离子晶体、分子晶体、原子晶体
离子晶体、分子晶体和原子晶体课件
分子晶体可以以不同的形态出现,如柱状、层状等。
分子晶体的制备方法
溶液挥发法
通过挥发溶液中的溶剂来 使分子晶体结晶。
熔融法
将物质熔化后再进行结晶, 得到分子晶体。
凝固法
通过控制溶液温度变化使 分子晶体在溶液中凝固成 形。
分子晶体的物理性质
功能团的影响
分子晶体的物理性质受分子中 不同的功能团的影响。
离子晶体、分子晶体和原 子晶体
在我们的课件中,我们将探讨离子晶体、分子晶体和原子晶体的性质、结构 以及制备方法。此外,我们还将介绍它们的物理性质和特点。
离子晶体的性质和结构
独特的化学组成
离子晶体由阳离子和阴离 子组成,形成稳定的晶格 结构。
高熔点
由于离子之间的强电荷相 互作用,离子晶体通常具 有较高的熔点。
极性分子
极性分子组成的分子晶体通常 具有特殊的电荷分布和化学性 质。
分子间力的影响
范德华力等分子间相互作用对 分子晶体的物理性质起着重要 的影响。
原子晶体的性质和类的原子组成,形成简单周期性排列。
2 高熔点
由于原子之间的强原子键作用,原子晶体通常具有较高的熔点。
3 晶体形状具规律性
原子晶体通常具有规则的几何形状,如立方体、六方晶等。
2 刚性和脆性
离子晶体的离子间相互作用较强,因此它们通常是刚性且易于破裂的。
3 光学性质
离子晶体对光的透射、反射和吸收呈现出特殊的光学性质。
分子晶体的性质和结构
1
复杂的分子结构
分子晶体由复杂的有机分子构成,形成稳定的晶格结构。
2
低熔点
由于分子之间的弱范德华力作用,分子晶体通常具有较低的熔点。
3
各种晶体形态
四种晶体类型
晶体,一般包括离子晶体、分子晶体、原子晶体、金属晶体四种类型。
一、依据构成晶体的微粒和微粒间的作用判断(1)离子晶体的构成微粒是阴、阳离子,微粒间的作用是离子键。
(2)原子晶体的构成微粒是原子,微粒间的作用是共价键。
(3)分子晶体的构成微粒是分子,微粒间的作用为分子间作用力。
(4)金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用是金属键。
二、依据物质的分类判断(1)金属氧化物(如K2O、Na2O2等)、强碱(NaOH、KOH等)和绝大多数的盐类是离子晶体。
(2)大多数非金属单质(除金刚石、石墨、晶体硅等)、非金属氢化物、非金属氧化物(除SiO2外)、几乎所有的酸、绝大多数有机物(除有机盐外)是分子晶体。
(3)常见的单质类原子晶体有金刚石、晶体硅、晶体硼等,常见的化合类原子晶体有碳化硅、二氧化硅等。
(4)金属单质是金属晶体。
三、依据晶体的熔点判断。
(1)离子晶体的熔点较高。
(2)原子晶体的熔点很高。
(3)分子晶体的熔点低。
(4)金属晶体多数熔点较高,但有少数熔点相当低。
四、依据导电性判断。
(1)离子晶体溶于水及熔融状态时能导电。
(2)原子晶体一般为非导体。
(3)分子晶体为非导体,而分子晶体中的电解质(主要是酸和强极性非金属氢化物)溶于水,使分子内的化学键断裂形成自由移动的离子,也能导电。
(4)金属晶体是电的良导体。
五、依据硬度和机械性能判断。
(1)离子晶体硬度较大、硬而脆。
(2)原子晶体硬度大。
(3)分子晶体硬度小且较脆。
(4)金属晶体多数硬度大,但也有硬度较小的,且具有延展性。
离子晶体、分子晶体、金属晶体、原子晶体
即Si原子与O原子的个数比为1∶2。
二、物质熔沸点高低判断的方法
1.原子晶体中原子间键长越短,共价键越稳定,物质熔沸点越高,反熔沸点越高,反之越低。
