北师大版八年级数学下册 等腰三角形教案

合集下载

北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计

北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计
(三)学生小组讨论
1.分组讨论等腰三角形的性质及应用
我会将学生分成若干小组,让他们讨论等腰三角形的性质在实际问题中的应用。例如,如何利用等腰三角形的性质求解底边长度、底角大小等。
2.分组探讨等腰三角形的判定定理
各小组学生还需探讨等腰三角形的判定定理,并尝试运用定理解决实际问题。在此过程中,我会巡回指导,解答学生的疑问。
-对于作业中的共性问题,将在课堂上进行集中讲解,确保学生理解到位。
-表现优秀的作业将在课堂上展示,以激发学生的学习积极性。
2.学会使用等腰三角形的判定定理,判断一个三角形是否为等腰三角形。
-学生能够理解并掌握“两边相等的三角形是等腰三角形”这一判定定理,并能够运用到实际问题的解决中。
3.掌握等腰三角形的周长和面积计算方法,能够解决相关问题。
-学生能够根据等腰三角形的性质,运用周长和面积公式进行计算,解决实际应用问题。
(二)过程与方法
2.培养学生合作交流的意识,增强团队协作能力。
-教学过程中,教师鼓励学生进行小组合作、讨论交流,培养学生合作解决问题的能力。
3.培养学生勇于探索、积极思考的精神,树立正确的价值观。
-教师引导学生面对问题,勇于尝试,不怕困难,培养积极思考、解决问题的精神。
-学生在学习过程中,认识到数学知识在解决实际问题中的价值,树立正确的价值观。
3.提高学生的应用意识,将等腰三角形的知识与实际生活相结合。
-重难点:将理论知识应用于解决生活中的问题。
-设想:设计真实的情境问题,如建筑物的平面设计、艺术作品的对称性分析等,让学生在解决问题的过程中体验数学的价值。
(二)教学设想
1.采用探究式学习法,激发学生的求知欲和主动性。
-设想:通过引入富有挑战性的问题,如“如何确定等腰三角形的高线和中线?”激发学生的好奇心,引导学生通过实验、观察、推理等手段自主探索答案。

北师大版八年级数学下册1.1.1等腰三角形教学设计

北师大版八年级数学下册1.1.1等腰三角形教学设计
8.注重过程性评价,关注学生的思维过程和方法,激发学生的学习积极性。
教师在评价学生时,要关注学生在解决问题过程中的思考和方法,鼓励学生勇于尝试,激发学习积极性。
四、教学内容与过程
(一)导入新课
1.教师出示一些生活中的等腰三角形实物,如等腰三角形的玩具、等腰三角形的图标等,引导学生观察这些图形的特点,激发学生的兴趣。
在课堂小结环节,教师引导学生回顾本节课所学内容,总结等腰三角形的性质和判定方法,加深印象。
6.布置课后作业,注重培养学生的实际应用能力。
设计一些实际问题,让学生在课后运用等腰三角形的性质解决问题,提高学生的数学应用意识。
7.开展小组合作活动,培养学生的团队协作能力和交流表达能力。
教学过程中,组织学生进行小组讨论、合作探究,让学生在互动交流中提高自己的表达能力和团队协作能力。
学生在学习过程中,对新知识充满好奇心,但学习动机和兴趣可能因个体差异而有所不同。部分学生可能对几何图形的理解和运用存在一定困难,需要教师在教学过程中关注个体差异,采用分层教学、个别辅导等方式,帮助学生克服学习难点。
此外,学生在合作交流方面已有一定的基础,但部分学生可能在实际操作中缺乏主动性和积极性。因此,在教学过程中,教师应注重引导学生积极参与课堂讨论,培养学生的合作意识和团队精神。
教学中,提出一些需要运用等腰三角形性质解决的问题,让学生通过自主探究、合作交流,逐步培养逻辑推理能力。
4.采用分层教学策略,针对不同层次的学生,设计不同难度的练习题,使每位学生都能得到有效的提高。
教师根据学生的认知水平和学习需求,设计基础题、提高题和拓展题,让每位学生都能在课堂上学有所得。
5.加强课堂小结,通过师生互动、生生互动,总结等腰三角形的性质和判定方法,巩固所学知识。

数学北师大版八年级下册等腰三角形(第一课时)教案

数学北师大版八年级下册等腰三角形(第一课时)教案

等腰三角形(第一课时)教案抚州市临川区河埠中学祝水清本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、基本事实证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:1.知识目标:明理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证的基本步骤和书写格式。

2.能力目标:等腰三角形(第一课时)课件等腰三角形(第一课时)课件等腰三角形(第一课时)课件等腰三角形(第一课时)课件经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;鼓励学生在交流探索中发现证明方法的多样性,提高逻辑思维水平;3.情感与价值目标启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;培养学探索证明等腰三角形性质定理的思路与方法生合作交流的能力,以及独立思考的良好学习习惯.4.教学重、难点5.重点:,掌握证明的基本要求和方法;难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。

教学过程学生课前准备:一张等腰三角形纸片(供上课折叠实验用);本节课设计了六个教学环节:第一环节:想一想、知识回顾第二环节:折纸活动 探索新知;第三环节:明晰结论和证明过程;第四环节:随堂练习 巩固新知;第五环节:课堂小结;第六环节:布置作业。

一、想一想、知识回顾活动内容:提请学生回忆并整理已经学过的八条基本事实1.两点确定一条直线。

2.两点之间线段最短。

3.同一平面内,过一点有且只有一条直线与已知直线垂直。

4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行5.过直线外一点有且只有一条直线与这条直线平行6.两边及其夹角对应相等的两个三角形全等.7.两角及其夹边对应相等的两个三角形全等8.三边对应相等的两个三角形全等在此基础上回忆全等三角形的另一判别条件: (推论)两角及其中一角的对边对应相等的两个三角形全等(AAS ),活动目的:经过一个暑假,学生难免有所遗忘,因此,在第一课时,回顾有关内容,既是对前面学习内容的一个简单梳理,也为后续有关证明做了知识准备;二、折纸活动 探索新知:议一议, 做一做活动内容:在提问:“等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程。

