A warning light on the instrument panel alerts the driver when a problem exists in the anti-lock system.The current Bosch component Anti-lock Braking System (ABSⅡ), is a second generation design wildly used by European automakers such as BWM, Mercedes-Benz and Porsche. ABSⅡ system consists of: four wheel speed sensor, electronic control unit and modulator assembly.A speed sensor is fitted at each wheel sends signals about wheel rotation to control unit. Each speed sensor consists of a sensor unit and a gear wheel. The front sensor mounts to the steering knuckle and its gear wheel is pressed onto the stub axle that rotates with the wheel. The rear sensor mounts the rear suspension member and its gear wheel is pressed onto the axle. The sensor itself is a winding with a magnetic core. The core creates a magnetic field around the winding, and as the teeth of the gear wheel move through this field, an alternating current is induced in the winding. The control unit monitors the rate o change in this frequency to determine impending brake lockup.The control unit’s function can be divided into three p arts: signal processing, logic and safety circuitry. The signal processing section is the converter that receives the alternating current signals form the speed sensors and converts them into digital form for the logic section. The logic section then analyzes the digitized signals to calculate any brake pressure changes needed. If impending lockup is sensed, the logic section sends commands to the modulator assembly.Modulator assemblyThe hydraulic modulator assembly regulates pressure to the wheel brakes when it receives commands from the control utuit. The modulator assembly can maintain or reduce pressure over the level it receives from the master cylinder, it also can never apply the brakes by itself. The modulator assembly consists of three high-speed electric solenoid valves, two fluid reservoirs and a turn delivery pump equipped with inlet and outlet check valves. The modulator electrical connector and controlling relays are concealed under a plastic cover of the。
汽车专业毕业设计外文翻译
![汽车专业毕业设计外文翻译](https://img.taocdn.com/s3/m/4fdb9a2aaf45b307e87197ba.png)
附录:英汉对照Automotive oxygen sensor failure andinspection of the commonThe automotive industry is currently in the international application of the sensor on one of the largest markets, and the oxygen sensor reported the number of patents, ranking the first in automotive sensors. Oxygen sensor installed in the vehicle exhaust pipe, use it to detect the oxygen content in exhaust port. Oxygen sensor and thus can be obtained in accordance with the signal, put it back to the control system tofine-tune the fuel injection, so that A / F control at best, not only greatly reduces emissions and saves energy. At present, the practical application of the oxygen sensor has zirconia dioxide oxygen sensors and the two oxygen sensors. And common oxygen sensor and a single lead, double-lead and lead of three points; single pin for Zirconia oxygen sensor; double lead for the titanium dioxide oxygen sensor;three-lead type for the heating oxygen zirconia sensors, in principle, lead the way on three of the oxygen sensor is not a substitute for use. Are one of the most widely used type of zirconia oxygen sensor.First, zirconia oxygen sensor structureIn the use of three-way catalytic converters to reduce exhaust pollution on the engine, oxygen sensors are essential components. Oxygen sensor is located in the first section of the exhaust pipe, catalytic converter at the front. There is a Oxygen Sensor zirconia (a ceramic) components manufacturers, all of its outside has a layer ofthin-plated platinum. Zirconia ceramic plated body at one end with a thin layer of platinum closed. Into the protection of the latter was set, and installed in a metal body. Further protect the protection of the role of sets played and sensor can be installed on the exhaust manifold. Ceramic exhaust external exposure, and the internal atmosphere and the environment the same.This component has a very high temperature resistance, low temperature so do not allow current through. However, when high temperature, because of the air and exhaust gas oxygen concentration difference, oxygen ions can, through this component. This raises the potential difference, platinum to enlarge. In this way,air-fuel ratio lower than the theoretical air-fuel ratio (thick), the components in the oxygen sensor in (air) outside (the atmosphere) between the oxygen concentration has a greater bad. Thus, the sensors have a relatively strong one voltage (Johnson V). On the other hand, if the rare gas mixture, air and exhaust gas oxygen concentration difference between the very small, have a sensor, there is only one relatively weak voltage (near 0 volts).Because once the mixture of air-fuel ratio deviation from the theoretical air-fuel ratio, ternary catalysts for CO, HC and NOX purification capacity will be a sharp decline, it is installed at the exhaust pipe oxygen sensor for detecting oxygen concentration in the exhaust, and ECU the issue of feedback signal, and then by theECU to control fuel injection amount of injector change, which will control the mixture at the air-fuel ratio near the theoretical value.Two, automotive oxygen sensor working principleOxygen sensor installed in the exhaust manifold, it can detect the concentration of oxygen in the exhaust, air-fuel ratio calculated, and the results sent to the ECU.For example:1, exhaust gas oxygen concentration in the high –When emissions are significant when the percentage of oxygen, ECU will accordingly determine the air-fuel ratio, and that is very dilute mixture.2, exhaust gas oxygen concentration in the low –When the percentage of oxygen in the exhaust very, ECU to determine air-fuel ratio will accordingly small, that is very strong mixture. Temperature higher than300 ℃, the ceramic materials used for the iron conductor. Under these conditions, if the percentage of oxygen sensors on both sides of the different content will have a voltage change at both ends. Two types of environment (air-side and exhaust side) of the different measurements of the oxygen content of these changes tell ECU, exhaust at the oxygen content in the remainder of the generation of harmful emissions to ensure that combustion is not appropriate percentage. Ceramic materials at temperatures lower than 300 ℃are non-linear, and thus the sensor is not a useful signal transmission. ECU has a special function, that is, heating machine at pm (open-loop operation) to stop the adjustment of the mixture. Sensors equipped with heating elements to reach operating temperature quickly. When current flows through the heating elements, it reduces the iron to make ceramics become conductors of time, and which makes the sensor can be installed in the exhaust pipe of the site later.In the three-way catalytic purifier Medium, ECU using data from the oxygen sensor to regulate the air-fuel ratio, but the method of standard Carburetor EFI device somewhat different.At EFI device, EFI's ECU fuel injection through the increase or decrease from the injected fuel volume, adjusting air-fuel ratio. If the ECU from the oxygen sensor detects the mixture too thick, it will gradually reduce the amount of fuel injection, the mixture of on-thinning. Therefore the actual air-fuel ratio becomes greater than the theoretical air-fuel ratio (more dilute). When this happens, ECU through the oxygen sensor to detect the truth, it will start a gradual increase in the volume of spray. In this way, air-fuel ratio is too low, some will Luan (more dense) until the air-fuel ratio lower than the theoretical. Thus, the cycle repeated, ECU main cloud in this way, constant changes in air-fuel ratio, the actual air-fuel ratio near the theoretical air-fuel ratio.Carburetor in the use of the device, are entered by regulating air intake air-fuel ratio of air-conditioning. Mixture theory is usually air-fuel ratio to maintain a little thick. ECU within the air-fuel ratio oxygen sensor has been the information, and manipulation, according to the actual air-fuel ratio EBCU (electronically controlled intake valve) regulator into the carburetor air intake volume. If mixture is too strong, it allows more air to enter to-thinning: If mixture is too thin, it allows less air to enter,so that moreThird, the common automotive oxygen sensor faultOnce the oxygen sensor fails, the electronic fuel injection system will enable the computer should not be the oxygen concentration in the exhaust pipe of the information, and therefore should not be on the air-fuel ratio feedback control, the engine will increase fuel consumption and exhaust pollution, engine idle speed instability, lack of fire, such as fault-surge situation. Therefore, it is necessary to troubleshoot in a timely manner or replaced.1, oxygen sensor poisoningOxygen sensor poisoning and are often more difficult to control emerging as a fault, in particular, are often the use of leaded petrol cars, even the new oxygen sensor, and can only be the work of thousands of kilometers. If only minor lead poisoning, and then use a box of unleaded petrol, will be able to eliminate the surface of oxygen sensor lead to the resumption of normal work. But often because of excessive exhaust temperature, which lead intrusion in their internal and impede the spread of oxygen ions to oxygen sensor failure can only be replaced at this time.In addition, the oxygen sensor silicon poisoning happened is common. In general, gasoline and lubricants containing silicon compounds generated by combustion silica, silicon rubber seal gasket improper use of silicone emitting gas,will cause the oxygen sensor failure, and therefore want to use good quality fuel and lubricants .Right to choose the repair and installation of rubber gaskets, coated on the sensor not to require the use of factory and other than the anti-solvent, etc.2, carbon depositionNot because of engine combustion, in the carbon deposition formed on the surface of oxygen sensor, oxygen sensor or the internal into the sediment, such as oil or dust will impede or block the external air into the oxygen sensor internal to oxygen sensor signal output inaccurate, ECU should not timely correct air-fuel ratio. Soot produced, mainly for increased fuel consumption, emission levels were significantly increased. At this point, if the sediment removal will restore normal working.3, oxygen sensor ceramic fragmentsCeramic oxygen sensor hardware and crisp, with a hard object by knocking or washing with a strong air currents blowing all its fragmentation and possible failure. Therefore, be particularly careful when handling and found that the timely replacement of problem.4, heater resistance wire blownThe heating-type oxygen sensor, if the resistance heater wire ablation, it is difficult to make sensors to reach normal operating temperature and the loss of role.5, oxygen sensor breaking off the internal circuits.Four, automotive oxygen sensor method1, oxygen sensor heater resistance checkUnplug the oxygen sensor wiring harness plug, use a multimeter resistance measurement file in the oxygen sensor heater terminal access-chu-chu with Ground between access resistance and its resistance to 4-40Ω (refer to specific modelspecification). Such as not meeting the standard, should be the replacement of oxygen sensor.2, oxygen sensor voltage feedback measurementMeasurement of oxygen sensor feedback voltage should unplug the oxygen sensor wiring harness plug, the control circuit models, the feedback from the oxygen sensor voltage output terminal on a thin wire leads, and then plug harness plugs well, in the engine operation , measured from the pinout on the feedback voltage (some models can also be inner socket fault detection by a voltage of oxygen sensor feedback, such as the production of Toyota cars can be a series of fault detection from the socket terminal OX1 or OX2 directly measured oxygen sensor feedback voltage). Oxygen sensor feedback on the test voltage, it is best to use with low-range (typically 2V) and high impedance (resistance greater than 10MΩ) multimeter pointer type. Detection of specific methods are as follows: 1) hot cars engine to normal operating temperature (or after the start-up speed of 2500r/min running 2min); 2) will file a negative voltage multimeter table T then fault detection within the socket or the battery negative electrode E1 is fault detection table T then the socket jack OX1 or OX2, or receive oxygen sensor wiring harness plug on the No. | round; 3) to allow the engine to maintain speed around 2500r/min operation voltage meter at the same time check whether the pointer back and forth between 0-1V swing, with a note of voltage meter pointer 10s the number of swing. Under normal circumstances, with the feedback control, the oxygen sensor feedback voltage will be 0.45V at changing up and down, 10s in the number of feedback voltage changes should not be less than 8 times. If less than 8 times, then oxygen sensor feedback control system or not working properly because the surface of oxygen sensor are possible there is carbon deposition, so that lower sensitivity. In this regard, should be allowed to 2500r/min engine speed operation of about 2min, to clear the surface of the carbon deposition oxygen sensor, and then check the feedback voltage. If the removal of carbon deposition may change after the voltage meter pointer is still slow, then oxygen sensor damaged, or have computer feedback control circuit fault. 4) check whether the damaged oxygen sensor Unplug the oxygen sensor wiring harness plug, so that oxygen sensor is no longer connected with the computer, feedback control system is in a state ofopen-loop control. The multimeter voltage pen table file is directly related to oxygen sensor feedback voltage output terminal connected to the negative form of good Ground pen. Measurement of engine operation at the feedback voltage, the first intake pipe was torn off and then up at the mandatory crankcase ventilation hose vacuum tube or other artificially dilute the mixture to form, at the same time watch voltage meter, the pointer should be dropped readings. Was torn off and then connected to the pipeline, and then unplug the water temperature sensor connector, a 4-8KΩ in place of the resistance temperature sensor, the formation of artificially dense mixture, at the same time watch voltage meter, the indicator reading should be increased. Can also be used, or a sudden release the accelerator pedal down approach to change the concentration of the mixture, in sudden pedal down to accelerate, the mixture变浓, feedback voltage should be increased; sudden release when the accelerator pedal,mixed gas-thinning, feedback voltage should be decreased. If the oxygen sensor feedback voltage without the above changes show that the oxygen sensor has been damaged. In addition, the titanium dioxide-type oxygen sensor using the above method at the time, if a good oxygen sensor output voltage to 2.5V as the center should be up and down fluctuations. Otherwise, the sensor can be removed and exposed to the air, cooling the resistance value after the measurement. If a large resistance value that sensor is ok, or should replace the sensor. 5) oxygen sensor to check the color appearance Removed from the exhaust pipe on oxygen sensors, sensors to check whether the shell to plug up the vents, ceramic core whether or not broken. If damaged, replace the oxygen sensor should be. By observing the top part of the oxygen sensor can also determine the color breakdown:①light gray top: This is the normal color of the oxygen sensor; ②white top: pollution from silicon, oxygen sensor must be replaced at this time; ③brown top: pollution by lead, if serious, we must replace the oxygen sensor; ④black top: caused by carbon deposition, carbon deposition in the exclusion of engine failure, the general oxygen sensor can automatically clear up the accumulatedcarbon. Conclusion: for energy conservation and the prevention of pollution from motor vehicles, most developed countries in the West aerobic sensors installed on my car is loaded oxygen sensor must be used. China's automobile industry with foreign countries, one of the main gap, but also in automotive sensors. Therefore, we can come to promote the use of oxygen sensor is very optimistic about the prospects.汽车氧传感器的常见故障及检查汽车行业是目前在国际上应用传感器最大的市场之一,而氧传感器申报的专利数,居汽车传感器的首位。
汽车电子毕设设计外文文献翻译(适用于毕业论文外文翻译+中英文对照)
![汽车电子毕设设计外文文献翻译(适用于毕业论文外文翻译+中英文对照)](https://img.taocdn.com/s3/m/8823853b0066f5335b81210a.png)
Ultrasonic ranging system designPublication title: Sensor Review. Bradford: 1993.Vol.ABSTRACT: Ultrasonic ranging technology has wide using worth in many fields, such as the industrial locale, vehicle navigation and sonar engineering. Now it has been used in level measurement, self-guided autonomous vehicles, fieldwork robots automotive navigation, air and underwater target detection, identification, location and so on. So there is an important practicing meaning to learn the ranging theory and ways deeply. To improve the precision of the ultrasonic ranging system in hand, satisfy the request of the engineering personnel for the ranging precision, the bound and the usage, a portable ultrasonic ranging system based on the single chip processor was developed.Keywords: Ultrasound, Ranging System, Single Chip Processor1. IntroductiveWith the development of science and technology, the improvement of people’s standard of living, speeding up the development and construction of the city. Urban drainage system have greatly developed their situation is construction improving. However, due to historical reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction. Therefore, there are often good building excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewage and drainage culvert in the sewage treatment system.Co mfort is very important to people’s lives. Mobile robots designed to clear the drainage culvert and the automatic control system Free sewage culvert clear guarantee robots, the robot is designed to clear the culvert sewage to the core. Control system is the core component of the development of ultrasonic range finder. Therefore, it is very important to design a good ultrasonic range finder.2. A principle of ultrasonic distance measurementThe application of AT89C51:SCM is a major piece of computer components are integrated into the chip micro-computer. It is a multi-interface and counting on the micro-controller integration, and intelligence products are widely used in industrial automation. and MCS-51 microcontroller is a typical and representative.Microcontrollers are used in a multitude of commercial applications such as modems, motor-control systems, air conditioner control systems, automotive engine and among others. The high processing speed and enhanced peripheral set of these microcontrollers make them suitable for such high-speed event-based applications. However, these critical application domains also require that these microcontrollers are highly reliable. The high reliability and low market risks can be ensured by a robust testing process and a proper tools environment for the validation of these microcontrollers both at the component and at the system level. Intel Plaform Engineering department developed an object-oriented multi-threaded test environment for the validation of its AT89C51 automotive microcontrollers. The goals of this environment was not only to provide a robust testing environment for the AT89C51 automotive microcontrollers, but to develop an environment which can be easily extended and reused for the validation of several other future microcontrollers. The environment was developed in conjunction with Microsoft Foundation Classes(AT89C51).1.1 Features* Compatible with MCS-51 Products* 2Kbytes of Reprogrammable Flash MemoryEndurance: 1,000Write/Erase Cycles* 2.7V to 6V Operating Range* Fully Static operation: 0Hz to 24MHz* Two-level program memory lock* 128x8-bit internal RAM* 15programmable I/O lines* Two 16-bit timer/counters* Six interrupt sources*Programmable serial UART channel* Direct LED drive output* On-chip analog comparator* Low power idle and power down modes1.2 DescriptionThe AT89C2051 is a low-voltage, high-performance CMOS 8-bit microcomputer with 2Kbytes of flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51 instruction set and pinout. By combining a versatile 8-bit CPU with flash on a monolithic chip, the Atmel AT89C2051 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.The AT89C2051 provides the following standard features: 2Kbytes of flash,128bytes of RAM, 15 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, a precision analog comparator, on-chip oscillator and clock circuitry. In addition, the AT89C2051 is designed with static logicfor operation down to zero frequency and supports two software selectable power saving modes. The idle mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The power down mode saves the RAM contents but freezer the oscillator disabling all other chip functions until the next hardware reset.1.3 Pin Configuration1.4 Pin DescriptionVCC Supply voltage.GND Ground.Prot 1Prot 1 is an 8-bit bidirectional I/O port. Port pins P1.2 to P1.7 provide internal pullups. P1.0 and P1.1 require external pullups. P1.0 and P1.1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the on-chip precision analog comparator. The port 1 output buffers can sink 20mA and can drive LED displays directly. When 1s are written to port 1 pins, they