信号与系统 线性时不变系统实验报告
信号与系统实验五 连续线性时不变系统分析
信号与系统实验报告课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI 系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。
2.掌握连续LTI 系统的频域分析方法。
3.掌握连续LTI 系统的复频域分析方法。
4.掌握连续LTI 系统的时域、频域和复频域分析方法的相互转换。
二、实验原理1.连续LTI 系统的时域分析(1) 连续线性时不变系统的描述设连续线性时不变系统的激励为)(t e ,响应为)(t r ,则描述系统的微分方程可表示为()()00()()n mi j ij i j a r t b e t ===∑∑ 为了在Matlab 编程中调用有关函数,我们可以用向量a 和b 来表示该系统,即],,,,011a a a a n n -=[a ],,,,011b b b b m m -=[b这里要注意,向量a 和b 的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。
(2) 单位冲激响应单位冲激响应)(t h 是指连续LTI 系统在单位冲激信号)(t δ激励下的零状态响应,因此)(t h 满足线性常系数微分方程(5.1)及零初始状态,即()()00()()n m i j ij i j a h t b t δ===∑∑, ()(0)0, [011]k h k ,,,n --==按照定义,它也可表示为)()()(t t h t h δ*=对于连续LTI 系统,若其输入信号为)(t e ,冲激响应为)(t h ,则其零状态响应()zs y t 为()()()zs y t e t h t =*可见,)(t h 能够刻画和表征系统的固有特性,与何种激励无关。
一旦知道了系统的冲激响应)(t h ,就可求得系统对任何输入信号)(t e 所产生的零状态响应()zs y t 。
Matlab 提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。
信号与系统实验实验报告
信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
实验三 随机信号通过线性时不变系统
实验三 随机信号通过线性系统的分析一、实验目的1 模拟产生特定相关函数的连续随机序列或者离散的随机序列,考察其特性。
2 模拟高斯白噪声环境下信号通过系统的问题,实现低通滤波。
3 掌握系统输出信号的数字特征和功率谱密度的求解。
二、实验设备1计算机2 Matlab 软件三、实验原理随机信号通过线性系统分析的中心问题是:给定系统的输入函数(或统计特性:均值和 自相关函数)和线性系统的特性,求输出函数。
如下图所示,H 为线性变换,信号X (t )为系统输入, Y (t )为系统的输出,它也是随机信号。
图3.1 随机信号通过系统的示意图并且满足: H [X (t )] = Y (t )在时域:若X(t)时域平稳,系统冲激响应为h(t),则系统输入和输出的关系为:()()*()()()()()Y t X t h t X h t d h X t d ττττττ∞∞-∞-∞==-=-⎰⎰ 输出期望:∑∞===0m XY )m (h m )]t (Y [E m 输出的自相关函数:)(h )(h )(R )(R X Y τ*τ-*τ=τ输出平均功率:⎰⎰∞∞-∞∞--=τdvdu )u (h )v (h )u v (R )(R X Y 互相关:)()()()()(ττσσσττh R d h R R X X XY *=-=⎰∞∞-在频域:输入与输出的关系:)(H )(X )(Y ωω=ω输出的功率谱:2X X Y )(H )(S )(H )(H )(S )(S ωω=ωω-ω=ω功率谱:)(H )(S )(S X XY ωω=ω四、实验内容与步骤1已知平稳随机过程X(n)的相关函数为:5),()(22==σδσm m R ; 线性系统的单位冲击响应为111,0,)(+-=≥=实验者学号后两位r k r k h k 。
编写程序求:1)输入信号的功率谱密度、期望、方差、平均功率;2)利用时域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;3)利用频域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;4)利用频域分析法或时域分析法求解输入输出的互相关函数、互功率谱密度。
离散时间信号通过线性时不变系统
数字信号处理实验报告实验名称:离散时间信号通过线性时不变系统姓名:专业:年级:学号:指导教师:P=16,N=32,q=2,FFT点数为512P=16,N=32,q=30 FFT点数为512时域:q取值的增大,信号波形变宽,变矮,在最大值处过度变的平缓。
频域:信号的频谱向低频靠近。
方差q=2 时,信号变化相对快,高频分量大。
方差q=30时,信号变化相对慢,低频分量大。
因为随着q取值的增大,高斯信号逐渐变得平缓,过渡带变得平滑并延P=30,N=32,q=10 FFT点数为512P=32,N=32,q=10 FFT点数为512时域:p取值的增大,信号波形逐渐向右平移。
频域:信号的频谱中高频分量逐渐增加,频谱泄漏逐渐明显,并逐渐出现频谱混叠现象。
当p=32时,能力泄漏至旁边的频率,出现较明显的频谱泄漏与频谱混叠现象。