北师大版八年级下册数学1.1等腰三角形第3课时 教案设计

北师大版八年级下册数学1.1等腰三角形第3课时 教案设计

课时课题:第一章第一节等腰三角形第3课时教学目标:1.能够用综合法证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.2.初步了解反证法的含义,并能利用反证法证明简单的命题.3.体验数学活动中的探索与创造,感受数学的严谨性.教学重点与难点:重点:等腰三角形的判定定理的证明.难点:反证法的含义,利用反证法证明简单的命题.教法与学法指导:本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.本节课关注了问题的变式与拓广,引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力.课前准备:多媒体课件教学过程:第一环节回顾旧知复习导入师:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质。

生1:等腰三角形两底角相等,就是“等边对等角”。

生2:“三线合一”。

生3:等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等。

师:非常好!同学们概括的很全面。

那么对于等腰三角形的性质定理:等腰三角形两底角相等,这个命题的题设和结论是什么? 生:题设:等腰三角形。

结论:两底角相等。

师:我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等? 生:完全成立,可以证明出来。

设计意图:设计成问题串是为引出等腰三角形的判定定理埋下伏笔。

学生独立思考是对上节课内容有效地检测手段。

第二环节 合作探究 展示交流师:以前我们通过改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.比如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?下面我们来一起证明一下这个结论。

请同学们画出图形,写出已知、求证。

北师大2024八年级数学下册 1.1 第1课时 等腰三角形的性质 教案

北师大2024八年级数学下册 1.1 第1课时 等腰三角形的性质 教案

1.1 等腰三角形主要师生活动一、创设情境,导入新知图中有你熟悉的图形吗?它们有什么共同特点?师生活动:教师播放课件,学生独立思考回答问题.问题 1 在八上的“平行线的证明”这一章中,我们学了哪8 条基本事实?1.两点确定一条直线.2. 两点之间线段最短.3. 同一平面内,过一点有且只有一条直线与已知直线垂直.4. 同位角相等,两直线平行.5. 过直线外一点有且只有一条直线与这条直线平行.6. 两边及其夹角分别相等的两个三角形全等.7. 两角及其夹边分别相等的两个三角形全等.8. 三边分别相等的两个三角形全等.二、探究新知二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题2:你能用基本事实及已经学过的定理证明上面的推论吗?师生活动: 教学时应鼓励学生独立完成. 教师要提醒学生首先依据命题画出几何图形,再结合几何图形用数学符号语言写出“已知”“求证”,最后写出证明过程.已知:如图,∠A =∠D,∠B =∠E,BC = EF.求证:△ABC≌△DEF.证明:∵∠A +∠B +∠C = 180°,∠D +∠E +∠F = 180°(三角形的内角和等于180°),∴∠C = 180°-(∠A +∠B),∠F = 180°-(∠D +∠E).∵∠A =∠D,∠B =∠E (已知),∴∠C =∠F (等量代换).∵BC = EF (已知),∴△ABC≌△DEF (ASA).根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等.设计意图:学生在七年级下册已经探索并认识了判定三角形全等的“角角边”定理,这里意在让学生根据基本事实证明这一定理.设计意图:七年级下册给出的“全等三角形”的定义是“能够完全重合的两个三角形叫做全等三角形”,“全等三角形的对应边相等、对应角相等”则是由全等三角形的定义推出来的,本章很多证明都会用到它,因此,这里特别提出这一结论,以便后续证明使用.知识点二:等腰三角形的性质及其推论问题3:你还记得我们探索过的等腰三角形的性质吗?定理:等腰三角形的两个底角相等.推论:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一).问题4:你能利用基本事实或已知的定理证明这些结论吗议一议:在七下学习轴对称时,我们利用折叠的方法说明了等腰三角形是轴对称图形,且两个底角相等,如下图,实际上,折痕将等腰三角形分成了两个全等的三角形. 由此,你得到了解题什么的启发?已知:如图,在△ABC中,AB = AC.求证:∠B = ∠C.方法一:作底边上的中线证明:如图,取BC的中点D,连接AD.∵AB = AC,BD = CD,AD = AD∴△ABD≌△ACD (SSS).∴∠B =∠C(全等三角形的对应角相等).师:还有其他的证法吗?方法二:作顶角的平分线证明:作顶角的平分线AD,则∠BAD =∠CAD.∵AB = AC,∠BAD = ∠CAD,AD = AD,∴△BAD≌△CAD (SAS).∴∠B =∠C (全等三角形的对应角相等).师生活动:教学时教师要注意引导学生根据条件正确、规范地写出“已知”“求证”,有意识地培养学生对文字语言、符号语言和图形语言的转换能设计意图:这里让学生回忆以前的折纸过程,目的是引导学生发现证明的思路,学生一般可以由折纸确定辅助线的位置,但对于作辅助线的规范叙述仍需教师帮助.设计意图:教学中,应鼓励学生寻求其他证明方法,实际上,除作底边中线外,还可以通过作顶角平分线的方法证明结论,此时证明的依据是基本事实SAS. 这两种证明方法都是受折纸的启发(轴对称),通过作辅助线将图形分成两部分,再证明这两部分全等,教师可以引导学生分析这两种证明方法的共性,加深对等腰三角形性质的认识.教学时,可能会有学生通过作底边上的高并利用勾股定理来证明这一定理,对此,教师一方面要保护学生的学习积极性,另一方面也要引导学生认识力,关注证明过程及其表达的合理性.想一想:由△BAD≌△CAD,图中线段AD还具有怎样的性质?为什么?由此你能得到什么论?由△BAD≌△CAD,可得BD = CD,∠ADB =∠ADC,∠BAD =∠CAD.又∵∠ADB +∠ADC = 180°,∴∠ADB =∠ADC = 90°,即AD⊥BC.故AD是等腰△ABC底边BC上的中线、顶角∠BAC的平分线、底边BC上的高.师生活动: 让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论.定理:等腰三角形的两个底角相等(等边对等角).几何语言:如图,在△ABC中,∵AB = AC (已知),∴∠B =∠C (等边对等角).推论:等腰三角形顶角的平分线、底边上的中线及底边上的高互相重合(三线合一).练一练1. 已知,如图,△ABC≌△ADE,∠BED = 20°,则∠AED的度数为( )A.60°B.90°C. 80°D. 20°到:我们虽然在以前探索并认识了勾股定理,但尚未用基本事实证明过,所以从逻辑上来说,勾股定理不能作为这里证明的依据.设计意图:这一结论通常简述为“三线合一”, 即如果某线段是一个等腰三角形的“三线”(顶角的平分线、底边上的中线、底边上的高) 之一,那么它必定也是这个等腰三角形的另“两线”.设计意图:综合运用全等三角形和等腰三角形的相关知识解决问题,加深学生印象,考察学生对于知识的掌握情况.三、当堂练习,巩固所学师生活动:让学生尝试解答,并互相交流、总结,归纳解题步骤,教师结合学生的具体活动,加以指导.典例精析例1 已知点D、E在△ABC的边BC上,AB=AC.(1) 如图①,若AD=AE,求证:BD=CE;(2) 如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.证明:(1) 如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG.∴BG-DG=CG-EG,即BD=CE.(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.三、当堂练习,巩固所学1. 如图,已知AB=AE,∠BAD=∠CAE,要使∠ABC∠∠AED,还需添加一个条件,这个条件可以是________________________.2. (1) 等腰三角形一个底角为75°,它的另外两个角为__________;(2) 等腰三角形一个角为36°,它的另外两个角为设计意图:在定理证明的基础上进行难度更高的推论证明,巩固学生知识的运用,并培养学生发散思维,提高学生解题技巧.设计意图:考查对全等三角形判定的掌握.设计意图:结论:在等腰三教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).全等三角形的对应边相等,对应角相等.。

