大学物理1期末复习题
大学物理(1)总复习
k a b k(k 1,2,3,...;k只能取整数) a
计算缺级的基本公式。
[B ]
16
补:若用衍射光栅准确测定一单色可见光的波长,在下列各种 光栅常数的光栅中选用哪一种最好?
(A) 5.0×10-1 mm. (B) 1.0×10-1 mm.
(C) 1.0×10-2 mm. (D) 1.0×10-3 mm.
(A) 1.5J (C) 4.5J
(B) 3J (D) -1.5J
F
d
r
1m(v 2
2 2
v12 ),
v
v
2 x
v
2 y
vx
dx dt
5,v y
dy dt
t,
v12
29,v
2 2
41
[B ]
4
4、对质点组有以下几种说法:
(1)质点组总动量的改变与内力无关。
(2)质点组总动能的改变与内力无关。
(3)质点组机械能的改变与保守内力无关。
v 0, t 3
[B ]
r xi yj
v
d
r
d
x
i
d
y
j
dt dt dt
v
v
2 x
v
2 y
d
x
2
d
y
2
dt dt
2
2. 质量为2kg的质点,受力F = t i(SI)的作用,t =0 时刻该质点以v =6i m·s-1的速度通过坐标原点,则该 质点任意时刻的位置矢量为
25
20.一绝热容器被隔板分成两半,一半是真空,另一半是理想 气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后
(A)温度不变,熵增加. (B)温度升高,熵增加. (C)温度降低,熵增加. (D)温度不变,熵不变.
大学物理(一)题库1(黄时中)
⼤学物理(⼀)题库1(黄时中)⼤学物理(1)期末复习题库第⼀篇⼒学⼀、判断题1. 平均速度和瞬时速度通常都是相等的。
()2. 若⼒⽮量F 沿任何闭合路径的积分0=??Ll d F ,则该⼒为保守⼒() 3. 任意刚体的形状、⼤⼩和质量确定,则该刚体的转动惯量⼤⼩确定。
()4. 在狭义相对论时空观下,⼀个惯性系中同时(异地)发⽣的两件事,在另⼀个与它相对运动的惯性系中则⼀定不同时发⽣。
()5. 物体做曲线运动时,速度⽅向⼀定在运动轨道的切线⽅向,法向分速度恒为零,因此其法向加速度也⼀定为零。
()6. 在太阳系中,⾏星相对于太阳的的⾓动量不守恒。
()7. 因为 r r ?=?,所以速率等于速度的⼤⼩。
()8. 物体的运动⽅向与合外⼒⽅向不⼀定相同。
()。
9. 若系统外⼒所作的功0≠ext W ,只要0int,=+non ext W W ,则系统机械能保持不变。
()10. 在⾼速飞⾏的光⼦⽕箭中的观测者观测到地球上的钟变慢了,则地球上的观测者可认为光⼦⽕箭中的钟变快了。
()11. 假设光⼦在某惯性系中的速度为c ,那么存在这样的⼀个惯性系,光⼦在这个惯性系中的速度不等于c 。
()。
12. ⼀物体可以具有恒定的速率但仍有变化的速度()13. 物体运动的⽅向⼀定与它所受的合外⼒⽅向相同()14. 物体运动的速率不变,所受合外⼒⼀定为零()15. 相对论的运动时钟变慢和长度收缩效应是⼀种普遍的时空属性,与过程的具体性质⽆关()16. 质点作圆周运动的加速度不⼀定指向圆⼼。
()17. 有⼀竖直悬挂的均匀直棒,可绕位于悬挂点并垂直于棒的⼀端的⽔平轴⽆摩擦转动,原静⽌在平衡位置。
当⼀质量为m 的⼩球⽔平飞来,并与棒的下端垂直地相撞,则在⽔平⽅向上该系统的动量守恒。
()18. ⼀物体可具有机械能⽽⽆动量,但不可能具有动量⽽⽆机械能。
()19. 内⼒不改变质点系的总动量,它也不改变质点的总动能。
()20. 在某个惯性系中同时发⽣在相同地点的两个事件,对于相对该系有相对运动的其它惯性系⼀定是不同时的。
大一物理学期末试题及答案
大一物理学期末试题及答案一、选择题(每题2分,共20分)1. 光速在真空中是多少?A. 299,792,458米/秒B. 299,792,458千米/秒C. 299,792,458厘米/秒D. 299,792,458毫米/秒答案:A2. 牛顿第二定律的公式是什么?A. F = maB. F = mvC. F = m/aD. F = v/a答案:A3. 以下哪个不是电磁波的类型?A. 无线电波B. 可见光C. X射线D. 声波答案:D...20. 根据热力学第二定律,以下哪个陈述是正确的?A. 能量守恒B. 熵总是增加C. 热量可以自发地从低温物体传递到高温物体D. 所有自发过程都是可逆的答案:B二、填空题(每空1分,共10分)1. 根据牛顿第一定律,如果一个物体不受外力作用,它将保持_______状态或_______状态。
答案:静止;匀速直线运动2. 电磁波的频率与波长的关系是_______。
答案:成反比...10. 绝对零度是_______开尔文。
答案:0三、简答题(每题5分,共20分)1. 简述牛顿第三定律的内容。
答案:牛顿第三定律,又称作用与反作用定律,指出对于任何两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。
2. 什么是相对论?答案:相对论是爱因斯坦提出的物理理论,主要包括狭义相对论和广义相对论。
狭义相对论基于光速不变原理和相对性原理,广义相对论则是引力作为时空弯曲的几何效应的理论。
...四、计算题(每题10分,共30分)1. 一个质量为2千克的物体,受到一个恒定的力F=10牛顿。
如果这个力作用了4秒,求物体的最终速度。
答案:根据牛顿第二定律,F = ma,可以求得加速度a = F/m = 10 N / 2 kg = 5 m/s²。
根据速度与加速度的关系,v = at,物体的最终速度为v = 5 m/s² × 4 s = 20 m/s。
大学物理第一学期期末试题及答案
