【2019最新】高中数学5-4几个著名的不等式5-4-2排序不等式同步测控

合集下载

高中数学第二章几个重要的不等式2.2排序不等式课件北师大选修4_5

高中数学第二章几个重要的不等式2.2排序不等式课件北师大选修4_5
其中j1,j2,…,jn是1,2,…,n的任一排列方式.上式当且仅当 a1=a2=…=an(或b1=b2=…=bn)时取“=”号.
名师点拨 1.排序不等式中能构造的和按数组中的某种“搭配”的
顺序被分为三种形式:顺序和、逆序和、乱序和,对这三种不同的
搭配形式只需注重是怎样的“次序”,两种较为简单的是“顺与逆”,而
故原不等式成立.
探究一
探究二
思维辨析
反思感悟 当所证不等式中涉及的变量已经给出大小关系时,可 以根据欲证不等式各部分的结构特点,构造数组,从而可以将欲证 不等式中的各部分视作是给定数组的顺序和、逆序和或乱序和,从 而借助排序不等式证得结论.
探究一
探究二
思维辨析
变式训练 1 已知 a,b,c 均为正数,求证:������2������2+���������+���2������������+2+������ ������2������2≥abc.
+
������������������,
即������2������2+���������2������������������2��� +������2������2≥a+b+c.
又因为 a,b,c 为正数,所以 abc>0,a+b+c>0.
所以������2������2+���������+���2������������+2+������ ������2������2≥abc.
利用排序不等式,有
������1 ������2
+
������������23+…+���������������������-���1

苏教版高中数学选修4-5:5.4 几个著名的不等式 复习课件

苏教版高中数学选修4-5:5.4 几个著名的不等式  复习课件

3.已知 a>0,b>0,c>0,函数 f(x)=|x+a|+|x-b|+c 的最 小值为 4.
(1)求 a+b+c 的值. (2)求14a2+19b2+c2 的最小值.
解:(1)∵f(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)|+c=|a +b|+c,
当且仅当-a≤x≤b 时,等号成立, 又 a>0,b>0,∴|a+b|=a+b. ∴f(x)的最小值为 a+b+c. 又已知 f(x)的最小值为 4,∴a+b+c=4.
5.4 几个著名的不等式 复习课件
专题一 利用柯西不等式证明不等式
• [考情分析] • 由于柯西不等式是用综合法证明不等式的重要依
据,因此柯西不等式的考查常出现在用综合法证 明含有幂,根式的和、积、商的不等式中.高考 一般在选考题中考查.
[高考冲浪] 1.(2017·江苏卷)已知a,b,c,d为实数, 且a2+b2=4,c2+d2=16,求证:ac+bd≤8.
3.已知 a1,a2,…,an 都是正实数,且 a1+a2+…+an= 1.
求证:a1+a21 a2+a2+a22 a3+…+an-a12n+-1 an+an+a2n a1≥12.
证明:左边=a1+a21 a2+a2+a22 a3+…+an-a12n+-1 an+an+a2n a1=[(a1 + a2) + (a2 + a3) + … + (an - 1 + an) + (an +
定理:若 a1,a2,…,an 为正数,
则a1+a2+n …+an≥ n a1a2…an

等号当且仅当 a1=a2=…=an 时成立.
1.求函数 y=4x-2-94x(x>12)的最小值. 解:y=4x-2-94x=4x+4x-9 2=4x-2+4x-9 2+2, ∵x>12,∴4x-2>0,∴y≥2 9+2=8, 当且仅当 4x-2=4x-9 2时,“=”成立. 故所求函数的最小值为 8.

高二数学选修4-5 几个著名的不等式之一:柯西不等式

高二数学选修4-5 几个著名的不等式之一:柯西不等式

高二数学选修4-5 几个著名的不等式之一:柯西不等式目的要求: 重点难点: 教学过程: 一、引入:除了前面已经介绍的贝努利不等式外,本节还将讨论柯西不等式、排序不等式、平均不等式等著名不等式。

这些不等式不仅形式优美、应用广泛,而且也是进一步学习数学的重要工具。

1、什么是柯西不等式:定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++,其中等号当且仅当bc ad =时成立。

证明:几何意义:设α,β为平面上以原点O 为起点的两个非零向量,它们的终点分别为A (b a ,),B (d c ,),那么它们的数量积为bd ac +=•βα, 而22||b a +=α,22||d c +=β,所以柯西不等式的几何意义就是:||||||βαβα•≥⋅,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。

2、定理2:(柯西不等式的向量形式)设α,β为平面上的两个向量,则||||||βαβα•≥⋅,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。

3、定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 分析:思考:三角形不等式中等号成立的条件是什么?4、定理4:(柯西不等式的推广形式):设n 为大于1的自然数,ii b a ,(=i 1,2,…,n )为任意实数,则:211212)(∑∑∑===≥ni i i ni in i i b a ba ,其中等号当且仅当nn a b a b a b === 2211时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n )。

证明:构造二次函数:2222211)()()()(n n b x a b x a b x a x f -++-+-=即构造了一个二次函数:∑∑∑===+-=ni i n i i i ni ib x b a x ax f 121212)(2)()(由于对任意实数x ,0)(≥x f 恒成立,则其0≤∆, 即:0))((4)(4121221≤-=∆∑∑∑===ni i n i i ni i i b a b a ,即:))(()(121221∑∑∑===≤ni i ni i n i i i b a b a ,等号当且仅当02211=-==-=-n n b x a b x a b x a ,即等号当且仅当nn a b a b a b === 2211时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n )。

高中数学选修4-5中的著名不等式

高中数学选修4-5中的著名不等式

选修4-5中的著名不等式内蒙古赤峰市翁牛特旗乌丹一中熊明军新课程改革推出了知识模块,把高等数学中一些领域的知识进行了简化,下放到高中。

选修4-5中给出了许多著名不等式的特例,下面对课本上的这些不等式及其一般形式做一下介绍。

绝对值的三角不等式():定理:若为实数,则,当且仅当时,等号成立。

绝对值的三角不等式一般形式:,简记为。

柯西不等式()定理:(向量形式)设为平面上的两个向量,则。

当及为非零向量时,等号成立及共线存在实数,使。

当或为零向量时,规定零向量与任何向量平行,即当时,上式依然成立。

定理:(代数形式)设均为实数,则,当且仅当时,等号成立。

柯西不等式的一般形式()定理:设为实数,则,当且仅当时,等号成立(当某时,认为)。

闵可夫斯基不等式()定理:设均为实数,则,当且仅当存在非负实数(不同时为0),使时,等号成立。

闵可夫斯基不等式的一般形式:定理:设是两组正数,,则或,当且仅当时,等号成立。

排序不等式()定理:设为两组实数为的任一排列,则有。

当且仅当或时,等号成立。

排序原理可简记作:反序和乱序和顺序和。

切比晓夫不等式():定理:设为任意两组实数,①如果或,则有②如果或,则有①②两式,当且仅当或时,等号成立。

平均值不等式()定理:设为个正数,则,当且仅当时,等号成立。

当时,,当且仅当时,等号成立。

加权平均不等式()定理:设为正数,都是正有理数,并且,那么。

杨格不等式():定理:设为有理数,满足条件(互称为共轭指标),为正数,则。

当时,,此时的杨格不等式就是熟知的基本不等式。

贝努利不等式():定理:设,且,为大于1的自然数,则。

贝努利不等式的一般形式:(1)设,且同号,则;(2)设,则①当时,有;②当或时,有,①②当且仅当时等号,成立。

高中数学可能用到的著名不等式

高中数学可能用到的著名不等式

高中数学可能用到的著名不等式
一、平均不等式(均值不等式)
设a1,a2,…,a n为n个正数时,对如下的平均不等式:H≤G≤A 当且仅当a1=a2=…=a n时等号成立。

平均不等式A≥G是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一。

二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)
三、闵可夫斯基不等式
四、贝努利不等式
五、赫尔德不等式
六、契比雪夫不等式
七、排序不等式
以上排序不等式也可简记为:反序和≤乱序和≤同序和。

这个不等式在不等式证明中占有重要地位,它使不少困难问题迎
刃而解。

八、含有绝对值的不等式
九、琴生不等式
十、艾尔多斯—莫迪尔不等式
设P为⊿ABC内部或边界上一点,P到三边距离分别为PD,PE,PF,则
PA+PB+PC≥2(PD+PE+PF)
当且仅当⊿ABC为正三角形,且P为三角形中心时上式取等号。

这是用于几何问题的证明和求最大(小)值时的一个重要不等式。

精品高中数学5-4几个著名的不等式5-4-1柯西不等式同步测控

精品高中数学5-4几个著名的不等式5-4-1柯西不等式同步测控
∴(a+b)2≤2.∴-≤a+b≤.
∵c<a+b恒成立,∴c<-.
答案:c<-
11.已知a、b、c、d都是实数,且a2+b2=1,c2+d2=1,
求证:|ac+bd|≤1.
分析:已知条件中a2+b2和c2+d2与所证的不等式中(ac+bd)之间的关系可用柯西不等式.
证明:由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,及a2+b2=1,c2+d2=1,得(ac+bd)2≤1,
【最新】2019年高中数学5-4几个著名的不等式5-4-1柯西不等式同步测控
同步测控
我夯基,我达标
1.y=的最大值是( )
A. B. C.3 D.5
解析:y=1×+2≤×.
答案:B
2.若x、y∈R+,x+y≤4,则下列不等式成立的是( )
A.≤B.≥1 C.≥2 D.≥1
解析:∵x+y≤4,x、y∈R+,
≥(+…+)2=n2.
答案:C
5.已知a12+a22+…+an2=1,x12+x22+…+xn2=1,则a1x1+a2x2+…+anxn的最大值是( )
A.1 B.2 C.3 D.4
解析:由柯西不等式(a12+a22+…+an2)(x12+x22+…+xn2)
≥(a1x1+a2x2+…+anxn)2,
即|ac+bd|≤1成立.
12.比较A=1+++…+与的大小关系(n∈N*).

