第五章习题几个典型的代数系统
离散数学第五章
作业:P178 (2);P185 (1), (2)
5.3 半群和独异点
一、半群
1、定义
①具有运算封闭性的代数系统A=〈s,*〉 称为 广群,满足运算封闭、结合律的代数 系统 A=<s,*>,称为半群,这里*是二 元运算。 ②存在么元的半群称为独异点,也称含么 半群, 单位半群,单元半群。
5.3 半群和独异点
二、么元(单位元)和零元
例:代数A=〈{a,b,c}, ○ 〉用下表定义: ○ a b c 特殊元: b是左么元,无右么元; a是右零元,b是右零元, 无左零元; 运算:既不满足结合律,也不满足交换律。 a a a a b b b b c b c a
二、么元(单位元)和零元
例: a)〈I,x〉, I为整数集
5.2 运算及其性质
5.吸收律:设<A,*,△>,若x,y,z∈A有: x*(x △z)=x 称运算*满足吸收律; x △(x * y) =x; 运算 △满足吸收律
例:N为自然数集,x,y∈N,x*y=max{x,y},
x△y=min{x,y}
试证:*,△满足吸收律 证明:x,y∈N, x*(x△y)=max{x,min{x,y}}=x ∴*满足吸收律 x x≥y x<y x≥y =x =x
则么元为1,零元为0
b)〈(s),∪,∩〉 对运算∪,是么元, s是零元,
对运算∩,s是么元 ,是零元。 c)〈N,+〉 有么元0,无零元。
二、么元(单位元)和零元
2、性质
性质1: 设*是s上的二元运算,满足结合律,具 有左么元el,右么元er,则el=er=e 证明: er = el* er = e
闭否,<A,+>,<A,/>呢? 解:2r,2s∈A, 2r x 2s=2r+s∈A (r+s∈N)
《离散数学》第五章
⊕4b)⊕4c=
a
c), 满足结合律。 ⊕4(b ⊕4c),即⊕4满足结合律。
0是单位元,0的逆元是 ,1和3互为逆元,2的逆 是单位元, 的逆元是 的逆元是0, 和 互为逆元 互为逆元, 的逆 是单位元 元是2。 是一个群。 元是 。 <Z4; 4>是一个群。 ⊕ 是一个群
14
定义5-8:如果群 如果群<G; * >的运算 是可交换的,则称该群为 的运算*是可交换的 定义 的运算 是可交换的,
5
三、 子半群和子独异点
定义5-5 定义
<S; >的子代数,则称<T; >是<S; >的子半群。 ; 的子代数,则称 ; 是 ; 的子半群。 的子代数 的子半群
∗
设<S; >是一个半群 ,若 <T; ; 是一个半群 ; ∗
∗
例6
= {2n | n ∈ N} N3 = {3n | n ∈ N}, N4 = {4n | n ∈ N}, L
交换群或阿贝尔群。 交换群或阿贝尔群。
15
二、循环群
1.群中元素的幂 对于任意a∈ , 对于任意 ∈G, a0=e,
anƮ=e, ( a−1)n+1 = (a−1)n ∗ a−1 (n=0,1,2,…) (*) ) 引进记号 a−n = (a−1)n = a−1 ∗ a−1 ∗ ⋅ ⋅ ⋅ ∗ a−1 ( n个a-1 ) 个 因此( 因此( )式可表示为 (a −1 )0 = e, a−n−1 = a−n * a−1 对于任意整数
1
5.1 半群和独异点 一、半群 半群 定义5-1 定义
二元运算, 二元运算,如果 是半群。 是半群。∗ > < s; 是一个非空集合, 设S是一个非空集合, 是S上的一个 是一个非空集合 上的一个 是可 结 合 的 , 则 称 代 数 系 统
第5章 代数系统
5.2.3 利用运算表判断代数运算的性质
5.2.1 二元运算的性质 (Properties of Operations) 定义5.2.1 设“*”,“。”均为集合S上的二元运 算。
(1)若xy z(x,y,z∈S→x*(y*z)=(x*y)*z),则称
“*”运算满足结合律(associativity) 。
根据定义,子代数必为一代数系统,*运算所 满足的性质显然在子代数中仍能得到满足。
5.1代数系统(Algebraic Systems)