北师大版八年级数学下册1.1等腰三角形(教案)

北师大版八年级数学下册1.1等腰三角形(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等腰三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示等腰三角形的基本性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《等腰三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两边长度相等的三角形?”(如剪刀、自行车架等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等腰三角形的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是指有两边相等的三角形。它的重要性体现在其独特的性质和应用上。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了等腰三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的性质和判定方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
总的来说,今天的课堂教学有成功之处,也有需要改进的地方。在今后的教学中,我会针对以下几点进行优化:

北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计

北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计

1.1等腰三角形(第一课时)教学设计一、教材的地位和作用“等腰三角形(第一课时)”选自《义务教育课程标准实验教科书(北师大版)·数学》八年级下册第一章第一节。

现实生活中,等腰三角形的应用比比皆是,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为学生今后研究“四边形”和“圆”的性质打下坚实的基础。

本节课主要研究的是等腰三角形的重要性质,这是在已经学习过三角形的有关概念及性质、全等三角形、轴对称变换等知识的基础上进行的,它既是前面所学知识的深化和应用,又为两个角相等、两条线段相等、两条直线互相垂直这类问题的证明提供了新的依据,所以它在教材中处于非常重要的位置。

另外研究和学习本节课不仅让学生体会到数学图形的美及应用价值,而且对培养学生的思维能力、分析能力,使学生学会在等腰三角形中添加适当的辅助线,以及向学生渗透转化、类比思想都有很大作用。

二、学情分析就其知识掌握而言,学生虽然在学习三角形全等时已经具备初步的演绎推理能力,但是对规范的、需要经过缜密思维推理过程的表达,还需要教师在课堂上加以规范和引导。

就其生理、心理特点而言,八年级学生思维正处于活跃期,在课堂上能积极思考,敢于发表自己的见解,演绎推理能力已初步形成,动手能力较强,注意力比较集中,对直观生动的事物很容易产生浓厚兴趣。

因而,一方面教师要运用直观生动的形象激发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面教师要给学生创造更多发表见解的条件和机会,发挥学生在知识探究中的主体作用,让他们真正理解知识的形成过程。

三、教学目标1.掌握等腰三角形的性质定理及其推论,并能运用它们进行有关的证明和计算。

2.培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解探究——猜想——归纳——论证的发现真理的方法。

3.通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性。

北师大版八年级下册1.1等腰三角形第一课时优秀教学案例

北师大版八年级下册1.1等腰三角形第一课时优秀教学案例
3.鼓励学生在作业中发挥创造力,将所学知识应用于实际生活中。
五、案例亮点
1.生活情境的引入:通过引入实际生活中的等腰三角形,如金字塔、平衡尺等,激发学生的学习兴趣,让学生认识到等腰三角形在生活中的重要性。这种生活情境的引入使得抽象的几何知识与现实生活相结合,提高了学生的学习积极性。
2.问题导向的教学策略:在教学过程中,我设计了一系列具有挑战性和探究性的问题,引导学生深入思考,激发他们的学习兴趣。这些问题既有助于学生巩固已学知识,又能培养他们的问题意识和解决问题的能力。
5.多元化的教学评价:我采用了多元化的教学评价方式,既关注学生的知识掌握程度,也关注他们的过程与方法、情感态度与价值观等方面的成长。通过定期评估、课堂提问、作业批改等方式,及时了解学生的学习情况,为下一步教学提供有力依据。这种多元化的教学评价方式有助于全面了解学生的学习状况,促进学生的全面发展。
2.等腰三角形的判定:
(1)已知两边相等,判断第三边是否相等。
(2)已知两角相等,判断第三角是否相等。
通过实例讲解等腰三角形的判定方法,让学生在实践中掌握知识。
(三)学生小组讨论
1.设计具有挑战性和探究性的问题,引导学生进行小组讨论。
如:“你能设计一个等腰三角形吗?并尝试解释其性质。”
2.鼓励学生提出问题,培养他们的问题意识和解决问题的能力。
如:“你觉得你的小组在讨论中表现如何?有哪些需要改进的地方?”
3.教师对学生的学习过程和成果进行总结性评价,给出中肯的建议和指导,促进学生的全面发展。
(五)作业小结ห้องสมุดไป่ตู้
1.设计具有针对性的作业,巩固等腰三角形的性质和判定方法。
如:“已知一个三角形是等腰三角形,求证其两腰相等。”
2.要求学生在作业中运用几何语言表达思想,提高他们的几何思维能力。