高中数学第二章几个重要的不等式2.2排序不等式课件北师大版选修4_5

高中数学第二章几个重要的不等式2.2排序不等式课件北师大版选修4_5

从而 1 ≥ 1 ≥ 1 .
������������ ������������ ������������
S 随堂演练 UITANGYANLIAN
题型一 题型二
目标导航
Z 知识梳理 HISHISHULI
D 典例透析 IANLITOUXI
S 随堂演练 UITANGYANLIAN
(2)由(1)已证的
1 ������������
B.a1a2+b1b2
D.
1 2
解析:∵a1b1+a2b2+a1b2+a2b1=(a1+a2)(b1+b2)=1,
a1b1+a2b2-a1b2-a2b1=(a1-a2)(b1-b2)>0,
∴a1b1+a2b2>a1b2+a2b1,

a1b1+a2b2>
1 2
>
������1������2
+
������2������1.
D 典例透析 IANLITOUXI
1.定理1 设a,b和c,d都是实数,如果a≥b,c≥d,那么ac+bd ≥ad+bc,此式当 且仅当a=b(或c=d)时取“=”号.
【做一做1】 若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数 式中最大的是( )
A.a1b1+a2b2 C.a1b2+a2b1
是对等的,要先设出a,b,c的大小顺序,再利用排序不等式加以证明.
目标导航
Z 知识梳理 HISHISHULI
D 典例透析 IANLITOUXI
题型一 题型二

28个著名不等式

28个著名不等式

28个著名不等式摘要:一、前言二、勾股定理与毕达哥拉斯定理三、算术平均数与几何平均数四、调和平均数与算术平均数五、均值不等式六、柯西- 施瓦茨不等式七、切比雪夫不等式八、马尔可夫不等式九、辛普森不等式十、闵可夫斯基不等式十一、排序不等式十二、琴生不等式十三、Jensen 不等式十四、基本不等式十五、阿姆斯特朗不等式十六、赫尔德不等式十七、闵可夫斯基- 马氏不等式十八、拉格朗日乘数法与KKT 条件十九、排序不等式在组合优化中的应用二十、新闻不等式二十一、塔克尔不等式二十二、最大最小化原理二十三、波利亚- 斯图姆定理二十四、切比雪夫- 马尔可夫不等式二十五、加权排序不等式二十六、李特尔伍德- 费米不等式二十七、闵可夫斯基- 切比雪夫不等式二十八、总结正文:一、前言本文将介绍28 个著名的数学不等式,这些不等式广泛应用于数学、物理、工程等领域,展示了数学的美丽和力量。