【例5.1.6】 在例5.1.5中,对〈N,+〉而言,
〈E,+〉为其子代数,〈N,+〉,〈{0},+〉
为其平凡子代数,〈M,+〉不构成其子代数。
小结:本节介绍了n元运算、 n元代数运算及代数
(4)以集合A的幂集2A为基集,以集合并、交、补
为其二元运算和一元运算,组成一代数系统,记为
〈 2A,∪,∩,-〉。有时为了突出全集A及空集在2A中
的特殊地位,也可将这一代数系统记为〈 2A,∪,∩,-,
A, 〉。这个系统就是常说的幂集代数系统。以上
的(1),(2),(3), (4)均称为具体代数系统。
5.1代数系统 (Algebraic Systems)
(5)设a,b,c∈R,则f(a,b,c)=a+b× c是将R中 的三个数a,b,c映为R中的唯一的一个数。
f : R3 →R是函数。
上述例子都是我们熟悉的数与数的运算,
它们有一个共同特征,就是其运算结果都在
原来的集合中且运算结果是唯一的,它们都 是函数。
表 5.2.2
。
a a a
b a b
a b
从“。”运算表可知, “。”是可交换的。因为 (a。a)。b=a。b=a (a。b)。b=a。b=a 所以“。”是可结合的。 a。(a。b)=a。a=a a。(b。b)=a。b=a
第5章 代数系统的基本概念(1)
→、 。
第5章
代数系统的基本概念
(4)AA={f | f:A→A}。“ (复合)”是AA上的二元
运算。
当A是有穷集合时,运算可以用运算表给出。如
A={0,1,2,3,4,5},二元运算“ ” 的定义见表
5.1.1。
表 5.1.1
0
1
2
第5章
代数系统的基本概念
事实上,对于表5.1.1,我们可观察看出其运算 为 y (〈x,y〉)=x · (mod3)
第5章
代数系统的基本概念
【例5.1.7】
在实数集 R 中,对加法"+"运算,没有零元;
在实数集 R 中,对乘法"×"运算,0是零元;
对于全集E的子集的并"∪"运算,E是零元;
对于全集E的子集的交“∩”运算, 是零元;
在命题集合中,对于吸取"∨"运算,重言式是零元;
在命题集合中,对于合取"∧"运算,矛盾式是零元。
(2)若 x y(x,y∈S→x*y=y*x),则称*运算满足交换律。 (3)若 x y z(x,y,z∈S→x*(y z)=(x*y) (x*z)),则称* 运算对 运算满足左分配律; 若 x y z(x,y,z∈S→(y z)*x=(y*x) (z*x)), 则称*运算对 运算满足右分配律。 若二者均成立,则称*运算对 运算满足分配律。
有理数集、实数集上的二元运算,除法却仍不
是。加法、乘法满足结合律、交换律,乘法对 加法、减法满足分配律,减法不满足这些定律。 乘法“
” 对加法“+” 运算满足分配律(对
“-” 也满足)。但加法“+” 对乘法“ ” 运算
6几个典型的代数系统PPT课件
就是我们最熟悉的交换群。
不是所有的群都是交换群
7
有限群和无限群
Algebra 代数
设 G, 是一个群。如果 G 是一个有限集,那么称
G, 为有限群, G 中元素的个数通常称为该有限 群的阶数,记为 G ;如果 G 是无限集,则称 G, 为无限群。
14
子群
Algebra 代数
设 G, 是一个群,S 是 G 的非空子集,如果 S, 也
构成群,则称 S, 是 G, 的一个子群。
子群的判断方法
定理 6 设 G, 是一个群, S 是 G 的非空子集,如
果 x, y S, xy1 S, 则 S, 是 G, 的子群。
定理 7 设 G, 是一个群, B 是 G 的非空子集,如果 B 是
定理 5 群 G, 的运算表中的每一行或每一列都 是 G 的元素的一个置换。
13
表 5-4 是它的复合表。 表 5-4
f0
f1
f2
f3
f0
f0
f1
f2
f3
f1
f1
f2
f3
f0
f2
f2
f3
f0
f1
f3
f3
f0
f1
f2
Algebra 代数
从上表可见,它上面的任何不同的两行或两列不仅均不 相同,而且每一行或每一列中均不出现重复的元素。或 者说它的复合表的每一行或每一列都是属于群的全部元 素的一个全排列。