can be used as inputs. When pins P1.2 to P1.7 are used as input and are externally pulled low, they will source current (IIL) because of the internal pullups.Port 3Port 3 pins P3.0 to P3.5, P3.7 are seven bidirectional I/O pins with internal pullups. P3.6 is hard-wired as an input to the output of the on-chip comparator and is not accessible as a general purpose I/O pin. The port 3 output buffers can sink 20mA. When 1s are written to port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89C2051 as listed below.1.5 Programming the FlashThe AT89C2051 is shipped with the 2 Kbytes of on-chip PEROM code memory array in the erased state (i.e., contents=FFH) and ready to be programmed. The code memory array is programmed one byte at a time. Once the array is programmed, to re-program any non-blank byte, the entire memory array needs to be erased electrically.Internal address counter: the AT89C2051 contains an internal PEROM address counter which is always reset to 000H on the rising edge of RST and is advanced applying a positive going pulse to pin XTAL1.Programming algorithm: to program the AT89C2051, the following sequence is recommended.1. power-up sequence:Apply power between VCC and GND pins Set RST and XTAL1 to GNDWith all other pins floating , wait for greater than 10 milliseconds2. Set pin RST to ‘H’ set pin P3.2 to ‘H’3. Apply the appropriate combination of ‘H’ or ‘L’ logic to pins P3.3, P3.4, P3.5,P3.7 to select one of the programming operations shown in the PEROM programming modes table.To program and Verify the Array:4. Apply data for code byte at location 000H to P1.0 to P1.7.5.Raise RST to 12V to enable programming.5. Pulse P3.2 once to program a byte in the PEROM array or the lock bits. The byte-write cycle is self-timed and typically takes 1.2ms.6. To verify the programmed data, lower RST from 12V to logic ‘H’ level and set pins P3.3 to P3.7 to the appropriate levels. Output data can be read at the port P1 pins.7. To program a byte at the next address location, pulse XTAL1 pin once to advance the internal address counter. Apply new data to the port P1 pins.8. Repeat steps 5 through 8, changing data and advancing the address counter for the entire 2 Kbytes array or until the end of the object file is reached.9. Power-off sequence: set XTAL1 to ‘L’ set RST to ‘L’Float all other I/O pins Turn VCC power off2.1 The principle of piezoelectric ultrasonic generatorPiezoelectric ultrasonic generator is the use of piezoelectric crystal resonators to work. Ultrasonic generator, the internal structure as shown, it has two piezoelectric chip and a resonance plate. When it’s two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.The traditional way to determine the moment of the echo’s arrival is based on thresholding the received signal with a fixed reference. The threshold is chosen well above the noise level, whereas the moment of arrival of an echo is defined as the first moment the echo signal surpasses that threshold. The intensity of an echo reflecting from an object strongly depends on the object’s nature, size and distance from the sensor. Further, the time interval from the echo’s starting point to the moment when it surpasses the threshold changes with the intensity of the echo. As a consequence, a considerable error may occur even two echoes with different intensities arriving exactly at the same time will surpass the threshold at different moments. The stronger one will surpass the threshold earlier than the weaker, so it will be considered as belonging to a nearer object.2.2 The principle of ultrasonic distance measurementUltrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiverimmediately stop the clock. Ultrasound in the air as the propagation velocity of 340m/s, according to the timer records the time t, we can calculate the distance between the launch distance barrier(s), that is: s=340t / 23. Ultrasonic Ranging System for the Second Circuit DesignSystem is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 875, economic-to-use, and the chip has 4K of ROM, to facilitate programming.3.1 40 kHz ultrasonic pulse generated with the launchRanging system using the ultrasonic sensor of piezoelectric ceramic sensorsUCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following procedures to generate.puzel: mov 14h, # 12h; ultrasonic firing continued 200msHere: cpl p1.0; output 40kHz square wavenop;nop;nop;djnz 14h, here;retRanging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procedure, the P1.0 port in a 40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.3.2 Reception and processing of ultrasonicUsed to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlled oscillator center frequency of f0=1/1.1R8C3, capacitor C4 determinetheir target bandwidth. R8-conditioning in the launch of the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, while single-chip P1.3 and P1.4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interrupt priority level for the first left right after. Part of the source code is as follows:Receivel: push pswpush accclr ex1; related external interrupt 1jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuitjnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routinereturn: SETB EX1; open external interrupt 1pop accpop pswretiright: …; right location entrance circuit interrupt service routineAjmp Returnleft: …; left ranging entrance circuit interrupt service routineAjmp Return3.3 The calculation of ultrasonic propagation timeWhen you start firing at the same time start the single-chip circuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit output a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance. Some of its source code is as follows:RECEIVE0: PUSH PSWPUSH ACCCLR EX0; related external interrupt 0MOV R7, TH0; read the time valueMOV R6, TL0CLR CMOV A, R6SUBB A, #0BBH; calculate the time differenceMOV 31H, A; storage resultsMOV A, R7SUBB A, # 3CHMOV 30H, ASETB EX0; open external interrupt 0\POP ACCPOP PSWRETIFor a flat target, a distance measurement consists of two phases: a coarse measurement and a fine measurement:Step 1: Transmission of one pulse train to produce a simple ultrasonic wave.Step 2: Changing the gain of both echo amplifiers according to equation, until the echo is detected.Step 3: Detection of the amplitudes and zero-crossing times of both echoes.Step 4: Setting the gains of both echo amplifiers to normalize the output at, say 3 volts. Setting the period of the next pulses according to the: period of echoes. Setting the time window according to the data of step 2.Step 5: Sending two pulse trains to produce an interfered wave. Testing the zero-crossing times and amplitudes of the echoes. If phase inversion occurs in the echo, determine to otherwise calculate to by interpolation using the amplitudes near the trough. Derive t sub m1 and t sub m2.Step 6: Calculation of the distance y using equation.4、The ultrasonic ranging system software designSoftware is divided into two parts, the main program and interrupt service routine. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.Interrupt service routines from time to time to complete three of the rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.5、ConclusionsRequired measuring range of 30cm-200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reproducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection system.Thoughts: As for why the receiver do not have the transistor amplifier circuit, because the magnification well, integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequency.6、Parking sensor6.1 Parking sensor introductionReversing radar, full name is "reversing the anti-collision radar, also known as" parking assist device, car parking or reversing the safety of assistive devices, ultrasonic sensors(commonly known as probes), controls and displays (or buzzer)and other components. To inform the driver around the obstacle to the sound or a moreintuitive display to lift the driver parking, reversing and start the vehicle around tovisit the distress caused by, and to help the driver to remove the vision deadends and blurred vision defects and improve driving safety.6.2 Reversing radar detection principleReversing radar, according to high-speed flight of the bats in thenight, not collided with any obstacle principles of design anddevelopment. Probe mounted on the rear bumper, according to different price and brand, the probe only ranging from two, three, four, six, eight,respectively, pipe around. The probe radiation, 45-degree angle up and downabout the search target. The greatest advantage is to explore lower than the bumper of the driver from the rear window is difficult to see obstacles, and the police, suchas flower beds, children playing in the squatting on the car.Display parking sensor installed in the rear view mirror, it constantlyremind drivers to car distance behindthe object distance to the dangerous distance, the buzzer starts singing, allow the driver to stop. When the gear lever linked into reverse gear, reversing radar, auto-start the work, the working range of 0.3 to 2.0 meters, so stop when the driver was very practical. Reversing radar is equivalent to an ultrasound probe for ultrasonic probe can be divided into two categories: First, Electrical, ultrasonic, the second is to use mechanical means to produce ultrasound, in view of the more commonly used piezoelectric ultrasonic generator, it has two power chips and a soundingboard, plus apulse signal when the poles, its frequency equal to the intrinsic oscillation frequency of the piezoelectric pressure chip will be resonant and drivenby the vibration of the sounding board, the mechanical energy into electrical signal, which became the ultrasonic probe works. In order to better study Ultrasonic and use up, people have to design and manufacture of ultrasonic sound, the ultrasonic probe tobe used in the use of car parking sensor. With this principle in a non-contactdetection technology for distance measurement is simple, convenient and rapid, easyto do real-time control, distance accuracy of practical industrial requirements. Parking sensor for ranging send out ultrasonic signal at a givenmoment, and shot in the face of the measured object back to the signal wave, reversing radar receiver to use statistics in the ultrasonic signal from the transmitter to receive echo signals calculate the propagation velocity in the medium, which can calculate the distance of the probe and to detect objects.6.3 Reversing radar functionality and performanceParking sensor can be divided into the LCD distance display, audible alarm, and azimuth directions, voice prompts, automatic probe detection function is complete, reversing radar distance, audible alarm, position-indicating function. A good performance reversing radar, its main properties include: (1) sensitivity, whether theresponse fast enough when there is an obstacle. (2) the existence of blind spots. (3) detection distance range.6.4 Each part of the roleReversing radar has the following effects: (1) ultrasonic sensor: used tolaunch and receive ultrasonic signals, ultrasonic sensors canmeasure distance. (2) host: after the launch of the sine wave pulse to the ultrasonic sensors, and process the received signal, to calculate the distance value, the data and monitor communication. (3) display or abuzzer: the receivinghost from the data, and display the distance value and provide differentlevels according to the distance from the alarm sound.6.5 Cautions1, the installation height: general ground: car before the installation of 45 ~55: 50 ~ 65cmcar after installation. 2, regular cleaningof the probe to prevent the fill. 3, do not use the hardstuff the probe surface cover will produce false positives or ranging allowed toprobe surface coverage, such as mud. 4, winter to avoid freezing. 5, 6 / 8 probe reversing radar before and after the probe is not free to swap may cause the ChangMing false positive problem. 6, note that the probe mounting orientation, in accordance with UP installation upward. 7, the probe is not recommended to install sheetmetal, sheet metal vibration will cause the probe resonance, resulting in false positives.超声测距系统设计原文出处:传感器文摘布拉福德:1993年超声测距技术在工业现场、车辆导航、水声工程等领域具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。
汽车专业毕业设计翻译外文翻译chinese
![汽车专业毕业设计翻译外文翻译chinese](https://img.taocdn.com/s3/m/7cdffb799b6648d7c1c74628.png)
集成式发动机辅助混合动力系统摘要本论文介绍了用于设计和开发Honda Insight发动机的技术方法,一种新的发动机辅助混合动力汽车,其总开发目标是在广泛的行驶条件下达到当今Civic消耗量的一半,实现35km/L (日本10-15模式),3.4L/km(98/69/EC)的消耗量。
为了达到这个目标,加入了许多用于包装和集成发动机辅助系统以及改善发动机效率的新技术,开发了一种新的集成式发动机辅助混合动力发动机系统。
这是结合了一种低空气阻力的新型轻稆车身开发的。
环境性能目标也包括了低排放(日本2000年标准的一半,EU2000标准的一半),高效率和杨回收性。
对消费的关键特性全面考虑,包括碰撞安全性能,操纵性和运行特性。
1.绪论为减小汽车对社会和环境的冲击要求其更干净并且能量效率更高更节能,空气质量更好。
降低CO2排放问题作为全球环境焦点提出,解决这些问题的方法之一就是混合动力汽车。
Honda已开发并向遍及全球的几大市场输入Insight,新一代车辆设计。
Insight将混合动力系与先进的车身技术特性相结合以符合取得实际的最高燃油经济性的总目标。
混合动力系是发动机的辅助并联平行结构,把IMA叫做集成式发动机辅助。
此动力系将把一个高效电动机与一个新型小排量VTEC发动机结合起来,很轻的铝车身,改良的空气动力学以实现3.4L/100km(CO2:80g/km)98/69/EC燃油经济性。
低排放性能也已达到EU排放水平为目标。
除减速能的重用之外,集成式发动机在典型的市区行驶加速时提供大助力扭矩,显著地减小了发动机拜师,提高了发动机效率。
接近56kW每吨的功率/质量比保证了稳定的爬坡能力和高速的常速行驶能力。
新发动机技术包括促进高效快速的催化剂活性化的一种新VTEC (电子控制可变配气相位和气门升程)缸盖设计,促进稀薄燃烧能降低排放的新型稀NOx 催化转化器,广泛的减摩及减重特色也用于其中。
2.开发目标及开发理念开发目的在于达到极低燃油消耗量。
汽车专业--毕业设计外文翻译
![汽车专业--毕业设计外文翻译](https://img.taocdn.com/s3/m/9e44f31510a6f524ccbf85b9.png)
英文资料SuspensionSuspension is the term given to the system of springs, shock absorbers and linkages that connects a vehicle to its wheels. Suspension systems serve a dual purpose –contributing to the car's roadholding/handling and braking for good active safety and driving pleasure, and keeping vehicle occupants comfortable and reasonably well isolated from road noise, bumps, and vibrations,etc. These goals are generally at odds, so the tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.Leaf springs have been around since the early Egyptians.Ancient military engineers used leaf springs in the form of bows to power their siege engines, with little success at first. The use of leaf springs in catapults was later refined and made to work years later. Springs were not only made of metal, a sturdy tree branch could be used as a spring, such as with a bow.Horse drawn vehiclesBy the early 19th century most British horse carriages were equipped with springs; wooden springs in the case of light one-horse vehicles to avoid taxation, and steel springs in larger vehicles. These were made of low-carbon steel and usually took the form of multiple layer leaf springs.[1]The British steel springs were not well suited for use on America's rough roads of the time, and could even cause coaches to collapse if cornered too fast. In the 1820s, the Abbot Downing Company of Concord, New Hampshire developed a system whereby the bodies of stagecoaches were supported on leather straps called "thoroughbraces", which gave a swinging motion instead of the jolting up and down of a spring suspension (the stagecoach itself was sometimes called a "thoroughbrace")AutomobilesAutomobiles were initially developed as self-propelled versions of horse drawn vehicles. However, horse drawn vehicles had been designed for relatively slow speeds and their suspension was not well suited to the higher speeds permitted by the internal combustion engine.In 1903 Mors of Germany first fitted an automobile with shock absorbers. In 1920 Leyland used torsion bars in a suspension system. In 1922 independent front suspension was pioneered on the Lancia Lambda and became more common in mass market cars from 1932.[2]Important propertiesSpring rateThe spring rate (or suspension rate) is a component in setting the vehicle's ride height or its location in the suspension stroke. Vehicles which carry heavy loads will often have heavier springs to compensate for the additional weight that would otherwise collapse a vehicle to the bottom of its travel (stroke). Heavier springs are also used in performance applications where the loading conditions experienced are more extreme. Springs that are too hard or too soft cause the suspension to become ineffective because they fail to properly isolate the vehicle from the road. Vehicles that commonly experience suspension loads heavier than normal have heavy or hard springs with a spring rate close to the upper limit for that vehicle's weight. This allows the vehicle to perform properly under a heavy load when control is limited by the inertia of the load. Riding in an empty truck used for carrying loads can be uncomfortable for passengers because of its high spring rate relative to the weight of the vehicle. A race car would also be described as having heavy springs and would also be uncomfortably bumpy. However, even though we say they both have heavy springs, the actual spring rates for a 2000 lb race car and a 10,000 lb truck are very different. A luxury car, taxi, or passenger bus would be described as having soft springs. Vehicles with worn out or damaged springs ride lower to the ground which reduces the overall amount of compression available to the suspension and increases the amount of body lean. Performance vehicles can sometimes have spring rate requirements other than vehicle weight and load.Mathematics of the spring rateSpring rate is a ratio used to measure how resistant a spring is to being compressed or expanded during the spring's deflection. The magnitude of the spring force increases as deflection increases according to Hooke's Law. Briefly, this can be stated aswhereF is the force the spring exertsk is the spring rate of the spring.x is the displacement from equilibrium length i.e. the length at which the spring is neither compressed or stretched.Spring rate is confined to a narrow interval by the weight of the vehicle,load the vehicle will carry, and to a lesser extent by suspension geometry and performance desires.Spring rates typically have units of N/mm (or lbf/in). An example of a linear spring rate is 500 lbf/in. For every inch the spring is compressed, it exerts 500 lbf. Anon-linear spring rate is one for which the relation between the spring's compression and the force exerted cannot be fitted adequately to a linear model. For example, the first inch exerts 500 lbf force, the second inch exerts an additional 550 lbf (for a total of 1050 lbf), the third inch exerts another 600 lbf (for a total of 1650 lbf). In contrast a 500 lbf/in linear spring compressed to 3 inches will only exert 1500 lbf.The spring rate of a coil spring may be calculated by a simple algebraic equation or it may be measured in a spring testing machine. The spring constant k can be calculated as follows:where d is the wire diameter, G is the spring's shear modulus (e.g., about 12,000,000 lbf/in² or 80 GPa for steel), and N is the number of wraps and D is the diameter of the coil.Wheel rateWheel rate is the effective spring rate when measured at the wheel. This is as opposed to simply measuring the spring rate alone.Wheel rate is usually equal to or considerably less than the spring rate. Commonly, springs are mounted on control arms, swing arms or some other pivoting suspension member. Consider the example above where the spring rate was calculated to be500 lbs/inch, if you were to move the wheel 1 inch (without moving the car), the spring more than likely compresses a smaller amount. Lets assume the spring moved 0.75 inches, the lever arm ratio would be 0.75 to 1. The wheel rate is calculated by taking the square of the ratio (0.5625) times the spring rate. Squaring the ratio is because the ratio has two effects on the wheel rate. The ratio applies to both the force and distance traveled.Wheel rate on independent suspension is fairly straight-forward. However, special consideration must be taken with some non-independent suspension designs. Take the case of the straight axle. When viewed from the front or rear, the wheel rate can be measured by the means above. Yet because the wheels are not independent, when viewed from the side under acceleration or braking the pivot point is at infinity (because both wheels have moved) and the spring is directly inline with the wheel contact patch. The result is often that the effective wheel rate under cornering is different from what it is under acceleration and braking. This variation in wheel rate may be minimized by locating the spring as close to the wheel as possible.Roll couple percentageRoll couple percentage is the effective wheel rates, in roll, of each axle of the vehicle just as a ratio of the vehicle's total roll rate. Roll Couple Percentage is critical in accurately balancing the handling of a vehicle. It is commonly adjusted through the use of anti-roll bars, but can also be changed through the use of different springs.A vehicle with a roll couple percentage of 70% will transfer 70% of its sprung weight transfer at the front of the vehicle during cornering. This is also commonly known as "Total Lateral Load Transfer Distribution" or "TLLTD".Weight transferWeight transfer during cornering, acceleration or braking is usually calculated per individual wheel and compared with the static weights for the same wheels.The total amount of weight transfer is only affected by 4 factors: the distance between wheel centers (wheelbase in the case of braking, or track width in the case of cornering) the height of the center of gravity, the mass of the vehicle, and the amount of acceleration experienced.The speed at which weight transfer occurs as well as through which components it transfers is complex and is determined by many factors including but not limited to roll center height, spring and damper rates, anti-roll bar stiffness and the kinematic design of the suspension links.Unsprung weight transferUnsprung weight transfer is calculated based on the weight of the vehicle's components that are not supported by the springs. This includes tires, wheels, brakes, spindles, half the control arm's weight and other components. These components are then (for calculation purposes) assumed to be connected to a vehicle with zero sprung weight. They are then put through the same dynamic loads. The weight transfer for cornering in the front would be equal to the total unsprung front weight times theG-Force times the front unsprung center of gravity height divided by the front track width. The same is true for the rear.Suspension typeDependent suspensions include:∙Satchell link∙Panhard rod∙Watt's linkage∙WOBLink∙Mumford linkage∙Live axle∙Twist beam∙Beam axle∙leaf springs used for location (transverse or longitudinal)The variety of independent systems is greater and includes:∙Swing axle∙Sliding pillar∙MacPherson strut/Chapman strut∙Upper and lower A-arm (double wishbone)∙multi-link suspension∙semi-trailing arm suspension∙swinging arm∙leaf springsArmoured fighting vehicle suspensionMilitary AFVs, including tanks, have specialized suspension requirements. They can weigh more than seventy tons and are required to move at high speed over very rough ground. Their suspension components must be protected from land mines and antitank weapons. Tracked AFVs can have as many as nine road wheels on each side. Many wheeled AFVs have six or eight wheels, to help them ride over rough and soft ground. The earliest tanks of the Great War had fixed suspensions—with no movement whatsoever. This unsatisfactory situation was improved with leaf spring suspensions adopted from agricultural machinery, but even these had very limited travel. Speeds increased due to more powerful engines, and the quality of ride had to be improved. In the 1930s, the Christie suspension was developed, which allowed the use of coil springs inside a vehicle's armoured hull, by redirecting the direction of travel using a bell crank. Horstmann suspension was a variation which used a combination of bell crank and exterior coil springs, in use from the 1930s to the 1990s.By the Second World War the other common type was torsion-bar suspension, getting spring force from twisting bars inside the hull—this had less travel than the Christie type, but was significantly more compact, allowing the installation of larger turret rings and heavier main armament. The torsion-bar suspension, sometimes including shock absorbers, has been the dominant heavy armored vehicle suspension since the Second World War.中文翻译悬吊系统(亦称悬挂系统或悬载系统)是描述一种由弹簧、减震筒和连杆所构成的车用系统,用于连接车辆与其车轮。