随着p值增大,信号被截断部分增多,截断部分的过渡带过陡,产生高频分量增多,而造成频谱泄漏与混叠。
f=0.0625,N=32,FFT点数32当FFT点数为32时,频谱为单线谱,只在谱峰处有值,其他位置都为f=0.0625,N=32,FFT 点数512FFT 点数为512时除谱峰以外,其他位置也有值。
出现这种现象是由于栅栏效应引起的,导致采样时只采到谱峰与零值点。
利用频谱估计频率时,Nm f ,m 为谱峰的位置,估计值与实际值一致,所以谱峰的位置正确。
f=0.265625,N=32,FFT 点数32f=0.265625,N=64,FFT 点数32f=0.265625,N=64,FFT 点数64N=FFT 点数=32、64时没有出现单线谱 N=FFT 点数=64的时候出现单线谱因为当点数为32时,FFT 对频域采样点没有采到谱峰位置,而有一定的相位差,其他点采到了各个旁瓣的峰值。
而当点数为64点时,正好采样采到谱峰和旁瓣的零点。
要使频谱正好采到谱峰,满足Nk Fs f =。
a=0.01 f=0.21875 N=32 FFT点数32 a=0.01 f=0.4375 N=32 FFT点数32a=0.01 f=0.21875 N=32 FFT点数256 a=0.01 f=0.4375 N=32 FFT点数256FFT 点数256 (2)反三角序列⎪⎩⎪⎨⎧≤≤-≤≤-=elsen n n n n x d 0743304)(FFT 点数为256FFT 点数=8,虽然两者的时域波形不同,但是频域波形却相同,因为二者满足循环移位关系,即)())4(()(88n R n x n x d e -=,从而)()(k X k X e d =,这种现象是栅栏效应引起的。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
线性时不变系统
信号与系统实验报告实验名称:线性时不变系统姓名:姚敏学号:110404212班级:通信(2)班时间:2013.5.17南京理工大学紫金学院电光系一、 实验目的1、 掌握线性时不变系统的特性;2、 学会验证线性时不变系统的性质。
二、实验基本原理线性时不变系统具有如下的一些基本特性。
1.线性特性(包含叠加性与均匀性)对于给定的系统,11()()x t t 、y 和22()()x t t 、y 分别代表两对激励与响应。
对于叠加性:当11()()x t y t −−→,22()()x t y t −−→则1212()()()()x t x t y t y t +−−→+图2.1对于均匀性:当()()x t y t −−→, 则()()kx t ky t −−→,0k ≠图2.2综合以上,则当激励是1122()()k x t k x t ⋅+⋅时,则对应的响应为1122()()k y t k y t ⋅+⋅。
对于线性时不变系统,如果起始状态为零,则系统满足叠加性与均匀性(线性性)。
2.时不变特性对于时不变系统, 当11()()x t t −−→y ,则1010()()x t t t t -−−→-y图2.3 3. 微分特性对于线性时不变系统,当()()x t t −−→y 则()()dx t dy t dt dt−−→图2.44. 因果性因果系统是指系统在时刻0t 的响应只与0t t =和0t t <时刻的输入有关。
也就是说,激励是产生响应的原因,响应是激励引起的后果,这种特性称为因果性。
通常由电阻器、电感线圈、电容器构成的实际物理系统都是因果系统。
三、实验内容及结果记录实验过程中的输入输出波形。
1、 线性特性(1) 叠加性1()x t 1()y t\2()x t 2()y t112()()()C t y t y t =+ 2()C t(2) 均匀性(标出峰峰值)1()e t 1()r t2()e t 2()r t2、 时不变特性()x t 1()y t以()x t 为基准画出()x t T -,以1()y t 为基准画出2()y t ,()x t T - 2()y t3、 微分特性1()x t 1()y t2()x t 2()y t1()x t 1()y t 同坐标4、 因果性1()x t 2()x t将1()x t 1()y t 放入同一个坐标系中, 1()x t (1()y t )满足四、实验分析1、分析比较1()C t和2()C t的关系。
信号处理与系统分析 第2章线性时不变系统
从波形的角度来观察离散时间信号,它可以 看成是由许多加权了的单位冲激信号组合 而成的
x[n] x[1] [n 1] x[0] [n] x[2] [n 2]
对于任意的离散时间信号:
累加序号 自变量
加权值 移位的冲激信号
x[n]
k
x[k ] [n k ]
n
卷积公式是无穷多项求和,而我们实际遇到的常 常是有限长度序列,特别是在计算机离线处理的场 合,因为计算机不可能处理无穷多的信息。 在进行有限长度的序列的卷积时候,长度为N和M 的2个序列作卷积时,反转序列从左到右进入重叠 直至移出重叠,只有存在重叠项时,卷积和才可能 非零。 卷积序列的长度为M+N-1。
求解系统响应的卷积方法是系统分析的重要工具。
单位冲激响应h[n]完全描述了线性时不变系统的变换 规律。不同的系统输入,都在h[n]的作用下产生相应的 响应,因此,给定了一个LTI系统的单位冲激响应h[n]就 等于给定了该系统。
从计算某一个特定点的角度来看
yy [n [n 0]
k k
第2章 线性时不变系统
线性时不变(简称LTI,Linear, Time-invariant)系统
为什么引入LTI ?