由此定理知:群的运算表中没有两行(或两列)是相同的。 为了进一步考察群的运算表所具有的性质,现在引进置换的 概念。
第五章代数结构
称二元运算+k为模k加法。
2020/7/21
8
Nk上的二元运算×k定义为:对于Nk中的任意两个元素i和 j,有
ij
ijk
ikj ij除k以 的余i数 jk
称二元运算×k为模k的乘法。 模k加法+k和模k乘法×k是两种重要的二元运算。 在N7=0,1,2,3,4,5,6中,有4+72=6,4+75=2。如果把N7
一角硬币和二角五分硬币,而所对应的商品是桔子水、可口
可乐和冰淇淋。当人们投入上述硬币的任何两枚时,自动售
货机将按表5-1.1所示供应相应的商品。
表格左上角的记号*可以理解为一个二元运算的运算符。
这个例子中的二元运算*就是集合{一角硬币,二角五分硬币}
上的不封闭运算。
表 5-1.1
*
一角硬币 二角五分硬币
2020/7/21
15
二、可交换性
定义5-2.2 设*是定义在集合A上的二元运算,如果对于 任意的x,yA,都有x*y=y*x,则称二元运算*在A上是可 交换的。
【例5.2.2】设Q是有理数集合,Δ是Q上的二元运算,对任 意的a,bR,aΔb=a+b-a·b,问运算Δ是否可交换。 解:因为 aΔb=a+b-a·b=b+a-b·a=bΔa
a
为:aA,f(a)= 1 。容易看出f是A上的一元运算。
a
又如,f:N×N→N,定义为:m,nN,f(m,n)=m+n,
f是自然数集合N上的二元运算,它就是普通加法运算。普通 减法不是自然数集合N上的二元运算,因为两个自然数相减 可能得到负数,而负数不是自然数。所以普通的减法不是自 然数集合N上的二元运算。
几个典型的代数系统
本章讨论几类重要的代数结构:半群、群、环、域、格与布尔代数等.我们先讨论最简单的半群.半群定义称代数结构<S,>为半群(semigroups),如果运算满足结合律.当半群<S,>含有关于运算的么元,则称它为独异点(monoid),或含么半群.例 <I+,+>,<N,·>,< ,并置>都是半群,后两个又是独异点.半群及独异点的下列性质是明显的.定理设<S,>为一半群,那么(1)<S,>的任一子代数都是半群,称为<S,>的子半群.(2)若独异点<S,,e>的子代数含有么元e,那么它必为一独异点,称为<S, , e>的子独异点.证明简单,不赘述.定理设<S,>,<S’,’>是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有(1)同态象<h(S),’>为一半群.(2)当<S,>为独异点时,则<h(S),’>为一独异点.定理设<S,>为一半群,那么(1)<S S,○ >为一半群,这里S S为S上所有一元函数的集合,○为函数的合成运算.(2)存在S到S S的半群同态.证(l)是显然的.为证(2)定义函数h:S→S S:对任意a Sh(a)= f af a:S→S 定义如下: 对任意x S,f a(x)= a x现证h为一同态.对任何元素a,b S.h(a b)=f a b (l1-1)而对任何x S,f a b(x)= a b x = f a(f b(x))= f a○f b (x)故f a b = f a○f b ,由此及式(l1-1)即得h(a b)= f a b = f a○f b =h(a)○ h(b)本定理称半群表示定理。
它表明,任一半群都可以表示为(同态于)一个由其载体上的函数的集合及函数合成运算所构成的半群。
第5章 代数系统的基本概念
第5章 代数系统的基本概念 章
证明 因为er和el分别是*的右幺元和左幺元,故有 el*er=el,el*er=er,所以er=el, 令其为e,有x*e=e*x=x 设另有一幺元为右幺元e′,那么 e=e*e′=e′ 故e对*是唯一的幺元。
第5章 代数系统的基本概念 章
