人教版八年级数学_三角形中位线定理课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

决.
5.三角形的中位线定理的发现过程所用到 的数学方法(包括画图、实验、猜想、分 析、归纳等.)
课内作业:
1、随堂练习
2、学习手册
课外作业
3、测量金海湾钟楼的底面对角线的长
原四边形两条对角线 连接四边中点所得四边形
互相垂直 相等
矩形 菱形
互相垂直且相等
既不互相垂直也不相等
正方形
平行四边形
1、顺次连接四边形各边中点得到的是
2、顺次连接矩形各边中点得到的是
3、顺次连接菱形各边中点得到的是
4、顺次连接四边形各边中点得到正方形,那么这个四边形是
5、顺次连接四边形各边中点得到菱形,那么这个四边形是
菱形
菱形
矩形
正方形
(6)顺次连结对角线相 等的四边形各边中点所得 的四边形是什么? (7)顺次连结对角线垂 直的四边形各边中点所得 的四边形是什么? (8)顺次连结对角线相等 且垂直的四边形各边中点 所得的四边形是什么?
菱形
结 论
实际上,顺次连接四边形各边中点所得 到的四边形一定是平行四边形,但它是否特 它的对角线是否垂直 殊的平行四边形取决于它的对角线是否垂直 或者是否相等 或者是否相等,与是否互相平分无关.
很好!继续保持
返 回
错了!好好思考
返 回
真聪明!继续努力
返 回
答错了!返回吧
返 回
真聪明!
返 回
答错了!
返 回
真聪明!
返 回
错啦!仔细考虑一下
返 回
真聪明!
返 回
错了!好好思考
返 回
如图,在矩形ABCD中,E、F、G、H分 别是边AB、BC、CD、AD的中点,试说明 四边形EFGH是菱形.
6、顺次连接对角线互相平分的四边形各边中点得到的是
7、顺次连接对角线互相垂直的四边形各边中点得到的是
8、顺次连接对角线相等的四边形各边中点得到的是
游 戏 结 束!
真聪明!
返 回
错了!请重新返回思考一下 !
返 回
你真聪明!
返 回
请你慎重选择!返回再思考
返 回


错啦!仔细考虑一下
返 回
解:连接AC、BD
A H
根据三角形中位线定理,可得
D
E G
又在矩形ABCD中,AC=BD 所以,EF=FG=HG=HE
1 1 EF=HG= AC,EH=FG= BD 2 2
B
F
C
即四边形EFGH是菱形.
1.三角形的中位线定义. 2.三角形的中位线定理. 3.三角形的中位线定理不仅给出了中位线 与第三边的关系,而且给出了他们的数量 关系,在三角形中给出一边的中点时,要 转化为中位线. 4.线段的倍分要转化为相等问题来解
D C
B
三角形各边的长分别为6 cm、8 cm 和 10 cm , 求连接各边中点所成三角形的周长. 12 cm
AB=10 cm EF=5 cm
BC=8 cm DF=4 cm AC=6 cm DE=3 cm B 8 cm E 10 cm D
A
F 6 cm C
A
M
若MN=36 m,则AB=2MN=72 m 如果,MN两点之间还有阻 隔,你有什么解决办法?
A
H D G F C
1
在△ADC中,同理可得
2
AC B
1
HG//AC,HG=
所以EF//HG,EF=HG
所以四边形EFGH是平行四边形
2
AC
从例1中你能得到什么结论?
顺次连接四边形各边中点的 演示2 线段组成一个平行四边形
顺次连接矩形各边中点的线 演示3 为什么? 段组成一个菱形
(1) 顺次连结平行四边 形各边中点所得的四边形是 什么? (2)顺次连结菱形各边中点 所得的四边形是什么?
F
得CF=AE , CF//AB
又可得CF=BE,CF//BE
所以四边形BCFE是平行四边形 则有DE//BC,DE=
1 EF= 1 BC 2 2
三角形的中位线的性质
三角形的中位线平行于第三边, 并且等于它的一半 用符号语言表示
∵DE是△ABC的中位线
A
1 ∴ DE∥BC, DE= BC. 2 E
C
N
B
在AB外选一点C,使C能直接到达A和B,
连结AC和BC,并分别找出AC和BC的中点M、N. 测出MN的长,就可知A、B两点的距离
例1、如图,在四边形ABCD中,E、F、G、H 分 别 是 AB 、 BC 、 CD 、 DA 的 中 点 。 四 边 形 EFGH是平行四边形吗?为什么?
解:四边形EFGH是平行四边形. 连接AC,在△ABC中, 因为E、F分别是AB、BC边的 E 中点,即EF是△ABC的中位线. 所以EF//AC,EF=
连接三角形两边中点的线段叫做 三角形的中位线。 画出△ABC中所有的中位线
画出三角形的所有中线并说 出中位线和中线的区别.
D B E A
F C
观察猜想
在△ABC中,中位线 DE和边BC什么关系?
演示1
A
D
E
B
位置关系: DE∥BC
C
DE和边BC关系
1 数量关系: DE= BC. 2
结论:三角形的中位线平行于第三边, 并且等于它的一半.
问题:A、B两点被池塘隔开,如何 测量A、B两点距离呢?为什么?
A B
怎样将一张三角形硬纸片剪成两部 分,使分成的两部分能拼成一个平行四 边形?
请动手试一试!
四边形BCFD是平行四边形吗?说 说你的理由!
F
DE是三角形ABC的中位线
A
什么叫三 角形的中位 线呢?
D B
E C
三角形的中位线
平行四边形
矩形
(3)顺次连结正方 形各边中点所得的四 边形是什么?
正方形
(4)顺次连结梯形各边 中点所得的四边形是什 么?
平行四边形
(5)顺次连结等腰梯形 各边中点所得的四边形 是什么?
菱形
平行四边形
平行四边形
于但得 什它到 么是的 顺 呢否四 次 ?特边 连 殊形接 的一四 平定边 行是形 四平各 边行边 形四中 取边来自百度文库 决形所 ,
如图:在△ABC中,D是AB的中点,E 是AC的中点。 1 则有: DE∥BC, DE= BC. A
2
能说出理由 吗?
B
E
D
C
如图:在△ABC中,D是AB的中点,E 是AC的中点。 1 则有: DE∥BC, DE= BC.
A
E B D C
2
分析:
延长ED到F,使DF=ED , 连接CF
易证△ADE≌△CFE,
相关文档
最新文档