二、勾股定理与毕达哥拉斯定理勾股定理是最著名的数学不等式之一,描述了直角三角形的三个边的关系。

毕达哥拉斯定理则说明,在一个直角三角形中,斜边的平方等于两直角边的平方和。

三、算术平均数与几何平均数算术平均数是一组数的总和除以数的个数,而几何平均数是一组数的乘积的开n 次方。

两者之间有一个不等式关系:对于正数,算术平均数大于等于几何平均数。

四、调和平均数与算术平均数调和平均数是一组数的倒数的算术平均数的倒数。

与算术平均数类似,也有一个不等式关系:对于正数,算术平均数大于等于调和平均数。

五、均值不等式均值不等式是最基本的平均数不等式,它说明对于任何正数,其算术平均数大于等于几何平均数,当且仅当所有数相等时取等号。

六、柯西- 施瓦茨不等式柯西- 施瓦茨不等式是复分析中的一个重要不等式,它联系了复数的模和内积,是许多其他不等式的基础。

七、切比雪夫不等式切比雪夫不等式是概率论中的一个基本不等式,它描述了独立随机变量之和的分布。

八、马尔可夫不等式马尔可夫不等式是概率论中的一个重要不等式,它说明了在一定条件下,随机变量之和的概率分布的下界。

高中数学 北师大版选修4-5几个重要的不等式第二章

高中数学 北师大版选修4-5几个重要的不等式第二章

§1柯西不等式1.1简单形式的柯西不等式学习目标1.认识并理解平面上的柯西不等式的代数和向量形式.2.会用柯西不等的代数形式和向量形式证明比较简单的不等式,会求某些函数的最值.预习自测1.柯西不等式若a,b,c,d∈R,则(a2+b2)(c2+d2)≥(ac+bd)2,等号成立⇔ad=bc.2.柯西不等式的向量形式设α,β为平面上的两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.自主探究1.如何证明:a1,a2,b1,b2∈R时,(a21+a22)(b21+b22)≥(a1b1+a2b2)2?提示(a21+a22)(b21+b22)-(a1b1+a2b2)2≥0⇔a21b21+a22b22+a21b22+a22b21-a21b21-a22b22-2a1b1a2b2≥0⇔a21b22-2a1b1a2b2+a22b21≥0⇔(a1b2-a2b1)2≥0.上式中等号成立⇔a1b2=a2b1.2.设平面上两个向量为α=(a1,a2),β=(b1,b2),你能证明|α||β|≥|α·β|吗?提示∵cos〈α,β〉=α·β|α||β|=a1b1+a2b2a21+a22b21+b22,∴cos2〈α,β〉=(a1b1+a2b2)2(a21+a22)(b21+b22)≤1,即(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2, a 21+a 22·b 21+b 22≥|a 1b 1+a 2b 2|.∴|α||β|≥|α·β|,等号成立的充要条件为α=λβ (λ≠0).典例剖析知识点1 利用柯西不等式证明不等式【例1】 已知3x 2+2y 2≤6,求证:2x +y ≤11. 证明 由于2x +y =23(3x )+12(2y ). 由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 22)得(2x +y )2≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122(3x 2+2y 2)≤⎝ ⎛⎭⎪⎫43+12×6=116×6=11, ∴|2x +y |≤11,∴2x +y ≤11.【反思感悟】 柯西不等式(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2⇔a 21+a 22b 21+b 22≥|a 1b 1+a 2b 2|,应用时关键是对已知条件的变形.1.已知a ,b ,c ,d ∈R ,x >0,y >0,且x 2=a 2+b 2,y 2=c 2+d 2,求证:xy ≥ac +bd .证明 由柯西不等式知:ac +bd ≤a 2+b 2c 2+d 2=x 2·y 2=xy . ∴xy ≥ac +bd .【例2】 (二维形式的三角不等式)设x 1,y 1,x 2,y 2∈R ,用代数的方法证明x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.证明 (x 21+y 21+x 22+y 22)2=x 21+y 21+2x 21+y 21x 22+y 22+x 22+y 22≥x 21+y 21+2|x 1x 2+y 1y 2|+x 22+y 22 ≥x 21+y 21-2(x 1x 2+y 1y 2)+x 22+y 22=x 21-2x 1x 2+x 22+y 21-2y 1y 2+y 22=(x 1-x 2)2+(y 1-y 2)2∴x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2【反思感悟】 在平面中设α=(x 1,y 1),β=(x 2,y 2),则α±β=(x 1±x 2,y 1±y 2),由向量加法的三角形法则知:|α|+|β|≥|α+β|⇔x 21+y 21+x 22+y 22≥(x 1+x 2)2+(y 1+y 2)2,由向量减法的几何意义知:|α|+|β|≥|α-β|⇔x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.2.利用柯西不等式证明:a 2+b 28≥⎝⎛⎭⎪⎫a +b 42. 证明 ⎝ ⎛⎭⎪⎫a +b 42=⎝ ⎛⎭⎪⎫a 4+b 42≤(a 2+b 2)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫142=a 2+b 28. 知识点2 利用柯西不等式求函数的最值【例3】 求函数y =5x -1+10-2x 的最大值. 解 函数的定义域为{x |1≤x ≤5}.y =5x -1+25-x ≤52+2x -1+5-x =27×2=63当且仅当55-x =2x -1 即x =12727时取等号,故函数的最大值为6 3.【反思感悟】 解题的关键是对函数解析式进行变形,使形式上适合应用柯西不等式,还要注意求出使函数取得最值时的自变量的值.3.已知x +y =1,求2x 2+3y 2的最小值.解 2x 2+3y 2=[(2x )2+(3y )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫132×65≥65⎝⎛⎭⎪⎫2x ·12+3y ·132=65(x +y )2=65.课堂小结1.二维形式的柯西不等式(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2,当且仅当a 1b 2=a 2b 1时等号成立.2.推论:(1)(a +b )·(c +d )≥(ac +bd )2;(2)a 21+a 22·b 21+b 22≥|a 1b 1+a 2b 2|; (3)a 21+a 22·b 21+b 22≥|a 1b 1|+|a 2b 2|.3.柯西不等式的向量形式|α·β|≤|α||β|,当且仅当存在实数λ≠0,使α=λβ时等号成立.4.二维形式的三角不等式(1)a 21+a 22+b 21+b 22≥(a 1+b 1)2+(a 2+b 2)2(或a 21+a 22+b 21+b 22≥ (a 1-b 1)2+(a 2-b 2)2);(2)(a 1-b 1)2+(a 2-b 2)2+(b 1-c 1)2+(b 2-c 2)2≥(a 1-c 1)2+(a 2-c 2)2.随堂演练1.写出空间直角坐标系中柯西不等式的代数形式.解 (a 21+a 22+a 23)(b 21+b 22+b 23)≥(a 1b 1+a 2b 2+a 3b 3)2(a 1,a 2,a 3,b 1,b 2,b 3∈R ). 当且仅当a 1b 1=a 2b 2=a 3b 3时等号成立.2.写出空间代数形式的三角不等式. 解 有两种形式分别对应定理3、定理4.定理3为a 21+a 22+a 23+b 21+b 22+b 23≥(a 1+b 1)2+(a 2+b 2)2+(a 3+b 3)2 定理4为(a 1-b 1)2+(a 2-b 2)2+(a 3-b 3)2+ (b 1-c 1)2+(b 2-c 2)2+(b 3-c 3)2 ≥(a 1-c 1)2+(a 2-c 2)2+(a 3-c 3)2. 3.已知a 2+b 2+c 2=1,x 2+y 2+z 2=1. 求证:ax +by +cz ≤1. 证明 由柯西不等式得:(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2.∵a 2+b 2+c 2=1,x 2+y 2+z 2=1,∴|ax +by +cz |≤1. ∴ax +by +cz ≤1.一、选择题 1.下列说法:①二维形式的柯西不等式中a ,b ,c ,d 没有取值限制.②二维形式的柯西不等式中a ,b ,c ,d 只能取数,不能为代数式. ③柯西不等式的向量式中取等号的条件是α=β. 其中正确的个数有( ) A.1个 B.2个 C.3个D.0个解析 由柯西不等式的概念知,只①正确,a ,b ,c ,d 是实数,没有其取值限制. 答案 A2.函数y =2x +91-2x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫0,12的最小值是( ) A.20 B.25 C.27D.18解析 y =2x +91-2x =[2x +(1-2x )]⎣⎢⎡⎦⎥⎤2x +91-2x=[(2x )2+(1-2x )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2x 2+⎝ ⎛⎭⎪⎫91-2x 2 ≥⎝ ⎛⎭⎪⎫2x ·2x +1-2x 91-2x 2=(2+3)2=25. 答案 B3.设a 、b ∈(0,+∞),且a ≠b ,P =a 2b +b 2a ,Q =a +b ,则( ) A.P >Q B.P ≥Q C.P <QD.P ≤Q解析 ∵⎝ ⎛⎭⎪⎫a 2b +b 2a (a +b )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a b 2+⎝ ⎛⎭⎪⎫b a 2[(a )2+(b )2]≥⎝ ⎛⎭⎪⎫a b ·b +b a ·a 2=(a +b )2,∵a >0,b >0,∴a +b >0.∴⎝ ⎛⎭⎪⎫a 2b +b 2a ≥(a +b )2a +b=a +b .又∵a ≠b ,而等号成立的条件是a b ·a =ba ·b ,即a =b ,∴a 2b +b 2a >a +b .即P >Q . 答案 A 二、填空题4.设a 、b 、c 是正实数,且a +b +c =9,则2a +2b +2c 的最小值是________. 解析 ∵(a +b +c )⎝ ⎛⎭⎪⎫2a +2b +2c =[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2a 2+⎝⎛⎭⎪⎫2b 2+⎝⎛⎭⎪⎫2c 2 ≥⎝ ⎛⎭⎪⎫a ·2a +b ·2b +c ·2c 2=18.∴2a +2b +2c ≥2. 答案 25.若a 2+b 2+c 2=2,x 2+y 2+z 2=4,则ax +by +cz 的取值范围是__________. 解析 ∵(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2, ∴(ax +by +cz )2≤8,∴-22≤ax +by +cz ≤2 2. 答案 [-22,22]6.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 解析 运用柯西不等式求解.根据柯西不等式(ma +nb )2≤(a 2+b 2)(m 2+n 2),得25≤5(m 2+n 2),m 2+n 2≥5,m 2+n 2的最小值为 5. 答案5三、解答题7.若2x +3y =1,求4x 2+9y 2的最小值,并求出最小值点. 解 由柯西不等式(4x 2+9y 2)(12+12)≥(2x +3y )2=1, ∴4x 2+9y 2≥12.当且仅当2x ·1=3y ·1,即2x =3y 时取等号.由⎩⎨⎧2x =3y ,2x +3y =1.得⎩⎪⎨⎪⎧x =14,y =16.∴4x 2+9y 2的最小值为12,最小值点为⎝ ⎛⎭⎪⎫14,16.8.设a ,b ∈(0,+∞),若a +b =2,求1a +1b 的最小值. 解 ∵(a +b )⎝ ⎛⎭⎪⎫1a +1b=[(a )2+(b )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a 2+⎝ ⎛⎭⎪⎫1b 2≥⎝⎛⎭⎪⎫a ·1a +b ·1b 2=(1+1)2=4.∴2⎝ ⎛⎭⎪⎫1a +1b ≥4,即1a +1b ≥2. 当且仅当a ·1b =b ·1a,即a =b 时取等号, ∴当a =b =1时,1a +1b 的最小值为2.9.已知a 2+b 2=1,a ,b ∈R ,求证:|a cos θ+b sin θ|≤1. 证明 ∵(a cos θ+b sin θ)2≤(a 2+b 2)(cos 2θ+sin 2θ) =1·1=1,∴|a cos θ+b sin θ|≤1.1.2 一般形式的柯西不等式学习目标1.理解三维形式的柯西不等式,在此基础上,过渡到柯西不等式的一般形式.2.会用三维形式及一般形式的柯西不等式证明有关不等式和求函数的最值.预习自测1.定理2,设a 1,a 2,…,a n 与b 1,b 2,…,b n 是两组实数,则有(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当向量(a 1,a 2,…,a n )与向量(b 1,b 2,…,b n )共线时,等号成立.2.证明柯西不等式的一般形式的方法称为参数配方法.3.推论设a 1,a 2,a 3,b 1,b 2,b 3是两组实数,则有(a 21+a 22+a 23)(b 21+b 22+b 23)≥(a 1b 1+a 2b 2+a 3b 3)2.当向量(a 1,a 2,a 3)与向量(b 1,b 2,b 3)共线时“=”成立.自主探究1.由二维的柯西不等式的向量式|α||β|≥|α·β|,你能推导出二维的柯西不等式的代数式吗?