【例5.1.6】 在实数集R中,对加法"+"运算,0是幺元; 在实数集 R 中,对乘法"×"运算,1是幺元; 对于全集E的子集的并"∪"运算,是幺元; ∅ 对于全集E的子集的交"∩"运算,E是幺元; 在命题集合中,对于吸取"∨"运算,矛盾式是幺元; 在命题集合中,对于合取"∧"运算,重言式是幺元; 在AA={f|f:A→A}中,对于复合"。"运算,IA是幺元。
第5章 代数系统的基本概念 章
证明 因为θr和θl分别是*的右零元和左零元,故有 θl*θr=θl,θl*θr=θr,所以θr=θl。令其为θ,有 x*θ=θ*x=θ 设另有一零元为右零元θ′,那么 θ=θ*θ′=θ′ 故θ对S中的*运算是唯一的零元。 证毕 同样,需强调零元是针对于哪个运算的。
第5章 代数系统的基本概念 章
定义5.1.4 设*是集合S中的一种二元运算,如果存 在θr∈S(θl∈S)且对任意元素 x∈S均有x*θr=θr(θl(x=θl), 则称元素θr(θl)是S中关于运算*的右零元(左零元)。 定理5.1.2 设*是S中的二元运算且θr与θl分别是对于 *的右零元和左零元,则 θr=θl=θ,使对任意元素x∈S 有x*θ=θ*x=θ,称元素θ是S中关于运算*的零元(zero)且 x*θ=θ*x=θ θ S * (zero) 唯一。
离散数学第5章代数系统(学生用)
运算的分类
一元运算
只对一个元素进行操作的 运算。
二元运算
对两个元素进行操作的运 算。
n元运算
对n个元素进行操作的运算。
运算的实例
加法
是二元运算,满足结合性和交换性,不满足 幂等性和消去性。
指数运算
是二元运算,满足结合性和交换性,不满足 幂等性和消去性。
乘法
是二元运算,满足结合性和交换性,满足幂 等性和消去性。
离散数学第5章代数系统( 学生用)
• 代数系统的基本概念 • 代数系统的运算 • 代数系统的同态与同构 • 代数系统的子代数与商代数 • 代数系统的应用
01
代数系统的基本概念
定义与性质
定义
代数系统是一个有序的三元组 (A,F,D),其中A是一个非空集合, F是A上的一组二元运算,D是A上 的一组一元运算。
同构实例
例如,矩阵代数中的矩阵集合M与向量空间中的向量集合V之间存在一个一一对应的映射f,使得M中的每一个元 素x经过f的映射后,都对应于V中的某个元素y,并且M中的加法、数乘和乘法运算也对应于V中的加法、数乘和 外积运算,因此M与V同构。
04
代数系统的子代数与商代数
子代数与商代数的定义
子代数
如果代数系统的一个非空子集在给定的运算下仍然是一个代 数系统,则称这个子集为原代数系统的子代数。
同构性质
同构关系具有自反性、对称性和传递性,即如果A同构于B,那么B一定同构于A;如 果A同构于B,B同构于C,那么A一定同构于C。
同态与同构的实例
同态实例
例如,整数集合Z与有理数集合Q之间存在一个一一对应的映射f,使得Z中的每一个元素x经过f的映射后,都对应 于Q中的某个元素y,并且Z中的加法运算也对应于Q中的加法运算,因此Z与Q同态。
几个典型的代数系统 环域格布尔代数
有补格
设<L,∧,∨,0,1>是有界格,若L中所有元素都 有补元存在,则称L为有补格。
L2,L3和L4是有补格,L1不是有补格
布尔代数
如果一个格是有补分配格,则称它为布尔格 或布尔代数。
题型
一、单选题(本大题共15题,每题2分,共30分。 二、填空题(本大题共11空,每空2分,共22分) 三、画图分析题(本大题共2题,每题4分,共8分) 四、综合题(本大题共5题,每题8分,共40分)
有界格与补元
设L是格,若存在a∈L使得x∈L有a ≤ x,则称a为 L的全下界;若存在b∈L使得 x∈L有x ≤ b,则 称b为L的全上界。 可以证明,格L若存在全下界或全上界,一定是唯 一的。全下界记作0,全上界记作1 设L是格,若L存在全下界和全上界,则称L为有界 格,并将L记为<L,∧,∨,0,1>。 设<L,∧,∨,0,1>是有界格,a∈L,若存在b∈L 使 得: a∧b=0 和 a∨b=1 成立,则称b是a的补元。
离散数学
CH6 几个典型的代数系统 6.2 环与域 6. 3 格与布尔代数
今日内容
环 域 格 布尔代数
环与域
环的定义与性质