如果不对系统的性质加以限制,那么分析 一个系统将是十分困难的。 给系统加上线性和时不变性的限制,那么 系统的分析将变得十分简便。 LTI系统的分析还为非线性系统的分析方法 提供了思路。例如,线性时不变系统可以 用冲激响应来表达,非线性系统可以用 Volterra级数来表达。
上式应该理解为许多以为n自变量的函数的相 加,而不是数值相加。
许多移了位的冲激信号的加权和,构成了x[n] 。
特别地,我们有
信号与系统实验报告实验一 信号与系统的时域分析
实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MA TLAB求解LTI 系统响应,绘制相应曲线。
基本要求:掌握用MA TLAB描述连续时间信号和离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。
掌握线性时不变连续系统的时域数学模型用MATLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。
二、实验原理信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。
一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。
在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。
在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。
信号与系统实验报告——卷积(含程序)
电 子 科 技 大 学实 验 报 告学生姓名:苏晓菁 学 号:2804301026 指导教师:张鹰 一、实验室名称:信号与系统实验室二、实验项目名称:离散系统的冲激响应、卷积和 三、实验原理:线性时不变系统的输入输出关系可通过冲激响应][n h 表示∑∞-∞=-=*=k k n h k x n h n x n y ][][][][][其中*表示卷积运算,MATLAB 提供了求卷积函数conv ,即 y =conv(x,h)filter 命令计算线性常系数差分方程表征的因果LTI 系统在某一给定输入时的输出。
具体地说,考虑一个满足下列差分方程的LTI 系统:∑∑==-=-Mm m Nk k m n x b k n y a 0][][式中x [n ]是系统输入,y [n ]是系统输出。
若x 是包含在区间1-+≤≤xx xNn n n 内x [n ]的一个MATLAB 向量,而向量a 和b 包含系数k a 和k b ,那么y=filter(b,a,x)就会得出满足上面差分方程的因果LTI 系统的输出。
四、实验目的:目的:加深对离散系统冲激响应、卷积和分析方法的理解。
五、实验内容:实验内容(一)、使用实验仿真系统 实验内容(二)、MATLAB 仿真六、实验器材(设备、元器件):计算机、MATLAB 软件。
七、实验步骤:实验内容(一)、使用实验仿真系统1、 在MATLAB 环境下输入命令 >>xhxt启动《信号与系统》MATLAB 实验工具箱。
2、启动工具箱主界面,进入实验二的启动界面 3、设定输入序列][21n a a a x = 和][21m b b b y=,观测离散信号的卷积和的波形。
4、由离散系统的差分方程求输出。
实验内容(二)、MATLAB 仿真1、考虑有限长信号1,05[]0,n x n n≤≤⎧=⎨⎩其余,05[]0,n n h n n≤≤⎧=⎨⎩其余利用conv 计算[][]*[]y n x n h n =的非零样本值,并将这些样本存入向量y 中。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
信号与系统实验报告
信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。
信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。
在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。
实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。
信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。
我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。
实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。
在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。
我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。
通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。
实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。
我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。
通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。
实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。
卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。
我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。
实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。
信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。
我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。
通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。
实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。
系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。
我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。
信号与系统-第二章线性时不变系统
n
1
k
f1 (k )
f2 (0
k)
3,
k
f1 (k )
f2 (1 k)
3,
n0 n 1
k
f1 (k )
f2(2 k)
1,
0,
n2 n14 3
三. 卷积和的计算:(3)列表法
分析卷积和的过程,可以发现有如下特点:
① x(n与) 的h(所n)有各点都要遍乘一次;
② 在遍乘后,各点相加时,根据 x(k)h(n k), k
x (t) x(t)
20
x(t) x (t)
x(k)
t
0
k (k 1)
引用 (t,) 即:
(t)
1
/ 0
0t otherwise
则有:
(t
)
1 0
0t otherwise
21
第 个k 矩形可表示为: x(k) (t k)
这些矩形叠加起来就成为阶梯形信号 x,(t)
即: x (t) x(k) (t k) k 当 时0 , k d
un 4 ak
an3
1un 4
k 0
a 1
9
例4: x(n) nu(n) 0 1 h(n) u(n)
x(k) ku(k)
1
0
k ...