【北师大版】八年级数学下册《等腰三角形的判定》教案

【北师大版】八年级数学下册《等腰三角形的判定》教案

北师大版八年级数学下册精编教案系列等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。

教学难点等腰三角形的判定与性质的区别。

教具准备作图工具和多媒体课件。

教学方法引导探索法;情景教学法教学过程Ⅰ.提出问题,创设情境[师]上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢?[生甲]等腰三角形的两底角相等.[生乙]等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.[师]同学们回答得很好,我们已经知道了等腰三角形的性质,那么满足了什么样的条件就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题.Ⅱ.导入新课[师]同学们看下面的问题并讨论:思考:如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,•能不能大约同时赶到出事地点(不考虑风浪因素)?在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?[生甲]应该能同时赶到出事地点.因为两艘救生船的速度相同,同时出发,•在相同的时间内走过的路程应该相同,也就是OA=OB ,所以两船能同时赶到出事地点.[生乙]我认为能同时赶到O 点的位置很重要,也就是∠A 如果不等于∠B ,•那么同时以同样的速度就不一定能同时赶到出事地点.[师]现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,•那么它们所对的边有什么关系?[生丙]我想它们所对的边应该相等.[师]为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明. [生丁]我是运用三角形全等来证明的. (投影仪演示了同学证明过程)[例1]已知:在△ABC 中,∠B=∠C (如图). 求证:AB=AC .证明:作∠BAC 的平分线AD . 在△BAD 和△CAD 中12,,,B C AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAD (AAS ). ∴AB=AC .提问:你还有不同的证明方法吗? (演示课件)等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).[师]下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用. (演示课件)[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.[师]这个题是文字叙述的证明题,•我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.21D CA21EDA已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图). 求证:AB=AC .[师]同学们先思考,再分析.[生]要证明AB=AC ,可先证明∠B=∠C .[师]这位同学首先想到我们这节课的重点内容,很好! [生]接下来,可以找∠B 、∠C 与∠1、∠2的关系. [师]我们共同证明,注意每一步证明的理论根据. (演示课件,括号内部分由学生来填) 证明:∵AD ∥BC ,∴∠1=∠B (两直线平行,同位角相等), ∠2=∠C (两直线平行,内错角相等). 又∵∠1=∠2, ∴∠B=∠C ,∴AB=AC (等角对等边).[师]看大屏幕,同学们试着完成这个题. (课件演示)已知:如图,AD ∥BC ,BD 平分∠ABC . 求证:AB=AD .(投影仪演示学生证明过程) 证明:∵AD ∥BC ,∴∠ADB=∠DBC (两直线平行,内错角相等). 又∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABD=∠ADB , ∴AB=AD (等角对等边). [师]下面来看另一个例题. (演示课件)[例3]如图(1),标杆AB 的高为5米,为了将它固定,需要由它的中点C•向地面上与点B 距离相等的D 、E 两点拉两条绳子,使得D 、B 、E 在一条直线上,量得DE=4米,•绳子CD 和CE 要多长?DCABCA[师]这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题.解:选取比例尺为1:100(即为1cm代表1m).(1)作线段DE=4cm;(2)作线段DE的垂直平分线MN,与DE交于点B;(3)在MN上截取BC=2.5cm;(4)连接CD、CE,△CDE就是所求的等腰三角形,量出CD的长,•就可以算出要求的绳长.[师]同学们按以上步骤来做一做,看结果是多少.Ⅲ.随堂练习(一)课本1.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度数,•并说明图中有哪些等腰三角形。

北师大版数学八年级下册1.1.3《等腰三角形的判定及反证法》说课稿

北师大版数学八年级下册1.1.3《等腰三角形的判定及反证法》说课稿

北师大版数学八年级下册1.1.3《等腰三角形的判定及反证法》说课稿一. 教材分析《等腰三角形的判定及反证法》这一节内容是北师大版数学八年级下册第1章第1节的一部分。

在此之前,学生已经学习了三角形的基本概念和性质,对三角形有了初步的认识。

本节课主要引导学生探究等腰三角形的性质,并运用反证法进行证明。

教材通过引入等腰三角形的定义和性质,让学生体会数学的推理过程,培养学生的逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。

但是,对于等腰三角形的性质和反证法的运用,还需要通过本节课的学习来进一步掌握。

学生在学习过程中,需要通过观察、操作、思考、推理等环节,逐步理解等腰三角形的性质,学会运用反证法进行证明。

三. 说教学目标1.知识与技能:学生能掌握等腰三角形的性质,学会运用反证法进行证明。

2.过程与方法:学生通过观察、操作、思考、推理等环节,培养逻辑思维能力。

3.情感态度与价值观:学生体验数学的推理过程,增强对数学的兴趣和信心。

四. 说教学重难点1.教学重点:等腰三角形的性质,反证法的运用。

2.教学难点:反证法的理解与运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等。

2.教学手段:多媒体课件、黑板、几何模型等。

六. 说教学过程1.导入新课:通过复习三角形的基本概念和性质,引出等腰三角形的定义。

2.探究等腰三角形的性质:学生分组讨论,每组尝试用反证法证明等腰三角形的性质。

3.汇报展示:各组汇报探究过程和结果,教师点评并总结。

4.练习巩固:学生独立完成教材中的练习题,教师讲解答案。

5.拓展延伸:引导学生思考等腰三角形的判定问题,学生自主探究并分享成果。

6.总结反思:学生总结本节课的收获,教师进行情感态度的评价。

七. 说板书设计板书设计如下:等腰三角形的性质1.定义:两腰相等的三角形叫等腰三角形。

a.两腰相等b.底角相等c.高线、中线、角平分线重合2.假设结论不成立3.从假设出发,推出矛盾4.矛盾说明假设不成立,结论成立八. 说教学评价1.学生能准确描述等腰三角形的性质,学会运用反证法进行证明。

北师大版数学八年级下册1.1《等腰三角形》教学设计

北师大版数学八年级下册1.1《等腰三角形》教学设计

北师大版数学八年级下册1.1《等腰三角形》教学设计一. 教材分析北师大版数学八年级下册1.1《等腰三角形》是学生在学习了三角形的基本概念和性质的基础上,进一步研究等腰三角形的性质。

本节课的内容包括等腰三角形的定义、等腰三角形的性质以及等腰三角形的判定。

通过本节课的学习,学生能够掌握等腰三角形的性质,并能运用其解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作和推理能力。

但部分学生对概念的理解不够深入,对性质的运用不够熟练,因此需要在教学过程中加强对学生的引导和启发。

三. 教学目标1.知识与技能目标:理解等腰三角形的定义,掌握等腰三角形的性质,并能运用其解决实际问题。

2.过程与方法目标:通过观察、操作、推理等方法,培养学生的几何思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.教学重点:等腰三角形的性质及其运用。