大学物理1期末试题及答案一、选择题(共21分) 1. (本题3分)质点沿半径为R 的圆周运动,运动学方程为232t θ=+ (SI) ,则t 时刻质点的角加速度和法向加速度大小分别为A. 4 rad/s 2 和4R m/s 2 ;B. 4 rad/s 2和16Rt 2 m/s 2 ;C. 4t rad/s 2和16Rt 2 m/s 2 ;D. 4t rad/s 2和4Rt 2 m/s 2 . [ ] 2. (本题3分)已知一个闭合的高斯面所包围的体积内电荷代数和0q ∑= ,则可肯定 A. 高斯面上各点电场强度均为零;B. 穿过高斯面上任意一个小面元的电场强度通量均为零;C. 穿过闭合高斯面的电场强度通量等于零;D. 说明静电场的电场线是闭合曲线. [ ] 3. (本题3分)两个同心均匀带电球面,半径分别为a R 和b R ( a b R R <), 所带电荷分别为a q 和b q .设某点与球心相距r ,当a b R r R <<时,取无限远处为零电势,该点的电势为 A. 014a b q q r ε+⋅π; B. 014a bq q rε-⋅π; C.014a b b q q r R ε⎛⎫⋅+ ⎪⎝⎭π; D. 014a b a b q q R R ε⎛⎫⋅+ ⎪⎝⎭π. [ ] 4. (本题3分)如图所示,流出纸面的电流为2I ,流进纸面的电流为 I ,该两电流均为恒定电流.H 为该两电流在空间各处所产生的磁场的磁场强度.d LH l ⋅⎰ 表示 H 沿图中所示闭合曲线L 的线积分,此曲线在中间相交,其正方向由箭头所示.下列各式中正确的是 A. d LH l I ⋅=⎰; B.d 3LH l I ⋅=⎰;C.d LH l I ⋅=-⎰; D.d 30LH l μI ⋅=⎰. [ ]5. (本题3分)如图所示,在竖直放置的长直导线AB 附近,有一水平放置的有限长直导线CD ,C 端到长直导线的距离为a ,CD 长为b ,若AB 中通以电流I 1,CD 中通以电流I 2,则导线CD 所受安培力的大小为:I 2 abC I 1(A) b I xI F 2102πμ=; (B) b I b a I F 210)(+=πμ; (C) a b a I I F +ln2=210πμ; (D) ab II F ln 2210πμ=. [ ] 6. (本题3分)面积为S 和2S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为A. 12Φ;B. 2112ΦΦ>;C. 2112ΦΦ=;D. 211212ΦΦ=. [ ]7. (本题3分)(1) 对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2) 在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是A. (1)同时,(2)不同时;B.(1)不同时,(2)同时;C. (1)同时,(2)同时;D. (1)不同时,(2)不同时. [ ] 二、填空题(共21分,每题3分) 8.(本题3分)质量 2 kg m = 的质点在力12F t i = (SI)的作用下,从静止出发沿x 轴正向作直线运动,前三秒内该力所作的功为_______________. 9(本题3分)长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为213Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v 射入杆上A 点,并嵌在杆中,23lOA =,则子弹射入后瞬间杆的角速度 =____________________. 10(本题3分)长为L 的直导线上均匀地分布着线电荷密度为λ的电荷,在导线的延长线上与导线一端相距 a 处的P 点的电势的大小为___________________.11(本题3分)长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度大小 ,磁感强度的大小 . 12(本题3分)一平面线圈由半径为0.2 m 的1/4圆弧和相互垂直的二直线组成,通以电流 2 A ,把它放在磁感强度为0.5 T 的均匀磁场中,线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力______________N ;线圈所受的磁力矩___________ Nm 。
大学物理(一)期末考试真题
大学物理(一)期末考试真题一、大学物理期末选择题复习1.一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变答案B2.将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 答案A3.在图(a)和(b)中各有一半径相同的圆形回路L 1 、L 2 ,圆周内有电流I 1 、I 2 ,其分布相同,且均在真空中,但在(b)图中L 2 回路外有电流I 3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 答案C4. 如图所示,质量为m 的物体用平行于斜面的细线连结并置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A )sin g θ (B )cos g θ (C )tan g θ (D )cot g θ答案 D5. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
下列对上述说法判断正确的是( )(A )(1)、(2)是正确的 (B )(2)、(3)是正确的(C )只有(2)是正确的 (D )只有(3)是正确的答案 C6. 有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力距一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力距可能是零;(3)当这两个力的合力为零时,它们对轴的合力距也一定是零;(4)当这两个力对轴的合力距为零时,它们的合力也一定为零。
大学物理(上册)期末练习试题和参考答案
光发生干涉,如图所示,若薄膜的厚度为e,且n1<n2>n3,
1 为入射光在n1中的波长,则两束反射光的光程差为
(A) 2n2e.
(B) 2n2 e 1 / (2n1).
(C) 2n2 e n1 1 / 2. (D) 2n2 e n2 1 / 2.
[C ]
入
射 n1 光
反射光 1
n2
反射光 2 e
(D) T1 /2
(E) T1 /4
[D]
7.频率为 100 Hz,传播速度为300 m/s的平面简谐波,波线上
距离小于波长的两点振动的相位差为 π / 3 ,则此两点相距
(A) 2.86 m.
ห้องสมุดไป่ตู้
(B) 2.19 m.
(C) 0.5 m.
(D) 0.25 m.
[C ]
8.单色平行光垂直照射在薄膜上,经上下两表面反射的两束
轮的角加速度分别为 A和 B ,不计滑轮轴的摩擦,则有
(A) A= B (B) A > B (C) A < B (D) 开始时 A= B ,以后 A< B [ C ]
A
B
M
F
5.两容器内分别盛有氢气和氦气,若它们的温度和质量分别
相等,则:
(A) 两种气体分子的平均平动动能相等.
=_____4__t3_-_3_t_2___(_r_a_d_/_s_)________;
切向加速度 at =___1__2_t2_-_6_t___(_m__/_s2_)_______.