提示 设α=(a 1,a 2),β=(b 1,b 2),则α·β=a 1b 1+a 2b 2代入向量式得:(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2.当且仅当a 1b 2=a 2b 1时,等号成立.2.在空间向量中,|α||β|≥|α·β|,你能据此推导出三维的柯西不等式的代数式吗? 提示 设α=(a 1,a 2,a 3),β=(b 1,b 2,b 3), 则α·β=a 1b 1+a 2b 2+a 3b 3代入向量式得(a 21+a 22+a 23)(b 21+b 22+b 23)≥(a 1b 1+a 2b 2+a 3b 3)2.当且仅当α与β共线时,即存在一个数k ,使得a i =kb i (i =1,2,3)时,等号成立.3.你能猜想出柯西不等式的一般形式并给出证明吗?提示 柯西不等式的一般形式为:若a 1,a 2,…,a n ,b 1,b 2,…,b n 都为实数,则有(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,证明如下:若a 1=a 2=…=a n =0,则不等式显然成立,故设a 1,a 2,…,a n 至少有一个不为零,则a 21+a 22+…+a 2n >0.考虑二次三项式(a 21+a 22+…+a 2n )x 2+2(a 1b 1+a 2b 2+…+a n b n )x +(b 21+b 22+…+b 2n )=(a 1x +b 1)2+(a 2x +b 2)2+…+(a n x +b n )2≥0. 对于一切实数x 成立,设二次三项式的判别式为Δ,则Δ4=(a 1b 1+a 2b 2+…+a n b n )2-(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≤0. 所以(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2.即(a 21+a 22+…+a 2n )12()b 21+b 22+…+b 2n 12≥|a 1b 1+a 2b 2+…+a n b n |a1 b1=a2b2=…=a nb n.等号成立⇔典例剖析知识点1 利用柯西不等式证明不等式【例1】 设a ,b ,c 为正数且互不相等,求证:2a +b +2b +c +2c +a >9a +b +c. 证明 2(a +b +c )⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a=[(a +b )+(b +c )+(c +a )]·⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a =[(a +b )2+(b +c )2+(c +a )2]· ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫ 1a +b 2+⎝⎛⎭⎪⎫ 1b +c 2+⎝⎛⎭⎪⎫ 1c +a 2 ≥⎝⎛⎭⎪⎫a +b ·1a +b+b +c · 1b +c+c +a · 1c +a 2 =(1+1+1)2=9.∴2a +b +2b +c +2c +a ≥9a +b +c . ∵a ,b ,c 互不相等,∴等号不可能成立,从而原不等式成立.【反思感悟】 有些问题本身不具备运用柯西不等式的条件,但是我们只要改变一下多项式的形态结构,就可以达到利用柯西不等式的目的.1.已知a 1,a 2,a 3为实数,b 1,b 2,b 3为正实数.求证:a 21b 1+a 22b 2+a 23b 3≥(a 1+a 2+a 3)2b 1+b 2+b 3.证明 由柯西不等式得:⎝ ⎛⎭⎪⎫a 21b 1+a 22b 2+a 23b 3(b 1+b 2+b 3) ≥⎝ ⎛⎭⎪⎫a 1b 1·b 1+a 2b 2·b 2+a 3b 3·b 32=(a 1+a 2+a 3)2.∴a 21b 1+a 22b 2+a 23b 3≥(a 1+a 2+a 3)2b 1+b 2+b 3.知识点2 利用柯西不等式求函数的最值【例2】 已知a ,b ,c ∈(0,+∞)且a +b +c =1,求4a +1+4b +1+4c +1的最大值. 解4a +1+4b +1+4c +1=4a +1·1+4b +1·1+4c +1·1 ≤(4a +1+4b +1+4c +1)12(12+12+12)12 =7×3=21.当且仅当4a +11=4b +11=4c +11时取等号. 即a =b =c =13时,所求的最大值为21.【反思感悟】 利用柯西不等式,可以方便地解决一些函数的最大值或最小值问题.通过巧拆常数、重新排序、改变结构、添项等技巧变形为能利用柯西不等式的形式.2.设2x +3y +5z =29,求函数u =2x +1+3y +4+5z +6的最大值. 解 根据柯西不等式120=3[(2x +1)+(3y +4)+(5z +6)]≥(1×2x +1+1×3y +4+1×5z +6)2, 故2x +1+3y +4+5z +6≤230. 当且仅当2x +1=3y +4=5z +6,即x =376,y =289,z =2215时等号成立,此时u max =230.知识点3 利用柯西不等式解方程【例3】 在实数集内解方程⎩⎪⎨⎪⎧x 2+y 2+z 2=94,-8x +6y -24z =39.解 由柯西不等式,得(x 2+y 2+z 2)[(-8)2+62+(-24)2] ≥(-8x +6y -24z )2.①∵(x 2+y 2+z 2)[(-8)2+62+(-24)2]=94×(64+36+576)=392,又(-8x +6y -24y )2=392, ∴(x 2+y 2+z 2)[(-8)2+62+(-24)2] =(-8x +6y -24z )2, 即不等式①中只有等号成立,从而由柯西不等式中等号成立的条件,得 x -8=y 6=z -24, 它与-8x +6y -24z =39联立,可得 x =-613,y =926,z =-1813.【反思感悟】 利用柯西不等式解方程,关键是由不等关系转换成相等关系,然后再通过等号成立的条件求出未知数的值.3.利用柯西不等式解方程:21-2x +4x +3=15. 解 ∵21-2x +4x +3=22-4x +1·4x +3 ≤2-4x +4x +3·2+1=5·3=15. 又由已知21-2x +4x +3=15.所以等号成立, 由等号成立的条件2-4x ·1=4x +3· 2 得:2-4x =8x +6,∴x =-13, 即方程的解为x =-13.课堂小结柯西不等式的证明有多种方法,如数学归纳法;教材中的参数配方法(或判别式法)等,参数配方法在解决其它问题方面也有广泛的应用.柯西不等式的应用比较广泛,常见的有证明不等式,求函数最值,解方程等.应用时,通过拆常数、重新排序、添项、改变结构等手段改变题设条件,以利于应用柯西不等式.随堂演练1.△ABC 的三边长为a 、b 、c ,其外接圆半径为R ,求证: (a 2+b 2+c 2)⎝ ⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C ≥36R 2.证明 由三角形中的正弦定理得sin A =a2R , 所以1sin 2A =4R 2a 2,同理1sin 2B =4R 2b 2,1sin 2C =4R 2c 2于是左边=(a 2+b 2+c 2)⎝ ⎛⎭⎪⎫4R 2a 2+4R 2b 2+4R 2c 2≥⎝ ⎛⎭⎪⎫a ·2R a +b ·2R b +c ·2R c 2=36R 2. 故原不等式获证.2.已知a 1,a 2,…,a n 都是实数,求证: 1n(a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n . 证明 (12+12+…+12)(a 21+a 22+…+a 2n )≥(1×a 1+1×a 2+…+1×a n )2.∴n (a 21+a 22+…+a 2n )≥(a 1+a 2+…+a n )2∴1n (a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n .一、选择题1.设a ,b ,c ∈(0,+∞),且a +b +c =3,则1a +1b +1c 的最小值为( ) A.9 B.3 C.3 D.1解析 [(a )2+(b )2+(c )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a 2+⎝ ⎛⎭⎪⎫1b 2+⎝ ⎛⎭⎪⎫1c 2 ≥⎝⎛⎭⎪⎫a ·1a +b ·1b +c ·1c 2即(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c ≥32.又∵a +b +c =3,∴1a +1b +1c ≥3,最小值为3. 答案 B2.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值为( ) A.1B.nC.nD.2解析 由柯西不等式(a 21+a 22+…+a 2n )(x 21+x 22+…+x 2n )≥(a 1x 1+a 2x 2+…+a n x n )2得1·1≥(a 1x 1+a 2x 2+…+a n x n )2,∴a 1x 1+a 2x 2+…+a n x n ≤1.所求的最大值为1. 答案 A3.已知2x +3y +4z =10,则x 2+y 2+z 2取到最小值时的x ,y ,z 的值为( ) A.53,109,56 B.2029,3029,4029 C.1,12,13D.1,14,19解析 x 2+y 2+z 2=(x 2+y 2+z 2)(22+32+42)29≥(2x +3y +4z )229=10029,当且仅当⎩⎨⎧x =2k ,y =3k ,z =4k时,等号成立,则4k +9k +16k =29k =10,解得k =1029,∴⎩⎪⎨⎪⎧x =2029,y =3029,z =4029.选B.答案 B 二、填空题4.已知实数a ,b ,c ,d ,e 满足a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16,则e 的取值范围为________.解析 4(a 2+b 2+c 2+d 2)=(1+1+1+1)(a 2+b 2+c 2+d 2) ≥(a +b +c +d )2即4(16-e 2)≥(8-e )2,即64-4e 2≥64-16e +e 2 ∴5e 2-16e ≥0,故0≤e ≤165. 答案 ⎣⎢⎡⎦⎥⎤0,1655.设a ,b ,c >0且a +b +c =A (A 为常数).则1a +1b +1c 的最小值为________.解析 1a +1b +1c =⎝ ⎛⎭⎪⎫1a +1b +1c (a +b +c )A≥⎝ ⎛⎭⎪⎫a ·1a +b ·1b +c ·1c 2A =9A . 答案 9A 三、解答题6.已知实数a ,b ,c ,d 满足a +b +c +d =3,a 2+2b 2+3c 2+6d 2=5,试求a 的最值.解 由柯西不等式得,有(2b 2+3c 2+6d 2)⎝ ⎛⎭⎪⎫12+13+16≥(b +c +d )2,即2b 2+3c 2+6d 2≥(b +c +d )2 由条件可得,5-a 2≥(3-a )2 解得,1≤a ≤2当且仅当2b 12=3c 13=6d 16时等号成立,代入b =12,c =13,d =16时,a max =2.b =1,c =23,d =13时,a min =1. 7.设a 1>a 2>…>a n >a n +1,求证:1a 1-a 2+1a 2-a 3+…+1a n -a n +1+1a n +1-a 1>0. 证明 ∵a 1-a n +1=(a 1-a 2)+(a 2-a 3)+…+(a n -a n +1), ∴[(a 1-a 2)+(a 2-a 3)+…+(a n -a n +1)]· ⎣⎢⎡⎦⎥⎤1a 1-a 2+1a 2-a 3+…+1a n -a n +1 ≥(a 1-a 2·1a 1-a 2+a 2-a 3·1a 2-a 3+…+a n -a n +1·1a n -a n +1)2=n 2>1. ∴(a 1-a n +1)⎝ ⎛⎭⎪⎫1a 1-a 2+1a 2-a 3+…+1a n -a n +1>1.即1a 1-a 2+1a 2-a 3+…+1a n -a n +1>1a 1-a n +1,故1a 1-a 2+1a 2-a 3+…+1a n -a n +1+1a n +1-a 1>0. 8.设P 是△ABC 内的一点,x ,y ,z 是P 到三边a ,b ,c 的距离.R 是△ABC 外接圆的半径,证明:x +y +z ≤12R·a 2+b 2+c 2. 证明 由柯西不等式得, x +y +z =ax 1a +by 1b +cz1c≤ax +by +cz1a +1b +1c .设S 为△ABC 的面积,则 ax +by +cz =2S =2abc 4R =abc2R , x +y +z ≤ abc 2Rab +bc +caabc=12R ab +bc +ca ≤12Ra 2+b 2+c 2,故不等式成立.9.已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4. (1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.解 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c , 当且仅当-a ≤x ≤b 时,等号成立. 又a >0,b >0,所以|a +b |=a +b . 所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4. (2)由(1)知a +b +c =4,由柯西不等式,得 ⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1) ≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87.当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立,故14a 2+19b 2+c 2的最小值是87.§2 排序不等式学习目标1.了解排序不等式的“探究—猜想—证明—应用”的研究过程.2.初步认识排序不等式的有关知识及简单应用.预习自测1.