3.分子晶体中分子间作用力越大,物质熔沸点越高,反之越低。其中组成和结构相似的分子,相对分子质量越大,分子间作用力越大。(但这不包括具有氢键的分子晶体其熔沸点出现反常得高的现象,
5.原子晶体的熔点高低与其内部的结构密切相关:对结构相似的原子晶体来说,原子半径越小,键长越短,键能越大,晶体的熔点就高。
二、分子晶体
1.分子晶体定义:分子间通过分子间作用力构成的的晶体称为分子晶体。
(1)构成分子晶体的粒子是分子,粒子间的相互作用是分子间作用力
(2)原子首先通过共价键结合成分子,分子作为基本构成微粒,通过分子间作用力结合成分子晶体。
2. 分子晶体的类别:多数非金属单质(除了金刚石、晶体硅、晶体硼、石墨等),多数非金属氧化物(如干冰、CO、冰等)、非金属气态氢化物(如NH3,CH4等)、稀有气体、许多有机物等。
3.常见的分子晶体的晶体结构
(1)碘晶体的晶胞是长方体,碘分子除了占据长方体的每个顶点外,在每个面上还有一个碘分子。
⑵CsCl型
CsCl型离子晶体中,每个离子被8个带相反电荷的离子包围,阴离子和阳离子的配位数都为8。常见的CsCl型离子晶体有铯的卤化物(氟化物除外)、TlCl的晶体等。
⑶ZnS型
ZnS型离子晶体中,阴离子和阳离子的排列类似NaCl型,但相互穿插的位置不同,使阴、阳离子的配位数不是6,而是4。常见的ZnS型离子晶体有硫化锌、碘化银、氧化铍的晶体等。
(3)大多数离子晶体易溶于极性溶剂(如水)中,难溶于非极性溶剂(如汽油、煤油)中。当把离子晶体放在水中时,极性水分子对离子晶体中的离子产生吸引作用,使晶体中的离子克服了离子间的作用而电离,变成在水中自由移动的离子。
离子晶体、分子晶体、原子晶体
ClNa+
二、分子晶体
分子间作用力和氢键:(氢键的形成过程)
分子间作用力和氢键对一些物质的熔、沸点的关系
分子晶体:
分子间通过分子间作用力相 结合的晶体,叫做分子晶体。 实例:如干冰 定义:
分子晶体的物理性质:
熔、沸点低,硬度小,在水 形成分子晶体的物质:
中的溶解度存在很大的差异。 H2、Cl2、He 、HCl 、H2O、CO2等
原子晶体的物理性质:
熔沸点很高,硬度很大,难溶于水,一般不导电。
常见的原子晶体:
金刚石、金刚砂(SiC)、晶体硅、石英(SiO2)
Si
o
180º
109º 28´
共价键
109º 28´
共价键
小结
1、离子晶体、分子晶体、原子晶体结构与性质关系的比较: 晶体类型 结 构成晶体粒子 构 性
熔、沸点 导电性 粒子间的相互 作用力
离子晶体
分子晶体
原子晶体
硬 度
质
溶解性
2、化学键和分子间作用力的比较:
化学键 概念 能量 性质影响 分子间作用力
3、影响晶体物理性质的因素:
影
离子晶体 分子晶体 原子晶体
响
因 素
共价键
氢键
氢键的形成过程
返回
温度/℃ H2O 温度/100 ℃ 沸点/℃ 250 75 沸点 250 熔点 CBr 200 沸点 4 × × 50 200 150 I2 CI4 150 25 HF 100 CCl 熔点 × 100 4 × CBr4 I 0 H2Te 50 2 100 150Br 50 SbH3 2 -25 0 2Se 200 300 400 H 500 × NH3 100 H S HI 0 Br 2 2 200 -50 50 250 -50 CCl4 -50 × AsH Cl 3 相对分子质量 SnH4 2 -100 HCl 相对分子质量 -100 -75 HBr CF × Cl 4 2 -150 × PH3 GeH4 -150 × -100 -200 F2 CF 4 SiH 4× -200 -125 F2 -250 -250