12.质量为m的物体,从高出弹簧上端h处由静止自由下落到竖
直放置在地面上的轻弹簧上,弹簧的倔强系数为k,则弹簧被
压缩的最大距离x=_______. x mg ( mg )2 2mgh
《大学物理》(I1)期末复习题及答案.doc
大物期末复习题(II)、单项选择题1、质量为加= 0.5畑的质点,在oxy坐标平面内运动,其运动方程为x = 5t,y = 0.5/2,从t二2s到t二4s这段时间内,外力对质点做的功为()A、 1.5JB、3JC、 4.5JD、-1.5J2、对功的概念有以下几种说法:①作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
②保守力作正功时,系统内相应的势能增加。
③质点运动经一闭合路径,保守力对质点作的功为零。
在上述说法中:()(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
3、如图3所示1/4圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与ni间有摩擦,则A> M与m组成系统的总动量及水平方向动量都守恒,M、m与地组成的系统机械能守恒。
M与m组成系统的总动量及水平方向动量都守恒,M、m与地组成的系统机械能不守恒。
C、M与ni组成的系统动量不守恒,水平方向动量不守恒,M、ni与地组成的系统机械能守恒。
D、M与m组成的系统动量不守恒,水平方向动量守恒,M、m与地组成的系统机械能不守恒。
图34、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场中,另一半位于磁场之外,如图所示。
磁场的方 向垂直指向纸内。
预使圆环中产生逆 时针方向的感应电流,应使()线环向右平移 B 、线环向上平线环向左平移 D 、磁场强度 减 若尺寸相同的铁环与铜环所包围的而积中穿过相同变化率的磁通量,则在两 环屮( )(A) 感应电动势相同,感应电流不同.(B) 感应电动势不同,感应电流也不同.(C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流也相同.6、线圈与一通有恒定电流的直导线在同一平面内,下列说法正确的是 A 、 当线圈远离导线运动时,线圈中有感应电动势B 、 当线圈上下平行运动时,线圈中有感应电流C 、 直导线中电流强度越大,线圈中的感应电流也越大D 、 以上说法都不对7.真空带电导体球而与一均匀带电介质球体,它们的半径和所带的电量都相 等,设带电球面的静电能为W1,球体的静电能为W2,则()A 、W1>W 2;B 、W 1<W 2;C 、W 1=W2D 、无法比较 &关于高斯定理的理解有下面几种说法,其中正确的是:()(A) 如果高斯面上E 处处为零,则该面内必无电荷(B) 如果高斯面内无电荷,则高斯面上E 处处为零(C) 如果高斯面上E 处处不为零,则高斯面内必有电荷(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零9•两个同心的均匀带电球面,内球面半径为R 】、带有电荷外球面半径为&、 带有电荷则在内球面里面、距离球心为r(r<R.<R 2)处的P 点的场强大小E 为:()(A)(B)—+ ―(C)-^ (D)0 4亦0广 4亦()/?2「 4齊厂 A 、移C、弱10•如图所示,螺绕环截面为矩形,通有电流I,导线总匝数为M内外半径分别为R1和R2,则当R2 >r >R1时,磁场的分布规律为()11. 4、一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半 径分别为召和用(召〈施),通有等值反向电流,那么下列哪幅图正确反映了电流 产生的磁感应强度随径向距离的变化关系?()12、一个半径为厂的半球面如图放在均匀磁场屮,通过半球面的磁通量 为( )(A) 2nr 2B(B) Ttr 2B (C) 2nr 2Bcosa (D) 7ir 2Bcosa 13. 带电导体达到静电平衡时, 其正确结论是A 、 导体表面上曲率半径小处电荷密度小B 、 表面曲率较小处电势较高C 、 导体内部任一点电势都为零D 、 导体内任一点与其表面上任一点的电势差等于零M &NI⑷ 0 (B) ^7 (C) Kr (D) 1 N^S J B °、R\ R 214.在电场中的导体内部的()(A)电场和电势均为零;(B)(C)电势和表面电势相等;(D)15•对于带电的孤立导体球,()A、导体球内部的场强和电势均为零C、导体内电势比导体表面高法确定16.如图所示,绝缘带电导体上a, b, c三点,屯荷密度是(),屯势是()A、a点最大B、b点最大C^ c点最大D^ d点最大导体17.电量分别为6, q2,细的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R,则b点处的电势______________ 18.—个不带电的空腔导体壳,内半径为R,在腔内离球心的距离为a处放一点电荷+q,如图所示,用导线把球壳接地后,再把地线撤去。
大学物理大一期末复习
一、选择题2、(本题3分) (0343)图所示,用一斜向上的力F (与水平成30o 角),将一重为G 的木块压靠在竖直壁面上,如果不论用怎么大的力F ,都不能使木块向上滑动,则说明木块与壁面间的静摩擦力系数μ的大小为 (A) μ≥12 (B) μ(C) μ(D) μ≥[ B ]3、(本题3分) (0366)质量为m 的平板A ,用竖直的弹簧支持而处在水平位置,如图。
从平台上投掷一个质量也是m 的球B ,球的初速为v ,沿水平方向。
球由于重力作用下落,与平板发生完全弹性碰撞。
假定平板是光滑的,则与平板碰撞后球的运动方向应为:(A) A 0方向 (B) A 1方向 (C) A 2方向 (D) A 3方向[ C ]5、(本题3分) (4091)如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程,A →D 绝热过程,其中吸热量最多的过程(A) 是A →B . (B) 是A →C . (C) 是A →D .(D) 既是A →B 也是A →C ,两过程吸热一样多。
[ A ]9、(本题3分) (0128)如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O 。
该物体原以角速度ω在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉。
则物体(A) 动能不变,动量改变。
(B) 动量不变,动能改变。
(C) 角动量不变,动量不变。
(D) 角动量改变,动量改变。
(E) 角动量不变,动能、动量都改变。
[ E ]215、(本题3分) 1492如图所示,两个同心的均匀带电球面。
内球面带电量Q 1,外球面带电量Q 2,则在两球面之间、距离球心为r 处的P 点的场强大小E 为:(A)1204Q r πε. (B)12204Q Q r πε+(C) 2204Q r πε (D)21204Q Q rπε-[ A ]17、(本题3分) 1611有三个直径相同的金属小球。
大学基础课《大学物理(一)》期末考试试题 附解析
姓名班级学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…大学基础课《大学物理(一)》期末考试试题 附解析考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为________。
2、一根长为l ,质量为m 的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
3、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处。
4、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
5、一质点作半径为0.1m 的圆周运动,其运动方程为:(SI ),则其切向加速度为=_____________。
6、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
7、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
8、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
大学物理期末考试题上册10套附答案
上海电机学院 200_5_–200_6_学年第_二_学期《大学物理 》课程期末考试试卷 1 2006。
7开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟考生姓名: 学号: 班级 任课教师1.一质点沿轴作直线运动,其运动方程为,则质点在运动开始后内位移的大小为___________,在该时间内所通过的路程为_____________. 2。
如图所示,一根细绳的一端固定,另一端系一小球,绳长,现将小球拉到水平位置 后自由释放,小球沿圆弧落至点时,,则 小球在点时的速率为____________, 切向加速度大小为__________, 法向加速度大小为____________。