定理1:设a ,b 和c ,d 都是实数,如果a ≥b ,c ≥d ,那么ac +bd ≥ad +bc ,此式当且仅当a =b (或c =d )时取“=”号.2.定理2:(排序不等式)设有两个有序实数组 a 1≥a 2≥…≥a n 及b 1≥b 2≥…≥b n , 则 (顺序和) a 1b 1+a 2b 2+…+a n b n ≥ (乱序和) a 1b j 1+a 2b j 2+…+a n b jn ≥ (逆序和) a 1b n +a 2b n -1+…+a n b 1.其中j 1,j 2,…,j n 是1,2,…,n 的任一排列方式.上式当且仅当a 1=a 2=…=a n (或b 1=b 2=…=b n )时取“=”号.自主探究1.某班学生要开联欢会,需要买价格不同的礼品4件、5件及2件,现在选择商店中有单价为3元、2元和1元的礼品,问有多少不同的购买方案?在这些方案中哪种花钱最少?哪种花钱最多?提示 有多少种不同的购买方案,实质上就是礼品和单价有多少种不同的对应关系.与单价3元对应的礼品可以是4件的礼品,也可以是5件或2件的礼品共有三种对应关系,与单价2元对应的只还有剩下的2种.与单价一元对应的只有一种.由乘法分步计数原理知共有3×2×1=6种不同的购买方案.根据生活的实际经验,花钱最少的方案应是最贵的礼品买最少的件数,最便宜的礼品买最多的件数,即1×5+2×4+3×2=19元,花钱最多的方案应是:单价最高的礼品买最多的件数,单价最低的礼品买最少的件数,即1×2+2×4+3×5=25元.2.设有两组实数,a 1<a 2<a 3,b 1<b 2<b 3,设c 1、c 2、c 3是b 1、b 2、b 3的任一个排列,作和a 1c 1+a 2c 2+a 3c 3,你能猜测和的最大值及最小值分别是怎样的和式吗? 提示 由问题1我应得到启发,和最大的应该为a 1b 1+a 2b 2+a 3b 3,和最小的应该是a 1b 3+a 2b 2+a 3b 1.3.有10个人各拿一只水桶去接水,设水龙头注满第i (i =1,2,…,10)个人的水桶需要t i 分,假设这些t i 各不相同,问只有一个水龙头时,应如何安排10人的顺序,使他们等候的总时间最小?这个最少的总时间等于多少?(根据排序原理回答)提示 不妨设t 1<t 2<…<t 10,∵1<2<3<…<10,由排序原理知逆序和最小,即10t 1+9t 2+…+t 10最小,所以按注水时间由小到大的顺序注水,则他们10人等候的总时间最小,最少的总时间为10t 1+9t 2+…+t 10.典例剖析知识点1 利用排序原理证明不等式【例1】 已知a ,b ,c 为正数,求证:b 2c 2+c 2a 2+a 2b 2a +b +c≥abc .证明 根据所需证明的不等式中a ,b ,c 的“地位”的对称性,不妨设a ≥b ≥c ,则1a ≤1b ≤1c ,bc ≤ca ≤ab .由排序原理:顺序和≥乱序和,得: bc a +ca b +ab c ≥bc c +ca a +ab b . 即b 2c 2+c 2a 2+a 2b 2abc≥a +b +c ,因为a ,b ,c 为正数,所以abc >0,a +b +c >0, 于是b 2c 2+c 2a 2+a 2b 2a +b +c≥abc .1.已知a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n ,求证:(a 1b 1+a 2b 2+…+a n b n )≥1n (a 1+a 2+…+a n )(b 1+b 2+…+b n ). 证明 令S =a 1b 1+a 2b 2+…+a n b n ,则 S ≥a 1b 2+a 2b 3+…+a n b 1, S ≥a 1b 3+a 2b 4+…+a n b 2, ……S ≥a 1b n +a 2b 1+…+a n b n -1,将上面n 个式子相加,并按列求和可得nS ≥a 1(b 1+b 2+…+b n )+a 2(b 1+b 2+…+b n )+…+a n (b 1+b 2+…+b n ) =(a 1+a 2+…+a n )(b 1+b 2+…+b n ) ∴S ≥1n (a 1+a 2+…+a n )(b 1+b 2+…+b n ) 即(a 1b 1+a 2b 2+…+a n b n )≥1n (a 1+a 2+…+a n )(b 1+b 2+…+b n ).【例2】 设a 1,a 2,…,a n 是n 个互不相同的正整数,求证:1+12+13+…+1n ≤a 1+a 222+a 332+…+a n n 2.证明 ∵12<22<32<…<n 2,∴112>122>…>1n 2.设c 1,c 2,…,c n 是a 1,a 2,…,a n 由小到大的一个排列, 即c 1<c 2<c 3<…<c n ,根据排序原理中,逆序和≤乱序和, 得c 1+c 222+c 332+…+c n n 2≤a 1+a 222+a 332+…+a nn 2, 而c 1,c 2,…,c n 分别大于或等于1,2,…,n , ∴c 1+c 222+c 332+…+c n n 2≥1+222+332+…+n n 2 =1+12+…+1n ,∴1+12+13+…+1n ≤a 1+a 222+…+a nn 2.2.设c 1,c 2,…,c n 为正数组a 1,a 2,…,a n 的某一排列,求证:a 1c 1+a 2c 2+…+a ncn≥n .证明 不妨设0<a 1≤a 2≤…≤a n ,则1a 1≥1a 2≥…≥1a n.因为1c 1,1c 2,…,1c n 是1a 1,1a 2,…,1a n 的一个排序,故由排序原理:逆序和≤乱序和 得a 1·1a 1+a 2·1a 2+…+a n ·1a n≤a 1·1c 1+a 2·1c 2+…+a n ·1c n.即a 1c 1+a 2c 2+…+a nc n≥n . 知识点2 利用排序原理求最值【例3】 设a ,b ,c 为任意正数,求a b +c +b c +a +c a +b的最小值. 解 不妨设a ≥b ≥c , 则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b, 由排序不等式得,a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b 上述两式相加得:2⎝ ⎛⎭⎪⎫ab +c +b c +a +c a +b ≥3.即a b +c +b c +a +c a +b ≥32. 当且仅当a =b =c 时,a b +c +b c +a +c a +b 取最小值32.3.设0<a ≤b ≤c 且abc =1.试求1a3(b+c)+1b3(a+c)+1c3(a+b)的最小值.解令S=1a3(b+c)+1b3(a+c)+1c3(a+b),则S=(abc)2a3(b+c)+(abc)2b3(a+c)+(abc)2c3(a+b)=bca(b+c)·bc+acb(a+c)·ac+abc(a+b)·ab,由已知可得:1a(b+c)≥1b(a+c)≥1c(a+b),ab≤ac≤bc,∴S≥bca(b+c)·ac+acb(a+c)·ab+abc(a+b)·bc=ca(b+c)+ab(a+c)+bc(a+b)又S≥bca(b+c)·ab+acb(a+c)·bc+abc(a+b)·ac=ba(b+c)+cb(a+c)+ac(a+b),两式相加得:2S≥1a+1b+1c≥3·31abc=3.∴S≥32,即1a3(b+c)+1b3(a+c)+1c3(a+b)的最小值为32.课堂小结排序不等式有着广泛的实际应用,在应用时,一定在认真分析题设条件的基础上观察要证结论的结构特征,从而分析出要用排序原理中逆序和≤乱序和,或是乱序和≤顺序和,或者逆序和≤顺序和.不少命题的证明可能多次用到排序原理.随堂演练1.利用排序原理证明:若a1,a2,…,a n为正数,则a1+a2+…+a nn≥n1a1+1a2+…+1a n.证明不妨设a1≥a2≥a3≥…≥a n>0,则有1a1≤1a2≤…≤1a n由排序不等式,得a 1·1a 1+a 2·1a 2+…+a n ·1ann≤a 1+a 2+…+a n n ·1a 1+1a 2+…+1a n n , 即n n ≤a 1+a 2+…+a n n ·1a 1+1a 2+…+1a n n ,∴a 1+a 2+…+a nn≥n1a 1+1a 2+…+1a n. 2.已知a ,b ,c 为正数,a ≥b ≥c .求证:a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c . 证明 ∵a ≥b ≥c ≥0,∴a 3≥b 3≥c 3,∴a 3b 3≥a 3c 3≥b 3c 3, ∴1a 3b 3≤1a 3c 3≤1b 3c 3,又a 5≥b 5≥c 5,由排序原理得: a 5b 3c 3+b 5a 3c 3+c 5a 3b 3≥a 5a 3b 3+b 5b 3c 3+c 5a 3c 3(顺序和≥乱序和), 即a 5b 3c 3+b 5a 3c 3+c 5a 3b 3≥a 2b 3+b 2c 3+c 2a 3, 又∵a 2≥b 2≥c 2,1a 3≤1b 3≤1c 3由乱序和≥逆序和得:a 2b 3+b 2c 3+c 2a 3≥a 2a 3+b 2b 3+c 2c 3=1a +1b +1c . ∴a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c.一、选择题1.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A.ax +by +cz B.az +by +cx C.ay +bz +cxD.ay +bx +cz解析 法一 用特值法进行验证.令x =1,y =2,z =3,a =1,b =2,c =3.A 项:ax +by +cz =1+4+9=14;B 项:az +by +cx =3+4+3=10;C 项:ay +bz +cx =2+6+3=11;D 项:ay +bx +cz =2+2+9=13.故选B. 法二 由顺序和≥乱序和≥反序和.可得az +by +cx 最小. 答案 B 二、填空题2.设a 1,a 2,a 3,…,a n 为正数,那么P =a 1+a 2+…+a n 与Q =a 21a 2+a 22a 3+…+a 2n -1an+a 2na 1的大小关系是________.解析 假设a 1≥a 2≥a 3≥…≥a n ,则1a n ≥1a n -1≥…≥1a ≥1a 1,并且a 21≥a 22≥a 23≥…≥a 2n ,P =a 1+a 2+a 3+…+a n =a 21a 1+a 22a 2+a 23a 3+…+a 2n a n,是反顺和,Q 是乱顺和,由排序不等式定理P ≤Q . 答案 P ≤Q 三、解答题3.设a 1,a 2,…,a n 为正数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1≥a 1+a 2+…+a n .证明 不妨设a 1>a 2>…>a n >0,则有a 21>a 22>…>a 2n也有1a 1<1a 2<…<1a n,由排序原理:乱序和≥逆序和,得:a 21a 2+a 22a 3+…+a 2n a 1≥a 21a 1+a 22a 2+…+a 2n a n =a 1+a 2+…+a n .4.设A 、B 、C 表示△ABC 的三个内角的弧度数,a ,b ,c 表示其对边,求证:aA +bB +cC a +b +c≥π3.证明 法一 不妨设A >B >C ,则有a >b >c ,由排序原理:顺序和≥乱序和. ∴aA +bB +cC ≥aB +bC +cA ;aA +bB +cC ≥aC +bA +cB ; aA +bB +cC =aA +bB +cC .上述三式相加得 3(aA +bB +cC )≥(A +B +C )(a +b +c )=π(a +b +c ). ∴aA +bB +cC a +b +c≥π3.法二 不妨设A >B >C ,则有a >b >c ,由排序不等式aA +bB +cC 3≥A +B +C 3·a +b +c3,即aA +bB +cC ≥π3(a +b +c ),∴aA +bB +cC a +b +c≥π3.5.设a ,b ,c 为正数,利用排序不等式证明a 3+b 3+c 3≥3abc . 证明 不妨设a ≥b ≥c >0,∴a 2≥b 2≥c 2, 由排序原理:顺序和≥逆序和,得:a 3+b 3≥a 2b +b 2a ,b 3+c 3≥b 2c +c 2b ,c 3+a 3≥a 2c +c 2a , 三式相加得2(a 3+b 3+c 3)≥a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2). 又a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca . 所以2(a 3+b 3+c 3)≥6abc , ∴a 3+b 3+c 3≥3abc .当且仅当a =b =c 时,等号成立.6.设a ,b ,c 是正实数,求证:a a b b c c≥(abc )a +b +c3.证明 不妨设a ≥b ≥c >0,则lg a ≥lg b ≥lg c . 据排序不等式有:a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c a lg a +b lg b +c lg c =a lg a +b lg b +c lg c 上述三式相加得:3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c ), 即lg(a a b b c c)≥a +b +c3lg(abc ).故a a b b c c ≥(abc )a +b +c3.7.设x i ,y i (i =1,2,…,n )是实数,且x 1≥x 2≥…≥x n ,y 1≥y 2≥…≥y n ,而z 1,z 2,…,z n 是y 1,y 2,…,y n 的一个排列.求证:∑ni =1 (x i -y i )2≥∑ni =1 (x i -z i )2. 证明 要证∑ni =1 (x i -y i )2≥∑ni =1(x i -z i )2只需证∑ni =1y 2i -2∑n i =1x i y i ≥∑n i =1z 2i -2∑ni =1x i z i . 因为∑n i =1y 2i =∑n i =1z 2i ,∴只需证∑n i =1x i z i ≤∑ni =1x i y i. 而上式左边为乱序和,右边为顺序和. 由排序不等式得此不等式成立.