环的定义与性质
定义6.8 设< , , >是代数系统,+和· 是二元 运算。如果满足以下条件: (1) <R,+>构成交换群, (2) <R,· >构成半群, (3) · 运算关于+运算适合分配律, 则称<R,+,· >是一个环。 为了区别环中的两个运算,通常称+运算 为环中的加法,· 运算为环中的乘法。
《离散数学》第5章 代数系统简介
在 M n (R) 上,对于矩阵乘法只有可逆矩阵 M M n (R) 存在逆元
M 1 , M M 1 E 和 M 1 M E 成立, 使得 其中 E 为 n 阶 单位矩阵.
9、设 为 S 上的二元运算,如果对任意的 x, y, z S 满足以下条件 (1)若 x y x z 且 x 不是零元,则 y z , (2)若 y x z x 且 x 不是零元,则 y z , 就称运算 满足消去律
例如: 在幂集 P ( S ) 上的 和 是满足吸收律的.
若 算“”满足左分配律; b c a b a c a , 则运算“ ”对运算“ ”满足右分配律.若左右分配律 均满足, 称运算“ ”对运算“ ”满足分配律. 则
5、 设 是 A 上的二元运算,若存在 a A ,有
1、若 a b b a ,则称运算“ ”在A上是可换的 ,或 者说运算“ ”满足交换律.
例如:在实数集R上,通常的加法和乘法都满足交换律,但减法 和除法不满足交换律.因为2和4都是实数.因为2-4≠4-2.在幂集 P(S)上 , , 都满足交换律,但相对补不满足交换律.
2、若a b c a b c,则称运算“*”在A上是可结合 的.或称“*”满足结合律.
这些相当于前缀表示法,但对二元运算用得较多的还是 a1 a2 b .我们在本书中所涉及的代数运算仅限于一元. 和二元运算.
如果集合S是有穷集,S上的一元和二元运算也可以用 运算表给出.表5―1和表5-2是一元和二元运算表的一 般形式.
表5-1
表5-1
例2、(2) 设 S 0,1, 2,3, 4 ,定义 S 上的两个 二元运算如下:
第五章习题几个典型的代数系统
第五章习题几个典型的代数系统.设A={0,1},试给出半群<A A,>的运算表,其中为函数的复合运算。
.设G={a+bi|a,b∈Z},i为虚数单位,即i2=-1.验证G关于复数加法构成群。
.设Z为整数集合,在Z上定义二元运算如下:x,y∈Z,x y=x+y-2问Z关于运算能否构成群为什么.设A={x|x∈R∧x≠0,1}.在A上定义六个函数如下:f 1(x)=x,f2(x)=x-1,f3(x)=1-x,f 4(x)=(1-x)-1,f5(x)=(x-1)x-1, f6(x)=x(x-1)-1令F为这六个函数构成的集合,运算为函数的复合运算。
(1) 给出运算的运算表。
(2) 验证<F,>是一个群。
.设G为群,且存在a∈G,使得 G={a k|k∈Z}, 证明G是交换群。
.证明群中运算满足消去律..设G为群,若x∈G有x2=e,证明G为交换群。
.设G为群,证明e为G中唯一的幂等元。
.证明4阶群必含2阶元。
设A={a+bi|a,b∈Z,i2=-1},证明A关于复数的加法和乘法构成环,称为高斯整数环。
.(1) 设R1,R2是环,证明R1与R2的直积R1×R2也是环。
(2) 若R1和R2为交换环和含幺环,证明R1×R2也是交换环和含幺环。
. 判断下列集合和给定运算是否构成环、整环和域,如果不能构成,说明理由。
(1) A={a+bi|a,b∈Z},其中i2=-1,运算为复数的加法和乘法。
(2) A={-1,0,1},运算为普通加法和乘法。
(3) A=M(Z),2阶整数矩阵的集合,运算为矩阵加法和乘法。
2(4) A是非零有理数集合Q*,运算为普通加法和乘法。
.设G是非阿贝尔群,证明G中存在元素a和b,a≠b,且ab=ba..设H是群G的子群,x∈G,令xHx-1={xhx-1|h∈H},证明xHx-1是G的子群,称为H的共轭子群。
.设(1) G上的二元运算为矩阵乘法,给出G的运算表(2) 试找出G的所有子群(3) 证明G的所有子群都是正规子群。