h(n k) u(n k)
1
k
0
n
y(n) x(n) h(n)
x(k)h(n k) ku(k)u(n k)
k
k
u(n) n k 1 n1 u(n)
例2 :
1 x(t) 0
h( )
2T
0t T otherwise
信号与系统matlab实验报告
信号与系统matlab实验报告信号与系统MATLAB实验报告引言信号与系统是电子工程、通信工程和控制工程等领域中的重要基础课程。
通过实验,我们可以更好地理解信号与系统的概念和基本原理,并掌握使用MATLAB进行信号与系统分析的方法。
本报告将介绍我们在信号与系统实验中的实验过程、结果和分析。
实验一:连续时间信号的采样与重构在这个实验中,我们研究了连续时间信号的采样与重构。
首先,我们通过MATLAB生成了一个连续时间信号,并使用采样定理确定了采样频率。
然后,我们对连续时间信号进行采样,并通过重构方法将采样信号还原为连续时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果。
实验二:线性时不变系统的频率响应在这个实验中,我们研究了线性时不变系统的频率响应。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个线性时不变系统。
然后,我们通过将输入信号输入到系统中,并记录输出信号的幅度和相位,从而得到系统的频率响应。
最后,我们绘制了系统的幅频特性和相频特性曲线,并对其进行了分析和讨论。
实验三:离散时间信号的采样与重构在这个实验中,我们研究了离散时间信号的采样与重构。
首先,我们通过MATLAB生成了一个离散时间信号,并使用采样定理确定了采样周期。
然后,我们对离散时间信号进行采样,并通过重构方法将采样信号还原为离散时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果,并讨论了离散时间信号的采样与重构的特点。
实验四:离散时间系统的差分方程在这个实验中,我们研究了离散时间系统的差分方程。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个离散时间系统。
然后,我们通过将输入信号输入到系统中,并根据系统的差分方程计算输出信号。
最后,我们对输入信号和输出信号进行了分析和比较,并讨论了离散时间系统的差分方程的特点和应用。
实验五:连续时间信号的傅里叶变换在这个实验中,我们研究了连续时间信号的傅里叶变换。
信号与系统 实验报告
信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。
本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。
二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。
三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。
其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。
2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。
采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。
重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。
四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。
然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。
最后,将重建得到的信号与原始信号进行对比,分析重建误差。
实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。
而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。
2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。
例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。
同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。
实验结果表明,不同系统对信号的频率特性有着明显的影响。
高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。
通过调节滤波器的参数,可以实现对信号频率的选择性衰减。
五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
数字信号处理--实验二_求线性时不变系统的输出
学生实验报告开课学院及实验室: 电子楼317 2013年 3 月18 日学院机械与电气工程学院年级、专业、班姓名学号 实验课程名称 数字信号处理实验成绩 实验项目名称实验二 求线性时不变系统的输出指导老师一、实验目的1. 学习用递推法求解差分方程的方法。