故不等式∑ni =1 (x i -y i )2≥∑ni =1(x i -z i )2成立. 8.已知a ,b ,c 为正数,且两两不等,求证:2(a 3+b 3+c 3)>a 2(b +c )+b 2(a +c )+c 2(a +b ).证明 不妨设a >b >c >0.则a 2>b 2>c 2,a +b >a +c >b +c , ∴a 2(a +b )+b 2(a +c )+c 2(b +c ) >a 2(b +c )+b 2(a +c )+c 2(a +b ), 即a 3+c 3+a 2b +b 2a +b 2c +c 2b >a 2(b +c )+b 2(a +c )+c 2(a +b ), 又∵a 2>b 2>c 2,a >b >c ,∴a 2b +b 2a <a 3+b 3,b 2c +c 2b <b 3+c 3. 即a 2b +b 2a +b 2c +c 2b <a 3+2b 3+c 3,所以有2(a 3+b 3+c 3)>a 2(b +c )+b 2(a +c )+c 2(a +b ).§3 数学归纳法与贝努利不等式3.1 数学归纳法学习目标1.理解归纳法和数学归纳法原理.2.会用数学归纳法证明有关问题.预习自测1.由有限多个个别的特殊事例得出一般结论的推理方法,通常称为归纳法.2.一般地,当要证明一个命题对于不小于某正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:(1)证明当n 取初始值n 0时命题成立;(2)假设当n =k 时命题成立,证明n =k +1时命题也成立.在完成了这两个步骤后,就可以断定命题对于从初始值n 0开始的所有自然数都正确.这种证明方法称为数学归纳法.自主探究1.为什么数学归纳法能够证明无限多个正整数都成立的问题呢?提示 这是因为第一步首先验证了n 取一个值n 0,这样假设就有了存在的基础,至少k =n 0成立,根据假设和合理推证,证明出n =k +1也成立.这实质上是证明了一种循环.如验证了n 0=1成立,又证明了n =k +1也成立,这就一定有n =2成立;n =2成立,则n =3也成立;n =3成立,则n =4也成立.如此反复,以至对所有n ≥n 0的整数就都成立了.数学归纳法非常巧妙地解决了一种无限多的正整数问题,这就是数学方法的神奇.2.在用数学归纳法证明数学命题时,只有第一步或只有第二步可以吗?为什么? 提示 不可以;这两个步骤缺一不可,只完成步骤①而缺少步骤②,就作出判断可能得出不正确的结论.因为单靠步骤①,无法递推下去,即n 取n 0以后的数时命题是否正确,我们无法判定.同样,只有步骤②而缺少步骤①时,也可能得出不正确的结论,缺少步骤①这个基础,假设就失去了成立的前提,步骤②也就没有意义了.3.利用数学归纳法时,第二步为什么必须利用归纳假设?提示 第二步实际上是证明一个条件命题:“假设n =k (k ≥n 0,k ∈N +)时命题成立,证明当n =k +1时命题也成立”,其本质是证明一个递推关系,若不用归纳假设,就是没有证明这种递推关系,所以归纳假设是必须要用的.假设是起桥梁作用的,桥梁断了就通不过去了.典例剖析知识点1 利用数学归纳法证明等式【例1】 用数学归纳法证明12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n (n +1)2.证明 (1)当n =1时,左边=12=1,右边=(-1)0·1×(1+1)2=1,∴等式成立.(2)假设n =k (k ∈N +,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1·k (k +1)2.那么,当n =k +1时,则有:12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2 =(-1)k -1k (k +1)2+(-1)k (k +1)2=(-1)k k +12[-k +2(k +1)] =(-1)k(k +1)(k +2)2,∴n =k +1时,等式也成立.由(1)(2)得对任意n ∈N +有:12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2.【反思感悟】 利用数学归纳法证明等式的关键是当n =k +1时利用假设n =k 成立进行转化证明,要分清楚增加的几项分别是什么.1.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 证明 (1)当n =1时,左边=1-12=12,右边=12,命题成立. (2)假设当n =k (k ≥1)时命题成立,即 1-12+13-14+…+12k -1-12k=1k +1+1k +2+…+12k , 那么当n =k +1时, 左边=1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2.上式表明当n =k +1时命题也成立.由(1)和(2)知,命题对一切自然数均成立. 【例2】 证明12+122+123+…+12n -1+12n =1-12n (其中n ∈N +)成立的过程如下,请判断证明是否正确?为什么?证明:(1)当n =1时,左边=12,右边=1-12=12. ∴当n =1时,等式成立.(2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k +11-12=1-12k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立.解 不正确,错误的原因在第(2)步,它是直接利用等比数列的求和公式求出了当n =k +1时,式子12+122+123+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”.正确的证明如下:(1)当n =1时,左边=12,右边=1-12=12,等式成立. (2)假设当n =k (k ∈N +,k ≥2)时,等式成立,就是 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-2-12k +1=1-12k +1=右边.这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任意n ∈N +都成立.【反思感悟】 在推证“n =k +1”命题也成立时,必须把“归纳假设”n =k 时的命题,作为必备条件使用上,否则不是数学归纳法.对项数估算的错误,特别是寻找n =k 与n =k +1的关系时,项数发生什么变化被弄错是常见错误.2.用数学归纳法证明:⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1n 2=n +12n (n ≥2). 证明 (1)当n =2时,左边=1-122=34, 右边=2+12×2=34,等式成立.(2)假设当n =k (k ∈N +,k ≥2)时,等式成立, 即⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19…⎝ ⎛⎭⎪⎫1-1k 2=k +12k . 则当n =k +1时,⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1k 2⎣⎢⎡⎦⎥⎤1-1(k +1)2 =k +12k ⎣⎢⎡⎦⎥⎤1-1(k +1)2=k +12k ·k 2+2k (k +1)2=k +22(k +1), 即n =k +1时,等式成立.由(1)(2)知,对于任意正整数n (n ≥2),原等式成立.知识点2 用数学归纳法证明不等式【例3】 用数学归纳法证明: 1+122+132+…+1n 2<2-1n (n ≥2).证明 (1)当n =2时,1+122=54<2-12=32,命题成立. (2)假设n =k (k ∈N +,k ≥2)时命题成立, 即1+122+132+…+1k 2<2-1k ,当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1,命题成立.由(1)、(2)知原不等式在n ≥2时均成立.【反思感悟】 (1)由n =k 到n =k +1时的推证过程中应用了“放缩”的技巧,使问题简单化,这是利用数学归纳法证明不等式时常用的方法之一.(2)数学归纳法的应用通常与数学的其他方法联系在一起,如比较法、放缩法、配凑法、分析法和综合法等.3.1+122+132+…+1n 2≥3n 2n +1 (n ∈N +).证明 (1)当n =1时,左边=1,右边=1, ∴左边≥右边,即命题成立.(2)假设当n =k (k ∈N +,k ≥1)时,命题成立, 即1+122+132+…+1k 2≥3k 2k +1.那么当n =k +1时, 1+122+132+…+1k 2+1(k +1)2≥3k 2k +1+1(k +1)2=3k 2k +1+1k 2+2k +1≥3k 2k +1+3(2k +1)(2k +3)=3k (2k +3)+3(2k +1)(2k +3)=(3k +3)(2k +1)(2k +1)(2k +3)=3k +32k +3=3(k +1)2(k +1)+1. 由(1)(2)知原不等式在n ∈N +时均成立.课堂小结1.数学归纳法的两个步骤缺一不可,只完成步骤(1)而缺少步骤(2)就可能得出不正确的结论,因为单靠(1)无法递推下去,即n 取n 0以后的数时命题是否正确无法判断.同样只有步骤(2)而没有步骤(1)也可能得出不正确的结论.因为缺少(1),假设就失去了成立的前提,步骤(2)也就没有意义了.2.数学归纳法证明的关键是第二步,此处要搞清两点:(1)当n =k +1时,证明什么,即待证式子的两端发生了哪些变化.(2)由n =k 推证n =k +1时,可以综合应用以前学过的定义、定理、公式、方法等来进行证明,只不过必须得把n =k 时的结论作为条件应用上.随堂演练1.用数学归纳法证明:“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”在验证n =1时,左端计算所得项为( ) A.1 B.1+a C.1+a +a 2 D.1+a +a 2+a 3答案 C2.用数学归纳法证明等式:1+2+3+…+n 2=n 4+n 22 (n ∈N +),则从n =k 到n =k +1时,左边应添加的项为( ) A.k 2+1 B.(k +1)2C.(k +1)4+(k +1)22D.(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2 答案 D3.已知a 1=2,a n +1=2+a n ,n ∈N +,求证:a n <2. 证明 (1)n =1时,∵a 1=2,∴a 1<2. (2)假设n =k (k ≥1)时,a k <2,当n =k +1时,a k +1=2+a k <2+2=2. 故n =k +1时,命题成立.由(1)(2)知,n ∈N +时,a n <2都成立.一、选择题 1.设f (n )=1n +1+1n +2+1n +3+…+12n (n ∈N +),那么f (n +1)-f (n )等于( ) A.12n +1B.12n +2C.12n+1+12n+2D.12n+1-12n+2解析f(n)=1n+1+1n+2+1n+3+…+12nf(n+1)=1n+2+1n+3+…+12n+12n+1+12n+2∴f(n+1)-f(n)=12n+1+12n+2-1n+1=12n+1-12n+2,选D.答案 D2.用数学归纳法证明:“1+a+a2+…+a n+1=1-a n+21-a(a≠1)”在验证n=1时,左端计算所得的项为()A.1B.1+aC.1+a+a2D.1+a+a2+a3解析当n=1时,a n+1=a2,∴左边应为1+a+a2,故选C.答案 C3.用数学归纳法证明:(n+1)(n+2)…·(n+n)=2n×1×3…(2n-1)时,从“k到k +1”左边需增乘的代数式是()A.2k+1B.2k+1 k+1C.2(2k+1)D.2k+2 k+1解析n=k时,(k+1)(k+2)…(k+k)=2k×1×3×…×(2n-1). n=k+1时,(k+2)…(k+k)·(k+1+k)(k+1+k+1).∴增乘的代数式是(2k+1)(2k+2)k+1=2(2k+1),选C.答案 C二、填空题4.数列{a n}中,已知a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是________.解析a1=1,a2=a1+3=4,a3=4+5=9,a4=9+7=16,猜想a n=n2.答案 a n =n 25.记凸k 边形对角线的条数为f (k )(k ≥4),那么由k 到k +1时,对角线条数增加了________条.解析 ∵f (k )=12k (k -3),f (k +1)=12(k +1)(k -2),f (k +1)-f (k )=k -1. 答案 k -16.在数列{a n }中,a 1=13,且S n =n (2n -1)a n .通过求a 2,a 3,a 4猜想a n 的表达式是________.解析 13+a 2=2(2×2-1)a 2,a 2=115, 13+115+a 3=3(2×3-1)a 3,a 3=135, 13+115+135+a 4=4(2×4-1)a 4,a 4=163, 猜想a n =1(2n )2-1.答案 a n =1(2n )2-1三、解答题7.求证:(n +1)·(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1) (n ∈N +). 证明 (1)当n =1时,等式左边=2,等式右边=2×1=2, ∴等式成立.(2)假设n =k (k ∈N + )时,等式成立.即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1)成立. 那么当n =k +1时,(k +2)(k +3)·…·(k +k )(2k +1)(2k +2) =2(k +1)(k +2)(k +3)·…·(k +k )(2k +1) =2k +1·1·3·5·…·(2k -1)[2(k +1)-1]. 即n =k +1时等式成立.由(1)、(2)可知对任意n ∈N +,等式都成立. 8.求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N +).。