2.教学难点:等腰三角形性质的推理和证明。

五. 教学方法1.情境教学法:通过设置问题和情境,引导学生主动探索和解决问题。

2.合作学习法:引导学生进行小组讨论和合作,共同解决问题。

3.实践操作法:让学生通过实际操作,加深对等腰三角形性质的理解。

六. 教学准备1.教具准备:多媒体课件、几何模型、黑板等。

2.学具准备:学生自带三角板、直尺、铅笔等。

七. 教学过程1.导入(5分钟)利用多媒体课件展示等腰三角形的图片,引导学生观察和思考:这些三角形有什么共同的特点?从而引出等腰三角形的定义。

2.呈现(10分钟)呈现等腰三角形的性质,引导学生通过观察和操作,发现并证明等腰三角形的性质。

在此过程中,教师引导学生运用已学的三角形性质,培养学生的几何思维能力。

3.操练(10分钟)学生分组进行实践活动,运用等腰三角形的性质解决实际问题。

教师巡回指导,及时解答学生的疑问。

4.巩固(5分钟)教师选取几道练习题,让学生在课堂上完成,检验学生对等腰三角形性质的掌握程度。

北师大版数学八年级下册《三角形全等和等腰三角形的性质》教案

北师大版数学八年级下册《三角形全等和等腰三角形的性质》教案

北师大版数学八年级下册《三角形全等和等腰三角形的性质》教案一. 教材分析北师大版数学八年级下册《三角形全等和等腰三角形的性质》这一节主要让学生掌握三角形全等的判定方法,以及等腰三角形的性质。