2. 学习用线性卷积法求网络输出的方法。
二、实验原理已知()h n 和输入()x n ,求系统输出()y n ,也可以用线性卷积法进行。
线性卷积法的公式如下:()()()y n x n h n =* ()()m x m h n m ∞=-∞=-∑图2.1 用递推法求解差分方程的框图计算时,关键问题是根据()x n 和()h n 的特点,确定求和的上下限。
例如,()0.9()nh n u n =,10()()x n R n =,卷积公式为10()()0.9()n m m y n R m u n m ∞-=-∞=-∑根据上式中的10()R n ,限制非零区间为:09m ≤≤,由()u n 限制非零区间为:m n ≤。
由上面的不等式知道m 的取值和n 有关,可以分几种情况: 当n <0时,()0y n =当0n ≤<9时,()0.9nn m m y n -==∑当9n ≥时,9()0.9n m m y n -==∑最后得到:再用计算机计算()y n 。
如果给定的()x n 和()h n 是一些离散数据,更方便的是用MATLAB 语言的数字信号工具箱函数conv 计算两个n 的取值从零开始的有限长序列的线性卷积。
三、使用仪器、材料1、硬件:计算机2、软件:Matlab四、实验步骤1.已知系统的差分方程如式:()0.9(1)()y n y n x n =-+(1) 输入信号=10()()x n R n =,初始条件(1)1y -=,求解输出()y n ; (2) 输入信号=10()()x n R n =,初始条件(1)0y -=,求解输出()y n 。
信号与系统 第二章 线性时不变系统的时域分析
外加信号 常数A
特解 常数B
r 1i k t i r 1 i 1
tr
sin t或cos t
eλt
k1 cost k2 sin t keλt, λ不是方程的特征根 kteλt, λ是方程的特征根
k t
i 1 i
r 1
r 1i t
e , λ是方程的r阶特征重根
一、微差分方程的建立以及经典解法
'' 1
di1 (t ) 1 t L i2 ( )d R2i2 (t ) f (t ) dt C
一、微差分方程的建立以及经典解法
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
(1)
t
i ( )d
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
例题,已知线性时不变系统方程如下: y˝(t)+6y΄(t)+8y(t)= f(t), t>0. 初始条件y(0)=1, y΄(0)=2,输入信号f(t)=e-tu(t) , Q求系统的完全响应y(t)。
解:1)求方程的齐次解 特征方程为:m2+6m+8=0 显然特征根为:m1=-2,m2=-4
故原方程的齐次解为:yn(t)= Ae-2t+Be-4t
信号与系统matlab实验线性时不变系统的时域分析(最新整理)
答案
1. x n hn u n u n 4 ;
nx=0:9;x=ones(1,length(nx)); nh=0:4;h=ones(1,length(nh)); y=conv(x,h); % 下限=下限1+下限2 ny_min=min(nx)+min(nh); % 上限=上限1+上限2 ny_max=max(nx)+max(nh); ny=ny_min:ny_max; subplot(3,1,1);stem(nx,x); xlabel('n');ylabel('x(n)');axis([ny_min ny_max 0 max(x)]); subplot(3,1,2);stem(nh,h); xlabel('n');ylabel('h(n)');axis([ny_min ny_max 0 max(h)]); subplot(3,1,3);stem(ny,y); xlabel('n');ylabel('x(n)*h(n)');axis([ny_min ny_max 0 max(y)]);
到连续卷积的数值近似,具体算法如下:
y=conv(x,h)*dt
% dt 为近似矩形脉冲的宽度即抽样间隔
例 2-2:采用不同的抽样间隔 值,用分段常数函数近似 x t u t u t 1 与
h t sin t u t u t π 的 卷 积 , 并 与 卷 积 的 解 析 表 达 式
x(t)
h(t)
1 0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 t
1 0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 t
信号与系统实验之连续线性时不变系统的分析报告
信号与系统实验报告连续线性时不变系统的分析专业:电子信息工程(实验班)姓名:曾雄学号:14122222203班级:电实12-1BF目录一、实验原理与目的 (3)二、实验过程及结果测试 (3)三、思考题 (10)四、实验总结 (10)五、参考文献 (11)一、实验原理与目的深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义。
掌握利用MATLAB分析连续系统的时域响应、频响特性和零极点的基本方法。