高中数学第2章几个重要的不等式2.2排序不等式课件北师大版选修4-5

高中数学第2章几个重要的不等式2.2排序不等式课件北师大版选修4-5

教材整理 2 排序不等式 阅读教材 P32~P34“练习”以上部分,完成下列问题. 1.定理 1 设 a,b 和 c,d 都是实数,如果 a≥b,c≥d,那么 ac+bd≥ ad+bc,当且 仅当 a=b(或c=d) 时取“=”号.
[小组合作型] 利用排序不等式证明不等式中所给 字母的大小顺序已确定的情况
已知 a,b,c 为正数,a≥b≥c,求证: (1)b1c≥c1a≥a1b; (2)ba3c53+cb3a53+cc3b5 3≥1a+1b+1c.
利用排序不等式证明所证不等式中所给字母的大小顺序已确定的情况,关 键是根据所给字母的大小顺序,构造出不等式中所需要的带大小顺序的两个数 组.
需对所证不等式中所给的字母顺序作 出假设的情况






§2 排序不等式

阶 段 二
业 分 层 测

1.了解排序不等式,理解排序不等式的实质.(重点) 2.能用排序不等式证明简单的问题.(难点)
[基础·初探] 教材整理 1 顺序和、乱序和、逆序和的概念 阅读教材 P32~P34“练习”以上部分,完成下列问题. 设实数 a1,a2,a3,b1,b2,b3 满足 a1≥a2≥a3,b1≥b2≥b3,j1,j2,j3 是 1,2,3 的任一排列方式. 通常称 a1b1+a2b2+a3b3 为顺序和,a1bj1+a2bj2+a3bj3 为乱序和, a1b3+a2b2+a3b1 为逆序和(倒序和).
构造两个有序数组―→利用排序不等式―→验证等号是否成立.
1.已知 x≥y,M=x4+y4,N=x3y+y3x,则 M 与 N 的大小关系是( )
A.M>N
B.M≥N
C.M<N

高中数学 第二章 几何重要的不等式 2-2 排序不等式课件 北师大版选修4-5

高中数学 第二章 几何重要的不等式 2-2 排序不等式课件 北师大版选修4-5

探究 2 利用排序不等式证明不等式的策略 (1)利用排序不等式证明不等式时,若已知条件中已给出两组 量的大小关系,则需要分析清楚顺序和、乱序和及反序号.利用 排序不等式证明即可. (2)在排序不等式的条件中,需要限定各数值的大小关系,如 果对于它们之间并没有序先规定大小顺序,那么在解答问题时, 我们要根据各字母在不等式中的地位的对称性将它们按一定顺 序排列起来,进而用不等关系来解题.
课时学案
题型一 利用排序不等式求最值 例 1 设 a,b,c 为任意正数,求 a + b + c 的最小
b+c c+a a+b 值.
【解析】 不妨设 a≥b≥c, 则 a+b≥a+c≥b+c,b+1 c≥c+1 a≥a+1 b, 由排序不等式,得 b+a c+c+b a+a+c b≥b+b c+c+c a+a+a b, b+a c+c+b a+a+c b≥b+c c+c+a a+a+b b.
c3,c4,c5,则 a1c1+a2c2+…+a5c5 的最大值和最小值分别是( )
A.132,6
B.304,212
C.22,6
D.21,36
答案 B 解析 由顺序和最大,得 最大值为 a1b1+a2b2+…+a5b5=304, 反序和最小,得 a1b5+a2b4+…+a5b1=212.
b2c2+c2a2+a2b2 Nhomakorabea最低的总费用(单位:元)是( )
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz
答案 B 解析 由排序不等式知反序和最小,因此在不同方案中最低 的总费用是 az+by+cx,故选 B.
3.已知两组数 a1≤a2≤a3≤a4≤a5,b1≤b2≤b3≤b4≤b5,其

高中数学 第二章 几个重要的不等式 2.2 排序不等式 北师大版选修4-5

高中数学 第二章 几个重要的不等式 2.2 排序不等式 北师大版选修4-5
a1≥a2≥…≥an 及 b1≥b2≥…≥bn, 则 (顺序和) a1b1+a2b2+…+anbn≥
(乱序和) a1bj1+a2bj2+…+anbjn≥ (逆序和) a1bn+a2bn-1+…+anb1. 其中 j1,j2,…,jn 是 1,2,…,n 的任一排列方式.上式当且仅当 a1=a2=…=an(或 b1=b2=…=bn)时取“=”号.
2.已知 a,b,c 为正数,a≥b≥c.求证:ba3c53+cb3a53+ac3b5 3≥ 1a+1b+1c. 证明 ∵a≥b≥c≥0,∴a3≥b3≥c3,∴a3b3≥a3c3≥b3c3, ∴a31b3≤a31c3≤b31c3,又 a5≥b5≥c5,由排序原理得: ba3c53+ab3c53+ac3b5 3≥aa3b5 3+bb3c53+ac3c5 3(顺序和≥乱序和), 即ba3c53+ab3c53+ac3b5 3≥ab23+bc32+ac23,
上述两式相加得:2b+a c+c+b a+a+c b≥3. 即b+a c+c+b a+a+c b≥32. 当且仅当 a=b=c 时,b+a c+c+b a+a+c b取最小值32.
3.设0<a≤b≤c且abc=1. 试求a3(b1+c)+b3(a1+c)+c3(a1+b)的最小值. 解 令 S=a3(b1+c)+b3(a1+c)+c3(a1+b), 则 S=a(3(abb+c)c)2 +b3((aab+c)c)2 +c3((aab+c)b)2
§2 排序不等式
学习目标 1.了解排序不等式的“探究—猜想—证明—应用”的
研究过程. 2.初步认识排序不等式的有关知识及简单应用.
预习自测 1.定理 1:设 a,b 和 c,d 都是实数,如果 a≥b,c≥d,那么
_a_c_+__b_d_≥__a_d_+__b_c,此式当且仅当 a=b(或 c=d)时取“=”号. 2.定理 2:(排序不等式)设有两个有序实数组