在教材中,已经给出了三角形全等的判定方法——SSS、SAS、ASA、AAS,学生需要通过练习来熟练掌握这些方法。

等腰三角形的性质包括:等腰三角形的底角相等,等腰三角形的底边上的高、中线、角平分线重合。

学生需要通过操作活动来探索和证明这些性质。

二. 学情分析学生在学习这一节内容之前,已经学习了三角形、四边形的相关知识,对图形的变换、性质有一定的了解。

但是,对于三角形全等的判定方法,学生可能还不是很熟悉,需要通过练习来加深理解。

对于等腰三角形的性质,学生可能刚开始接触,需要通过操作活动来探索和证明。

三. 教学目标1.知识与技能:理解三角形全等的判定方法,掌握等腰三角形的性质。

2.过程与方法:通过操作活动,培养学生的观察能力、操作能力、证明能力。

3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、探究的精神。

四. 教学重难点1.教学重点:三角形全等的判定方法,等腰三角形的性质。

2.教学难点:三角形全等的判定方法的运用,等腰三角形性质的证明。

五. 教学方法采用问题驱动法、操作活动法、讲解法、讨论法等教学方法,引导学生探索、发现、证明等腰三角形的性质,通过练习让学生熟练掌握三角形全等的判定方法。

六. 教学准备1.教具:黑板、粉笔、三角板、直尺、圆规。

2.学具:每个学生准备一套三角板、直尺、圆规。

七. 教学过程1. 导入(5分钟)教师通过复习三角形、四边形的相关知识,引导学生进入三角形全等和等腰三角形的性质的学习。

2. 呈现(10分钟)教师通过PPT或者黑板,呈现三角形全等的判定方法和等腰三角形的性质,让学生初步了解这些知识。

3. 操练(10分钟)学生分组,每组用三角板、直尺、圆规拼出两个全等的三角形,然后用这些工具证明两个三角形全等。

北师大版八年级数学下册 等腰三角形-教案

北师大版八年级数学下册 等腰三角形-教案

《1 等腰三角形》教案第1课时教学目标1、知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用.2、能力目标:从设置问题⇒模型演示⇒自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力.3、情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美.教学重难点重点:等腰三角形两底角相等,等腰三角形三线合一.难点:等腰三角形三线合一的推理应用.教学过程(一)直观演示,大胆猜想1、观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣.2、由学生自己动手折纸游戏,演示等腰三角形变换,大胆猜测等腰三角形的性质.(二)证明猜想,形成定理.例、△ABC中,AB=AC,求证:∠B=∠CB1、思考:如何证明你的猜想?〔讲述一种证明方法:作顶角的平分线〕〔解答〕证明:做顶角的平分线AD,AD平分∠A,AD⊥BC.D C B在△ABD 和△ACD 中⎪⎩⎪⎨⎧===CD BD AD AD AC AB所以△ABD ≌△ACD (SSS ),所以∠B=∠C ,∠BAD =∠CAD ,∠ADB =∠ADC =90°. 思考:有其它的方法吗?试试看,用不同的方法证明这个结论.2、想一想:在上图中,线段AD 还具有怎样的性质?为什么?由此你能得到什么结论?应让学生回顾前面的证明过程,思考线段AD 具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”.推论:等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.3、小结:根据等腰三角形的性质填空(1)如果AB =AC ,AD 是角的平分线那么-----------------------------------.(2)如果AB =AC ,AD ⊥BC 那么-------------------------------------.(3)如果AB =AC ,BD =CD 那么------------------------------------.总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系.第2课时教学目标1.知识与能力:理解并掌握等腰三角形的定义,探索等腰三角形中的线段长度关系;能够用等腰三角形的知识解决相应的数学问题.2.过程与方法:在探索等腰三角形中的线段长度关系的过程中体会知识间的关系,感受数学与生活的联系.3.情感、态度与价值观:培养学生分析解决问题的能力,使学生养成良好的学习习惯.教学重难点教学重点:理解并掌握等腰三角形的定义,探索等腰三角形中的线段长度关系;能够用等腰三角形的知识解决相应的数学问题.教学难点:探索等腰三角形中的线段长度关系的探索和应用.教学过程等腰三角形性质的探究1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段.2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔.3.分别演示:在△ABC 中,∠ABD =k 1∠ABC ,∠ACE =k1∠ACB ,k =31,41时,BD 是否与CE 相等.引导学生探究、猜测当k 为其他整数时,BD 与CE 的关系. 4.引导学生探究,对于上述例题,当AD =k 1AC ,AE =k 1AB ,k =21,31时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程.5.引导学生进一步推广,把上面3、4中的k 取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明.6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明.7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立.适时地引导学生思考可以用哪些方法证明?培养学生的推理能力.8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力.9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明.这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力.10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解.第3课时教学目的1、使学生掌握等腰三角形的判定定理及其推论;2、掌握等腰三角形判定定理的运用;3、通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4、熟识等边三角形的性质及判定.教学重难点教学重点:等腰三角形的性质及其应用;等腰三角形的判定定理.教学难点:性质与判定的区别.教学过程一、新课背景知识复习1、请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论.2、等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:二、新课1、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证;AB=AC教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2、在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等.我们把三条边都相等的三角形叫做等边三角形.等边三角形具有什么性质呢?(1)请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想.(2)你能否用已知的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°.(3)上面的条件和结论如何叙述?等边三角形的各角都相等,并且每一个角都等于60°.等边三角形是轴对称图形吗?如果是,有几条对称轴?等边三角形也称为正三角形.例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数.分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B =30°,∠BAC可求,所以∠1可求.问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC 上的高线,其它条件不变,计算的结果是否一样?问题2:求∠1是否还有其它方法?三、小结由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°.“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件.第4课时教学目标1.知识与技能:(1)理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法.(2)会用等边三角形的知识解决相应的数学问题.(3)使学生理解含30°角的直角三角形的性质.2.过程与方法:(1)通过探究含30°角的直角三角形的性质,使学生进一步认识到数学来源于生活实践.(2)体验用操作、归纳得出数学结论的过程.3.情感、态度与价值观:(1)通过拼等边三角形这一探究活动,培养学生的合作交流、乐于探究、大胆猜想等良好品质.(2)使学生经历观察、探究、归纳、推理和证明的全过程,培养学生科学、严谨、求真的学习态度.教学难重点教学重点:等边三角形判定定理的发现与证明;理解含30°角的直角三角形的性质及应用.教学难点:等边三角形性质和判定的应用;含30°角的直角三角形性质的探究.教学过程教学过程一.复习回顾等腰三角形概念及性质:(1)叫等腰三角形.(2)等腰三角形的相等.(3)等腰三角形、、互相重合.二.新课讲解活动一:等边三角形的证明1.等边三角形的判定推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.2.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.数学表达:已知∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.活动二:探究直角三角形的性质1.拼一拼:你能用两个含有30°角的三角板摆放在一起构成一个等边三角形吗?你能借助这个图形,找到30°角所对的直角边与斜边之间的数量关系吗?组内交流自己的想法.(如图1)图(1)学生活动:学生两人一组拼并观察图形,分析数量关系,发现∠BAD=60°,而∠B=∠D=60°,所以△ABD是等边三角形,所以AB=BD=2BC,进而得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.教师活动:教师巡视观察、倾听各组学生是否发现并理解直角三角形的性质,根据情况进行点拨、引导.2.说一说:你能利用数学语言说一说你的发现吗?学生活动:学生根据图形指出,在Rt△ABC中,因为∠A=30°,所以∠A所对的直角边等于斜边AB的一半.教师活动:教师根据学生叙述进行板书,根据学生叙述情况进行追问、强调.发挥教师的主导作用.3.证一证:师生活动:教师通过追问“这条性质一定是真命题吗?你能验证吗?”引发学生思考,根据图形,自主尝试证明这条性质的正确性.教师巡视指导,观察学生的证明方法,根据学生是否有不同证明方法找学生展示讲解,师生质疑.活动三:变式练习,深化性质1.已知如图(3),在Rt△ABC中,因为∠A=30°,则下列结论正确的为:A、B、C、图(3)图(4)2.已知如图(4),△ABC,∠C=90°,∠A=30°,DE⊥AC于点E,FG⊥AB于点G,请你根据直角三角形的性质写出不同线段间的数量关系.学生活动:学生独立自主完成练习,小组展示,师生质疑矫正.教师活动:教师重点关注学生能否找准30°角所对的直角边,能否根据性质写出线段间的关系.活动四:应用提高、拓展创新1.如图(5)是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BC、DE需要多长?图(5)图(6)2.已知:如图,△ABC中,∠ACB=90°,CD是高,∠A=30°.求证:BD=AB.师生活动:学生根据所学知识自行探索,教师引导学生在探索的过程中发现解决问题的关键:直角三角形中30°角所对的直角边等于斜边的一半.。