()。
3。
一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为:m 、m 。
则其合振动的频率为_____________,振幅为 ,初相为 。
4、如图所示,用白光垂直照射厚度的薄膜,若薄膜的折射率为 , 且,则反射光中 nm ,波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。
5。
频率为100,传播速度为的平面波,波长为___________,波线上两点振动的相差为,则此两点相距 ___m 。
6. 一束自然光从空气中入射到折射率为的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。
二、选择題(共18分,每小题3分) 1.一质点运动时,,(c 是不为零的常量),此质点作( ). (A )匀速直线运动;(B )匀速曲线运动; (C ) 匀变速直线运动; (D)不能确定 2。
质量为的质点,在平面内运动、其运动方程为x=3t ,(SI 制),则在t=2s 时,所受合外力为( )(A) 7 ; (B) ; (C) ; (D )3。
弹簧振子做简谐振动,当其偏离平衡位置的位移大小为振幅的时,其动能为振动 总能量的?( )(A ) (B ) (C) (D)4。
大学物理1 复习资料
大学物理1 复习资料一、选择题1.电量为q 的粒子在均匀磁场中运动,下列说法正确的是( B )。
(A )只要速度大小相同,所受的洛伦兹力就一定相同;(B )速度相同,带电量符号相反的两个粒子,它们受磁场力的方向相反,大小相等;(C )质量为m ,电量为q 的粒子受洛伦兹力作用,其动能和动量都不变;(D )洛伦兹力总与速度方向垂直,所以带电粒子的运动轨迹必定是圆。
2.载电流为I ,磁矩为P m 的线圈,置于磁感应强度为B 的均匀磁场中, 若P m 与B 方向相同则通过线圈的磁通Φ与线圈所受的磁力矩M 的大小为( B )。
(A )0,==ΦM IBP m ; (B );0,==ΦM IBP m (C )m m BP M IBP ==Φ, ; (D )m m BP M IBP ==Φ, 3.已知空间某区域为匀强电场区,下面说法中正确的是( C )。
(A )该区域内,电势差相等的各等势面距离不等。
(B )该区域内,电势差相等的各等势面距离不一定相等。
(C )该区域内,电势差相等的各等势面距离一定相等。
(D )该区域内,电势差相等的各等势面一定相交。
4.关于高斯定律得出的下述结论正确的是( D )。
(A )闭合面内的电荷代数和为零,则闭合面上任意点的电场强度必为零。
(B )闭合面上各点的电场强度为零,则闭合面内一定没有电荷。
(C )闭合面上各点的电场强度仅有闭合面内的电荷决定。
(D )通过闭合曲面的电通量仅有闭合面内的电荷决定。
5.一带有电荷Q 的肥皂泡在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中( B )。
(A )始终在泡内的点的场强变小;(B )始终在泡外的点的场强不变;(C )被泡面掠过的点的场强变大; (D )以上说法都不对。
6.电荷线密度分别为21,λλ 的两条均匀带电的平行长直导线,相距为d ,则每条导线上单位长度所受的静电力大小为 (D )。
大学物理1复习资料(含公式,练习题)
第一章 质点运动学重点:求导法和积分法,圆周运动切向加速度和法向加速度。
主要公式:1.质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度3.4.5.线速度与角速度关系6.切向加速度法向加速度 总加速度第二章 质点动力学重点:动量定理、变力做功、动能定理、三大守恒律。
主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律3.4.5.6 动能定理7.机械能守恒定律:当只有保守内力做功时,0=∆E8. 力矩:F r M⨯=大小:θsin Fr M=方向:右手螺旋,沿F r⨯的方向。
9.角动量:P r L⨯=大小:θsin mvr L =方向:右手螺旋,沿P r⨯的方向。
※ 质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。
完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:动量守恒,机械能不守恒。
※行星运动:向心力的力矩为0,角动量守恒。
第三章 刚体重点: 刚体的定轴转动定律、刚体的角动量守恒定律。
主要公式: 1. 转动惯量:⎰=rdm r J2,转动惯性大小的量度。
2. 平行轴定理:2md J Jc +=质点:θsin mvr L =刚体:ωJ L =4.转动定律:βJ M=5.角动量守恒定律:当合外力矩2211:,0,0ωωJ J L M ==∆=即时6. 刚体转动的机械能守恒定律: 转动动能:221ωJ E k =势能:c P mgh E = (c h 为质心的高度。
)※ 质点与刚体间发生碰撞:完全弹性碰撞:角动量守恒,机械能守恒。
完全非弹性碰撞:角动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:角动量守恒,机械能不守恒。
说明:期中考试前的三章力学部分内容,请大家复习期中试卷,这里不再举例题。
大学物理 1 期末考试复习原题 (含参考答案)
大学物理1期末考试复习原题力学8.A质量为m的小球,用轻绳AB、BC连接,如图,其中AB水平.剪断绳AB 前后的瞬间,绳BC中的张力比T : T′=____________________.9.一圆锥摆摆长为l、摆锤质量为m,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T=_____________________;(2) 摆锤的速率v=_____________________.12.一光滑的内表面半径为10 cm的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P相对于碗静止,其位置高于碗底4 cm,则由此可推知碗旋转的角速度约为(C) 17 rad/s (D) 18 rad/s.[]13.质量为m的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加(B) 减少.(C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.[ ]15.m m一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大.(B) 不变.(C) 减小.(D) 不能确定定.()16.如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮的角加速度分别为βA和βB,不计滑轮轴的摩擦,则有(A) βA=βB.(B) βA>βB.(C) βA<βB.(D) 开始时βA=βB,以后βA<βB.18. 有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B,则(A) J A>J B(B) J A<J B.(C) J A =J B.(D) 不能确定J A、J B哪个大.22. 一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为0.6 m.先让人体以5 rad/s的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m.人体和转椅对轴的转动惯量为5 kg·m2,并视为不变.每一哑铃的质量为5 kg可视为质点.哑铃被拉回后,人体的角速度ω =__________________________.28.质量m=1.1 kg的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J=221mr(r为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m1=1.0 kg的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.静电学1. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球心为r 的P 点处电场强度的大小与电势分别为:(A) E =204r Q επ,U =r Q04επ.(B) E =204r Q επ,U =⎪⎪⎭⎫ ⎝⎛-πr R Q11410ε.(C) E =204r Qεπ,U =⎪⎪⎭⎫ ⎝⎛-π20114R r Q ε.(D) E =0,U =204R Qεπ. [ ]10.E图中曲线表示一种轴对称性静电场的场强大小E 的 分布,r 表示离对称轴的距离,这是由______________ ______________________产生的电场.14. 一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________.17.L q如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.28. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D 通量仅与面内自由电荷有关.(D)以上说法都不正确. ( )q一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A) 104R qεπ . (B) 204R qεπ . (C) 102R q επ . (D)20R q ε2π . [ ]35.如图所示,将一负电荷从无穷远处移到一个不带电的导体 附近,则导体内的电场强度______________,导体的电势 ______________.(填增大、不变、减小)36. 一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =______________.38. 地球表面附近的电场强度为 100 N/C .如果把地球看作半径为6.4×105m的导体球,则地球表面的电荷40. 地球表面附近的电场强度约为 100 N /C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面带_____电,电荷面密度σ =__________.(ε 0 = 8.85×10-12 C 2/(N ·m 2) )41.12厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.42. 半径分别为 1.0 cm与 2.0 cm的两个球形导体,各带电荷 1.0×10-8 C,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/CmN109419⋅⨯=πε)43.半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球壳,分别带有电荷Q1和Q2,今将内球壳用细导线与远处半径为r的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q.稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l Iπ420μ. (B)lI π220μ.(C)lI π02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .4.无限长载流空心圆柱导体的内外半径分别为a、b,电流在导体截面上均匀分布,则空间各处的B 的大小与场点到圆柱中心轴线的距离r的关系定性地如图所示.正确的图是[]11. 一质点带有电荷q =8.0×10-10 C,以速度v =3.0×105 m·s-1在半径为R =6.00×10-3 m的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H·m-1) 12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R有关,当圆线圈半径增大时,(1)圆线圈中心点(即圆心)的磁场__________________________(2.)圆线圈轴线上各点的磁场________________________________________ __________________________________________________________.14. 一条无限长直导线载有10 A的电流.在离它0.5 m远的地方它产生的磁感强度B为______________________.一条长直载流导线,在离它1 cm处产生的磁感强度是10-4T,它所载的电流为__________________________.两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅lBd等于:____________________________________(对环路a).___________________________________(对环路b).____________________________________(对环路c).16.设氢原子基态的电子轨道半径为a0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.19.一根半径为R的长直导线载有电流I,作一宽为R、长为l的假想平面S,如图所示。
大学物理1期末考试试卷
大学物理1期末考试试卷一、选择题(每题2分,共20分)1. 根据牛顿第二定律,如果一个物体的质量为2kg,受到的力为10N,则其加速度为多少?A. 5m/s²B. 10m/s²C. 20m/s²D. 50m/s²2. 光在真空中的传播速度是多少?A. 2.998×10⁸ m/sB. 3.000×10⁸ m/sC. 3.333×10⁸ m/sD.5.000×10⁸ m/s3. 一个物体从静止开始做匀加速直线运动,初速度为0,加速度为2m/s²,经过4秒后,其位移是多少?A. 8mB. 16mC. 32mD. 64m4. 以下哪个不是电磁波的类型?A. 无线电波B. 微波C. X射线D. 声波5. 一个电路中的电阻为10Ω,通过它的电流为2A,根据欧姆定律,该电路的电压是多少?A. 20VB. 40VC. 60VD. 80V6. 根据能量守恒定律,一个自由下落的物体在没有外力作用下,其势能将转化为什么?A. 动能B. 热能C. 化学能D. 电能7. 波长为500nm的光波属于哪个电磁波谱?A. 紫外线B. 可见光C. 红外线D. 微波8. 一个物体的动能和势能之和称为什么?A. 机械能B. 电能C. 热能D. 化学能9. 根据库仑定律,两个点电荷之间的力与它们电荷量的乘积成正比,与它们之间的距离成反比,这个定律是由哪位科学家提出的?A. 牛顿B. 库仑C. 欧姆D. 法拉第10. 一个物体在水平面上以恒定速度运动,它受到的摩擦力与什么成正比?A. 速度B. 质量C. 接触面积D. 压力二、填空题(每空1分,共10分)11. 牛顿第一定律又称为__________。
12. 电磁波的产生是由于电荷的__________。
13. 一个物体的动量等于它的质量乘以__________。
14. 根据热力学第二定律,自然界的熵总是__________。
广西大学《大学物理》2020-2021学年第一学期期末复习题
广西大学2020-2021学年第一学期期末复习题《大学物理》第1章质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是(D)(A)单摆的运动。
(B)匀速率圆周运动。
(C)行星的椭圆轨道运动。
(D)抛体运动。
(E)圆锥摆运动。
2.下面表述正确的是(B )(A)质点作圆周运动,加速度一定与速度垂直;(B)物体作直线运动,法向加速度必为零;(C)轨道最弯处法向加速度最大;(D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是(C)(A)质点的速度不变;(B)质点的加速度不变(C)质点的角速度不变;(D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r ,的端点处,其速度大小为(D)()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA 5.一质点在平面上运动,运动方程为:j t i t r 222+=,则该质点作(B)(A)匀速直线运动(B)匀加速直线运动(C)抛物线运动(D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是(B)(A)dtdrv =(B)dtdsv =(C)dtdva =(D)dtvd a t =7.某质点的运动方程为3723+-=t t X (SI),则该质点作[D ](A)匀加速直线运动,加速度沿x 轴正方向;(B)匀加速直线运动,加速度沿x 轴负方向;(C)变加速直线运动.加速度沿x 轴正方向;(D)变加速直线运动,加速度沿x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在(A )(A)加速(B)减速(C)匀速(D)静止1.D 2.B 3.C 4.D5.B,6B,7A 8A二、填空题1.一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r )64(22-+=,t =1s ,加速度j a8=,轨迹方程为x x y 32-=。
大学物理期末复习题及答案(1)
j i r )()(t y t x +=大学物理期末复习题力学部分一、填空题:1. 已知质点的运动方程,则质点的速度为 ,加速度为 。
2.一质点作直线运动,其运动方程为221)s m 1()s m 2(m 2t t x --⋅-⋅+=,则从0=t 到s 4=t 时间间隔内质点的位移大小 质点的路程 。
3. 设质点沿x 轴作直线运动,加速度t a )s m 2(3-⋅=,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度 ,和位置 。