高中数学5-4几个著名的不等式5-4-2排序不等式自我小测苏教版选修4_5

高中数学5-4几个著名的不等式5-4-2排序不等式自我小测苏教版选修4_5

5.4.2 排序不等式自我小测1已知a ,b ,c ∈R +,则a 5+b 5+c 5与a 3b 2+b 3c 2+c 3a 2的大小关系是________. 2设a 1,a 2,…,a n 为实数,b 1,b 2,…,b n 是a 1,a 2,…,a n 的任一排列,则乘积a 1b 1+a 2b 2+…+a n b n 不小于________.3n 个正数与这n 个正数倒数的乘积和的最小值为________. 4设a ,b ,c ∈R +,求证:a 5+b 5+c 5≥a 3bc +b 3ac +c 3ab .5设x ,y ,z ∈R +,求证:z 2-x 2x +y +x 2-y 2y +z +y 2-z 2z +x≥0.6设a ,b ,c 为某三角形三边长,求证:a 2(b +c -a )+b 2(c +a -b )+c 2(a +b -c )≤3abc . 7设a ,b ,c 是正实数,求证:a a b b c c≥(abc )a +b +c3.8已知a ,b ,c ∈R +,则a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )的正负情况是________. 9已知a ,b ,c 都是正数,则ab +c +bc +a +ca +b≥________.10设c 1,c 2,…,c n 为正数a 1,a 2,…,a n 的某一排列,求证:a 1c 1+a 2c 2+…+a n c n≥n . 11设a 1,a 2,…,a n ;b 1,b 2,…,b n 为任意两组实数,如果a 1≤a 2≤…≤a n ,且b 1≤b 2≤…≤b n , 求证:a 1b 1+a 2b 2+…+a n b n n ≥a 1+a 2+…+a n n ×b 1+b 2+…+b nn当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时等号成立.12设a ,b ,c ∈R +,求证:a +b +c ≤a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 2bc +b 2ca +c 2ab.参考答案1.a 5+b 5+c 5≥a 3b 2+b 3c 2+c 3a 2解析:取两组数a 3,b 3,c 3和a 2,b 2,c 2,且a ≥b ≥c .由排序不等式,得a 5+b 5+c 5≥a 3b 2+b 3c 2+c 3a 2.2.a 1a n +a 2a n -1+…+a n a 13.n 解析:设0<a 1≤a 2≤a 3…≤a n ,则0<a -1n ≤a -1n -1≤…≤a -11. 则由排序不等式得:反序和≤乱序和≤同序和. ∴最小值为反序和a 1·a -11+a 2·a -12+…+a n ·a -1n =n . 4.证明:不妨设a ≥b ≥c >0,则a 4≥b 4≥c 4, 运用排序不等式有:a 5+b 5+c 5=a ×a 4+b ×b 4+c ×c 4≥ac 4+ba 4+cb 4,又a 3≥b 3≥c 3>0, 且ab ≥ac ≥bc >0,所以a 4b +b 4c +c 4a =a 3ab +b 3bc +c 3ca ≥a 3bc +b 3ac +c 3ab , 即a 5+b 5+c 5≥a 3bc +b 3ac +c 3ab . 5.证明:所证不等式等价于z 2x +y +y 2x +z +x 2y +z ≥x 2x +y +y 2y +z +z 2z +x.不妨设0<x ≤y ≤z , 则x 2≤y 2≤z 2,x +y ≤x +z ≤y +z ,∴1y +z ≤1x +z ≤1x +y.于是上式的左边为同序和,右边为乱序和,由排序不等式知此式成立. 6.证明:不妨设a ≥b ≥c >0.易证a (b +c -a )≤b (c +a -b )≤c (a +b -c ). 根据排序原理,得a 2(b +c -a )+b 2(c +a -b )+c 2(a +b -c )≤a ×b (c +a -b )+b ×c (a +b -c )+c ×a (b +c -a )≤3abc .7.证明:不妨设a ≥b ≥c >0,则lg a ≥lg b ≥lg c ,据排序不等式,有a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c ; a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c .且a lg a +b lg b +c lg c =a lg a +b lg b +c lg c , 以上三式相加整理,得3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c ), 即lg(a a b b c c)≥a +b +c3·lg(abc ).即lg(a a b b c c )≥lg(abc )a +b +c3,又lg x 为增函数,所以a a b b c c≥(abc )a +b +c3.8.大于或等于零 解析:设a ≥b ≥c >0,所以a 3≥b 3≥c 3, 根据排序原理,得a 3×a +b 3×b +c 3×c ≥a 3b +b 3c +c 3a . 又知ab ≥ac ≥bc ,a 2≥b 2≥c 2. 所以a 3b +b 3c +c 3a ≥a 2bc +b 2ca +c 2ab . 所以a 4+b 4+c 4≥a 2bc +b 2ca +c 2ab . 即a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )≥0. 9.32解析:设a ≥b ≥c >0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我创新,我超越
12.设a+b>0,n为偶数,求证:+≥+.
分析:本题将an-1与bn-1交换一下就得到右边,可用排序不等式解答,情况不定可分类讨论.
证明:∵a+b>0,
∴a>-b,共有四种情况.
(1)当a≥b>0时,an≥bn>0,an-1≥bn-1,
∴≤.
∴≤,
即≥+成立.
(2)当b≥a>0时,bn≥an>0,bn-1≥an-1,
答案:a2+b2+c2≥ab+bc+ca
7.比较a4+b4与a3b+ab3的大小关系为_______________.
解析:不妨设a≥b,则a3≥b3,∴a4+b4≥a3b+b3a.
答案:a4+b4≥a3b+ab3
我综合,我发展
8.若a、b为正数,则+与的大小关系为_______________.
解析:不妨设a≥b>0,则a3≥b3>0,∴≤.
——教学资料参考参考范本——
【2019最新】高中数学5-4几个著名的不等式5-4-2排序不等式同步测控
______年______月______日
____________________部门
同步测控
我夯基,我达标
1.已知a、b、c∈R+,则a3+b3+c3与a2b+b2c+c2a的大小为( )
A.a3+b3+c3>a2b+b2c+c2a B.a3+b3+c3≥a2b+b2c+c2a
则b1≥1,b2≥2,…,bn≥n.
又∵>>…>,
∴m=≥≥1+++…+.
答案:C
4.已知,则( )
A.2b>2a>2c B.2a>2b>2c C.2c>2b>2a D.2c>2a>2b
解析:∵<<,
∴b>a>c.∴2b>2a>2c.
答案:A
5.设b、c为互不相等的正整数,则的最小值为( )
A. B. C.1 D.
C.a3+b3+c3<a2b+b2c+c2a D.a3+b3+c3≤a2b+b2c+c2a
解析:不妨设a≥b≥c>0,则a2≥b2≥c2,
∴a2b+b2c+c2a≤a3+b3+c3.
答案:B
2.已知a、b、c∈R+,则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)的正负情况为( )
A.大于零B.大于等于零
则a+b≥a+c≥b+c>0,
∴≤≤.
∴≥,
≥.
两式相加,得2()≥3,
即≥成立.
11.设a、b、c∈R+,求证:++≤.
分析:本题可多次利用排序不等式证明,不等式的右边=.
证明:不妨设a≥b≥c>0,则≥≥.
∴≥≥,且a5≥b5≥c5.
∴≥.
∵a≥b≥c>0,∴aBiblioteka ≥b2≥c2,.∴≥
∴≥++成立.
∴a4-a2bc+b4-ab2c+c4-abc2≥0,
即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.
答案:B
3.设x1,x2,…,xn是不同的正整数,则m=+…+的最小值是( )
A.1 B.2 C.1+++…+ D.1+++…+
解析:∵x1,x2,…,xn是不同的正整数,设b1,b2,…,bn是x1,x2,…,xn的一个排列且b1≤b2≤b3≤…≤bn,

即成立.
解析:∵b、c为互不相等的正整数,若b<c,则b≥1,c≥2.
又∵,∴≥
若b>c,则b≥2,c≥1,又∵>,
∴≥≥=.
∴最小值为.
答案:B
6.若a、b、c为实数,则a2+b2+c2与ab+bc+ca的大小关系为_______________.
解析:不妨设a≥b≥c,则ab+bc+ca≤a·a+b·b+c·c=a2+b2+c2.
∴≤.
∴≤,
即≥+.
(3)当a>-b>0时,
∵n为偶数,
∴an>(-b)n=bn>0,且a>b.
∴an-1>bn-1,且<.
∴≥
(4)当0>a>-b时,则b>-a>0,
∵n为偶数,∴bn>(-a)n=an>0且bn-1>an-1.
∴>.
∴≤,
即≥+.
综上,≥+.
13.设x1≥x2≥…≥xn,y1≥y2≥…≥yn,z1,z2,…,zn是y1,y2,…,yn的任意一个排列,求证:≤.
C.小于零D.小于等于零
解析:不妨设a≥b≥c>0,
则a2≥b2≥c2,ab≥ac≥bc.
∴a4+b4+c4=a2·a2+b2·b2+c2·c2
≥a2b2+b2c2+c2a2
=(ab)·(ab)+(bc)·(bc)+(ac)·(ac)
≥(ab)·(ac)+(ac)·(bc)+(bc)·(ab)
=a2bc+abc2+ab2c.
∴·a+·b≤,
即+≤.
答案:+≤
9.若a、b为正数,则-a2与b2-的大小关系为_______________.
解析:不妨设a≥b>0,则a2≥b2>0,≥>0,
a4≥b4>0.∴≥=a2+b2.
∴-a2≥b2-.
答案:-a2≥b2-
10.设a、b、c都是正数,求证:++≥.
证明:不妨设a≥b≥c>0,
分析:本题可利用排序不等式解答,要证≤成立,
只需证-≤-,由排序不等式证明出.
证明:∵x1≥x2≥…≥xn,y1≥y2≥…≥yn,z1,z2,…,zn是y1,y2,…,yn的任意一个排列,
∴x1y1+x2y2+…+xnyn≥x1z1+x2z2+…+xnzn,


且x12+y12+x22+y22+…+xn2+yn2=x12+z12+x22+z22+…+xn2+zn2.
相关文档
最新文档