汽车 专业 外文 文献 英文 翻译
![汽车 专业 外文 文献 英文 翻译](https://img.taocdn.com/s3/m/85a9c247ad02de80d4d840ff.png)
外文文献原稿和译文原稿A New Type Car -- Hybrid Electric VehicleWith skyrocketing fuel prices and changes in weather patterns, many car manufacturers claimed to develop the kind of vehicles that will increase the mileage and reduce the emissions. Hybrid car is a kind of vehicle which can meet above requirements. A hybrid car features a small fuel-efficient gas engine combined with an electric motor that assists the engine.The reasons of building such a complicated machine are twofold: to reduce tailpipe emissions and to improve mileage. Firstly, hybrid cars are good for the environment. They can reduce smog by 90 percent and they use far less gasoline than conventional cars. Meanwhile, hybrid cars burn less gasoline per mile, so they release fewer greenhouse gases. Secondly, hybrid cars are economical. Hybrid cars, which run on gas and electricity, can get up to 55 to 60 miles per gallon in city driving, while a typical SUV might use three times as much gas for the same distance! There are three reasons can mainly account for that: 1) Hybrid engines are much smaller than those on conventional cars. A hybrid car engine is to accommodate the 99% of driving time when a car is not going up hills or accelerating quickly. When extra acceleration power is needed, it relies on the battery to provide additional force. 2) Hybrid gasoline engine can shut off when the car is stopped and run off their electric motor and battery.3) Hybrid cars often recover braking energy. Electric motors could take the lost kinetic energy in braking and use it to charge the battery. Furthermore, hybrids are better than all-electric cars because hybrid car batteries recharge as you drive so there is no need to plug in. Most electric cars need to be recharged every 50-100miles. Also, most electric cars cannot go faster than 50-60 mph, while hybrids can.Hybrid cars bridge the gap between electric and gasoline-powered cars by traveling further and driving faster and hybrid gas-electric cars are proving to be a feasible alternative at a time of high gas prices. So, in my opinion, hybrid cars will have a bright future.How Does Hybrid Electric Vehicle Work?You probably own a gasoline or diesel-engine car. You may have heard of electric vehicles too. A hybrid vehicle or hybrid electric vehicle (HEV) is a combination of both. Hybrid vehicles utilize two or more sources of energy for propulsion. In the case of HEVs, a combustion engine and an electric motor are used.How it works depends on the type of drive train it has. A hybrid vehicle can either have a parallel or series or parallel-series drive train.Parallel HybridThe parallel hybrid car has a gas tank, a combustion engine, transmission,electric motor, and batteries.A parallel hybrid is designed to run directly from either the combustion engine or the electric motor. It can run using both the engine and the motor. As a conventional vehicle, the parallel hybrid draws its power from the combustion engine which will then drive the transmission that turns the wheels. If it is using the electric motor, the car draws its power from the batteries. The energy from the batteries will then power the electric motor that drives the transmission and turns the wheel.Both the combustion engine and the electric motor are used at the same time during quick acceleration, on steep ascend, or when either the engine or the motor needs additional boost.Since the engine is directly connected to the wheels in a parallel drive train, it eliminates the inefficiency of converting mechanical energy into electrical energy and back. This makes a very effective vehicle to drive on the highway.Series HybridThe series hybrid car also has a gas tank, a combustion engine, transmission, electric motor, and batteries with the addition of the generator. The generator can be the electric motor or it can be another separate component.The series configuration is the simplest among the 3. The engine is not connected to the transmission rather it is connected to the electric motor. This means that the transmission can be driven only by the electric motor which draws its energy from the battery pack, the engine or the generator.A hybrid car with a series drive train is more suited for city driving conditions since the engine will not be subjected to the varying speed demands (stop, go, and idle) that contributes to fuel consumption.Series-Parallel HybridThe series-parallel configuration solves the individual problems of the parallel and series hybrid. By combining the 2 designs, the transmission can be directly connected to the engine or can be separated for optimum fuel consumption. The Toyota Prius and the Ford Escape Hybrid use this technology.Honda’s hybridFor those of you who have toyed with the idea of buying a hybrid but were discouraged by the price, you are not alone. In fact, despite the growing concern for the environment, not to mention the skyrocketing price of gas, hybrid cars still only represent a small percentage of global car sales, and a major reason for this is the cost.Hybrids are considered the wave of the future because they not only reduce emissions, addressing the issue of climate change, but they get great gas mileage, an important consideration with the current price of oil. It should be noted that hybrids can also improve the power of the engine, which compromises any advantages in fuel efficiency and emissions. Whatever the application, however, the technology makes the cars more expensive.Because of this, they are the vehicle of choice for only a small niche of people who can afford them, and they currently enjoy a special status amongst the image conscious celebrity-set. For most average consumers, however, they are not an option.That may soon change.Honda Motor Corporation, one of the largest car manufacturers in the world and a leader in fuel efficient technology, has unveiled it’s plan to introduce a low-cost hybrid by 2009. If they can pull it off, they hope to make the hybrid a more mainstream car that will be more appealing to the general public, with the ultimate goal of achieving greater sales and broader appeal than their current incarnation.This, of course, is making Detroit nervous, and may signal a need for American car makers to start making greener and more fuel efficient vehicles, something they could afford to ignore in the past because hybrid cars weren’t worth their attention (due to such a small market share) while gas-guzzling SUVs have such high profit margins.Honda, meanwhile, has had to confront a growing need to compete with Toyota, which has not only grown to be the world’s largest automaker, but makes the car that has become synonymous with the hybrid movement, the Prius. Honda is therefore faced with the seemingly insurmountable task of challenging Toyota’s dominance in the market.Concurrently, Toyota is racing to lower production costs on the Prius, as well, which would hopefully result in a lower cost to the consumer. All eyes are on a potentially favorable car buyers market in 2009.In the meantime, with even adamant global warming naysayers warming up (no pun intended) to the possibilities of an ecological disaster on the horizon, maybe it’s time that we got over our need to drive huge SUVs and start moderating our fuel consumption.Then again, as gas prices hovering around $4.00 and with no ceiling in sight, we may have little choice in the matter.Engine Operating PrinciplesMost automobile dngines are internal combustion, reciprocating 4-stroke gasoline engines, but other types have been used, including the diesel, the rotary ( Wankel ) , the 2-srtoke, and stratified charge.Reciprocating means up and down or banck and forth, It is the up and down action of a piston in the cylinder blick, or engine block. The blick is an iron or aluminum casting that contains engine cylinders and passges called water jackets for coolant circulation. The top of the block is covered with the cylinder head. Which forms the combustion chanber. The bottom of the block is covered with an oil pan or oil sump.Power is produced by the linear motion of a piston in a cylinder. However, this linear motion must be changed into rotary motion to turn the wheels of cars of trucks. The piston is attached to the top of a connecting rod by a pin, called a piston pin or wrist pin. The bottom of the connecting rod is attached to the crankshaft. The connecting rod transmits the up-and-down motion of the piston to the crankshaft, which changes it into rotary motion.The connecting rod is mounted on the crankshaft with large beaings called rodbearings. Similar bearings, called main bearings, are used to mount the crankshaft in the block. Shown in Fig. 1-1The diameter of the cylinder is called the engine bore. Displacement and compression ratio are two frequently used engine specifications. Displacement indicates engine size, and compression ratio compares the total cylinder volume to compression chamber volume.The term stroke is used to describe the movement of the iston within the cylinder, as well as the distance of piston travel. Depending on the type of engine the operating cycle may require either two or four strokes to complete. The 4-stroke engine is also called Otto cycle engine, in honor of the German engineer, Dr. Nikolaus Otto, who first applied the principle in 1876. In the 4-stroke engine, four strokes of the piston in the cylinder are required to complete one full operating cycle. Each stroke is named after the action it performs intake, compression, power, and exhaust in that order, shown in Fig1-2.1、Intake strokeAs the piston moves down, the vaporized mixture of fuel and air enters the cylinder through open intake valve. To obtain the maximum filling of the cylinder the intake valve opens about 10°before t.b.c., giving 20°overlap. The inlet valve remains open until some 50°after b.d.c. to take advantage of incoming mixture.2、 Compression strokeThe piston turns up, the intake valve closes, the mixture is compressed within the combustion chamber, while the pressure rise to about 1Mpa, depending on various factors including the compression ratio, throttle opening and engine speed. Near the top of the stroke the mixture is ignited by a spark which bridges the gap of the spark plug.3、 Power strokeThe expanding gases of combustion produces a rise in pressure of the gas to some 3.5Mpa, and the piston is forced down in the cylinder. The exhaust valve opens near the bottom of the stroke.4、Exhust strokeThe piston moves back up with the exhaust valve open some 50°before b.d.d., allowing the pressure within the cylinder to fall and to reduce ‘back’pressure on the piston during the exhaust stroke, and the burned gases are pushed out to prepare for the next intake stroke.The intake valve usually opens just before the exhaust stroke. This 4-stroke cycle is continuously repeared in every as long as the engineremains running.A 2-stroke engine also goes through four actions to complete one operating cycle.However, the intake and the compression actions are combined in one seroke, and the power and exhaust actions are combined in the other stroke. The term2-stroke cycle or 2-stroke is preferred to the term 2-cycle, which is really not accurate.In automobile engines, all pistons are attached to a single crankshaft. The more cylinders an engine has, the more power strokes produced for cach revolution. This means that an 8-cylinder engine runs more smoothly bdcause the power atrokes arecloser together in time and in degrees of engine rotation.The cylinders of multi-cylinder automotive engines arranged in one of three ways. 1、Inline engines use a single block of cylinder.Most 4-cylinder and any 6-cylinder engines are of this design. The cylinders do not have to be vertical. They can be inclined either side.2、V-type engines use two equal bands of cylinders, usually inclined 60degrees or 90degrees from the cach other. Most V-type engines have 6 or 8 cylinders, although V-4 and V-12 engines have been built.3、Horizontally opposed or pancake engines have two equal banks of cylinders 180degreeas apart. These space saving engine designs are often air-cooled, and are found in the Chevrolet Carvair, Porsches, Subaus, and V olkswagens. Subaus design is liquid cooled.Late-model V olkswagen vans use a liquid-cooled version of the air cooled VWhorizontally opposed engine.译文新型汽车----混合动力汽车在油价飞涨的今天,汽车制造商被要求发展一种排放低,行驶里程长的汽车。
汽车类(外文翻译)--汽车营销automotive marketing(译文+英文)—-毕业论文设计
![汽车类(外文翻译)--汽车营销automotive marketing(译文+英文)—-毕业论文设计](https://img.taocdn.com/s3/m/4569668b6bec0975f465e24f.png)
Automotive MarketingFirst, the auto parts network management conceptAmerican auto parts of automobile fittings dealer Raymond is located in a suburban Atlanta, American and other accessories, this shop to shop and its characteristics, but is online transactions, and car accessories sales related services are available on the Internet. This distributior store of salespeople have extensive network of knowledge, they patiently helped no online trading experience of customer finish on the Internet. If the customer need, they also can be free of imparting knowledge of online transactions. In order to reflect the rapid and convenient online sales, they provide 24-hour services, if the customer questions, they always strive to reply in 15 minutes. The customer need, sitting at home before entering the store sells computer, then the website can complete all want to do, watch shop fittings, download the pictures, auto prices, orders, etc. Then, you can sit at home or in his own maintenance shop of door-to-door salesman received by car accessories.Online transaction does have many advantages. To save time, this is obvious. In this way, said dealers trade become a way to attract customers, people gradually accept it and approved. At the same time, the online trading reduced many expenses, including the staff, management, marketing, etc, and save the cost of expenses on auto parts price on the customer benefit.This is the foreign auto accessories sales of a networked management. This through the Internet and e-commerce fulfillment of our country, and online business, the auto parts marketing MVP has important significance. From the current situation of auto parts, auto sales network throughout the circulation of construction is not perfect, or in an internal network condition. The network Settings are mostly for enterprise internal coordination and daily management, instead of e-commerce.China's online accessories sales prospects from abroad, also can be the development of auto parts online sales of enlightenment. In the foreign auto accessories sales, how to do? "" zero kilometers sales How to provide the most satisfactory service to customers? With the Internet, these two problems can greatly alleviate. Now, especially developed countries around the world through the Internet to buy auto accessories are expanding quickly.Second, the auto parts network management advantagesOnline purchase of auto parts for car dealers and customers, whether for auto parts manufacturing enterprise, it is a good thing. First, for auto parts manufacturing enterprise, the Internet can more easily collect customers to buy auto parts in the process of the various issues, and timely information feedback to the auto parts manufacturing enterprises. According to the above analysis, the enterprise can produce customer purchase intention, thus producing according with market demand as the auto parts. This saves time and cost, and snatch market opportunities. Secondly, the use of Internet information and convenient services, manufacturing enterprises can promptly informed accessories vendors inventory and sales, thereby adjusting their production and auto parts allocation plan. Auto accessories vendors reduce inventory, accelerate the cash flow, obtained satisfactory returns. For users, they can through the Internet, like "menu" optional choose oneself need auto parts.The market information for auto parts manufacturing enterprise and the seller is important, and can be easily obtained through the Internet. Internet auto parts vendors canprovide customers to production enterprise of real-time field information. The demand of information can help to reduce automobile accessories sales production enterprise charges, which usually cost will account for auto parts price of around 15% final sales. If the promotion costs, the cost is higher proportion. In fact, the Internet can also play a role of advertising.Before that, the sellers of auto parts distribution has always sold in part, and another part of the poor. Money is part of the occupied fee is caused to sell the car accessories. Through the Internet, the production enterprises and vendors can be avoided in production and sales market sales bad auto parts. With the advent of the Internet and convenient service, not only saves time and cost, and more importantly, the Internet can cause a concept of change, auto parts manufacturing enterprise, distributors and customers to be stuck nearlier more.Third, China's automobile fittings network management development trendChina's auto accessories network management and e-commerce, has started to present development trend. Many of the current domestic large and medium-sized car repair enterprises established computer management system, realized the internal network. This covers the entire network maintenance services. To receive from business, dispatching material inspection. Computerized control can be made to understand the undertakings in real-time monitoring, which can form, and greatly improve the efficiency of the staff, more important is to replace manual accounting and management, strengthen accessories.Meanwhile, some large scale, the current operating performance good car accessories dealers also introduced a computerized management. Because of automotive products, so use variety of such management software, the personnel must be higher requirements after a period of training to mount guard. Such auto parts management network covers the whole process of operation. From the incoming, retail and wholesale price is determined according to the models, and such Numbers classified management, finally to do account settlement and delivery, and XiaoZhang. Chain-like management make better dealer has put the network management of the whole FenXiaoDian to it, formed a certain scale of network connection. Many automobile fittings all dealers from network management gained good returns. The most prominent feature is reflected in the commodity, through the network management allocations, can reach twice the result with half the effort.In addition, in recent years the old car accessories circulation system gradually broken, auto parts market, constantly mature vigorous