4.一物体在外力作用下由静止沿直线开始运动。
第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为 。
5.一质点作斜上抛运动(忽略空气阻力)。
质点在运动过程中,切向加速度是 ,法向加速度是 ,合加速度是 。
(填变化的或不变的) 6.质量m =40 kg 的箱子放在卡车的车厢底板上,已知箱子与底板之间的静摩擦系数为s =0.40,滑动摩擦系数为k =0.25,试分别写出在下列情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.7.有一单摆,在小球摆动过程中,小球的动量 ;小球与地球组成的系统机械能 ;小球对细绳悬点的角动量 (不计空气阻力).(填守恒或不守恒)二、单选题:1.下列说法中哪一个是正确的( )(A )加速度恒定不变时,质点运动方向也不变(B )平均速率等于平均速度的大小(C )当物体的速度为零时,其加速度必为零(D )质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。
2. 质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+⋅-⋅=--t t x ,则前s 3内它的( )(A )位移和路程都是m 3 (B )位移和路程都是-m 3(C )位移为-m 3,路程为m 3 (D )位移为-m 3,路程为m 53. 下列哪一种说法是正确的( )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快4.一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作( )(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动5. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它( )(A )将受到重力,绳的拉力和向心力的作用(B )将受到重力,绳的拉力和离心力的作用(C )绳子的拉力可能为零(D )小球可能处于受力平衡状态6.功的概念有以下几种说法(1)保守力作功时,系统内相应的势能增加(2)质点运动经一闭合路径,保守力对质点作的功为零(3)作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零以上论述中,哪些是正确的( )(A )(1)(2) (B )(2)(3)(C )只有(2) (D )只有(3)7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为( )(A )2E R mm G ⋅ (B )2121E R R R R m Gm - (C )2121E R R R m Gm - (D )222121E R R R R m Gm --8.下列说法中哪个或哪些是正确的( )(1)作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。
100101大学物理(一)
《大学物理(一)》课程综合复习资料一、单选题1.一质点作匀速率圆周运动时:A.它的动量不变,对圆心的角动量也不变B.它的动量不变,对圆心的角动量不断不变C.它的动量不断改变,对圆心的角动量不变D.它的动量不断改变,对圆心的角动量也不断改变答案:C2.某人骑自行车以速率V向正西方行驶,遇到由北向南刮的风(设风速大小也为V),则他感到风是从:A.东北方向吹来B.东南方向吹来C.西北方向吹来D.西南方向吹来答案:C3.对功的概念有以下几种说法:(l)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.(l)、(2)是正确的B.(2)、(3)是正确的C.只有(2)是正确的D.只有(3)是正确的答案:C4.A.不变B.变小C.变大D.无法判断答案:C5.一个人站在有光滑固定转轴的转动平台上,双臂水平地举二哑铃.在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的:A.机械能守恒,角动量守恒B.机械能守恒,角动量不守恒C.机械能不守恒,角动量守恒D.机械能不守恒,角动量也不守恒答案:C6.A.匀速直线运动B.变速直线运动C.抛物线运动D.一般曲线运动答案:B7.A.向左运动B.静止不动C.向右运动D.不能确定答案:C8.质点系的内力可以改变:A.系统的总质量B.系统的总动量C.系统的总动能D.系统的总角动量答案:C9.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端。
他们由初速为零同时向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是:A.甲先到达B.乙先到达C.同时到达D.谁先到达不能确定答案:C10.在一根很长的弦线上形成的驻波是:A.由两列振幅相等的相干波,沿着相同方向传播叠加而形成的B.由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的C.由两列振幅相等的相干波,沿着反方向传播叠加而形成的D.由两列波,沿着反方向传播叠加而形成的答案:C11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态。
《大学物理(一)》2019-2020学年第二学期期末考试卷
吉林大学《大学物理(一)》2019-2020学年第二学期期末考试卷考试形式闭卷年月院系年级专业学号姓名成绩一、填空题:(每空2分,共40分。
在每题空白处写出必要的算式)1、一个半径R=1.0m 的圆盘,可以绕一水平轴自由转动。
一根轻绳绕在盘子的边缘,其自由端拴一物体A (如图),在重力作用下,物体A 从静止开始匀加速地下降,在t=2.0s 内下降距离h=0.4m 。
物体开始下降后t '=3s 末,轮边缘上任一点的切向加速度a t =,法向加速度a n =。
2、一质量m=50g ,以速率v=20m/s 作匀速圆周运动的小球,在1/4周期内向心力加给它的冲量的大小是。
3、一个沿x 轴作简谐运动的弹簧振子,劲度系数为k ,振幅为A ,周期为T ,其振动方程用余弦函数表示,当t=0时,振子过2Ax =处向正方向运动,则振子的振动方程为x=,其初始动能E k =。
4、一横波沿绳子传播的波动方程为)410cos(05.0x t y ππ-=,式中各物理量单位均为国际单位制。
那么绳上各质点振动时的最大速度为,位于x=0.2m 处的质点,在t=1s 时的相位,它是原点处质点在t 0=时刻的相位。
5、一空气平行板电容器两极板面积均为S ,电荷在极板上的分布可认为是均匀的。
设两极板带电量分别为±Q ,则两极板间相互吸引的力为。
6、一同轴电缆,长m l 10=,内导体半径mm R 11=,外导体内半径mm R 82=,中间充以电阻率m ⋅Ω=1210ρ的物质,则内、外导体间的电阻R=。
7、真空中半径分别为R 和2R 的两个均匀带电同心球面,分别带有电量+q 和-3q 。
现将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为。
8、图示电路中,当开关K 断开时,a 、b 差U ab =;K 闭合时,图中10μF 电量变化为Δq=。
9、一空气平行板电容器,极板面积为S d ,电容器两端电压为U ,则电容器极q=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(力学部分)第一章重点:质点运动求导法和积分法,圆周运动角量和线量。
第二章重点:牛顿第二运动定律的应用(变形积分) 第三章重点:动量守恒定律和机械能守恒定律 第四章重点:刚体定轴转动定律和角动量守恒定律1.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422t tS ππ+=,式中S 以m 计,t 以s 计,则在t 时刻质, (求导法)2.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x (积分法)3.一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为。
(积分法)4.伽利略相对性原理表明对于不同的惯性系牛顿力学的规律都具有相同的形式。
5.一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I 10 NS ;质点在第s 2末的速度大小为 5 m/s 。
(动量定理和变力做功)6.一质点在平面内运动, 其1c r =,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 匀加速圆周运动 。
7.一质点受力26x F -=的作用,式中x 以m 计,F 以N 计,则质点从0.1=x m沿X 轴运动到x=2.0 m 时,该力对质点所作的功A (变力做功)8.一滑冰者开始自转时其动能为20021ωJ ,当她将手臂收回, 其转动惯量减少为3J ,则她此时自转的角速度ω(角动量守恒定律)9.一质量为m 半径为R 的滑轮,如图所示,用细绳绕在其边缘,绳的另一端系一个质量也为m 的物体。