《等腰三角形》第2课时示范公开课教案【八年级数学下册北师大版】

《等腰三角形》第2课时示范公开课教案【八年级数学下册北师大版】

《等腰三角形》教学设计第2课时一、教学目标1.能够正确的运用等腰三角形的性质及判定定理证明一些相等关系.2.掌握等腰三角形中常用的辅助线,并且运用到证明中.3.掌握等边三角形的性质,并熟悉其证明过程.4.要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作中感受几何应用美.二、教学重难点重点:能够正确的运用等腰三角形的性质及判定定理证明一些相等关系,了解等边三角形的性质.难点:掌握等腰三角形中常用的辅助线,并且运用到证明中.三、教学用具电脑、多媒体、课件等.四、教学过程设计【情境引入】教师活动:教师准备好纸张,带领同学深刻理解等腰三角形角平分线、高线、中线特点.试一试:自己动手用纸制作一个等腰三角形.提问:你能利用折叠的方法找出它两个底角的平分线、两条腰上的中线和高线吗三种折叠方法:①角平分线的折法②中线的折法③高线的折法学生展示自己折叠的方式,并指出它的底角平分线、腰上的中线和高线.教师活动:针对上方同学的回答,教师进行提问,根据同学的答案,做出最后答案,然后根据答案让同学进行进一步思考,引出证明.【问题】①等腰三角形的两底角的平分线、两条腰上的中线、两条腰上的高线有什么关系?答案:相等② 你能怎么证明?【探究】证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC中,AB=AC,BD,CE是△ABC 的角平分线.求证:BD =CE .思路:证明线段相等可以考虑证明两个线段所在三角形全等,即:△BCD ≌△CBE三角形里的已知条件:BC =BC∠ABC =∠ACB补充条件:∠1=∠2(通过角平分线得到) 判定依据:ASA 证明:∵AB =AC ,∴∠ABC =∠ACB (等边对等角) ∵∠1=21∠ABC ,∠2=21∠ACB ,∴∠1=∠2 在△BDC 和△CEB 中,∵∠ACB =∠ABC ,BC =CB ,∠1=∠2. ∴△BDC ≌△CEB (ASA).∴BD =CE (全等三角形的对应边相等) 得出结论:等腰三角形两底角的平分线相等. 【思考】动动脑,想一想:等腰三角形两条腰上的中线相等吗?高呢? 【猜想】1、等腰三角形两条腰上的中线相等.2、等腰三角形两条腰上的高线相等. 【思考】证明猜想:等腰三角形两条腰上的中线相等在②ABC 中,AB =AC ,BE 和CD 分别是AC 、AB 上的中线.证明:CD =BE .思路:① 想证明CD =BE , 可以证明:△BCE ≌△CBD②两个三角形里的已知条件:BC =BC ;∠ABC =∠ACB ③需要补充的条件: BD =CE (通过中线得到) 证明:②BE 和CD 分别是AC 、AB 上的中线②CE =21AC ,BD =21AB②AB =AC②②ABC =②ACB ,CE =BD , 在②BCE 和②CBD 中②CE =BD ,②ABC =②ACB ,BC =BC ②②BCE ②②CBD (SAS ) ②CD =BE提示:还可以证明②ABD ②②ACE ,依据为:(SAS ) 得出结论:等腰三角形两条腰上的中线相等. 证明猜想:等腰三角形两条腰上的高线相等在②ABC 中,AB =AC ,BE 和CD 分别是AC 、AB 上的高线.证明:CD =BE .思路:想证明CD=BE①需要找到:②BCE ②②CBD②两个三角形里的已知条件:BC=BC;∠ABC=∠ACB③需要补充的条件:②CDB=②CEB=90°(通过高线得到)证明:②BE和CD分别是AC、AB上的高线②②CDB=②CEB=90°②AB=AC②②ABC=②ACB在②BCE和②CBD中②②CDB=②CEB,②ABC=②ACB,BC=BC②②BCE②②CBD(AAS)②CD=BE提示:还可以证明△ABD≌△ACE,依据为:(AAS)得出结论:等腰三角形两条腰上的高线相等.【议一议】如图,在△ABC中,AB=AC,点D,E分别在AC和AB上.(1)如果∠ABD=13∠ABC,∠ACE=13∠ACB,那么BD=CE吗?如果∠ABD=14∠ABC,∠ACE=14∠ACB呢?由此你能得到一个什么结论?(2)如果AD=12AC,AE=12AB,那么BD=CE吗?如果AD=1 3AC,∠AE=13AB呢?由此你能得到一个什么结论?分析:(1)由∠ABD =13∠ABC,∠ACE =13∠ACB,易得∠1=∠2.又∵∠A是公共角,AB=AC,∴△ABD≌△ACE(ASA).∴BD=CE.追问:如果∠ABD=14∠ABC,∠ACE=14∠ACB呢?同样的方法,也能得到BD=CE.结论:如图,在△ABC中,如果AB=AC,∠ABD=∠ACE,那么BD=CE.分析:(2) AD=12AC,AE=12AB,易得AD=AE.又∵∠A是公共角,AB=AC,∴△ABD≌△ACE(SAS).∴BD=CE.追问:如果AD=13AC,∠AE=13AB呢?同样的方法,也能得到BD=CE.结论:如图,在△ABC中,如果AB=AC,AD=AE,那么BD=CE.【想一想】提出问题:等边三角形是特殊的等腰三角形,那么等腰三角形的内角有什么特征呢?预设:三个内角都相等、每个角都等于60°、……追问:你能试着证明一下吗?已知,如图,在△ABC中,AB=AC=BC.求证:∠A= ∠B= ∠C.证明:∵AB=AC,∴∠B=∠C(等边对等角).又∵AC=BC,∴∠A=∠B(等边对等角).∴∠A=∠B =∠C.在△ABC中,∠A+∠B+∠C =180°,∴∠A=∠B =∠C=60°.总结定理:等边三角形的三个内角都相等,并且每个角都等于60°.【典型例题】教师活动:教师通过提问的方式,先带领同学理解问题抽象,让同学们找到解决问题的思路,之后提问同学补充解答过程,最后由教师完善解题步骤.例:已知:如图.点D、E在ΔABC的边BC上,AB=AC,AD=AE.求证:BD=CE.思路:因为△ABC和△ADE是有公共顶点,并且底边在同一直线上的等腰三角形,所以作△ABC(或△ADE)的高AF,可同时平分BC,DE.证明:作AF⊥BC,垂足为点F,则AF⊥DE∵AB=AC∴BF=CF(等腰三角形底边上的中线、底边上的高互相重合)【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1、已知:如图,D是△ABC内的一点,BD平分∠ABC,CD平分∠ACB,且BD=CD.求证:AB=AC.提示:先由DB=DC,证明∠DBC=∠DCB,再证∠ABC=∠ACB.证明:∵DB=DC∴∠DBC=∠DCB∵BD平分∠ABC,CD平分∠ACB∴∠ABC=2∠DBC,∠ACB=2∠DCB∴∠ABC=∠ACB∴AB=AC(等角对等边)2、已知:如图,∠CAE是△ABC的外角,AD∥BC,且∠1=∠2求证:AB=AC.提示:由∠1=∠B,∠2=∠C,可得∠B=∠C 证明:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C∴AB=AC(等角对等边)思维导图的形式呈现本节课的主要内容:教科书第7页习题1.2。

北师大版数学八年级下册《三角形全等和等腰三角形的性质》教学设计

北师大版数学八年级下册《三角形全等和等腰三角形的性质》教学设计

北师大版数学八年级下册《三角形全等和等腰三角形的性质》教学设计一. 教材分析《三角形全等和等腰三角形的性质》是北师大版数学八年级下册第11章的内容。

本节内容主要让学生掌握三角形全等的条件,等腰三角形的性质及其判定。

通过本节的学习,为学生进一步学习几何证明和解决实际问题打下基础。

二. 学情分析学生在七年级下册已经学习了三角形的性质,对三角形有了一定的了解。

但是,对于三角形全等的判定条件和等腰三角形的性质,还需要通过实例和操作来进一步理解和掌握。

三. 教学目标1.了解三角形全等的条件,能运用SSS、SAS、ASA、AAS判定两个三角形全等。

2.掌握等腰三角形的性质,能运用等腰三角形的性质解决实际问题。

3.培养学生的空间想象能力、逻辑思维能力和合作交流能力。

四. 教学重难点1.教学重点:三角形全等的条件,等腰三角形的性质。

2.教学难点:三角形全等的判定条件的运用,等腰三角形性质的证明。

五. 教学方法采用问题驱动法、案例分析法、合作交流法、实践操作法等教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和解决问题的能力。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:三角板、直尺、圆规、剪刀、彩笔。

3.教学素材:三角形全等的案例、等腰三角形的图片。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形图片,引导学生观察并思考:这些三角形有什么共同特点?你能找出全等的三角形吗?2.呈现(10分钟)教师通过PPT呈现三角形全等的判定条件SSS、SAS、ASA、AAS,并简要介绍每个条件的含义。

然后,通过实例展示和讲解,让学生理解并掌握三角形全等的判定方法。

3.操练(10分钟)学生分组进行实践活动,利用三角板、直尺等工具,尝试找出全等的三角形。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)教师通过PPT呈现一些判断题,让学生判断两个三角形是否全等。