development. Some far-sighted insight, the operator has felt the network era, and start a near the market network. Like changchun automobile fittings, west of Beijing automobile fittings, Shanghai auto parts market such as the city of virtual network construction and the development of the market for 2000. But the reality is that the network is quite childish, but certainly not realize online trading and service.With the quickening pace of "two", the personage inside course of study to commend "trinity" sales mode in the earth gradually. For example, in the choice of Shanghai general dealers, whether to have "trinity" sales ability to determine the object, such as a "trinity" whole car accessories sales mode is a microcosm of network flow field. Because it includes from truckload sale, spare parts supply and maintenance.Mention auto parts network management and e-commerce, somebody thinks, car accessories telephone shopping is actually e-commerce, because only communicationplatform between different, the operation is basically the same. Actually this kind of understanding is not accurate, phone business and e-commerce is more like Cousins, in many ways, phone business congenital deficiency. First, consumers from the phone in understanding the information is limited, can fully satisfy customer's requirements. Secondly, if advertisers, or printing accessories for customers, due to the directory of accessories sales, cost of printing more and more high, but slow renewal speed. In addition, on the telephone exchanges, due to the environment, voice, speaking, the influence of factors, make telephone service personnel difficulty and error rates increased. Just as phone business, management content in depth and breadth aspect further development will be limited.Fourth,Auto parts distribution system and network management of constructionAuto parts distribution system and network management of construction iis now a successful online trading tangible products such as books, audio and video products, clothing, etc., and auto parts as a certain scientific and technological content, some products are statemandatory standard industrial products, to achieve on-line transactions, compared with other industrial products, have their advantages, sellers and buyers as long as posted on the Internet and input information about auto parts, such as vehicles, cars, parts name, part number, manufacture, price, quantity, etc., you can sell online or purchase.To truly realize the concept of e-commerce online sales, buyers and sellers in addition to solving the "integrity" issues, but also must establish a complete set of efficient logistics distribution system.Speaking before the factors that limit development of electronic commerce, nothing more than a means of payment, security authentication, the real make up, will find car parts logistics and distribution system is the most difficult, the most facile, the most expensive one.Many auto parts e-commerce companies are trying to find the existing physical network, such as postal services, courier and even newspaper delivery company as a delivery system.However, a suitable auto parts distribution and e-commerce system should look like?The conditions of physical network can be transformed into an auto parts distribution system of e-commerce will be the lowest cost?Five, Auto parts network management is the only way for the development and reform of the road networkThe Chinese auto parts sales development should be appropriate for the situation in China, with Chinese characteristics, the way the Internet business. Indeed, the United States, network operators have achieved great success, but we can not ignore this brilliant behind the social basis of the United States strong material foundation. As early as 100 years ago, the U.S. has established a comprehensive road, rail, postal services, courier delivery system combining; today's society, Americans have been accustomed to "free currency trading." It can be said that today's Internet economy development in the United States should be a very natural result and is more than 200 years the United States as a free market economy based on natural product. Like a child to climb from the start with their bare hands, and then learn to walk, over time learned to run naturally. As the development of China, only two aspects of payment and delivery has become a fatal problem "bottleneck." How to combine the development of China's national conditions and characteristics of the Internet, be able to realistically do something practical auto parts network operators today is the development of priority. China'sauto parts e-commerce and enterprise network operators must follow the joint and it should be a very natural result is more than 200 years the United States as a free market economy based on natural product. Like a child to climb from the start with their bare hands, and then learn to walk, over time learned to run naturally. As the development of China, only two aspects of payment and distribution has become a fatal problem "bottleneck."How to combine the development of China's national conditions and characteristics of the Internet, Being able to realistically do something practical auto parts network operators today is the development of priority.汽车营销一、汽车配件网络化经营的概念美国汽车配件经销商雷蒙德的汽车配件店位于美国亚特兰大市的一个郊外,这个小店与别的配件店并无二致,但其特色是网上交易,任何与汽车配件销售相关的服务均可在互联网上实现。
[DOC]-汽车造型毕业设计外文翻译英语原文
![[DOC]-汽车造型毕业设计外文翻译英语原文](https://img.taocdn.com/s3/m/25744e8ff8c75fbfc77db2cc.png)
[DOC]-汽车造型毕业设计外文翻译英语原文汽车造型毕业设计外文翻译英语原文Sketching, concept automotive design development and Sketching andits key role in concept design are identified, and the particular circumstances of automotive design described. A brief summary of work in the general field of concept sketching and visual thinking is presented. The particular characteristics of automotive design sketches; lines, crown lines, area lines, shading and colouring are described, and a delayering analysis undertaken. This demonstrates the primacy of form lines in the automotive design sketch. Observations, by video, of post-graduate students and six professional designers while sketching confirm the importance of the form lines in the design process, the interactive and iterative of concept development and the central role of theactivity of sketching in this process. It is proposed that the design of CAD systems to support concept development must take account of importance of sketching activity.Keywords: conceptual design, drawing, visual thinking, automotive design, computer aided designMuch of the design theory and research work on sketching in design has been based on the domains of architectural design and engineering product design. None of it has drawn directly from the activities of automotive designers with the exception of Tovey. This is a specialised activity because of the particularities of the product form and, becauseof the high level of demarcation in the design and development processin the industry. Thus …computer aided has become a current phrase in the industry, by contrast with …computer aided design? in other fields. Work on computeraided styling has tended to concentrate on providing three dimensional alternatives to sketching, such as …virtual clay modelling? or simply conventional CAD surface modelling. There are many areas of apparent similarity between the activities of automotive designers and those of designers in other fields. A key question is the extent to which the work of design researchers in the other areas will translate to this specialist discipline, and the degree to which their apparently generic conclusions apply.Our investigations have been into the use of concept sketches by designers in the automotive industry. We have undertaken a number of formal exercises to observe designers and their methods in an effort to understand their techniques, and the content of their sketches. At the concept stage they use quick informal methods to provide an initial representation of the design. This representation of their ideas depends upon rapid direct techniques grounded in conventional methods based on pen and paper. It would seem that despite the availability of computer aided techniques to design- ers, none has been accepted by them as having equivalent utility.Our investigations have been into the use of concept sketches by designers in the automotive industry. We have undertaken a number of formal exercises to observe designers and theirmethods in an effort to understand their techniques, and the content of their sketches. At the concept stage they use quick informal methods to provide an initial representation of the design. This representation of their ideas depends upon rapid direct techniques grounded in conventional methods based on pen and paper. It would seem that despite the availability of computer aided techniques to designers, none has been accepted by them as having equivalent utility.These observations indicate that production of design ideas appears to depend upon the interaction with the concept sketches (as will be seen later, this confirms the observations of several previous researchers). The sketches are produced through the initial representation of form lines, and followed by shading to modify the shapes. The intention of this piece of research was to investigate whether or not these lines could form the basis for a CAD tool to produce 3D geometry from the sketches, and to see if the shading had the potential to provide secondary information to facilitate surface modification of this geometry. Moreover, the focus is very clearly on the very early, concept development stage of products in the automotive industry, the intention being that the easy availability of three dimensional geometry very early inthis process can aid the development of concepts and speed up their communication to and evaluation by other parties in the development chain. For this reason, the types of sketches considered are those that occur in the very first stages of the automotive development process.1 Concept sketchesDesign sketches are different from …drawing from the object?.They are not drawings of something that already exists, in front of the artist, as is the case with figure drawing, still life drawing and similar. Instead the designer is involved in a process of attempting to give external definition to an imagined, or only half imagined, suggestion for a design form.Prior work towards the understanding of the role of drawing indesign was extensively summarised by Purcell and Gero4. This provides a comprehensive review of work relating to many types of drawing activity in the design process, including figures, diagrams and more general imagery. It is particularly sketches that we are concerned with here The sketches and other forms of drawing are languages for handling design ideas. The actual process of creating design ideas is usually envisaged as going on in the mind?s eye and thedrawings as attempts to reproduce the designer?s mental images.The method is one of hand-eye co-ordination to produce the physical representation as a sketch on paper. Exercising this skill can be mentally relaxing, which in turn can reduce the inhibitions to the flow of thought. Whilst the designer is drawing there is a mental sifting andsorting of information, which can lead to design ideas. As soon as the image has been manifested in some concrete form such as a drawing or model (physical or computer) it becomes part of the information being handled to produce the next idea. The process is one of interactive generation.Different types of drawings are associated with different stages of the design process with one type, the relatively unstructured and ambiguous sketch occurring early in the process. Designers place great emphasis on the sketch often because it is thought to be associated with innovation and creativity. The conceptual stages of design are characterised by vague knowledge and shifting goals.One view of the purpose of concept sketches in the engineering domain is that they are intended to provide quicker communication and retrieval at the early stages of design, by providing combined visual and factual descriptions for improved evaluation and concept selection.A wider view is reported of the function of such drawings and related diagrams in the field of architectural design. The roles that designers ascribe to such representations in design include:Generating conceptsExternalising and visualising problemsFacilitating problem solving and creative effortFacilitating perception and translation of ideasRepresenting real world artefacts that can be manipulated and reasoned withRevising and refining ideas.In the engineering context three kinds of sketch have beenidentified.(1) The thinking sketch: used to focus and guide non-verbal thinking(2) The prescriptive sketch: used to direct a draftsman in making a finished drawing(3) The talking sketch: produced during exchanges between technical people in order to clarify complex and possibly confusing parts of the drawing.In the same context five levels of complexity have been identifiedfor engineering concept sketches.Complexity level 1: Monochrome line drawing, no shading or colour, uniform line thickness Complexity level 2: Monochrome line drawing, no shading or colour.Line thicknesses vary to give emphasis. May include brief annotation. Complexity level 3: Monochrome with rough shading to suggest form.May be annotated.Complexity level 4: Line and shading, may include colour and graduation.Complexity level 5: Colour illustration to show what the productlooks like. Colour, shading, shadows, annotations, dimensions.This is similar to other codifications of levels of detail in representation for 2D models: Undetailed Diagrammatic drawings Abstract Schematic Representational Ideassketching drawingsConcept drawingsMeasured drawingsGeneral ArrangementAxonometricDetailed Parts drawingsWe have identified a concept sketch as “a collection of visual cues sufficient to suggest the design to an informed observer” .The process of moving from an initially vague concept to a detailed design proposal can be likened to moving from an out of focus image to one that is fully detailed. The concept sketch as an initial representation of the out of focus design idea is clearly essential. In this definition, along with the others quoted above, the emphasis is placed on the sketch as perceived by others, not just the designer. Its private role, as a thinking aidto the designer is also essential, and other researchers have seen this as key to a successful visual thinking activity. Some of this work is discussed below.Figure 1 Example of line usage in a sketch. Package2 Visual thinkingDesign thinking, which is directed to specifying the visual form of a designed object, will of necessity involve visual representation. As McKim has shown visual thinking is greatly facilitated by representational procedures such as drawing in a three-way interaction of seeing, imaging and drawing. For architects this has been described so as to support abstraction and problem solving in a drawing based process.Similarly the analysis undertaken by Suwa, Purcell and Gero is grounded in the architecturaldomain. Their findings may be expressed as the following insights:(1) Sketches serve as an external memory in which to leave ideas for later inspection. (2) Sketches serve as a provider of visual cues for the association of functional issues.(3) Most importantly, sketches serve as a physical setting in which functional thoughts are constructed on the fly in a situated way.Also from the field of architecture, Schon and Wiggins have investigated kinds of seeing and their relationship with the design activity. They regard designing as a conversation with materials conducted in the medium of drawing, and crucially dependent on seeing. It is characterised as a reflective conversation with materials whose basic structure—seeing—moving—seeing—is an interaction of designingand discovery. Designers draw on paper, observing the evolvingproduct of their work, employing different kinds of seeing (visual apprehensions, literal seeing), and as this is done discoveries are made. Features and relations are identified which cumulatively generate afuller understanding, or …feel for? the configurationwith which she/he is working. They conclude that this involves attending to processes that computers are presently unable to reproduce.The work of Goldschmidt in this area, also based on architecture, is telling, and contains powerful insights. She deduces that designers invariably use imagery to generate new form combinations that they represent through sketching. Crucially, she adds that theyalso work in the opposite way; they sketch to generate images of formsin their minds. She asserts that interactive imagery through sketchingis a rational mode of reasoning characterised by systematic exchanges between conceptual and figural arguments.Figure 3 Sketches producedIt is clear that the need for visualisation is recognised by almostall designers in diverse fields,from the arts to engineering. However, it is important todistinguish between that visual representation which is for the purposes of communication (with clients, colleagues or other interested parties) and that which is used for evaluation; that is to assess the quality of the design. Neither of these is what is meant by visual thinking. Ratherit is the generation of new ideas, the reasoning that gives rise to them and facilitates the creation of form in designs (as opposed to their presentation).Sketches play an important role in the creative, explorative, open-ended phase of problem solving, facilitated by lateral transformations.As Garner notes: Pictorial representations, constructed during designing and taking the form of sketches, are important to designing because they impose both order and tangibility on the one hand, while on the other hand their ambiguity stimulates re-interpretation. The very lack ofclarity may be important. It is apparent that there is a wealth ofexisting research concerning the concept sketch; the purpose it has, the media through which it is achieved and its potential for being supported by computers. There is, however, very little research directlypertaining to the automotive concept sketch and whether it is possibleto support the production and use of them using computers. In anindustry heavily committed to CAD and where there is an increasing pressure to reduce lead times it is an area full of research opportunity.。
汽车专业毕业设计翻译英文翻译english
![汽车专业毕业设计翻译英文翻译english](https://img.taocdn.com/s3/m/9a76facac1c708a1284a4428.png)