离子、分子、原子晶体
离子晶体、分子晶体、原子晶体离子晶体离子晶体是由阴、阳离子组成的,离子间的相互作用是较强烈的离子键。
离子晶体的代表物主要是强碱和多数盐类。
离子晶体的结构特点是:晶格上质点是阳离子和阴离子;晶格上质点间作用力是离子键,它比较牢固;晶体里只有阴、阳离子,离子晶体中可能含有分子如:CuSO4·5H2O就含有分子。
性质特点,一般主要有这几个方面:有较高的熔点和沸点,因为要使晶体熔化就要破坏离子键,离子键作用力较强大,所以要加热到较高温度。
硬而脆。
多数离子晶体易溶于水。
离子晶体在固态时有离子,但不能自由移动,不能导电,溶于水或熔化时离子能自由移动而能导电。
离子晶体的空间结构对称性1) 旋转和对称轴n重轴, 360度旋转, 可以重复n次:2) 反映和对称面晶体中可以找到对称面:3) 反演和对称中心晶体中可以找到对称中心:离子晶体熔沸点高低比较离子所带电荷越高,离子半径越小,则离子键越强,熔沸点越高。
例如:Al2O3 > MgO > NaCl > CsCl.。
原子晶体相邻原子之间通过强烈的共价键结合而成的空间网状结构的晶体叫做原子晶体原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。
原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。
常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。
(但碳元素的另一单质石墨不是原子晶体,石墨晶体是层状结构,以一个碳原子为中心,通过共价键连接3个碳原子,形成网状六边形,属过渡型晶体。
)对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。
晶体的类型和性质
B A
ABC3
2006年江苏-15
• 下列关于晶体的说法一定正确的 是( B )。
• A.分子晶体中都存在共价键 • B.CaTiO3晶体中每个Ti4+和 • 12个O2-相紧邻 • C.SiO2晶体中每个硅原子与 • 两个氧原子以共价键相结合 • D.金属晶体的熔点都比分子 • 晶体的熔点高
A2BC2
4.常见的离子晶体: 强碱(NaOH、KOH)、活 泼金属氧化物(Na2O、MgO、Na2O2)、大多 数盐类[BeCl2、AlCl3、Pb(Ac)2等除外]。
(二)分子晶体
1.定义:分子间以分子间作用力相结合而形成的晶体。 2.结构特点:
(1)构成粒子:分子。 (2)粒子间的作用:分子间作用力或氢键。 (3)存在单个的分子,有分子式。其化学式就是分子式。
2.由共价键形成的的原子晶体中,原子半径小的,键长 ( 短 ),键能( 大 ),共价键( 强 ) ,晶体的熔沸点就 ( 高 ) 。如:金刚石 > 碳化硅 > 晶体硅。
3.离子晶体中比( 离子键 )强弱。一般地说,阴、阳离子的 电荷数越多,离子半径越小,则离子间的作用力就越 ( 强 ),其晶体的熔、沸点就越( 高 ), 如CsCl < NaCl < MgCl2 < MgO 。
4.分子晶体:组成和结构相似的物质,相对分子质量
越大,熔、沸点就越( 高 ),如HI > HBr > HCl 。
分子间有氢键作用的物质(如HF 、H2O 、NH3 、 低级醇和羧酸等)熔、沸点反常。同分异构体中, 一般地说,支链数越多,熔、沸点就越( ),如沸
点低:正戊烷 异戊烷 >新戊烷; 5>.金属晶体中金
2.结构特点:
离子晶体分子晶体原子晶体的区别
离子晶体分子晶体原子晶体的区别
离子晶体、分子晶体和原子晶体都是晶体的类型,它们的区别主要在于晶体的组成和结构。
离子晶体是由正负离子通过离子键结合而成的晶体。
通常,离子晶体的成分是由金属离子和非金属离子组成的化合物。
离子晶体的结构可由阴离子和阳离子构成的空间排列组成。
这些空间交替排列,形成一种定期的三维晶格结构。
离子晶体的结构稳定,常常具有高熔点,高硬度和高电导率等特点。
分子晶体是由分子间通过范德华力相互作用形成的晶体。
通常,分子晶体的成分是由原子间共享电子而形成的分子。
这些分子通过弱的范德华力互相作用,并形成一种定期的三维晶格结构。
分子晶体的结构可由分子排列而成的晶格构成。
分子晶体的结构稳定,常常具有较低的熔点、较低的硬度和较低的电导率等特点。
原子晶体是由原子间通过金属键或共价键相互作用而形成的晶体。
通常,原子晶体的成分是由金属原子或非金属原子组成的晶体。
这些原子通过强的金属键或共价键相互作用,并形成一种定期的三维晶格结构。
原子晶体的结构可由原子排列而成的晶格构成。
原子晶体的结构稳定,常常具有高熔点、高硬度和良好的导电性能等特点。
总之,离子晶体、分子晶体和原子晶体的区别在于它们的组成和结构。
离子晶体
由离子间的离子键结合而成,分子晶体由分子间的范德华力相互作用形成,而原子晶体由原子间的金属键或共价键相互作用而形成。
3.1四种晶体
2、常见离子晶体
强碱、金属氧化物、部分盐类 ①NaCl 晶体
阴离子配位数 6
阳离子配位数 6
NaCl 晶体
每个晶胞中 Cl—有 4 个 Na +有 4 个 每个Cl— 周围最近且等距离的Cl—有 12 个 每个Na+周围最近且等距离的Na+有 12 个
__2_:_3___.
小结1:分子晶体与原子晶体的比较
相邻原子间以共价键相结 分子间以分子间 合而形成空间网状结构 作用力结合
原子 共价键 很大 很大 不溶于任何溶剂
不导电,个别为半导体
分子 分子间作用力
较小
较小 部分溶于水 固体和熔化状态 都不导电,部分 溶于水导电
第三章 晶体的结构与性质
第三节 金属晶体
简单立方堆积的空间占有率 =52%
球半径为r 正方体边长为a =2r
②体心立方堆积(钾型)K、Na、Fe
体心立方堆积的配位数 =8
体心立方堆积的空间占有率 =68%
体对角线长为c 面对角线长为b 棱线长为a 球半径为r
c2=b2+a2 b2=a2+a2 c=4r (4r)2=3a2
③六方最密堆积(镁型)Mg、Zn、Ti
12
6
3
A
54
B
A
B A
六方最密堆积的配位数 =12
六方最密堆积的晶胞
六方最密 堆积的晶胞
六方最密堆积的空间占有率 =74% 上下面为菱形 边长为半径的2倍 2r
高为2倍 正四面体的高
2 6 2r 3
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
晶体的类型和性质
1、晶体类型判别:分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。
原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等;金属晶体:金属单质、合金;离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物;2、不同晶体的熔沸点由不同因素决定:离子晶体的熔沸点主要由离子半径和离子所带电荷数(离子键强弱)决定,分子晶体的熔沸点主要由相对分子质量的大小决定,原子晶体的熔沸点主要由晶体中共价键的强弱决定,且共价键越强,熔点越高。
3晶体熔沸点高低的判断?(1)不同类型晶体的熔沸点:原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体;金属晶体熔沸点有的很高,如钨,有的很低,如汞(常温下是液体)。
(2)同类型晶体的熔沸点:①原子晶体:结构相似,半径越小,键长越短,键能越大,熔沸点越高。
如金刚石>氮化硅>晶体硅。
②分子晶体:组成和结构相似的分子,相对分子质量越大,分子间作用力越强,晶体熔沸点越高。
如CI4>CBr4>CCl4>CF4。
若相对分子质量相同,如互为同分异构体,一般支链数越多,熔沸点越低,特殊情况下分子越对称,则熔沸点越高。
若分子间有氢键,则分子间作用力比结构相似的同类晶体强,故熔沸点特别高。
③ 金属晶体:所带电荷数越大,原子半径越小,则金属键越强,熔沸点越高。
如Al >Mg >Na >K 。
④ 离子晶体:离子所带电荷越多,半径越小,离子键越强,熔沸点越高。