6几个典型的代数系统
不是所有的群都是交换群
7
Algebra
代数
有限群和无限群
设 G, 是一个群。如果 G 是一个有限集,那么称
G, 为有限群, G 中元素的个数通常称为该有限
群的阶数,记为 G ;如果 G 是无限集,则称 G, 为无限群。
就是一个有限群,且 F 4 上例中所述的 F,
8
Algebra
代数
至此, 我们可以概括地说: 代数系统仅仅是一个具 有封闭二元运算的非空集合; 半群是一个具有结合 运算的代数系统; 独异点是具有幺元的半群; 群是 每个元素都有逆元的独异点。即有:
{群} {独异点} {半群} {代数系统}
9
Algebra
代数
定理 2 群中不可能有零元。
证明 当群的阶为 1 时,它的唯一元素视作幺元, 否则不是群 设|G|>1 且群<G,*>有零元θ 。 那么群中任何元素 x∈G,都有 x*θ =θ *x=θ ≠e 所以,零元θ 就不存在逆元,这与<G,*>是群矛盾 故假设不成立,即无零元
20
6.2环与域
是一个代数系统,如果满足: 设 A, ★,
⑴ A, ★ 是阿贝尔群;
⑵ A, 是半群;
Algebra
代数
⑶运算 对于运算★是可分配的,则称 A, ★, 是环。
通常称★为加法运算 *为乘法运算 即对加法是可交换的群,对乘法是半
群,乘法对加法是可分配的.
21
Algebra
注意,存在着非结合的代数系统,不为半群
例如
I,
R, /
都不为半群
2
Algebra
代数
独异点 含有幺元的半群称为独异点。(也称单元半群) 可换半群 运算满足交换律的半群称为可换半群
几个典型的代数系统
2020/4/24
离散数学
一、半群的概念(续)
含幺半群(独异点):如果半群V = < S, >的二元 运算 含有幺元,则称V为含幺半群(独异点)。 即 eS,使得对 xS都有e x = x e = x。 独异点亦可记为< S, , e>。
如:<Z, +>, <R–{0}, >, <P(S), >, <Zn, >都是 阿贝尔群。
2020/4/24
离散数学
二、群的概念(续)
群中的幂:设群<G, > ,则对 xG, x0 = e ,xn+1 = xn x,(n为非负整数) x -n= (x -1)n= (xn)-1,(n为正整数)
幂运算的性质: (1) xG,(x -1)-1 = x, (2) x, yG,(x y)-1 = y -1 x –1, (3) xG,xm xn = xm + n ,m, n为整数 (4) xG,(xm)n = xmn , m, n为整数
如:群<Z6, >, <0> = {0}, <1> = {0, 1, 2, 3, 4, 5} = Z6 , <2> = {0, 2, 4}, <3> = {0, 3}, <4> = <2>, <5> = <1> 。
2020/4/24
离散数学
四、两种常用的群
1、循环群: 元素的阶(周期):设群<G, >,aG,使ak = e 成立
2020/4/24
离散数学 第五章:2代数系统及其子代数和积代数 3代数系统的同态与同构
0 = 0⋅ n ∈nZ,
6
三. 代数系统的积代数
定义5- 定义 -14 其中 ∗ 和 设代数系统 V =< S1,∗> 和 1
V2 =< S2 , >
积代数是一个代数系统 都是二元运算 。V和 V2 的积代数是一个代数系统 1
其中 V ×V2 即 V1 ×V2 =< S , ⊕> ,其中 1
S = S1 × S2 ={(x1, y1)| x1 ∈S1, y1 ∈S2} 是二元运算, ⊕是二元运算,定义为对任意的 ( x1, y1 ),( x2 , y2 ) ∈ S
1
, 2 ,⋯,
k
满足B S,则称 则称V >满足B⊂S,则称V’是
5
例1. 设 V =< Z , +,0 >, 令
nZ = {nz z ∈Z} , n 为自然数, 为自然数,
证明: nZ是 的子代数. 证明: nZ是V的子代数. 证明: 证明: 任取nZ中的两个元素 任取nZ中的两个元素nz1, nz2 (z1, z2 ∈Z), 则有
.