二、实验过程及结果测试1.描述某线性时不变系统的微分方程为:++=+''()3'()2()'()2()y t y t y t f t f t且f(t)=t2,y(0-)=1,y’(0-)=1;试求系统的单位冲激响应、单位阶跃响应、全响应、零状态响应、零输入响应、自由响应和强迫响应。
编写相应MATLAB 程序,画出各波形图。
(1)单位冲激响应:程序如下:%求单位冲激响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; h=impulse(sys,t);%用画图函数plot( )画单位冲激响应的波形plot(h); %单位冲激响应曲线 xlabel('t'); ylabel('h');title('单位冲激响应h(t)') 程序运行所得波形如图一:00.10.20.30.40.50.60.70.80.91th图一 单位冲激响应的波形 (2)单位阶跃响应: 程序如下:%求单位阶跃响应a=[1,3,2];b=[1,2]; sys=tf(b,a); t=0:0.01:10; G=step(sys,t);%用画图函数plot( )画单位阶跃响应的波形plot(G); %单位阶跃响应曲线 xlabel('t'); ylabel('g');title('单位阶跃响应g(t)') 程序运行所得波形如图二:00.10.20.30.40.50.60.70.80.91tg图二 单位阶跃响应的波形 (3)零状态响应: 程序如下:%求零状态响应yzs=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0') %用符号画图函数ezplot( )画各种响应的波形 t=0:0.01:3;ezplot(yzs,t); %零状态响应曲线 axis([0,3,-1 5]);title('零状态响应曲线yzs'); ylabel('yzs');程序运行所得波形如图三:-112345ty z s图三 零状态响应的波形(4)零输入响应: 程序如下:%求零输入响应yzi=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画零输入响应的波形 t=0:0.01:3;ezplot(yzi,t);%零输入响应曲线 axis([0,3,-1,2]); title('零输入响应yzi'); ylabel('yzi');程序运行所得波形如图四:图四 零输入响应的波形(5)全响应:程序如下:%求全响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画全响应响应的波形 t=0:0.01:3;ezplot(y,t); %全响应曲线 axis([0,3,-1,5]); title('全响应y'); ylabel('y');程序运行所得波形如图五:-1-0.50.511.52t零输入响应yziy z i-112345t全响应yy图五 全响应的波形(6)自由响应:程序如下: %自由响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1'); %全响应 yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解 yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht;yh=y-yp; % 求齐次解,即自由响应 t=0:0.01:3; ezplot(yh,t); title('自由响应yh'); ylabel('yh');程序运行所得波形如图六:0.511.52ty h图六 自由响应的波形(7)强迫响应: 程序如下:%强迫响应yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解 yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht; % 求特解,即强迫响应 t=0:0.01:3; ezplot(yp,t); title('强迫响应yp'); ylabel('yp');程序运行所得波形如图七:-112345ty p图七 强迫响应的波形2.给定一个连续线性时不变系统,描述其输入输出之间关系的微分方程为:编写MATLAB 程序,绘制系统的幅频响应、相频响应、频率响应的实部和频率响应的虚部的波形,确定滤波器的类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验报告
实验名称:线性时不变系统
姓名:
学号:
班级:
时间:
一、 实验目的
1、 掌握线性时不变系统的特性;
2、 学会验证线性时不变系统的性质。
二、实验基本原理
线性时不变系统具有如下的一些基本特性。
1.线性特性(包含叠加性与均匀性)
对于给定的系统,11()()x t t 、y 和22()()x t t 、y 分别代表两对激励与响应。
对于叠加性:当11()()x t y t −−→,22()()x t y t −−→
则1212()()()()x t x t y t y t +−−→+
图2.1
对于均匀性:
当()()x t y t −−→, 则()()kx t ky t −−→,0k ≠
图2.2
综合以上,则当激励是1122()()k x t k x t ⋅+⋅时,则对应的响应为