如KF >KCl >KBr >KI 。
1.60C 与现代足球(如图6-1)有很相似的结构,它与石墨互为 ( ) A .同位素 B .同素异形体 C .同分异构体 D .同系物2.下列物质为固态时,必定是分子晶体的是 ( )A .酸性氧化物B .非金属单质C .碱性氧化物D .含氧酸 3.金属的下列性质中,不能用金属晶体结构加以解释的是 ( ) A .易导电 B .易导热 C .有延展性 D .易锈蚀4.氮化硅(43N Si )是一种新型的耐高温耐磨材料,在工业上有广泛的用途,它属于 ( ) A .原子晶体 B .分子晶体 C .金属晶体 D .离子晶体5.水的状态除了气、液和固态外,还有玻璃态。
离子晶体与原子晶体、分子晶体的异同教案二
离子晶体、原子晶体、分子晶体是化学中非常重要的晶体类型,它们在材料领域中具有广泛的应用。
虽然这些晶体的结构和性质有一些共同之处,但它们之间也存在一些显著的差异。
本文将重点介绍这些晶体之间的异同点。
一、离子晶体离子晶体是由离子构成的晶体,通常含有一个或多个金属离子和一个或多个非金属离子。
在离子晶体中,离子之间由电子静电作用相互吸引,从而形成有序排列的晶体。
离子晶体具有高熔点和硬度,并且在溶液中具有良好的导电性。
离子晶体的晶格结构通常是三维点阵,其具有高度周期性的结构,其中离子按照一定规律排列。
在离子晶体中,通常有六种离子排列方式,括简介立方体、体心立方体、四方晶系、正交晶系、蜂窝晶系和六方晶系。
离子晶体中的化学键通常是离子键。
二、原子晶体原子晶体是由单个原子构成的晶体,具有高度有序排列的结构。
在原子晶体中,原子之间形成共价键或金属键,并且通常是同种原子构成的晶体。
原子晶体具有高度的硬度,并且在高温下不易熔化。
原子晶体的晶格结构也通常是三维点阵,其中包括立方晶系、正交晶系、单斜晶系、菱形晶系和六方晶系。
原子晶体中的化学键通常是共价键或金属键。
三、分子晶体分子晶体是由分子构成的晶体,通常由两个或多个原子共同构成的分子。
在分子晶体中,分子之间由范德华力相互吸引,并且通常是由非金属构成的晶体。
分子晶体具有较低的硬度和熔点,通常不具有良好的导电性。
分子晶体的晶格结构也通常是三维点阵,其中包括单斜晶系、三斜晶系、正交晶系、单轴晶系和六方晶系。
分子晶体中的化学键通常是共价键或范德华力。
四、异同点分析从上述介绍中可以看出,离子晶体、原子晶体和分子晶体之间存在一些明显的异同点。
具体分析如下:(1)异同点1.化学成分:离子晶体由离子构成,原子晶体由单个原子构成,分子晶体由分子构成,这三种晶体的化学成分不同。
2.结构特点:这三种晶体的晶格结构均为三维点阵,但具体的晶格结构和空间排列规律则存在差异。
3.化学键类型:离子晶体的化学键为离子键,原子晶体的化学键为共价键或金属键,分子晶体的化学键为共价键或范德华力。
原子晶体、分子晶体、离子晶体的比较 PPT
3.物理性质:①熔沸点低[破坏分子间的作用力],硬度小。
②一般不导电,在固态和熔融状态下也不导电
③溶解性一般符合“相似相溶规律”
二、常见的晶体结构分析:
(一)干冰: 1.分子堆积方式: 分子密堆积(只含范德华力) 2.均摊法计算CO2分子数:
顶角—— 8个 面心—— 6个 1个晶胞中CO2分子数= 8×18+6×12= 4 3.每个CO2分子周围离该分子距离最近且相等的 CO2分子有:12个 [同层+上层+下层]×4=12 (二)冰:
配位数: 8 配位空间构型:正六面体
离其最近的Cs+的个数为: 6
[上、下、左、右、前、后]
2.Cl-为中心:离其最近的Cs+的个数为: 8
配位数:8 配位空间构型:正六面体
离其最近的Cl-的个数为:6
3.均摊法计算1个晶胞中:
Cs+个数:8×18= 1
Cl-个数:1
二、三种常见的离子晶体的结构:
2.晶胞的结构:——均摊法 结合《课本》P64/图3-8
体心粒子—— 完全属于该晶胞
面心粒子—— 有12属于该晶胞
棱心粒子—— 有14该晶胞
顶角粒子—— 有18属于该晶胞
二、晶胞:
3.晶胞中微粒个数的计算:
1个金属铜晶胞
的原子数
=8×18+6×12= 4
X2Y
ACB3
DE
4.晶胞的基本类型:
简单立方
③熔点: ④能使X-
有固定的熔 射线产生衍
沸点
射
最科学的
鉴别依据
⑤均一性:组成和密度一致 ⑥对称性: ⑦稳定性: 晶格能
一、晶体:
5.形成途径: ①熔融状态物质凝固(注意凝固的速率适当)
离子晶体+分子晶体+原子晶体综合复习
H2Te SbH3
NH3
H2S
HCl PH3 SiH4 ×
H2Se AsH3 HBr
HI
×
GeH4
SnH4
×
-100