11
3个代数系统的积代数: 个代数系统的积代数:
例如 V
=< Z, +,0 >, 那么有
V ×V ×V =< Z × Z × Z,∗, 0,0,0 >, 并且对任意的 < x1, y1, z1 >, < x2 , y2 , z2 >∈Z × Z × Z, 有
< x1, y1, z1 >∗< x2 , y2 , z2 >=< x1 + x2 , y1 + y2 , z1 + z2 >
< Z , +, 0 >
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章习题几个典型的代数系统
.设A={0,1},试给出半群<A A,>的运算表,其中为函数的复合运算。
.设G={a+bi|a,b∈Z},i为虚数单位,即i2=-1.验证G关于复数加法构成群。
.设Z为整数集合,在Z上定义二元运算如下:
x,y∈Z,x y=x+y-2
问Z关于运算能否构成群为什么
.设A={x|x∈R∧x≠0,1}.在A上定义六个函数如下:
f 1(x)=x,f
2
(x)=x-1,f
3
(x)=1-x,
f 4(x)=(1-x)-1,f
5
(x)=(x-1)x-1, f
6
(x)=x(x-1)-1
令F为这六个函数构成的集合,运算为函数的复合运算。
(1) 给出运算的运算表。
(2) 验证<F,>是一个群。
.设G为群,且存在a∈G,使得 G={a k|k∈Z}, 证明G是交换群。
.证明群中运算满足消去律.
.设G为群,若x∈G有x2=e,证明G为交换群。
.设G为群,证明e为G中唯一的幂等元。
.证明4阶群必含2阶元。
设A={a+bi|a,b∈Z,i2=-1},证明A关于复数的加法和乘法构成环,称为高斯整数环。
.(1) 设R
1,R
2
是环,证明R
1
与R
2
的直积R
1
×R
2
也是环。
(2) 若R
1和R
2
为交换环和含幺环,证明R
1
×R
2
也是交换环和含幺环。
. 判断下列集合和给定运算是否构成环、整环和域,如果不能构成,说明理由。
(1) A={a+bi|a,b∈Z},其中i2=-1,运算为复数的加法和乘法。
(2) A={-1,0,1},运算为普通加法和乘法。
(3) A=M
2
(Z),2阶整数矩阵的集合,运算为矩阵加法和乘法。
(4) A是非零有理数集合Q*,运算为普通加法和乘法。
.设G是非阿贝尔群,证明G中存在元素a和b,a≠b,且ab=ba.
.设H是群G的子群,x∈G,令
xHx-1={xhx-1|h∈H},
证明xHx-1是G的子群,称为H的共轭子群。
.设
(1) G上的二元运算为矩阵乘法,给出G的运算表
(2) 试找出G的所有子群
(3) 证明G的所有子群都是正规子群。
.设G是有限群,K是G的子群,H是K的子群,证明[G:H]=[G:K][K:H]. .令G={Z,+}是整数加群。
求商群Z/4Z,Z/12Z和4Z/12Z.