Development of Integrated Motor Assist Hybrid System:Development of the ‘Insight’, a Personal Hybrid Coupe Kaoru Aoki, Shigetaka Kuroda, Shigemasa Kajiwara,Hiromitsu Sato and Yoshio YamamotoHonda R&D Co.,Ltd. Copyright ©2000 Society of Automotive Engineers, Inc.ABSTRACTThis paper presents the technical approach used to design and develop the powerplant for the Honda Insight, a new motor assist hybrid vehicle with an overall development objective of just half the fuel consumption of the current Civic over a wide range of driving conditions. Fuel consumption of 35km/L (Japanese 10-15 mode), and 3.4L/100km (98/69/EC) was realized. To achieve this, a new Integrated Motor Assist (IMA) hybrid power plant system was developed, incorporating many new technologies for packaging and integrating the motor assist system and for improving engine thermal efficiency. This was developed in combination with a new lightweight aluminum body with low aerodynamic resistance. Environmental performance goals also included the simultaneous achievement of low emissions (half the Japanese year 2000 standards, and half the EU2000 standards), high efficiency, and recyclability. Fullconsideration was also given to key consumer attributes, including crash safety performance, handling, and driving performance.1.INTRODUCTIONTo reduce the automobile’s impact on society and the environment requires that it be increasingly cleaner and more energy efficient. The issues of energy conservation, ambient air quality, and reduction in CO2 emissions are increasing raised as global environmental concerns. One solution for dealing with these issues is the hybrid automobile. Honda has developed and introduced to several major markets worldwide the Insight, a new generation of vehicle design. The Insight combines a hybrid power train with advanced body technology features to meet an overall goal of achieving the highest fuel economy practical.The hybrid power train is a motor assist parallel configuration, termed IMA for ‘Integrated Motor Assist’. This power train combines a highly efficient electric motor with a new small displacement VTEC engine, a lightweight aluminum body, and improved aerodynamics to realize 3.4L/100km (CO2:80g/km) on 98/69/EC fuel economy. Low emissions performance was also targeted with emission levels achieving the EU2000.In addition to recapturing deceleration energy, the integrated motor provides high torque assist during typical urban driving accelerations. This allows a significant reduction in engine displacement and higherengine efficiency. Sustained hill climbing performance and high speed cruising capability are assured by a power-toweight ratio of approximately 56kW per metric ton. New engine technology includes the application of a new VTEC (Variable valve Timing and valve lift, Electronic Control) cylinder head design promoting high efficiency and fast catalyst activation, and a new lean NOx catalyst system which promotes lean burn combustion and a reduction in emissions. Extensive friction and weight reducing features are also applied.2.DEVELOPMENT TARGETS AND CONCEPTDevelopment was aimed at the achievement of extremely low fuel consumption. We set a target of twice the fuel economy of the current production Civic, Honda’s representative high fuel economy car at 7.0 L/100km (93/116/ EC). As a result, the Insight has the lowest fuel consumption in the world, among gasoline passenger cars.Exhaust emission performance often tends to be sacrificed for the sake of low fuel consumption. However, we also decided to match the low emissions performance achieved by other mass production cars. Consideration was also given to recyclability (another important environmental issue), crash safety performance, and the basic car characteristics including handling and styling.Summarizing the above, our development targets were as follows:The best fuel consumption performance in the world∙Ultra-low exhaust emissions∙Superior recyclability∙The world's highest level of crash safety performance∙Advanced styling∙Practical features and responsive handling∙Comfortable two-seat configuration with personal utility space3.POLICIES FOR FUEL CONSUMPTION REDUCTIONIn order to establish the technical approach for achieving the fuel consumption target, we conducted a detailed analysis of the energy consumption of the base car, a Civic equipped with a 1.5 liter engine. We found that it was useful to divide the targeted efficiency gains roughly into thirds, as shown in Fig. 1, in order to achieve the low fuel consumption and numerous other above-mentioned goals. These divisions are as follows.∙Improvement of the heat efficiency of the engine itself∙Recovery of braking energy and employment of idle stop using a hybrid power plant∙Car body technologies including reduction of weight and reduced aerodynamic and rolling resistance.Figure 1. Target of double the fuel economy of CIVICAiming to establish a benchmark for 21st century automobile power trains, we developed this new Integrated Motor Assist power train. This power train simultaneously achieves both extremely low fuel consumption of 3.4L/100km, and low exhaust gas emission performance, befitting a next-generation car.This paper reports on the newly developed IMA system, including the lean burn engine, electric motor, power control unit, battery technology, and exhaust emission control technology used in the "Honda Insight". 4.AIM OF THE IMA SYSTEMWhile developing this next-generation IMA hybrid system, we incorporated as many currently achievable technologies and techniques as possible, in order to achieve the "world's lowest fuel consumption".The following four system development themes were established in order to meet this target.1.Recovery of deceleration energy2.Improvement of the efficiency of the enginee of idle stop system4.Reduction of power train size and weight5.OVERVIEW OF THE IMA SYSTEM5.1. SYSTEM CONFIGURATION –As shown in Fig. 2, the IMA system uses the engine as the main power source and an electric motor as an auxiliary power source when accelerating. Using a motor as an auxiliary power source simplifies the overall system and makes it possible to use a compact and lightweight motor, battery, and power control unit (PCU).Figure 2. IMA SystemA permanent magnet DC brushless motor is located between the engine and the transmission. When decelerating, the rate of deceleration is calculated for each gear and the PCU controls the motor to generate electricity (recover energy), which charges a nickel-metal hydride battery. When accelerating, the amount of auxiliary power provided (hereaftercalled "assist") is calculated from the throttle opening, engine parameters, and battery state of charge. The PCU controls the amount of current flowing from the battery to the drive motor5.2.RECOVERY OF DECELERATION ENERGY –Recoveringdeceleration energy through regeneration makes it possible tosupplement the engine’s output during acceleration and reduce theamount of fuel consumed. Reducing resistance due to runninglosses, including engine frictional losses, increases the availableenergy for regeneration. In particular, minimizing the enginedisplacement is an effective means of reducing friction. Enginedisplacement reduction also has several other benefits, such asweight reduction and increased thermal efficiency. The IMAsystem effectively increases the amount of regeneration duringdeceleration by optimizing the engine and transmissionspecifications.5.3.REDUCTION OF ENGINE DISPLACEMENT –Reducingengine displacement is a very important factor in improving fueleconomy of a hybrid drive train. However, modern automobileshave to perform over a wide dynamic range. Reducing thedisplacement is equivalent to lowering the basic performancecharacteristics of the car. As shown in the output characteristicsgraph in Fig. 3, the IMA system assists the engine in the low rpmrange by utilizing the hightorque performance characteristic of electric motors. The motor can increase overall toruque by over 50% in the lower rpm range used in normal driving. Output in the high rpm range is increased by using a Variable valve Timing and valve lift Electronic Control (VTEC) engine. Thus sufficient peak power is assured and makes it possible to use a new, small displacement 1.0 liter engine.Figure 3.Engine speed (rpm) Output performance of IMA SYSTEM Assist from the electric motor while accelerating is a very efficient means of reducing the amount of fuel consumed.5.4.ACHIEVING LEAN BURN ENGINE OPERATION –Assistfrom the electric motor, based upon the throttle opening, creates quite linear torque characteristics. This, in turn, improves driveability. In addition, motor assist is also provided undermoderate load conditions to broaden the lean-burn operating range, bringing out the full potential of the newly developed lean burn engine.5.5.IDLE STOP SYSTEM – Stopping the engine rather than idling atstops is also an effective means for reducing fuel consumption. In order to restart the engine with the minimum amount of fuel consumption, the engine is quickly cranked to 600 rpm or more by the hightorque integrated motor before ignition occurs, as shown in Fig. 4. This makes it possible to minimize the amount of fuel consumed, in addition to the fuel saved by not running the engine at idle.There are many issues to be considered when performing idle stop. These include judging the driver's intent to stop, preparing for the restart, providing a smooth feeling of deceleration, and minimizing vibration of the car body when the engine stops.Figure 4.Time (sec) The number of cranking in the engine startThis IMA system results in the achievement of both very quick restarts and exceptionally smooth starts.6.MOTOR ASSIST MECHANISM6.1. DEVELOPMENT OBJECTIVES –By limiting the IMA motor functions to assistance and regeneration, development themes were established to achieve the following two points.1.A simple and compact structure2.A system weight of 10% (80 kg) or less of the completed car weight 6.2. THIN PROFILE DC BRUSHLESS MOTOR – A thin and compact DC brushless motor with engine assist and energy regeneration functions was coupled to the engine crank-shaft (Fig. 5).Figure 5. Section view of MotorThis is a high efficiency, compact, and lightweight permanent magnet-type three-phase synchronous electric motor with a maximum output of 10 kW. In addition to developing technologies to reduce the weight and increase efficiency, we also aimed to make the motor as thinas possible in order to achieve a compact power train. Lost wax precision casting process was used for the rotor, rotating by bending coupled to the crankshaft. This achieves high strength and lighter weight (approximately -20%) compared with normal cast products. For the rotor magnets, further improvements were made to the neodymium-sintered magnets used in the HONDA EV PLUS, realizing approximately 8% greater torque density and improved heat resistance. This design also results in a motor structure that does not require a cooling system. A split stator structure with salient pole centralized windings was developed and used to reduce the motor axial width. A split stator was adopted to drive the rotor. This makes it possible to use the salient pole centralized windings, which are both more compact and efficient than the conventional coil wave winding method, as shown in Fig. 6. In addition, centralized distribution bus rings (Fig. 7) formed from copper sheets were used for the harness that supplies electricity to the coils on both sides of the stator. This results in an extremely compact and simple structure. These improvements achieve an extremely thin motor with a width of only 60 mm. This represents a 40% reduction in width compared to conventional technology.Wave winding Salient pole windingFigure 6. Compare of windingFigure 7. Cut view of Motor6.3. NICKEL-METAL HYDRIDE (NI-MH) BATTERY – A nickel-metal hydride battery is used to store and provide electrical energy for the motor assist. This is an advanced battery which has already achieved proven results in the high specific energy version used for the HONDA EV PLUS electric vehicle. The hybrid vehicle battery features stable output characteristics, regardless of the state-of-chargestatus. It is also extremely durable in this application. The battery pack has an integrated structure consisting of 20 modules, each having sixD-size cells connected in series, arranged in a lattice formation. These 120 1.2 V cells are all connected in series for a total battery pack voltage of 144 V.6.4. POWER CONTROL UNIT (PCU) –The PCU performs precise control of motor assist/regeneration and supplies power to the 12 V power source. It has built-in cooling functions, which give it a lightweight, efficient and compact structure. Significant weight reduction was achieved by integrating an air cooling system using highly efficient cooling fins and a magnesium heat sink case.The inverter for the drive motor, which is the most important component within the PCU, has switching elements integrated into a single module for generating the three-phase AC current. These were separate components on the EV PLUS. The drive circuit has been miniaturized and converted to an IC using high density integration. These improvements have resulted not only in significant weight reduction, but have also improved the power conversion efficiency. Further, using phase control to drive the motor at very high efficiencies reduces the amount of heat produced and makes it possible to use a lightweight and simple air-cooling system. (Fig. 8)Figure 8.Inverter Cut view of PCU Heat Sink case7.ENGINE7.1. DEVELOPMENT OBJECTIVES – The following four points were set as development themes in order to achieve low fuel consumption over a wide range of operating conditions.1.Improvement of thermal efficiency2.Reduction of mechanical losses (-10% compared with conventionaldesigns )3.Reduction of size and weight (lightest weight in its class)4. Achievement of half the EU2000 standards7.2.ENGINE OVERVIEW AND SPECIFICATIONS –The enginespecifications are shown in Table 1 and the main new features and their purposes are shown in Table 2.First, a displacement of approximately 1000 cm3 was considered optimal for this vehicle with the IMA system, so a 3-cylinder engine was selected to minimize combustion chamber surface-to-volume ratio andmechanical losses. (Fig. 9)7.3.FUEL CONSUMPTION – Engine displacement could be reduceconsiderably in the motor assist powertrain because of the motor assist enhancement of low rpm torque, and also VTEC for sufficient peak power output from the engine. A key feature of this engine is the significant improvement in combustion efficiency through lean burn technology. Technologies adopted to make this possible include new intake swirl ports, which enhance the swirl (mixture formation) inside the cylinders. A compact combustion chamber and a high compression ratio also help by improving the indicated heat efficiency. This result in significantly shorter combustion times compared to conventional lean burn engines, allowing combustion in a leaner range with a higher air-fuel ratio. This significantly improves the fuel consumption.The new high swirl ports and compact combustion chamber are evolutions based on conventional VTEC lean burn technology. In the conventional VTEC engine, swirl is produced by keeping one intake valve closed in low speed operating conditions. However, in this engine the intake valves and intake ports are arranged more vertically to produce strong eddies in the mixture flowing into the cylinders.The conventional VTEC configuration has the inlet and exhaust rocker arms each supported by a separate rocker shaft. The new VTEC mechanism shown in Fig.10 combines these into a single rocker shaft, thus realizing a significant reduction in size. In addition, it narrows the valve included angle from 46° to 30°, allowing a high swirl port shape and a very compact combustion chamber.Figure 9. Cutaway view of engineFigure 10. Section view of cylinder7.4.REDUCTION OF MECHANICAL LOSS –In addition toimprovement of the indicated heat efficiency, reduction of mechanical loss is also important to improve fuel economy. To achieve this, the following the low friction technologies were used.∙Roller coaxial VTEC mechanism∙Piston micro-dimple treatment∙Offset cylinder structure∙Low tension piston rings∙Carburized connecting rodsThe roller coaxial VTEC structure (Fig. 11) is an adaptation of technology used in the Honda S2000 (high output sportscar engine) to a single-cam VTEC mechanism. The camshaft drive loss was reduced by 70% using a needle roller bearing in the area where the rocker arm slides on the camshaft. In addition, simultaneous reduction in both weight and size were achieved by incorporating the VTEC switching piston into the roller bearing inner shaft.Piston micro-dimple treatment consists of treating the surface of the piston skirt to create a micro-dimple surface. This increases the oil film retention performance and can reduce friction by approximately 30% when lowfriction oil is used.Figure 11. Section view of Roller VTECThese effects resulted in the development of a 0W-20 grade low viscosity oil that complies with ILSAC standards. The friction reducing effects of super-low viscosity oil were measured by engine motoring. These measurement results are shown in Fig. 12. In the current technology engine, the HTHS viscosity at the limit friction value was approximately 2.5 mPas. Being used together with the advanced low friction engine, the limit value was lower than the current technology engineThese low friction technologies have vastly reduced the overall engine friction, as shown in Fig. 13. In total, they have realized a reduction in friction of 10% or more compared to a conventional 1.0 liter engine design .Figure 12. Limit in friction reductionFigure 13. Engine friction7.5.WEIGHT REDUCTION – The structure and materials of almostall parts in this engine have been reviewed with the aim of creating the lightest engine in the world in the 1.0 liter class. This weight reduction extends even to the "skeleton structure technology" and "materials technology" fields carburized connecting rods as used on the S2000 (high output sportscar engine). Carburization strength enhancement technology contributes greatly to increasing engine operational speed. We applied this strength enhancement technology to create a slim connecting rod design for the IMA engine. This resulted in a weight reduction of approximately 30% compared to conventional connecting rods.Most oil pans are made of steel plate or aluminum alloy. Conventionalmagnesium materials have had problems withstanding the high temperatures of engine oil. In contrast to conventional materials, which experience a significant drop in creep strength at 120°C or higher, we have developed a new magnesium oil pan (Fig. 14) which ensures sufficient creep strength up to 150°C.Figure 14. Magnesium Oil PanThis oil pan is fastened using steel bolts with aluminum washers to prevent galvanic corrosion. The oil pan weight is 35% lighter than an aluminum oil pan, for a reduction in weight that is comparable to the ratio between the specific masses of the two metals.In order to expand the application of plastic parts, plastic materials were adopted for the intake manifold, cylinder head cover, water pump pulley, and intake system parts. These changes brought the discrete dry weight of the engine to less than 60 kg, which is the lightest weight in the world for the 1.0 liter class.7.6.EXHAUST EMISSION PERFORMANCE –Technology forsimultaneously achieving both lean burn and low exhaust emissions was adopted in this engine, achieving a notable reduction in NOx emissions.Combustion was improved by putting the exhaust system to the rear of the engine (Fig. 15). In addition, the exhaust manifold was integrated with the cylinder head and a NOx adsorption catalyst which reduces NOx emissions during lean burn operation was also newly developed.Figure 15. Section view of emission system7.6.1. Integrated Exhaust Manifold and Cylinder Head – Conventional cylinder heads have independent exhaust ports for each cylinder and a separate exhaust manifold acts to converge these exhaust ports into a single port is then mounted to the head. However, the new head on the Insight has a structure which converges the exhaust ports into a single port inside the head, as shown in Fig. 16. This greatly reduces the weight. In addition, the small heat radiating surface area reduces the exhaust gas heat loss, thus enabling early catalyst activation.Figure 16. View of Head7.6.2. Lean NOx Catalyst – The catalyst system on the Insight combinesa conventional three-way catalyst with NOx adsorbing materials. The NOx conversion mechanism of the newly developed catalyst is shown in Fig. 17. The NOx in the exhaust gas is adsorbed and separated by the NOx adsorption action of the catalyst during lean engine operating conditions. Conventional three-way catalyst operation reduces part of the NOx to nitrogen and oxidizes most of the HC and CO to CO2 and H2O during lean operation. However, since the exhaust gas contains large amounts of oxygen, there is relatively little NOx reduction with the three-way catalyst and most of the NOx is stored on the surface of the adsorbing material. When the exhaust is held at the theoretical air fuel ratio (stoichiometry) or richer air-fuel ratio, the adsorbed NOx is reduced to nitrogen using HC and CO as reducing agents. The adsorbent is regenerated at the same time. Thus, NOx, HC and CO are effectively converted using the three-way catalytic action of the catalyst combined with the NOx adsorber.This type of catalyst exhibits superior conversion performance during both lean operation and stoichiometric operation by switching betweenlean and stoichiometry operating conditions. It is essential to create a regenerative atmosphere before the NOx adsorption capacity becomes overloaded. This catalyst directly adsorbs NOx during lean burn engine operation and the adsorbed NOx is then reduced and exhausted as harmless nitrogen (N2) during stoichiometric operation.Figure 17. Exhaust gas purification mechanismThis catalyst is characterized by the direct adsorption of NOx to the catalyst surface during lean operation. Adsorption on the catalyst surface, instead of absorption as a compound inside the surface, facilitates conversion during reduction and also provides superior durability at high temperatures. This adsorptive type catalyst reduces NOx emissions during lean burn operation to 1/10 the level of the conventional three-way catalyst. It should be noted that the adsorption and conversion performance of this type of catalyst is sensitive to sulfur levels in the fuel, as sulfur can compete for the active NOx adsorbing sites. As a conventional three-way catalyst has virtually no NOx reduction during lean-operation, the lean burn operating range typically has to be reducedto keep NOx emissions down. Use of an adsorptive type catalyst maintains the full lean burn range and improves fuel economy, even while reducing NOx.This vehicle can also satisfy the EU2000 standards, making this a highly efficient lean burn engine that complies with exhaust emissions standards throughout the world.8.CONCLUSIONThis paper presents a general overview of the recently developed motor assist hybrid powertrain, as well as a description of its various components and its output and emission performance. This hybrid power train simultaneously achieves ultra low fuel consumption and low exhaust emissions. It also achieves a compact, lightweight power train layout. We believe this system advances 21st century automotive technology toward regional and global environmental goals. REFERENCES1.Aoki, Kaoru, et al.: "Development an Integrated Motor Assist HybridSystem", JSAE No. 98-99 1612.Yamaguchi, Tetsuro: "CVT Control in the HONDA Hybrid 'IMA'",No. 9908 JSAE SYMPOSIUM, Latest Motive Power Transmission Technologies '99, p.37403.Ohno, Hiroshi, et al.: "Development of a NOx Adsorptive ReactionType Three-Way Catalyst", HONDA R&D Technical Review, V ol. 11No. 2 (October 1999), p.45-504.Fukuo, Koichi, et al.: "Development of the Ultra Low FuelConsumption Hybrid Car 'Insight'", HONDA R&D Technical Review, V ol. 11 No. 2 (October 1999), p.1-85.Hideki Tanaka, et al .: "The Effect of 0W-20 Low Viscosity EngineOil on Fuel Economy”, SAE Paper No.1999-01-3468,Fuels and Lubricants meeting and Exposition, Toronto, Ontario, Canada, October 1999.6.Aoki, Kaoru, et al.: "An Integrated Motor Assist Hybrid System",SAE Paper No.2000-01-2059, Government / Industry Meeting, Washington, D.C., USA。