设绳的长度不变,绳与滑轮间无相对滑动,且不计滑轮与轴间的摩擦力矩,则滑轮的角加mg F =拉绳的一端,则滑轮的角加速(转动定律)10.一刚体绕定轴转动,初角速度80=ωrad/s ,现在大小为8(N ·m )的恒力矩作用下,刚体转动的角速度在2秒时间内均匀减速到4=ωrad/s ,则刚体在此恒力矩的作用下的角加速度=α,刚体对此轴的转动惯量=J 4kg •m 2 。
(转动定律) 11.一质点在平面内运动,其运动方程为 22 ,441x t y t t =⎧⎨=++⎩,式中x 、y 以m 计,t 以秒s 计,求:(1) 以t 为变量,写出质点位置矢量的表达式; (2) 轨迹方程;(3) 计算在1~2s 这段时间内质点的位移、平均速度; (4) t 时刻的速度表达式;(5) 计算在1~2s 这段时间内质点的平均加速度;在11=t s 时刻的瞬时加速度。
解:(1) ())m (14422j t t i t r+++=;(2)2)1(+=x y ;(3)(m)162Δj r+=i ; (m/s)162j+=i v ;(4))m/s ()48(2j t i dtrd ++==v ;(5) )(m/s 82j =a ;)(m/s 82j =1a (求导法)12.摩托快艇以速率0v 行驶,它受到的摩擦阻力与速度平方成正比,设比例系数为常数k ,即可表示为2kv F -=。
设快艇的质量为m ,当快艇发动机关闭后,(1)求速度随时间的变化规律;(2)求路程随时间的变化规律。
解:(1)2dvkv m dt-=m0201vt v k dv dt v m =-⎰⎰ 00mv v m kv t =+ (2)0000xtmv dx dt m kv t =+⎰⎰0(1)kv t mx Ln k m =+(牛二定律变形积分)13.如图所示,两个带理想弹簧缓冲器的小车A和B ,质量分别为1m 和2m ,B 不动,A 以速度0v与B 碰撞,如已知两车的缓冲弹簧的倔强系数分别为1k 和2k ,在不计摩擦的情况下,求两车相对静止时,其间的作用力为多大?(弹簧质量忽略而不计)。
解:系统动量守恒: 1012()m v m m v =+系统机械能守恒: 2222101211221111()2222m v m m v k x k x =+++两车相对静止时弹力相等: 1122F k x k x ==F=02121212121][v k k kk m m m m +⋅+ (动量守恒和机械能守恒定律)14.有一质量为1m 长为l 的均匀细棒,静止平放在光滑的水平桌面上,它可绕通过其中点O 且与桌面垂直的固定光滑轴转动。
另有一水平运动的质量为2m 的子弹以速度v 射入杆端,其方向与杆及轴正交,求碰撞后棒端所获得的角速度。
解:系统角动量守恒: 2J 2lm v ω=总2212()122m l lJ m =+总 2126 (3)v m m m lω=+ (角动量守恒定律)电磁学部分第五章重点:点电荷系(矢量和)、均匀带电体(积分法)、对称性电场(高斯定理,分段积分)的电场强度E 和电势V 的计算。
第七章重点:简单形状载流导线(矢量和)、对称性磁场(安培环路定理)的磁感应强度B的计算,安培力F 的计算。
第八章重点:感生电动势(法拉第电磁感应定律)和动生电动势i ε的计算,磁通量m φ的计算。
1.一半径为R 的半圆细环上均匀地分布电荷Q ,求环心处的电场强度.[分析] 在求环心处的电场强度时,不能将带电半圆环视作点电荷.现将其抽象为带电半圆弧线。
在弧线上取线dl ,其电荷dl RQdq π=,此电荷元可视为点电荷,它在点O 的电场强度2041rdqdE πε=,因圆环上的电荷对y 轴呈对称性分布,电场分布也是轴对称的,则有0=⎰L xdE,点O 的合电场强度⎰=Ly dE E ,统一积分变量可求得E .解: (1)建立坐标系;(2)取电荷元dl RQdq π= (3)写2041rdq dE πε=(4)分解到对称轴方向θπεcos 4120r dqdE y =(5)积分:dl R QRE LO πθπε⋅⋅-=⎰2cos 41 由几何关系θRd dl =,统一积分变量后,有2022220202cos 4R Q d R Q E επθθεπππ-=-=⎰-,方向沿y 轴负方向.(积分法五步走)2.两条无限长平行直导线相距为0r ,均匀带有等量异号电荷,电荷线密度为.λ(1)求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x ); (2)求每一根导线 上单位长度导线受到另一根导线上电荷作用的电场力.[分析]在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场rE 02πελ=的叠加.解: 设点P 在导线构成的平面上,+E 、-E 分别表示正、负带电导线在P 点的电场强度,则有i x r x E E E⎪⎪⎭⎫ ⎝⎛-+=+=-+00112πελ()i x r x r -=0002πελ (矢量和)3.设均强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.[分析] 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=ΦSS S d E.方法2:作半径为R 的平面S '与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01q dS E Sε 这表明穿过闭合曲面的净通量为零,穿入平面S '的电场强度通量在数值上等于穿出半球面S 的电场强度通量. 因而⎰⎰'⋅-=⋅=ΦSS S d E S d E解: 由于闭合曲面内无电荷分布,根据高斯定理,有 ⎰⎰'⋅-=⋅=ΦSS S d E S d E依照约定取闭合曲面的外法线方向为面元dS 的方向,E R R E 22cos πππ=⋅⋅-=Φ (高斯定理和电通量定义式)4.在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示(图8-17).试证明球形空腔中任一点的电场强度为a E3ερ= [分析] 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ的均匀带电球和一个电荷体密度为ρ-、球心在O '的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为1E 、2E ,则P 点的电场强度为两者矢量和。
. 证: 带电球体内部一点的电场强度为 r E 03ερ=所以 1013r E ερ=;2023r E ερ-=()210213r r E E E-=+=ερ 根据几何关系a r r=-21,上式可改写为a E 03ερ= (等效法和高斯定理) 5.一无限长、半径为R 的圆柱体上电荷均匀分布.圆柱体单位长度的电荷为λ,用高斯定理求圆柱体内距离为r 处的电场强度.[分析] 无限长圆柱体的电荷具有轴对称分布,电场强度也为轴对称分布,且沿径矢方向.取同轴柱面为高斯面,电场强度在圆柱侧面上大小相等,且与柱面正交.在圆柱的两个底面上,电场强度与底面平行,0=⋅dS E ,对电场强度通量的贡献为零.整个高斯面的电场强度通量为⎰⋅=⋅rL E dS E π2由于圆柱体电荷均匀分布,电荷体密度E,出于高斯面内的总电荷L r q ∑⋅=2πρ由高斯定理⎰∑=⋅0εq dS E 可解得电场强度的分布.解: 取同轴柱面为高斯面,由上述分析得 L r RL r rL E 2202012ελπρεπ=⋅=⋅202RrE πελ=(高斯定理) 6.两个带有等量异号电荷的无限长同轴圆柱面,半径分别为1R 和()122R R R >,单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1)1R r <,(2)21R r R <<,(3)2R r > [分析] 电荷分布在无限长同轴圆柱面上,电场强度也必定程轴对称分布,沿径向方向.去同轴圆柱为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅,2rL E dS E π求出不同半径高斯面内的电荷∑q .利用高斯定理可解得各区域电场的分布.解: 作同轴圆柱面为高斯面,根据高斯定理 ∑=⋅02επqrL E1R r <,∑=0q01=E21R r R <<,∑=L q λrE 022πελ=2R r >,∑=0q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变 0022εσπλπελ===∆rL L r E (高斯定理) 7.如图所示,有三个点电荷 321Q Q Q 、、沿一条直线等间距分布,已知其中任一点电荷所受合力均为零,且Q Q Q ==21.求在固定1Q 、3Q 的情况下,将2Q 从点O 移到无穷远处外力所作的功.[分析] 由库仑力的定义,根据1Q 、3Q 所受合力为零可求得42QQ -=.外力作功W '应等于电场力作功W 的负值,即W W '-=.