.对以下各小题给定的群G
1和G
2
以及f:G
1
→G
2
,说明f是否为群G
1
到G
2
的同
态。
如果是,说明G是否为单同态,满同态和同构,并求同态像f(G
1
)和同态核kerf.
(1) G
1=<Z,+>,G
2
=<R*,·>,其中R*为非零实数的集合,+和·分别表示
数的加法和乘法。
f:Z→R*,f(x)=
(2) G
1=<Z,+>,G
2
=<A,·>,其中+和·分别表示数的加法和乘法
A={x|x∈C∧|x|=1},其中C为复数集合。
f:Z→A,f(x)=cosx+i sinx
(3) G
1=<R,+>,G
2
=<A,·>,+和·以及A的定义同(2).
f:R→A,f(x)=cosx+i sinx
.设f是群G
1到G
2
的同构,证明f-1是G
2
到G
1
的同构。
.图中给出六个偏序集的哈斯图。
判断其中哪些是格。
如果不是格,说明理由。
.下列各集合对于整除关系都构成偏序集,判断哪些偏序集是格。
(1) L={1,2,3,4,5}
(2) L={1,2,3,6,12}
(3) L={1,2,3,4,6,9,12,18,36}
(4) L={1,2,22,...,2n},n∈Z+
.(1)画出Klein四元群的子群格。
(2)画出模12的整数群Z12的子群格。
(3)画出3元对称群S3的子群格。
.设L是格,求以下公式的对偶式:
(1) a∧(a∨b) a
(2) a∨(b∧c)(a∨b)∧(a∨c)
(3) b∨(c∧a)(b∨c)∧a
.设L是格,a,b,c∈L,且a b c,证明
a∨b=b∧c
.针对图中的格L1,L2和L3,求出他们的所有子格。
图
.针对图中的每个格,如果格中的元素存在补元,则求出这些补元。
.说明图中的每个格是否为分配格、有补格和布尔格,并说明理由。
.对以下各小题给定的集合和运算判断它们是哪一类代数系统(半群,独异点,群,环,域,格,布尔代数),并说明理由。
(1) S1={0,1,-1},运算为普通加法和乘法。
(2) S2={a1,a2,...,a n},a i,a j∈S2,a i*a j=a i.这里的n是给定的正整数,且
n≥2.
(3) S3={0,1},*为普通乘法。
(4) S4={1,2,5,7,10,14,35,70},和*分别表示求最小公倍数和最大公约数运算。
(5) S5={0,1,2},*为模3加法,为模3乘法。
.设B是布尔代数,B中的表达式f是
(a∧b)∨(a∧b∧c)∨(b∧c)
(1)化简f.
(2)求f的对偶式f* 。
.设<B,∧,∨,',0,1>是布尔代数,在B中化简以下表达式:上定义二元运算*,a,b ∈B,
(1)(a∧b)∨(a∧b')∨(a'∨b)
(2)(a∧b)∨(a∧(b∧c)')∨c
.对于n=1,...,5,给出所有不同构的n元格,并说明哪些是分配格、有补格和布尔格。
.设<B,∧,∨,',0,1>是布尔代数,在B上定义二元运算,x,y∈B有
x y=(x∧y')∨(x'∧y)
问<B,>能否构成代数系统如果能,指出是哪一种代数系统。
为什么
.设G
1为循环群,f是群G
1
到G
2
的同态,证明f(G
1
)也是循环群。
.设G=<a>是15阶循环群。
(1) 求出G的所有的生成元。
(2) 求出G的所有子群。
.设σ,τ是5元置换,且
(1) 计算στ,τσ,σ-1,τ-1,σ-1τσ
(2) 将στ,τ-1,σ-1τσ表成不交的轮换之积。
(3) 将(2)中的置换表示成对换之积,并说明哪些为奇置换,哪些为偶置换。
设A=﹛1,2,5,10,11,22,55,110﹜是110的正因子集,〈A,≤〉构成的偏序集,其中≤为整除关系。
(1)画出偏序集〈A, ≤〉的哈斯图。
(2)说明该偏序集是不是构成布尔代数,为什么。