汽车专业毕业论文翻译中英文(全)AUTOMOBILE
![汽车专业毕业论文翻译中英文(全)AUTOMOBILE](https://img.taocdn.com/s3/m/2b395f1cf68a6529647d27284b73f242336c3188.png)
Mark Steffka, B.S.E., M.S., is with the Electromagnetic Compatibility (EMC) Engineering Group of General Motors (GM) Pow ertrain and is a faculty member of two universities in the Detroit, Michigan, area. He has over 25 years of industry experience in the design, development, and testing of military, aerospace and automotive electronics, including power, control, and radio frequency (RF) systems. Since 2000, he has been an adjunct lecturer at the University of Michigan-Dearborn, in the Electrical and Computer Engineering (ECE) department for the undergraduate and graduate classes on EMC, and was a Co-Principal Investigator for a United States’ National Science Foundation grant which resulted in the establishment of the campus’ EMC laboratory. For the college’s Engineering Professional Development office he is the instructor for engineering continuing education courses on “Automotive EMC” and “Antennas”. He is the recipient of faculty and alumni awards from the University of Michigan – Dearborn, College of Engineering and Computer Science, for his contributions to engineering education and the EMC curriculum. At the University of Detroit –Mercy he is an adjunct professor and teaches an undergraduate and graduate engineering course on EMC. He is a member of Institute of Electrical and Electronics Engineers(IEEE), has served as a session chair for the IEEE EMC Symposium and a technical session organizer for the Society of Automotive Engineers (SAE) World Congress. He has been a speaker at IEEE and SAE conferences held in the United States and international locations.His publications have covered topics on EMC, RFI, and was a co-author of the book“Automotive Electromagnetic Compatibility”. He has held an amateur radio license since 1975, with the call sign WW8MS, is a Life Member of ARRL, the National Association for Amateur Radio, and serves on the ARRL EMC Committee.马克Steffka,疯牛病,硕士,是与电磁兼容性(EMC)工程集团,通用汽车(GM)的动力,是两个在密歇根州底特律地区的大学任教。
汽车设计外文文献翻译、中英文翻译、外文翻译
![汽车设计外文文献翻译、中英文翻译、外文翻译](https://img.taocdn.com/s3/m/054625591611cc7931b765ce0508763231127421.png)
汽车设计外文文献翻译、中英文翻译、外文翻译Automobile Design-Frame DesignsThe vehicle frame is the basic platform to which all suspension and steering linkage parts attach. A vehicle will neither steer nor handle well if the frame is too flexible. A rigid frame structure may pass unnecessary vibrations into the passenger compartment. The frame and suspension design will affect the ride quality, handling, and durability, as well as the levels of both noise and vibration.Manufacturers use several different types of construction on their vehicles. Of these, separate body and frame construction was the most common through the 1970's. It is still used in large vans, pickups, and trucks. In this type of construction, the engine, drive line, running gear, and body mount to the frame through insulators. Insulators are synthetic rubber pads that keep road and engine noise and vibration from going into the passenger compartment.A second type of construction is the unitized body. This, design is by far the most popular in modern vehicles. The unitized design has a lightweight structure with the required strength. Tn this type of construction, the frame is welded into the body as part of the body structure. Body panels add strength to the frame pieces. The running gear and drive line are mounted to the unitized body through large, soft synthetic rubber insulators. The insulators minimize the transfer of noise and vibration. If the insulators are too soft, they will allow too much running gear and drive line movement. This movement, called compliance, affects vehicle handling and control. If the insulators are too hard, they will not insulate noise and vibration as they should. Themanufacturer carefully designs the insulators and puts them where they will be in a vehicle with low noise and vibration transmission that still has proper handling and feel. Insulator properties change with age, changing original characteristics as the vehicle becomes older.A third type of construction combines the features of the first and second types. It uses a stub frame from the bulkhead forward and a unitized body from the bulkhead back. The unitized part is very rigid, while the stub frame provides a place for good insulation.Manufacturers select the type of construction .that is most economical to build,' while providing the noise, vibration, and ride and handling characteristics they want in the vehicle. Large older vehicles, vans, and trucks generally use separate body and frame construction. The newer, smaller' vehicles generally use unitized construction.The machine piston connecting rod setThe piston connecting rod set is composed of the piston, piston wreath, piston pin, connecting rod, connecting rod axle bush, etc.effect: The effect of the piston is to bear the air pressure, and pass to connecting rod to drive the bent axle to revolve through connecting rod axle bush, the piston coping is still a part of the burning room. The work condition: Piston works under the condition of heat, high pressure, high speed, and bad lubrication .Piston directly contacts with the heat air. The temperature can amount to above 2500 Ks in a moment .The piston is heated severely, but the condition of spreading the hot is bad .So while the piston works, the temperature is very high and the coping is up to the 600-700 Ks: And the temperaturedistributes asymmetrically; The piston coping bears great air pressure, especially the pressure is greatest in the route of doing efficacy. The gasoline machine is up to the 3-5MPas, the diesel engine is up to the6-9MPas.This makes the piston produce pound, and bear the function of the side pressure. Therefore, the piston should have enough heat-proof, try to decrease the heating area,, strengthen the cooling of the piston, to make the highest temperature of the coping descend .The piston moves at very high speed(8-12 ms/ s) back and forth in the air cylinder, and speed changes constantly, This produces very great inertial dint, making the piston bear great additional load working under such bad condition, the piston will become deformed heating power. At the same time ,it slitters the chemical corrosive power of the burning gas .In order to descend the inertial dint of back and forth, we must ease the weight of the piston as possible .Piston works under the condition of the heat, high pressure, high speed(the average speed can amount to the 101115 m/ s), and its lubricant condition is bad and the frication between the piston and the air cylinder wall is very great. In order to descend the friction, the surface of the piston surface must be wear-resistant..Request:1) To have enough rigidity and strength, and the reliable dint;2) Transmit heat well, bear the high pressure, bear the heat and bear to wear away;3) the quantity is small, the weight is light, descend the inertial dint of back and forth as possibleThe aluminum metal alloy material satisfies the top requests basically, therefore, the piston generally adopts the high strength aluminum metal alloy, but some low speed diesel engines adopthigh class iron casting or heat-proof steelstructure: The piston can be divided into three parts, piston coping, the piston head and piston skirt departments.1. The piston copingThe piston coping bears the air pressure, it is a part of the burnable room .Its shape, position, size are relevant to the concrete from of the burnable room. They are made to satisfy the combustible hybrid spirit formation and burnable requests. Its coping shape can be divided into four major types, a flat coping piston, a convex coping piston, a concave coping piston and model piston.A convex coping piston is usually used on the two blunt distance I.C. engines, It is good to improve the process exchanging the gas .Modern four blunt the distance gasoline machine also adopts the convex coping piston in order to strengthen the effect of pushing the gas or extend the ratio of compressing .Convex of a piston coping presents a form of ball, its coping strength is high, having an effect of leading, being advantageous to improve the process of exchanging the gas, two route of travel gasoline machines often adopt the convex coping pistonA piston coping presents the hollow form, the shape and positions of the cave pit must be advantageous to the combustion of the combustible and hybrid gas, having a pair of eddies concave pit ball, concave pit, U concave pit, and so on.2. Piston headThe piston refers to the first piston wreath to the part above the piston pin.It has several wreath slots, which are used to install the piston wreath and have an effect of sealing completely. It is also called the leak proof department .The diesel engine’scompress ratio is high, and generally have four wreath slots, The three upper wreaths are used to install, the lower part installs the oil wreath. The gasoline machine has three wreath slots generally, which are two jet of gas wreath slots and an oil wreath slots. At the bottom of oil wreath slot many paths toward eyelet are drilled to make the quilt oil wreath flow from the air cylinder wall to the oil bottom hull through these eyelets. The working condition of the wreath slot is the worst and should leave the coping generally a little farther.Above the gas wreath, a narrow insulating slot is usually set to cut off the heat flow which is spread from the piston coping to the first gas wreath and make parts of calories from a piston wreath spread, thus easing the hot burden of the first gas wreath. On some engines small wreathe slots are often made between the coping head and the first gas wreathe, sometimes till a few more wreath. This kind of small wreath can adsorb the lubricant because it accumulates the carbon. It can keep piston and the air cylinder walls from biting to match when it work in the condition of losing oil, so it is called accumulating the carbon slot.The calories that the piston coping absorbs also mainly passes the air cylinder wall through the piston wreath to leak proof department, again spread by the cool water.In a word, the function of the piston head is in addition to install the piston wreath, still seal completely function and transmit heat function, sealing completely the air cylinder together with the piston wreath, keeping combustible admixture spirit from leak crankcase, at the same time pass the(70-80)%calories to the air cylinder wall through the piston wreath.3. Piston skirt departmentThe piston skirt department refers to the parts from thebottom of the oil wreathe slot. It includes the pin which is used to pack the piston. The piston skirt department exercises to rise to lead to the function to the piston in the back and forth in the air cylinder, and bear the side pressure. The length of the skirt department is decided by the size and the piston diameter of the side pressure. The so-called side pressure mean in the compression route of travel and make route of travel of efficacy .The level component of the gas pressure which take effect on the piston coping presses the piston to the air cylinder wall. Compress the route of travel and make the side pressure direction of the efficacy route of travel air exactly the opposite, because of the combustion pressure consumedly high in compress the pressure, so, make the side in the route of travel of efficacy pressure also consumedly high in compress the side in the route of travel pressure.Two on the sides that bear the side pressure of the piston skirt department be called to push the dint to face, they be placed in to sell the mutually perpendicular direction of the stalk line with piston up.Drive LinesThe drive line includes all the parts from the and final drive carry the torque from the engine, the other. The engine torque during acceleration and the torque during braking place loads on the suspension parts.During suspension repair, it may be essary to disassemble parts of the drive line. Noises produced when the suspension moves may originate from drive line parts. A basic understanding of different drive line assemblies is presented here to give you a working knowledge so that you can do suspension repair.Drive lines with front-wheel drive often combine the transmission and the final drive into one assembly. This is alsotrue of mid-and rear-engine vehicles. The assembly is called a transaxle, Short half-shafts with universal joints at each end connect between the transaxle and the wheels. These shafts carry power from the final drive to the wheels even when the suspension moves and steers.A differential in the final drive splits incoming power, sending half to each drive wheel. This allows the drive wheels to turn at different speeds while rounding corners. The transmission Other parts form the link from one part to while cornering.In front-engine, rear-wheel drive vehicles, the transmission is located under the front floor of the passenger compartment. A drive shaft is used to carry engine power to the rear axle. The drive shaft has a universal joint at each end. It carries power through the changing drive line angles as the suspension moves.A vehicle with independent suspension at the drive wheels has the final drive attached rigidly to the vehicle frame or the engine. This drive arrangement produces forces, without any torques, on the suspension parts during acceleration. If the brakes are mounted inboard so the caliper mounts to a frame piece and not to a suspension, the brake will also not produce a torque on the suspension. A suspension designed to handle only acceleration and braking torques can be designed differently than one that must handle both suspension forces and torques.Suspension SystemsThe suspension includes springs, shock absorbers, and control linkages. It must be strong enough to support the vehicle body and load. The suspension must also resist engine and brake reactions. The most important job of the suspension is to keep the tires in contact with the road as much of the time as possible. This is done while supporting the vehicle and its load, even whiletraveling over rough roads. The four tire footprints are the only place the vehicle touches the road. All of the engine power, steering, and braking forces operate through the tire-to-road footprints. Control of the vehicle ( power, steering and braking) is reduced or lost any time a tire does not stay on the road or when skidding begins.The vehicle body is supported by springs. The springs can be of the coil, leaf, torsion bar, or pneumatic type. Coil springs are the most popular design used in the modern automobile. Coil, torsion bar, and pneumatic springs all require links and arms to hold the wheel in position. Leaf springs provide lateral and longitudinal control to prevent unwanted wheel motions. They are commonly found on vans and trucks.Suspension systems have been changed and refined as the passenger automobile has developed. Design objectives differ between luxury sedans, performance vehicles, small compact vehicles, and light trucks. Tire improvements, along with improvements in shock absorbers, steering systems, and suspension control devices, have continually upgraded vehicle handling characteristics.5Tire-to-road contact is needed for safe, positive vehicle control under all operating condi-tions. Keep in mind that all four tires must stay in contact with the road at all times for maxi-mum vehicle control. Compromises are made in handling response, tire wear, driver comfort, and ride harshness to achieve positive vehicle control.Suspension systems are divided into front suspension and rear suspension.Front suspension designs have developed from relatively rugged solid-axle designs to the modern lightweight, high-strength , strut-type independent designs. These have been upgraded with added linkage. Suspension design improvements have followed improvements in roadways and driver expectations.Most front-engine, rear-wheel-drive vehicles use a simple dependent rear suspension .Rear-wheel-drive independent suspension is much more complex and expensive. As aresult, it is only used on a few passenger vehicles.To front-engine, front-wheel-drive vehicles by moving the drive train to the front, only ride control and braking reactions are controlled by the rear suspension. This has led to the use of simplified dependent suspension , semi-independent suspension and independent rear suspension. The latter is used in a larger number of new vehicle designs.Steering SystemsThe driver controls the direction of the front wheels of the vehicle through the steering gear. Modern steering gears have two major units* a steering column and a gear unit. Tin-steering column has a supported shaft that connects the driver's steering wheel to the gem unit. The gear unit multiplies the driver's steering effort to move the steering linkage.The front wheels of rear-wheel-drive vehicles rotate on a spindle. The spindle is part ol the steering knuckle . The knuckle is connected to the front suspension members with ball joints. The ball joints allow for steering as the suspension moves up and down. The wheel hubs on front-wheel-drive vehicles rotate on hollow axle stub shafts inside bearings within the steering knuckles.The steering wheel controls the steering gear assembly. This,in turn, moves the knuckle through the steering linkage. Two steering gear designs are in use today, the rack and pinion and recirculating ball.vehicles are designed with responsive steering. As a result, more effort is needed to steer the vehicle when it is moving slowly. Power steering supplies this effort on many vehicles.With power steering doing most of the work, steering ratios are decreased so that the ve-hicle can be steered with small steering wheel movements. The power steering gear is similar to the standard steering gear. It includes surfaces upon which fluid pressure is applied to aid the driver's steering effort. Both rack and pinion and recirculating ball gears may have power assist.Power for the steering gear is provided by an engine-driven pump. The pump forces power steering fluid through a system controlled by a valve. This control valve can sense the driver's steering effort. It puts fluid pressure against a pressure surface in the steering system. This fluid pressure takes over some of the effort needed to steer the vehicle.The steering column in the modern vehicle has many parts. It is designed to collapse or fold in a vehicle collision to protect the driver. In some installations, it may be tilted and tele-scoped to adjust the position of the steering wheel for the comfort of the driver. To reduce the chance of theft, it also has a steering gear lock. On many vehicles, it has a transmission lock. Because it is within easy reach of the driver, the steering column may carry the transmission shift control lever, turn signal switch, headlight and dimmer switches, wiper switch, emer-gency flasher switch, and speed control.Brake SystemsService brakes must be able to stop the vehicle, preventexcess speed when coasting, and hold the vehicle in position while it is stopped on grades. They are designed so the driver can adjust the braking effort to maintain vehicle control. Vehicle control is influenced by brakes as well as the suspension and steering systems. Faults in the brake system can lead to wheel pull during braking. To repair suspension systems, parts of the brake system may require disassembly. For these reasons, the brake system will be discussed briefly in this text.The brake system must provide smooth stopping power that can be controlled by thedriver. The force required on the brake pedal must not be so high that the wheels cannot be locked. To meet these braking requirements, minimum braking standards have been set for vehicle brakes.The driver controls the braking force through mechanical, vacuum, and hydraulic mecha-nisms. The amount of braking increases as more force is placed on the brake pedal. This force is transferred through the brake system to push stationary brake linings against the rotating brake surface. This slows the vehicle as it turns kinetic energy (energy of motion) into thermal energy (heat). Maximum braking occurs just before the wheels lock to cause the tires to slide on the road surface. Maximum braking, therefore, depends on the adhesion between the tire and the road surface. When the tire slides on the road, braking effect is reduced and direction-al control of the vehicle may be lost.The stationary parts of the front brake assemblies are mounted on the steering knuckle of the front suspension. In the rear, they are mounted on the axle housing or the rear spindle assembly. The cast-iron brake drum or disc rotates with the wheel .Disc Brake. Disc brakes have discs that rotate with the wheel . The brake disc is usually called a brake rotor. A hydraulically operated piston in a stationary caliper is used to force the lining of the brake pad against the braking surface of the rotor. The friction between the lining and rotor is used to slow or stop wheel rotation. The stationary caliper housing keeps the pads from rotating when they are being forced against the rotating brake disc.Disc brake pads move perpendicular to the face of the brake rotor. In this way, they clamp on the rotor to slow the vehicle motion. The clamping force is proportional to the force the driver puts on the brake pedal.Drum Brakes. Drum brakes use stationary, internal expanding brake shoes with linings. They are mounted inside a rotating brake drum. The brake drum is fastened between the wheel-tire assembly and the hub assembly or the axle flange. The brake shoes slow drum rotation when the diameter of the shoes is expanded to bring the lining in contact with the brake surface. This is done by a hydraulically operated wheel cylinder. Fluid pressure from the master cylinder is forced into the wheel cylinders, expanding them. The expansion of the wheel cylinder moves the brake shoe through mechanical linkage to press the-linings against the rotating brake drum. This provides braking action as it slows the rotation of the drum.汽车设计车架设计车架是汽车最基本的台架,所有的悬架和转向连接部件都安装在车架上面。