求电场力作功可根据功电场力作的功与电势能差的关系,有()0202V Q V V Q W =-=∞其中0V 是点电荷1Q 、3Q 在点O 产生的电势(取无穷远处为零电势).:解 在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加1Q 、3Q 在O 的电势dQ dQ dQ V 003010244πεπεπε=+=将2Q 从点O 推到无穷远处的过程中,外力作功 dQ V Q W 02028πε=-=' (受力平衡、点电荷系电势、电场力做功)8.已知均匀带电长直线附近的电场强度近似为r e rE02πελ=λ为电荷线密度. (1)在求在1r r =和2r r =两点间的电势差;(2)在点电荷的电场中,我们曾取∞−→−r 处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明. 解 )(1由于电场力作功与路径无关,若取径矢为积分路径,则有12012ln 221r r r dr E U r r ⎰=⋅=∆επλ(电势差定义式)(2)不能. 严格地讲,电场强度 rE 02πελ=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,∞→r 处的电势应与直线上的电势相等.9.两个同心球面的半径分别为1R 和2R ,各自带有电荷1Q 和2Q .求:(1)各区域电势分布,并画出分布曲线;(2)两球面间的电势差为多少?[分析] 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰⎰∞∞⋅=⋅=rPP dr E l d E V 可求得电势分布.解: 由高斯定理可求得电场分布01=E 1R r < 20124r Q E πε=21R r R <<202134rQ Q E πε+= 2R r > 由电势 ⎰∞⋅=rdr E V 可求得区域的电势分布.当 1R r ≤时,有dr E dr E dr E V R R R R r⋅+⋅+⋅=⎰⎰⎰∞221132112021210141140R Q Q R R Q πεπε++⎪⎪⎭⎫ ⎝⎛-+= 20210144R Q R Q πεπε+=当21R r R ≤≤时,有dr E dr E V R R r⋅+⋅=⎰⎰∞22322202121014114R Q Q R r Q πεπε++⎪⎪⎭⎫ ⎝⎛-=2020144R Q rQ πεπε+=当1R r ≥ 时,有⎪⎪⎭⎫⎝⎛-=⋅=⎰∞210133114R R Q dr E V rπε(先用高斯定理求场强E,再用分段积分求电势V)10.两个很长的共轴圆柱面()m R m R 10.0,100.3221=⨯=,带有等量异号的电荷,两者的电势差为450V .求:(1)圆柱面单位长度上带有多少电荷?(2)两圆柱面之间的电场强度. 解 由8的结果,两圆柱面之间的电场 rE 02πελ= 根据电势差的定义有12012ln 221R R dr E U R R ⎰=⋅=∆πελ 解得 1812120101.2ln2--⋅⨯==m C R R U πελ V rr E 11074.3220⨯==πελ 两柱面间电场强度的大小与r 成反比. (电势差定义式)11.在Oxy 面上倒扣着半径为R 的半球面,半球面上电荷均匀分布,电荷密度为σ.A 点的坐标为()20R ,,B 点的坐标为()23R ,求电势差AB U . [分析] 电势的叠加是标量的叠加,根据对称性,带电半球面在Oxy 平面上各点产生的电势显然就等于带电球面在改点的电势的一半.据此,可先求出一个完整球面在B A 、间的电势差AB U ',再求出半球面时的电势差AB U .由于带电球面内等电势,球面内A 点的电势,故()B R ABAB V V U U '-'='=2121 其中R V '是带电球表面的电势,B V '是带电球面在B 点的电势. 解 假设将半球面扩展为带有相同电荷面密度σ的一个完整球面,此时在B A 、两点的电势分别为RAV RRQ V '==='004εσπε020324εσεσπεRr R r QV B ===' 则半球面在B A 、两点的电势差 ()0621εσR V V U B R AB ='-'==∆(点电荷电势式和电势差定义式)12.在半径为1R 的长直导线外,套有氯丁橡胶绝缘护套,护套外半径为2R ,相对电容率为r ε.设沿轴线单位长度上,导线的电荷密度为λ.试求介质层内的E D 、和P .[分析] 将长直导线视作无限长,自由电荷均匀分布在导线表面.在绝缘介质层的内、外表面分别出现极化电荷,这些电荷在内外表面呈均匀分布,所以电场是轴对称分布.取同轴柱面为高斯面,由介中的高斯定理可得电位移矢量D 的分布.在介质中E D r εε0=,E D P0ε-=,可进一步求得电场强度E 和电极化强度矢量P 的分布.解 由介质中的高斯定理,有⎰=⋅=⋅L rL D S d D λπ2得 rD πλ2= 在均匀各向同性介质中 rDE r rεπελεε002==r r e r E D P πλεε2110⎪⎪⎭⎫ ⎝⎛-=-= (有电介质时的高斯定理)13.设有两个薄导体同心球壳A 与B ,它们的半径分别为cm R 101=与cm R 203=,并分别带有电荷C C 78100.1100.4--⨯⨯-与.球壳间有两层介质,内层介质的0.2,0.421==r r εε外层介质的,其分界面的半径为.152cm R =球壳B 外为空气.求:(1)两球间的电势差AB U ;(2)离球心cm 30的电场强度;(3)2球A 的电势.[分析] 自由电荷和极化电荷均匀分布在球面上,电场呈球对称分布.取同心球面为高斯面,根据介质中的高斯定理可求得介质中的电场分布.由电势差和电场强度的积分关系可求得两导体球壳间的电势差,由于电荷分布在有限空间,通常取无穷远处为零电势⎰∞⋅=AA dl E V解 (1)由介质中的高斯定理,有124Q r D dS D =⋅=⋅⎰π 得 221214r e r Q D D π== r r e r D E 21011εε=R r R <<1r r r e rQ D E 220120224επεεε==32R r R <<两球壳间的电势差 ⎰⋅=31R R AB dl E Udl E dl E R R R R ⋅+⋅=⎰⎰322121⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=3220121101114114R R Q R R Q r r επεεπε V 2100.6⨯-= (2)同理由高斯定理可得 1320213100.64-⋅⨯=+=m V e e rQ Q E r rπε (3)取无穷远处电势为零,则 V R Q Q U dl E U V AB BAB A 330213101.24⨯=++=+=⎰∞πε(先由电介质中高斯定理求D 分布,再求E 分布,再分段积分求V 分布)14. 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?[分析] 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度3210B B B B++=. 解 (a) 长直电流对点O 而言,它在延长线上点O 产生的磁场为零,则点O 处总的磁感强度为41圆弧电流所激发,故有: RIB 800μ=,方向垂直纸面向外Θ.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得.RIRIB πμμ22000-= , 方向垂直纸面向里 ⊗(c) 将载流导线看作21圆电流和两段半无限长直电流,由叠加原理可得 RIR I R I R I R I B 42444000000μπμμπμπμ+=++=,方向垂直纸面向外. Θ (矢量和)15.载流长直导线的电流为I ,试求通过矩形线圈ABCD 的磁通量.[分析] 由于矩形平面上各点的磁感应强度不同,故磁通量BS ≠Φ.为此,可在矩形平面上取一矩形面元ldx dS =()[]b 1011-图,载流长直导线的磁场穿过该面元的磁通量为 ldx xIdS B d πμ20=⋅=Φ 矩形平面的总磁通量⎰Φ=Φd 解 由上述分析可得矩形平面的总磁通量 1200ln 2221d dIl ldx x I d d πμπμ==Φ⎰(积分法四步走) 16.有同轴电缆,其尺寸如图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感应强度:(1);1R r <(2)21R r R <<;(3)32R r R <<;(4)3R r >.画出r B -图线.[分析] 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,⎰⋅=⋅r B l d B π2 ,利用安培环路定理∑⎰=⋅I l d B 0μ,可解得各区域的磁感强度.解 由上述分析得1R r < 22112r R Ir B ππμπ=⋅ 21012R IrB πμ=21R r R << I r B 022μπ=⋅rIB πμ202=31R r R << ()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I r B 2223222032ππμπ2223223032R R r R r I B --=πμ 3R r > ()0204=-=⋅I I r B μπ04=B磁感强度()r B 的分布曲线略。