1122()()k y t k y t ⋅+⋅。
对于线性时不变系统,如果起始状态为零,则系统满足叠加
性与均匀性(线性性)。
2.时不变特性
对于时不变系统, 当11()()x t t −−→y ,
则1010()()x t t t t -−−→-y
图2.3 3. 微分特性
对于线性时不变系统,当()()x t t −−→y 则
()()
dx t dy t dt dt
−−→
图2.4
4. 因果性
因果系统是指系统在时刻0t 的响应只与0t t =和0t t <时刻的输入有关。
也就是说,激励是产生响应的原因,响应是激励引起的后果,这种特性称为因果性。
通常由电阻器、电感线圈、电容器构成的实际物理系统都是因果系统。
二、 实验内容及结果
记录实验过程中的输入输出波形。
1、线性特性
1).叠加性观察
(1) 设置信号产生模块为模式3(11) ;
(2) 用按键1使对应的“信号A 组”的输出1-x 2信号(信号A 组的信号输出指示灯为001011):记录波形为x1(t )
x1(t)
(3)用按键2使对应的“信号B组”产生正负锯齿脉冲串信号(信号B组的信号输出指示灯为010100):记录波形为x2(t)
x2(t)
(4)将模拟信号A 、B组的输出信号同时送入JH5004的“线性时不变系统”的两个单元,分别记录观察所得到的系统响应:
y1(t)
y2(t)
(5)将上述响应通过示波器进行相加观察响应相加之后的合成响应
C1(t)
(6)将模拟信号A B组的输出信号分别送入加JH5004的“基本运算单元”的加法器,将相加之后的信号送入ZH5004的“线性时不变系统”单元,记录观察所得到的系统响应:
C2(t)
(7)比较(5)、(6)两步所得到结果,并对之进行分析:
2)、均匀性验证
(1) 用按键1使对应的“信号A组”的输出1- x2信号(信号A组的信号输出指示灯为001011):
1()
e t
(2) 将输出信号同时送入ZH5004的“线性时不变系统”的两个单元,分别记录观察所得到的系统响应:
1()
r t
(3)用按键1使对应的“信号A组”的输出1-x^信号(信号A组的信号输出指示灯为001011),并送入倍乘器,观察输出波形;
2()
e t
(4)再将其送入线性时不变系统的第一个单元观察得到的响应;
2()
r t
(5)比较(2)、(4)的波形;
2.时不变特性观察
(1)设置信号产生模块为模式2.(10)
(2)通过信号选择键1,使对应的“信号A组”输出间隔正负脉冲信号(信号A组的信号输出指示灯为001001):
()x t
(3) 将模拟A 组的输出信号加到JH5004的“线性时不变系统”单元,记录观
察所得到的系统响应。
1()y t
以()x t 为基准画出()x t T ,以1()y t 为基准画出2()y t ,
() x t T
2()
y t
3.微分特性观察
(1)通过信号选择键1,使对应的“信号A组”输出正负指数脉冲信号(信号
A组的信号输出指示灯为001110)
2()
x t,通过信号选择键,2,使对应的“信号B组”输出正负指数脉冲积分信号(信号B组的信号输出指示灯为
001111)
1()
x t,
2()
x t是
1()
x t的倒数,记录这两个信号。
1()
x t
2()
x t
(2):将模拟A组的输出信号与模拟B组的输出信号加到JH5004的“线性时不变系统”单元的两个相同系统上,用示波器同时观察输入信号之间的微分关系,在用示波器同时观察输出之间是否还保持微分关系:
1()
y t
2()
y t
4.因果性观察
(1)通过信号选择键1,使对应的“信号A组”输出正负锯齿信号(信号A组的信号输出指示灯为010100):
1()
x t
(1)将模拟A组的输出信号加到ZH5004的“线性时不变系统”单元,记录观察所得到的系统响应。
观察输入信号时刻与对应输出信号时刻的相对时间关系:
1()
y t
四、实验分析
1、分析比较1()C t 和2()C t 的关系。
说明该系统是否满足叠加性;分析比较1()r t 2()r t 的关系,说明该系统是否满足均匀性;并且说明原因。
1()C t 和2()C t 满足叠加性,因为它满足当
11()()x t y t −−→,22()()x t y t −−→
则1212()()()()x t x t y t y t +−−
→+的条件。
1()r t 2()r t 满足均匀性,因为它满足当()()x t y t −−
→,则()()kx t ky t −−→,0k ≠的条件。
2、分析比较1()y t 、2()y t 两者关系,说明系统是否满足时不变特性,并且说明原因。
1()y t 、2()y t 满足时不变特性,因为它满足当11()()x t t −−
→y ,则1010()()x t t t t -−−→-y 的条件。
3、分析说明1()y t 2()y t 两者关系,并且说明系统是否满足微分特性,并且说明原因。
满足微分特性,从示波器所得波形可看出满足微分特性。
4、分析说明该系统是否是因果系统,并且说明原因。
该系统是因果系统,因为因果系统是指系统在时刻0t 的响应只与0t t =和0t t <时刻的输入有关。
也就是说,激励是产生响应的原因,响应是激励引起的后果,这种特性称为因果性。
所以该系统是因果系统。