汽车专业毕业设计 翻译 中英文(全)lean remanufacture of an automobile clutch
![汽车专业毕业设计 翻译 中英文(全)lean remanufacture of an automobile clutch](https://img.taocdn.com/s3/m/6be4d089dd88d0d233d46a28.png)
LEAN REMANUFACTURE OF AN AUTOMOBILE CLUTCH Tony Amezquita*and Bert Bras**Saturn Corporation Systems Realization LaboratorySpring Hill, Tennessee Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlanta, Georgia 30332-0405AbstractIn the history of manufacturing there have been three production systems, namely, craft production, mass production, and lean production. In many automotive remanufacturing operations, craft production and mass production systems are used as the basis for remanufacturing processes. The lean production system has proven to be more effective in the manufacture of automotive parts and it has allowed manufacturers who use it to produce in much greater varieties, with higher quality levels, and with lower costs. Hence, if used in remanufacturing, it would greatly enhance it. In this paper, a current remanufacturing process of an automobile clutch is analyzed, and a lean remanufacturing process is developed and compared to the as is process. Our findings indicate that the lean remanufacturing process provides a more robust process with lower costs when compared with the current clutch remanufacturing process that utilize craft and mass production practices.*Assistant Professor, corresponding author.**Remanufacturing Engineer.1 Our Frame of Reference – Remanufacture in the Automotive Industry Remanufacturing is the most economically sustainable form of reuse and recycling of manufactured goods, and it can be defined as the industrial process where worn out products referred to as cores, are brought back to original specifications and condition. In some cases, especially in the remanufacture of OEM automotive parts, remanufactured products exceed original specifications. The reason is that the latest engineering design and specifications, coupled with failure mode countermeasures derived from failure analysis, are used instead of the original specifications. The benefits of remanufacturing are many, but the most salient are:1) Remanufacturing salvages the material, energy, capital, labor, and emissions that wentinto the manufacture and material processing of products.2) The resulting production costs can often be lower than manufacturing, allowingremanufacturers to sell their units for 25 to 50% less than manufactured units with equivalent or better quality levels.These two benefits are the result of the fact that parts are reused and the embedded utility in the parts are maintained. Hence the resulting production costs, which should be considerably less than in manufacturing, allow remanufacturers to pass the savings on to consumers. Remanufacturing in the automotive industry can be divided into two groups; independent remanufacturers and Original Equipment Manufacturer (OEM) remanufacturers. Both of these activities in the domain of automotive products constitute the largest remanufacturing consumer market segment in the United States and Europe.In 1978, Kutta and Lund documented a survey capturing some of the issues important to remanufacturers (Kutta and Lund, 1978). However, we discovered in surveys and interviews with remanufacturers that many changes have occurred in the industry since then (Hammond, et al., 1996, Hammond, 1996). Major changes have been the restructuring of automotive companies into platforms and the trend towards mass customization of products. Especially the latter has resulted in what remanufacturers have termed “Parts Proliferation”, which refers to the practice of making many variations of the same product - differing only in one or two minor areas. However, these differences (such as electrical connectors) are distinct enough to prevent interchanging these similar products.The focus in this paper is on independent automotive remanufacturers, because they remanufacture component parts from most of the automobile manufacturers in the world, and for a very large number of model years. This being the case, independent remanufacturers are faced with a parts proliferation problem which cannot be successfully handled with their current production practices, that consist of a mixture of mass production and craft production practices. As described below craft production practices maintain production costs high regardless of volume, and mass production practices are not compatible with large product varieties. Consequently independent parts remanufacturers are loosing market share to aftermarket partsmanufacturers, and in some cases, remanufacturers are being forced out of the market, as in the case of clutch remanufacturing. For example, in 1989 the price difference between remanufactured and manufactured clutches was 50%. In 1994 the difference dropped to 20%, and getting out of clutch remanufacturingIt is our belief that the trends in mass customization and parts proliferation will not decrease and the small to medium sized independent remanufacturers seem to suffer most from these trends. Our surveys also point out the differences and sometimes hard “us versus them” attitude between independent remanufacturers and Original Equipment Manufacturers (OEMs), leading us to believe that the sharing of design information between OEM and remanufacturer is not a feasible solution and/or option in many cases. Hence, the only way we can help increase the remanufacturability of those products is by improving the remanufacturing processes.In this paper, we present some of our findings which, interestingly enough, indicate that the introduction of lean production techniques (which are one of the main causes of part proliferation and product diversity) in the remanufacturing industry, and hence creating lean remanufacturing processes, can lead to significant process improvements andto the current remanufacturing processes which are heavily batch oriented. In this paper, a solution to the parts proliferation problem of independent automobile parts remanufacturers is developed by transforming a current remanufacturing process of an automobile clutch into a lean remanufacturing process. This lean clutch remanufacturing process has been developed in great detail in (Amezquita, 1996). In this paper, we will discuss the as-is process, followed by a discussion on how to convert this process into a lean remanufacturing process. It should be stated up-front that although the proposed lean process offers substantial savings, it has not been implemented by the company who supported this case study. First, however, we will provide the necessary background on craft, mass, and lean production systems.2 Craft, Mass, and Lean ProductionIn the 1800s, automobile manufacturing was the domain of the skilled craftsmen who controlled most of the activities on the manufacturing floor. These skilled craftsmen designed and built customized vehicles by making and fitting each part by filing it down until it mated with the other vehicle parts. Even if craft producers could make 10,000 identical cars, the price per car would not have dropped by much, because each car was essentially a prototype. The biggest benefits of this craft production system in the automotive industry were that:•customers were able to obtain products which specifically met their needs, and•workers were satisfied, proud, and fulfilled, and their goal was to hone and perfect their skills and one day become independent owners.At the turn of the century, Frederick Taylor removed the control of the manufacturing operations from the hands of the skilled craftsmen by creating divisions of labor. This was the first step towards the development of mass production, which was fully implemented by Henry Ford. Taking the developments of Taylor, Ford added the standardization of the production of parts, which led to complete parts interchangeability, which in turn led to the simplification of parts assembly. In 1908, an assembler was spending 514 minutes (8.56 hours) assembling a large portion of the car before moving to the next car (Womack, et al.,To reduce the cycle time of assemblers (period of time spent with each vehicle by each employee), Ford had each assembler perform a single task and move from vehicle to vehicle in the assembly hall. The cycle time per vehicle was reduced from 8.56 hours to 2.3 minutes (Womack, et al., 1991)! Finally, the simplification of assembly tasks allowed Ford to utilize the moving assembly line to bring the cars to the assemblers and eliminate all the walking previously done. In addition, the moving assembly line enforced a faster and even work pace. Ford’s implementation of the moving assembly line, which brought the car past the stationary worker, cut cycle time even further from 2.3 minutes to 1.19 minutes (Womack, et al., 1991).Ford discovered that his new system reduced the amount of human effort needed to assemble a vehicle, and with the same number of people, equipment, etc., the more standardized vehicles he produced, the more the cost per vehicle dropped (economies of scale). By the time Ford reached volumes of two million identical vehicles per year, he had slashed the real cost to the consumer by an additional two thirds from the time he started production of the Model T in 1908. Consequently, a production system which most closely resembles the mass production system can bring substantial savings to a remanufacturer, and is often advocated. However, this system runs aground when confronted with a large variety of parts, which is the current situation many independent automotive remanufacturers are facing. Most automotive parts remanufacturers (and other remanufacturers) still rely on craft production systems to handle the variability in the number of parts to be remanufactured and the variability inherent in refurbishing operations due to wear differences. However, as noted already by Henry Ford, craft production system has two main drawbacks:1) Production costs remain high regardless of volume (economies of scale are not possible,e.g. Ferrari Automobiles).2) Quality, consistency, and reliability are poor due to the lack of standardization.Thus, a different approach to remanufacturing which uses elements of the mass and craft production systems may prove to be more suitable for automotive parts remanufacturing.Lean production takes the best elements of the craft and mass production systems. This system was developed by the Toyota Motors Corporation, and later is was implemented by all Japanese automotive manufacturers. Lean production can be defined as an entire production system with the following fundamental characteristics:1) Economies of scale (from mass production),2) Production of large varieties of products (from craft production),3) Elimination of non-value added resources and activities, and4) Integration of all production system elements and functions to obtain long term functionalrelationships.Compared to the lean production system, the traditional mass production system can be fundamentally defined as having the following characteristics:1) Economies of scale,2) Very limited range of product varieties,3) Non-value added resources and activities are perceived as necessary, and4) Division of all production system elements and functions to obtain specializationresulting in short term strained relationships.Given the fact that the lean production system is most suitable for the production of large varieties of products, and it allows the attainment of economies of scale, it would seem that using this production system as a basis for remanufacturing processes would provide better results than the ones currently obtained, which are forcing independent parts remanufacturers away from remanufacturing. In the remainder of this paper the remanufacturing process of an automobile clutch at one of the largest independent automotive parts remanufacturers is used as a case study.3 Automobile Clutch Remanufacturing at RaylocThe Rayloc Company is a division of the Genuine Parts Company which provides aftermarket replacement parts at 6,500 NAPA Auto Parts stores nationwide. Rayloc is one of the largest automotive parts remanufacturers in the world, and they remanufacture parts such as alternators, starters, drive shafts, brake master cylinders, calipers, wiper motors, window lift motors, rack and pinion units, steering boxes, power steering pumps, brake shoes, disc brakes and clutches. The focus of this paper is placed on the remanufacturing process of clutches.The clutch remanufacturing process at Rayloc was analyzed for six months at one of the remanufacturing plants. The process material flow is represented schematically in Figure 1.Figure 1 - Current Clutch Remanufacturing Process Material Flow With BatchingIn this process cores are supplied by customers, and are accumulated randomly in drums without identification at the NAPA jobbers or retailers. Cores (c1, c2, etc., see Figure 1) are then identified and sorted by part number and manufacturer, and are again accumulated in a core warehouse at the Rayloc plant. Based on a forecast, cores are removed from a core warehouse and processed in a batch. Batches of the same part number are randomly mixed and the reusable components are assembled together with replacement component parts. Non-reusable components are recycled after work has been done on them. The remanufactured cores (rc1, rc2, etc., see Figure 1) are placed in a finished goods warehouse to start the cycle over again after a customer buys the remanufactured clutch. The assumption behind this remanufacturing process is that identical cores can be easily collected into economic batches and together they can be disassembled, cleaned, inspected, refurbished, and reassembled. The process is distinguished by having large enough volumes to obtain some form of economies of scale. The practice of batching in remanufacturing was adopted from mass production, but batching is also done in remanufacturing for the purpose of cannibalizing reusable parts and reduce the need to purchase new manufactured replacement parts. Purchasing manufactured replacement components is for the most part more expensive than cannibalizing cores. In fact, a fundamental principle of economic remanufacturing is the maximization the reused content in finished remanufactured products.After the completion of the study, the clutch remanufacturing process was characterized using the criteria as shown in Table 1. The characteristics of this process reflect the problems and issues independent auto parts remanufacturers face, and are not indicators that Rayloc is poorly run. In fact, Rayloc is one of the most efficient remanufacturers in the U.S.A. with a proven track record exemplified by the fact that Rayloc’s remanufactured clutches are still selling well, in a timewhen other remanufacturer s’ clutches are being phased out from the market.The relatively long processing lead time requires the use of a warehouse to buffer the factory from the market. When product varieties are small, this approach does not require the need to store a large quantity of parts, as was once the case in the 1960s at Rayloc, when remanufactured remanufacturing process (LeCour, But when varieties are large, inventory levels in the warehouse increase considerably, and customer service levels drop.4 Designing a Lean Process for Automobile Clutch RemanufacturingA lean remanufacturing process must have the following elements as stated earlier:1) Economies of scale (from mass production),2) Production of large varieties of products (from craft production),3) Elimination of non-value added resources and activities, and4) Integration of all production system elements and functions to obtain long term functionalrelationships.In the following sections, we present how these elements can be achieved for the Rayloc clutch remanufacturing process.4.1 Obtaining Economies of Scale and the Ability to Handle Large Varieties of Products In order to obtain economies of scale, one must do what Henry Ford did: standardize. However, in traditional remanufacturing processes it is very difficult to standardize because of the(Guide,1996). This argument is applicable in the remanufacturing shop which utilizes a job shop layout and the work is performed in a manner consistent with the craft production system. Thus, the first step in obtaining a lean remanufacturing operation is to move away from craft production or “artisan work” and create a standardized process. This however, cannot be done in the same fashion Ford did. At the beginning of the century, Ford relied on hard automation to standardize the production work, and thus eliminating adjustments, in contrast to craft production where multi-purpose machines require various adjustments which require skilled craftsmen. Ford had standardized all the tooling and tasks so well that he practically eliminated all adjustments. The penalty with this system was that he had no flexibility to switch between models with the same machinery. When Ford redesigned the Model A, he discarded the machinery along with the old model (Womack, et al., 1991). To obtain standardization and eliminate adjustments, but still maintain the flexibility to handle a large variety of parts or models, flexible or programmable automation is needed in a modern process.the following features (Chang, et al.,1) High initial investment2) High complexity3) High programming costsIn this paper, the concept of Lean Machines is developed for the purpose of counteracting the above mentioned drawbacks of programmable automation. The concept of Lean Machines is derived from the Nagara system, which is a recent development of lean production to further reduce lead times and eliminate waste. The biggest accomplishment of this development is the obliteration of boundaries between departments. In other words, this development allows for a comprehensive and coherent one-piece-flow, without the need to transport parts to the paint department, stamping department, the cleaning department, etc. A production example illustrates the concept of the Nagara System.