二次函数基本定义完整版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数基本定义

Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

基本定义一般地,把形如

(a、b、c是)的叫做二次函数,其中a称为,b为,c为。x 为,y为。等号右边自变量的最高次数是2。

顶点坐标

(仅限于与x轴有交点的抛物线),

与x轴的交点坐标是和

顶点式

y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)[4],对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2

的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。

例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。

解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。

注意:与点在中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。[2]

具体可分为下面几种情况:

当h>0时,y=a(x-h)2的图像可由抛物线y=ax2向右平行移动h 个单位得到;

当h<0时,y=a(x-h)2的图像可由抛物线y=ax2向左平行移动|h|个单位得到;

当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;

当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;

当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。[5]

交点式

[仅限于与x轴即y=0有交点时的

与X轴交点的情况:

当时,函数图像与x轴有两个交点,分别是(x1,0)和

(x2,0)。

当时,函数图像与x轴只有一个切点,即

。[2]

时,抛物线与x轴没有公共交点。x的取值范围是虚数

抛物线,即b2-4ac≥0].

已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设

平移得到的。[2]

二次函数图像?[6]

二次函数图像有一个顶点P,坐标为P(h,k)。

当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)2+k(x≠0)

,

。[2]

开口

二次项系数a决定二次函数图像的开口方向和大小。

当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。

|a|越大,则二次函数图像的开口越小。[2]

决定位置因素

一次项系数b和二次项系数a共同决定对称轴的位置。

当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。

事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。[2]

决定交点因素

常数项c决定二次函数图像与y轴交点。

二次函数图像与y轴交于(0,C)点

注意:顶点坐标为(h,k),与y轴交于(0,C)。[2]

与x轴交点数

a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。

k=0时,二次函数图像与x轴只有1个交点。

质疑点:a<0;k<0或a>0,k>0时,二次函数图像与x轴无交点。

当a>0时,函数在x=h处取得最小值y=k,在xh范围内是增函数(即y随x的变大而变大),二次函数图像的开口向上,函数的值域是y>k

当a<0时,函数在x=h处取得最大值

=k,在xh范围内是减函数(即y随x 的变大而变小),二次函数图像的开口向下,函数的值域是y

相关文档
最新文档