学生独立完成,教师讲解答案。

5.拓展(5分钟)引导学生思考:如何判断一个三角形是否为等腰三角形?教师通过PPT呈现等腰三角形的性质,让学生了解等腰三角形的判定方法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《1 等腰三角形》教案第1课时教学目标1.知识与技能:经历观察实验、猜想证明,掌握等腰三角形的性质,会运用性质进行证明和计算.2.过程与方法:(1)历观察等腰三角形的对称性,发展形象思维.(2)经历观察实验、猜想证明,发展合情推理能力和演绎推理能力.3.情感态度与价值观:经历同学间的合作与交流,体会在解决问题过程中与他人合作的益处.教学重难点1.教学重点:等腰三角形性质的发现、证明及应用.2.教学难点:等腰三角形三线合一的发现、证明及应用.教学过程一.提出问题,创设情境1.①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?2.满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.二.导入新课1.同学们通过自己的思考来做一个等腰三角形.AC AB I作一条直线L ,在L 上取点A ,在L 外取点B ,作出点B 关于直线L 的对称点C ,连结AB 、BC 、CA ,则可得到一个等腰三角形.思考:(1).等腰三角形是轴对称图形吗?请找出它的对称轴.(2).等腰三角形的两底角有什么关系?(3).顶角的平分线所在的直线是等腰三角形的对称轴吗?(4).底边上中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?2.等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.(它的两个底角有什么关系?)3.等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.(这个结论由学生共同探究得出的)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰△的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).三.随堂练习四.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.第2课时教学目标经历探索等腰三角形成为等边三角形的条件及其推理证明过程.教学重难点教学重点:等边三角形判定定理的发现与证明.教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理.教学过程一、复习知识要点1.有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.2.三角形按边分类:三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形 3.等腰三角形是轴对称图形,其性质是:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.二.新课学习1.提出问题,创设情境(1)把等腰三角形的性质用到等边三角形,能得到什么结论?(2)一个三角形满足什么条件就是等边三角形?(3)你认为有一个角等于60°的等腰三角形是等边三角形吗?•你能证明你的结论吗?把你的证明思路与同伴交流.2.导入新课(1)探索等腰三角形成等边三角形的条件.如果等腰三角形的顶角是60°,那么这个三角形是等边三角形.你能给大家陈述一下理由吗? 有一个角是60°的等腰三角形是等边三角形.(2)你在与同伴的交流过程中,发现了什么或受到了何种启示?今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?[生]三个角都相等的三角形是等边三角形.[师]下面就请同学们来证明这个结论.已知:如图,在△ABC 中,∠A =∠B =∠C .求证:△ABC 是等边三角形.证明:∵∠A =∠B ,∴BC =AC (等角对等边).又∵∠A =∠C ,∴BC =AC (等角对等边).∴AB =BC =AC ,即△ABC 是等边三角形.等腰三角形的性质和判定方法就可以得到:等边三角形的三个内角都相等,并且每一个角都等于60°;三个角都相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.三.随堂练习四.课时小结这节课,我们自主探索、思考了等腰三角形成为等边三角形的条件,•并对这个结论的证明有意识地渗透分类讨论的思想方法.这节课我们学的定理非常重要,在我们今后的学习中起着非常重要的作用. 第3课时教学目标CA探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.教学重难点教学重点:1.等腰三角形的判定定理及其应用.2.探索等腰三角形的判定定理.教学难点:等腰三角形的判定定理及其应用.教学过程一.提出问题,创设情境1.等腰三角形有些什么性质呢?2.满足了什么样的条件就能说一个三角形是等腰三角形呢?二.导入新课A B 01.思考:如图,位于在海上A 、B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠A =∠B .如果这两艘救生船以同样的速度同时出发,•能不能大约同时赶到出事地点(不考虑风浪因素)?2.在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?例.已知:在△ABC 中,∠B =∠C (如图).求证:AB =AC .证明:作∠BAC 的平分线AD .在△BAD 和△CAD 中 12,,,B C AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAD (AAS )∴AB =AC . 3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).4.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).21D CAB求证:AB =AC .21EDC A B证明:∵AD ∥BC ,∴∠1=∠B (两直线平行,同位角相等),∠2=∠C (两直线平行,内错角相等).又∵∠1=∠2,∴∠B =∠C ,∴AB =AC (等角对等边).练习:已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB =AD .DC A B证明:∵AD ∥BC ,∴∠ADB =∠DBC (两直线平行,内错角相等).又∵BD 平分∠ABC , ∴∠ABD =∠DBC ,∴∠ABD =∠ADB , ∴AB =AD (等角对等边).三.随堂练习四.课时小结本节课我们主要探究了等腰三角形判定定理,•在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中发现和养成一定的逻辑推理能力.第4课时教学目标1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.2.有一个角为30°的直角三角形的性质的简单应用.教学重难点教学重点:含30°角的直角三角形性质定理发现与证明.教学难点:含30°角的直角三角形性质定理发现与证明及应用.教学过程一.提出问题,创设情境1.用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?•能拼出一个等边三角形吗?说说你的理由.2.由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?二.导入新课1.用含30°角的直角三角尺摆出了如下两个三角形.(1)DC AB (2)DC AB其中,图(1)是等边三角形,因为△ABD ≌△ACD ,所以AB =AC ,又因为Rt △ABD 中,∠BAD =60°,所以∠ABD =60°,有一个角是60°的等腰三角形是等边三角形.图(1)中,已经知道它是等边三角形,所以AB =BC =AC .•而∠ADB =90°,即AD ⊥BC .根据等腰三角形“三线合一”的性质,可得BD =DC =12BC .所以BD =12AB ,即在Rt △ABD 中,∠BAD =30°,它所对的边BD 是斜边AB 的一半.定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C =90°,∠BAC =30°.求证:BC =12AB . C AB DC A B分析:从三角尺的摆拼过程中得到启发,延长BC 至D ,使CD =BC ,连接AD .练习:下图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB =7.4m ,∠A =30°,立柱BD 、DE 要多长?DC A E B分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A =30°,所以DE =12AD ,BC =12AB ,又由D 是AB 的中点,所以DE =14AB .三.随堂练习四.课时小结这节课,我们在上节课的基础上推理证明了含30°的直角三角形的边的关系.这个定理是个非常重要的定理,在今后的学习中起着非常重要的作用.。

相关文档
最新文档