“After machines perform the drilling and tapping on the line, parts are placed in one-meter cubical box that is, in fact, a device for spray-painting parts. Closing the lid of the box trips a switch and sets the operation in motion. Small fittings and wires are attached to the parts in a one-piece flow after they are removed from the box. More than one hundred of these boxes have been integrated into processing and assembly lines. This has eliminated approximately 80 percent of the painting which earlier required moving parts to the painting shop” (Shingo, 1989).Thus, Lean Machines are simple, small, and automatic machines which can be designed and built with a small budget. In order for machines to cycle automatically, they must have some form of controller. Ford’s dedicated machines, were controlled with the use of mec hanical mechanisms such as cams, governors, ways, slides, and pistons (Chang, et al.,modify. The most versatile control is provided with digital controllers, because the control logic is programmed into the controller memory using software. Lean Machines make it possible to standardize the work done with machines, while at the same time process a large variety of part numbers. Thus, Lean Machines differ from Ford’s machi nes in that they allow considerable adjustments, but are similar to Ford’s machines in that the adjustments are standardized or saved in a programmable memory. By being able to capture the knowledge of many craftsmen in the memory of the machines, all the tasks previously performed by craftsmen, including setups, can be stored and recalled as dictated by customer orders. Thus, the “wheel does not need to be reinvented” every time a different part number is remanufactured.An example of a Lean Machine is presented here with the use of the assembly operation shown in Figure 2. With a Lean Machine setup times for this assembly operation can be reduced from an average of 42 minutes to seconds, in big part due to the elimination of adjustments.Figure 2 - Riveting the Diaphragm to the Clutch CoverDuring a setup change, the steps given in Table 2 are performed.Table 2 -To reduce the setup times from 42 minutes to seconds, the first step is to eliminate the use of intuition and skill to adjust the machine (element #6) and “reinvention of the wheel”. The current machine adjustments required during the setup are illustrated in Figure 3.Figure 3 - Adjustments Required to Setup “Riveting Diaphragm to Cover” Operation The adjustment of the punch that presses the rivets down requires that two bolts be loosened, and the punch be placed exactly in middle of one of the nine fixture indentations where the rivets are placed. The fixture indentations provide the operator with an exact location where the rivets must be placed. This punch adjustment must be done by trial and error, because there is no reference point that can be used to guide the adjustment of the punch relative to the fixture. But before the punch can be placed in the correct location, one of the fixture indentations has to be lined up to the punch. Three Allen head screws are used to hold the fixture base in place, and every time the fixture needs to be adjusted, the three screws need to be loosed and tightened again. The most difficult part of the setup for this machine is that as one of the references is moved, such as the punch, the fixture must also be moved. Once an adequate adjustment appears to have been made, tests with rivets must be performed to check the setup. Many times the position of the punch relative to the fixture is not precise, but it takes so much time to position the two elements precisely centered relative to each other, that the operators choose to startprocessing parts and punch rivets off-center. This practice deteriorates the appearance of the cover.A solution to the setup problem is to standardize the settings by storing them in programmable memory and using a modified 3-Jaw Chuck fixture with nine locator pins as shown in Figure 4. Nine pins are used because most automotive clutches use nine rivets to attach the diaphragm to the clutch cover.Figure 4 - Using a 3-Jaw Chuck as the Basis for a Nine Pin Assembly FixtureThis mechanism includes the use of stepper motors, which take the place of the chuck handle, and a digital motion controller system. Motion controller systems usually contain a battery backed Random Access Memory (RAM) that can store various programs when stand-alone. A Remote Panel Operator Interface, which is usually connected via RS-232-C Serial Communication interface, can be used by the operator to enter the part number to be processed each time. Based on the input on the remote panel and the algorithm in the programmed memory, motion controllers, through the stepper motor drivers, send out a series of electrical pulses to the stepper motor which cause the motors to step fractions of revolutions or step angles and place the locator pins at standardized locations. The complete mechanism is shown in Figure 5. This mechanism, which can be placed on a simple hydraulic press, constitutes a Lean Machine.Figure 5 - Mechanism to Standardize Assembly Fixture SettingsElements #3, 4 and 5 of the setup operation depicted in Table 2 are also eliminated with the use of this Lean Machine, since the information pertinent to the part number is stored in memory, and fixtures do not need to be exchanged. To completely reduce the setup time of this operation to seconds, setup elements #1 and 2 can be eliminated by storing replacement component parts, such as rivets and shims at the exact point of use and easily accessible. In addition, workers do not need to gather the core components, because these components arrive at the time needed from up-stream operations. Thus by placing the components at the point of use, and using a lean machine to standardize the machine adjustments needed to process different part numbers, setup times for this operation are reduced to seconds.4.2 Eliminating non-value added resources and activitiesTo remove non-value added resources and activities from a process, we must understand what these are. In lean production there are six non-value added wastes, as shown in Table 3.To eliminate or reduce the waste of overproduction, a remanufacturing operation must only make what has been ordered already in order to eliminate the need to have a finished goods warehouse, and all the storage and handling costs associated with inventory management. This is only possible if the complete remanufacturing process is lean enough to have production lead times measured in minutes.To obtain a process with very short lead times, the parts that enter a remanufacturing process must be kept free of delays or wastes of waiting. Delays in a production system stem from the use of batches or lots. These delays can be referred to as batch delays and process delays. Batch delays are a function of the size of the batch. The larger the batch size, the more a batch must wait for the last part of the batch to be processed before the batch can be moved to the subsequent operation. Process delays are caused by an imbalance in operation cycle times. In remanufacture, large batches are used for the purpose of:a) spreading production costs and setup times, mostly stemming from time consumingsetups, over a large set of parts,b) allowing for cannibalization of component parts, andc) serving as a buffer between unbalanced operations.Over the years, setup times have remained high because in production facilities it is for the most part assumed that substantial reductions in setup times cannot be accomplished,based on the1913 (Spearman and Hopp, However, lean producers have shown that setups times can be brought down from hours to minutes. Using Harris’ model, large batches are mistakenly perceived as large volume production, b ut by reducing setup times, large volume production can be attained with greater varieties and smaller batches. In fact, the use of large batches has a constraining effect on the throughput of a factory. This phenomenon can be explained with the use of L ittle’s Law, which states that as the amount of work in process (batch sizes) increases beyond a critical work in process level, the speed of the process slows down. The ideal work in process level is equal to the number of operations within a of one (Spearman and Hopp,effect that causes highway congestion. When the number of cars in a given highway is higher than the critical number of cars, the speed of the flow of cars slows down. Thus, to obtainshorter lead times, i.e., higher throughput speeds, the batch sizes should be reduced to one. Consequently, fast setups are needed by means of lean machines.However, if batch sizes are reduced to one, cannibalization is no longer possible. Thus, in order obtain batch sizes of one, cannibalization needs to be eliminated. Purchasing replacement parts is the most costly alternative for automotive parts remanufacturers, because they are not readily available, and the varieties of parts to be stocked increase storage costs considerably. Furthermore, “new” replacement parts that are not standard parts are very expensive. Another option is to introduce the use of additive technologies into the remanufacturing process to restore worn components by adding (new) material. Additive technologies allow remanufacturers to salvage component parts which would otherwise have to be replaced. The additive technologies that are used in the lean clutch remanufacturing process are:a) Arc Metal Spraying, currently used in many remanufacturing and manufacturing plants,which is used to refurbish the clutch pressure plate, andb) Fusewelding, developed by the Wal Colmoloy company, which is used to refurbish theclutch diaphragm.As stated before, large badge sizes also commonly serve the purpose of buffers for lengthy processes. In the clutch remanufacturing process, an example of this is the buffer needed for the lengthy process of thermally degreasing batches from the other operations in the process. Thus, to reduce the batch size and allow greater product variety, a degreasing operation that does not require a lengthy cycle is needed. However, at the same time it must be environmentally benign to maintain environmental compliance costs low. The technology proposed in the lean clutch remanufacturing process is known as Hydrohoning. This technology contains a pressured spray of water and media to simultaneously degrease and abrade component parts in a single operation. This technology has a closed loop system and does not use any detergents. With the above mentioned changes in operation technologies, batch sizes can be reduced to one and the waste of waiting can be substantially reduced.With the waiting wastes removed, the lean remanufacturing process flow can now be standardized by generating the appropriate tact time1 for the process based on the daily output of salable clutches. For the specific clutch remanufacture process under consideration, the daily market demand was obtained from average sales in 1995 and the current conditions in the aftermarket clutch sector of the market. Taking 314 as the daily salable quantity of products, and given that a working shift consists of 7.5 hours, the tact time is set at 1.43 minutes. Thus, the machine cycle time and the tending time of the machine for each operation cannot exceed 1.43 minutes. The use of a process tact time is how the “stochastic nature of the amount of work” needed for each worn out part in remanufacturing is absorbed. For example, the wear of a clutch pressure plate varies considerable from core to core, requiring longer metal spraying times for more worn plates. However, with a tact time of 1.43 minutes the metal spraying operation can be designed to take a maximum of 1.43 minutes (including operator tending time) for the worst case 1 Tact time is the uniform time allocated to all operations based on the daily salable quantity. For example, with a process tact time of 1.5 minutes, work in process must be moved to the subsequent operations every 1.5 minutes independent of the machine cycle time. With this tact time, 320 units would be produced in an 8 hour working day.。
汽车 毕业 设计 文献翻译 中英文
![汽车 毕业 设计 文献翻译 中英文](https://img.taocdn.com/s3/m/afdf66880b1c59eef9c7b4db.png)
摘要本文主要研究轻型汽车前独立悬架的设计分析方法以及轮胎磨损与悬架运动、前轮定位参数的关系。
首先对双横臂独立悬架的各主要组成部件如减振器的选型设计、横向稳定杆的设计校核、扭杆弹簧设计以及对双横臂式和麦弗逊式独立悬架的运动进行了分析,提出了相应的计算方法,编制了一套具有一定实用价值的前独立悬架设计分析软件。
并且采用前轮定位仪,进行了实验验证。
论文对双横臂独立悬架参数提出以减小轮胎磨损为优化目标,进行了优化设计。
提出了通过优选、调整悬架初始位置状态,以及优化确定转向横拉杆断开点位置的方法,来减小轮胎磨损。
同时采用正交实验的方法分析了双横臂独立悬架各结构参数和安装参数对悬架性能和轮胎磨损的影响,确定出最大的影响因素及次要因素。
然后从轮胎模型入手分析前轮定位参数同轮胎磨损的关系。
以轮胎磨损能量作为评价指标,选取刷子轮胎模型,对轮胎在稳态纵滑状态下、稳态纵滑侧偏状态下和边界条件下的轮胎磨损进行了分析研究,确定了量化模型。
并以轮胎侧偏角为中间变量,建立了前轮定位参数同轮胎磨损之间关系的数学模型,进行了计算机仿真计算。
从而可对悬架进行进一步的优化设计,以减小对轮胎磨损的影响,提高车辆的行驶性能和使用经济性。
关键词:汽车;独立悬架;轮胎磨损;定位参数悬架系统原理Kaoru Aoki, Shigetaka Kuroda, Shigemasa Kajiwara, Hiromitsu Sato and Yoshio YamamotoHonda R&D Co.,Ltd.悬架系统虽不是汽车运行不可或缺的部件,但有了它人们可以获得更佳的驾驶感受。
简单的说,它是车身与路面之见的桥梁。
悬架的行程涉及到悬浮于车轮之上的车架,传动系的相对位置。
就像横跨于旧金山海湾之上的金门大桥,它连接了海湾两侧。
去掉汽车上的悬架就像是你做一次冷水潜泳通过海湾一样,你可以平安的渡过整个秋天,但会疼痛会持续几周之久。
想想滑板吧!它直接接触路面你可以感受到每一块砖,裂隙及其撞击。
汽车专业毕业设计 翻译 中英文(全)china international automobile manufacturing and production
![汽车专业毕业设计 翻译 中英文(全)china international automobile manufacturing and production](https://img.taocdn.com/s3/m/f7e533da58f5f61fb7366628.png)
2010China International Automobile Manufacturing and Producing Facility ExpositionPreparation time: October 26-28, 2010Book booth Area: China International Exhibition Center (Old Hall)Theme: Gathering of Finest Facilities Origin of High-quality AutomobilesTotal Exhibition Area: 27,000m2Number of exhibitors: 600 exhibitors come from 30 countries and regions Number of audiences: 12,000 audiences from 60 countries and regionsExhibits Profile:Automotive Manufacturing: metal cutting, stamping casting and forging, welding and cutting,coating technologies and painting, assembly, monitoring and inspection, testing and experiments, automation and drives, logistics and supply chain, information technology, design and development, materials, heat treatment, new products.Parts Machining: Automotive parts and components processing of metal cutting, grinding, milling, drilling, machine tool equipment; stamping, forging, bending technology and equipment; automotive interior parts cutting, cutting, polyurethane foam technology and equipment; engine manufacturing plane equipment, measuring equipment; gear machining and bearing special equipment, laser cutting, marking technology and equipment, numerical control cutting tool, coating technology, metal processing oil.New energy, environmental protection, energy-saving technology equipment and products of automobiles;Schedule:Preparation time: October 24-25, 2010Opening ceremony: 10:00 AM October 26, 2010Opening time: October 26-28, 2010Move-out time: 16:00 PM October 28, 2010Cost of Exhibition:(Pairs of opening booths, plus 10%)Section A: Standard booth ¥16800/9 m2Section B:Standard booth ¥13800/ 9 m2Section C: Standard booth ¥9800/ 9 m2Indoor Ground(36m2 on hair):¥1280/ m2Same time activities: symposia, face-face trade fair,purchase introduction and products introduction.Sponsoring Units:China Council for the Promotion of Intermational Trade Authorization Unit:China International Economic and Technical Cooperation Consultants IncOrganization Unit:China International Economic and Technical Cooperation Consultants IncUndertaken Unit:China International Economic and Technical Cooperation Consultants IncDongdu International Exhibition (Beijing) Co., LtdSupport Unit:China Automotive Industry AssociationChina Society of Automotive EngineeringOfficial media:Automobile Manufacturing and Production Facility Exposition Exposition on-line:Exhibition contact:Room 1002,Floor 10,Nan Li Shi Lu 66, Xicheng District, Beijing, Postal Code100045 Telephone number:Tex number:Contact person:E-mail:Report after China International Automobile Manufacturing and Producing Facility ExpositionOverview of CIAMPFE:2009 China (Beijing) International Automobile Manufacturing and Producing Facility Exposition (CIAMPFE) has succeed in China(Beijing)International Exhibition Center from November the11th to13th. It received a positive response from the community and broad participation.China Automotive Industry Association and China Society of Automotive Engineering authoritative organizations expressed its support. The United States, Japan, Germany,Britain, South Korea, India, Belgium, Poland, Turkey and other countries embassy officials gave a high degree of attention and support, and they will continue to participate in next year's exposition.Scale of CIAMPFE:Influenced by the financial crisis, the first CIAMPFE covers a floor space of about 22000 square meters as planned, but the actual area is 14600 square meters . More than 268 exhibitors, including 39 enterprises are special equipment booth, which cover 6182 square meters, accounting for about 42.34% of the total area of the exhibition area.At the same time,three-days symposia, face-face trade fair,purchase introduction and products introduction meeting were held. It makes exhibitors and visitors got better communication and cooperation.Audiences of CIAMPFE:More than thirty companies were invited to visit: Germany's BMW, Beijing Benz - Daimler-Chrysler, Beijing Automotive Holdings, Beijing Hyundai, Beijing Foton, SAIC, Changchun FAW, Guangzhou Automobile Group, BYD Auto of Shenzhen, Yunnan Hongta, Chery of Anhui, Hebei Great Wall Motor, Tianjin Xiali, Zhejiang Geely Group, Hafei Motor, Zhengzhou Yutong, youth Automotive Group, Dongan Auto, Auman heavy-duty vehicles, Beijing Automotive Research Institute, the China Auto Parts Industry Company,No.1 Group of China Aviation Industry Corporation, China North Vehicle Research Institute, China Shipbuilding Industry, No.1 Group of China Tractor , South Korea Incheon, South Korea Ching Industrial Co., Ltd., Bosch, Denso Corporation, Delphi Corporation, Magna Group, Beijing Automotive Li Er, Dongfeng auto parts, Wuhu Lingyun Industrial, Central power, the United States and Germany auto parts and so on. In addition to the media and some exhibition counterparts, above 98% are professional visitors.Fen Xuehong, Purchasing Manager of BMW Automobile Co., LTD. said, "for the high-quality exhibitors, organizer's invitation is very professional.Such scale of automobile manufacturing industry chain is the first case in the international exhibition. Particularly it has brought new technologies and products for the automobile manufacturing technology and equipment, etc."Mao Dehe, Vice-president of Shenzhen BYD Auto Co., Ltd. Said, "all aspects of the exposition is good. After 3-day visit, I saw the advanced technology and equipment on international and domestic automobile manufacturing field , and the rapid development of domestic automobile manufacturing equipment and technology. On behalf of the industry's highest grade, there are international leading-edge technology and products on the exposition, it gives us China's own brand carmakera great harvest."Exhibitors' Experience:David Wang, the Sales Manager of IPG (Beijing) Fiber Laser Technology Co., Ltd. affirmed the professionalism of the exhibition, and said he will participate the next exposition, and had been booking an exhibition booth .Hao Gepp Ruite, director of Germany Wolf Group Asia District, accept CCTV network reporters said, "Although the exposition affected by the weather, exhibitors and spectators are not too much. The automobile industry for the ordinary people are not closely related, but the industry still come to visit. To enhance the Wolf Group's reputation in the industry, and we will continue to participate in next year's exposition. "Wu Wenzhi, executive director of South Korea's POSCO Specialty Steel Co., Ltd.received a number of media interview and said “CIAMPFE will expand Chinese market as anopportunity.”Li Lei, Sales Manager of Beijing High-tech Electrical and Mechanical Co., Ltd. accept CCTV interview, said: "The purpose of attending the exhibition is promoting products and expanding market share. CIAMPFE has clear conception and very professional. We believe that the organizer has applied good service. I hope the exposition will enlarge the scale and we can participate in next year's exhibition.China Daheng (Group) Co., Ltd.with a low-key appearance standard booths, but still attracted a lot of professional audience. The General Manager Jiang Zhengmin of Laser Engineering Branch contended frankly: Although the scale is not large, there is still a good harvest.Achievement of CIAMPFE:On-site turnover:¥61.78 millionAudiences number:7712Contract value:¥185,000,000Professional of the exhibitors:100%Professional of the audiences:98.68%Media index:0.42%2010年中国国际汽车制造及生产设备展览会准备时间:10月26-28,2010预订展位面积:中国国际展览中心(老馆)主题:最好的设施收集原产地高品质的汽车总展览面积:27,000平方米参展商数量:来自30个国家和地区600家参展商观众人数:12000来自60个国家和地区的观众展品范围:汽车制造:金属切削,冲压铸件和锻造,焊接和切割,涂装技术和涂装,总装,监督和检查,测试和实验,自动化和驱动器,物流及供应链,信息技术,设计和开发,材料,热处理,新产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results.
S. Melzi,E.Sabbioni
Mechanical Systems and Signal Processing 25(2011):14~28
电脑估计车辆侧滑角的数值和实验结果
S.梅尔兹,E.赛博毕宁
机械系统和信号处理2011年第25期:14~28
摘要
将稳定控制系统应用于差动制动内/外轮胎是现在对客车车辆的标准(电子稳定系统ESP、直接偏航力矩控制DYC)。
这些系统假设将两个偏航率(通常是衡量板)和侧滑角作为控制变量。
不幸的是后者的具体数值只有通过非常昂贵却不适合用于普通车辆的设备才可以实现直接被测量,因此只能估计其数值。
几个州的观察家最终将适应参数的参考车辆模型作为开发的目的。
然而侧滑角的估计还是一个悬而未决的问题。
为了避免有关参考模型参数识别/适应的问题,本文提出了分层神经网络方法估算侧滑角。
横向加速度、偏航角速率、速度和引导角,都可以作为普通传感器的输入值。
人脑中的神经网络的设计和定义的策略构成训练集通过数值模拟与七分布式光纤传感器的车辆模型都已经获得了。
在各种路面上神经网络性能和稳定已经通过处理实验数据获得和相应的车辆和提到几个处理演习(一步引导、电源、双车道变化等)得以证实。
结果通常显示估计和测量的侧滑角之间有良好的一致性。
1介绍
稳定控制系统可以防止车辆的旋转和漂移。
实际上,在轮胎和道路之间的物理极
限的附着力下驾驶汽车是一个极其困难的任务。
通常大部分司机不能处理这种情况和失去控制的车辆。
最近,为了提高车辆安全,稳定控制系统(ESP[1,2]; DYC[3,4])介绍了通过将差动制动/驱动扭矩应用到内/外轮胎来试图控制偏航力矩的方法。
横摆力矩控制系统(DYC)是基于偏航角速率反馈进行控制的。
在这种情况下,控
制系统使车辆处于由司机转向输入和车辆速度控制的期望的偏航率[3,4]。
然而为了确
保稳定,防止特别是在低摩擦路面上的车辆侧滑角变得太大是必要的[1,2]。
事实上由
于非线性回旋力和轮胎滑移角之间的关系,转向角的变化几乎不改变偏航力矩。
因此
两个偏航率和侧滑角的实现需要一个有效的稳定控制系统[1,2]。
不幸的是,能直接测量
的侧滑角只能用特殊设备(光学传感器或GPS 惯性传感器的组合),现在这种设备非常
昂贵,不适合在普通汽车上实现。
因此,必须在实时测量的基础上进行侧滑角估计,具
体是测量横向/纵向加速度、角速度、引导角度和车轮角速度来估计车辆速度。
在主
要是基于状态观测器/卡尔曼滤波器(5、6)的文学资料里, 提出了几个侧滑角估计策略。
因为国家观察员都基于一个参考车辆模型,他们只有准确已知模型参数的情况下,才可
以提供一个令人满意的估计。
根据这种观点,轮胎特性尤其关键取决于附着条件、温度、磨损等特点。
轮胎转弯刚度的提出就是为了克服这些困难,适应观察员能够提供一个同步估计的
侧滑角和附着条件[7,8]。
这种方法的弊端是一个更复杂的布局的估计量导致需要很高
的计算工作量。
另一种方法可由代表神经网络由于其承受能力模型非线性系统,这样不需要一个
参考模型。
变量之间的关系表明,实际上车辆动力学的测量板测和侧滑角通常是纯粹的数值而它的结果则是从一个网络“学习”复制目标输出关联到一个特定的输入的训练过程。
在本文可以发现一些尝试应用神经网络技术对侧滑角估计。
在[9],侧滑角在即时k + 1,k, k -1,k - n 的值是作为一个功能的横向加速度和角速度的估计。
从结果来看解决
似乎很有前景,但车辆速度变化的影响(不包括在神经网络的输入变量)和对路面附着系
数的问题仍未解决。
神经网络中表明不是基于一个非常规组传感器:输入到神经网络实际上是这些措施提供了四个双轴加速度计放置在对应的车身设计的每一个角落。
然而,即使在这种情况下,影响附着条件对神经网络性能仍无法解决。
本研究的目的是进一步调查这种应用神经网络的方法对侧滑角估计作为输入的可能性,通常只有测量获得了板测量(横向/纵向加速度、角速度,引导角和车辆速度)和考虑速度和附着状况的变化。
特别地, 因为这个架构显示有一个广泛的适用性动态表示问题,一个双层(或单隐层)神经网络设计才得以出现[11]。
在第一阶段的研究,在一个分布式光纤传感器的车辆模型基础上进行了数值分析结果。
期间,一直在输入不同的的数值进入人工神经网络系统,直到得到满意的结果为止。
采用的训练集的特点是,在高/低粘附路面上演习不同谐波内容(步骤引导,横扫正弦驾驶),水平的横向加速度。
此外,选择包括输入之间的神经网络估计侧滑角已经决定。
随后,一旦确定了最佳输入和训练集,在一个检测车辆的实际驾驶情况后处理获得的实验数据,实现人工神经网络性能和稳定。
特别是,大部分人的注意力都集中在神经网络的能力上,以提供在内外线性车辆响应范围内和在高或低摩擦路面上稳态或瞬态侧滑角的可靠的估计。
2数值数据应用
在第一阶段的一个人工神经网络工作组进行训练和测试通过数值数据;这一阶段的主要目标是设计一个能够在不同的路面上提供准确和可靠的侧滑角估计的一个神经网
络与一个合适的体系结构。
神经网络在动态仿真模块环境下实现一个简化的d段客车车辆模型生成信号的训练和测试;数值模型利用分布式光纤传感器的车辆模型来描述在水平面的位移的重心(c.o.g)偏航运动身体和四个轮子的旋转.基于括在车辆模型纵向和侧向加速度包的瞬时负载转移,以考虑每个轮胎在车削、加速和制动演习时候的垂直荷载的变化。
相反悬架阻尼和刚度总被忽视,因为这个参数必须正确估计,所以除了之间的比率前/后辊刚度不同负载转移而转弯。
引导角,油门/刹车位置和齿轮被视为输入模型。
轮胎的交互作用模拟1996版的Pacejka中频[14]中允许考虑滑移条件相结合。
摩擦系数是按比例复制的峰值摩擦系数从而改变的。
一旦确认通过与实验测量的比较,该模型用于生成一组训练演习,并提供一些数据来检查网络系统的性能。
在这个过程中几个变量会应用到网络,特别是到向量的输入数据,直到得到与测量数据前的测试满意的结果。
2.1网络的架构
一般来说一个神经网络[12,13]是MIMO非物质模型,其主要优势是在减少计算时间,其基本单位的乘坐被称为神经元,每一个神经元都能够执行简单的数学运算;神经元集成在一个可以实现一种并行计算结构里。
每个网络的特点是一定数量的参数所代表的收益和权重的神经元, 神经元是通过一个训练阶段决定的,该阶段是一组时间历史的输入信号是提供给网络和相应的目标值与输出网络本身,这个过程是反复地重复调整参数,直到输出匹配目标在所需的公差范围内。
除了数量的神经元之外,神经网络的架构定义的层数和神经元间的连接增加的复杂性往往导致高专业化的网络,该网络显示有限能力适应条件的不同的训练集(过度拟合)。
因此选择一个合适的体系结构是一个在准确性和灵活性之间妥协的结果,这最后的功能的特别利害关系的应用程序检查在这个工作因为只有有限数量的演习可以作为训练集,汽车车辆的工作条件可以作为变量对轮胎附着力也是如此。
提出的神经网络是一种前馈(信号从输入到输出的旅行没有内部循环),由10个隐藏的s形神经元和单个输出线性神经元构成。
附件外文原文。