-125 -150 CH4
×
2
3
4
5
周期
一些氢化物的沸点
三、氢键
N、O、F原子与H原子之间的相互作用。
化学键> >氢键>分子间作用力 含有氢键的物质熔化、汽化时需要破坏
氢键和分子间作用力,所以NH3、H2O、
温度/℃ 250 200
沸点
I2
150
100 50 100 150Br 2
熔点
I2
0
-50 -100 -150
50
Cl2
Br2 200 250
相对分子质量 Cl2
-200
-250
F2 F2
卤素单质的熔、沸点与 相对分子质量的关系
沸点/℃
100 75 50 25 0 -25 -50 -75 HF
H2O
一、离子晶体 1、定义: 阴、阳离子间通过离子键结合
而成的晶体叫做离子晶体。
2、构成离子晶体的微粒及微粒间的作用力: 微 粒:阴阳离子
作用力: 离子键。 3、离子晶体包括:强碱、绝大多数盐、低价
金属氧化物。
4、离子晶体的特征:
①无单个分子存在;NaCl 、CsCl不表示分子式。
②熔沸点较高,硬度较大,难以压缩。
③固态不导电,水溶液或者熔融状态下均导电。
5、离子键强弱取决于: 离子半径、离子所带的电荷 离子半径越小、离子所带的电荷越 多,离子键越强。 6、离子键强弱决定:
离子晶体的硬度、熔沸点。(熔化时破坏 或削弱离子键)
离子晶体、分子晶体和原子晶体
离子晶体、分子晶体和原子晶体(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!离子晶体、分子晶体和原子晶体离子晶体、分子晶体和原子晶体(精选4篇)离子晶体、分子晶体和原子晶体篇1一、学习目标1.掌握相邻原子间通过共价键结合而成空间网状结构的晶体属于原子晶体。
晶体类型
熔点/℃
一、晶体类型: 二、同类晶体:
原子晶体>离子晶体>分子晶体 离子晶体: 离子半径越小,电荷数越多,
则离子键越强,熔沸点越高
比较物质熔点和沸点高低的规律
熔点/℃
金刚石 3550
晶体硅 1410
一、晶体类型: 二、同类晶体:
原子晶体>离子晶体>分子晶体 离子晶体: 原子晶体: 离子半径越小,电荷数越多,
冰醋酸、 尿素、 水晶、 Na2O
课堂练习题
例1、 下列各组物质的晶体中,化学键类型相同、晶 体类型也相同的是 (B ) A.SO2和SiO2 B.CO2和H2O C.NaCl和HCl l4和KCl 例 2C 、下列物质的晶体中,不存在分子的是 ( ) (A)二氧化碳 (B)二氧化硫 (C)二氧化硅 (D)二硫化碳 例 3B 、下列晶体熔化时 ,不需要破坏化学键的是 ( ) A、金刚石 B、干冰 C、食盐 D、晶体硅
则离子键越强,熔沸点越高
共价键的键长越短,键能越大, 则共价键越强,熔沸点越高
比较物质熔点和沸点高低的规律
熔点/℃
SiF4 -90.4
Hale Waihona Puke SiCl4 -70.4SiBr4 5.2
SiI4 120
一、晶体类型: 二、同类晶体:
原子晶体>离子晶体>分子晶体 离子晶体: 原子晶体: 分子晶体: 离子半径越小,电荷数越多,
原子晶体的特点:
熔沸点很高,硬度很大。
哪些物质属于原子晶体? 金刚石、单晶硅、碳化硅、二氧化硅等
晶 体
硅
Si o
109º 28´
180º
共价键
四、金属晶体
常见金属晶体: 金属单质或合金 如:钠、钾、铜 有金属光泽、导电、 导热、延展性
离子晶体、分子晶体和原子晶体(一)
离子晶体、分子晶体和原子晶体(一)一、学习目的1.使学生了解离子晶体、分子晶体和原子晶体的晶体构造模型及其性质的一般特点。
2.使学生理解离子晶体、分子晶体和原子晶体的晶体类型与性质的关系3.使学生了解分子间作用力对物质物理性质的影响4.常识性介绍氢键及其物质物理性质的影响。
二、重点难点重点:离子晶体、分子晶体和原子晶体的构造模型;晶体类型与性质的关系难点:离子晶体、分子晶体和原子晶体的构造模型;氢键三、学习过程(一)引入新课[复习发问]1.写出NaCl 、CO2 、H2O的电子式。
2.NaCl晶体是由Na+和Cl—通过形成的晶体。
[课习题板书] 第一节离子晶体、分子晶体和分子晶体(有课件)一、离子晶体1、概念:离子间通过离子键形成的晶体2、空间构造以NaCl 、CsCl为例来,以媒体为手段,攻克离子晶体空间构造这一难点[针对性练习][例1]如图为NaCl晶体构造图,图中直线交点处为NaCl晶体中Na+与Cl-所处的位置(不考虑体积的大小)。
(1)请将其代表Na+的用笔涂黑圆点,以完成NaCl晶体构造示意图。
并确定晶体的晶胞,分析其构成。
(2)从晶胞中分Na+四周与它最近时且距离相等的Na+共有多少个? [解析]下图中心圆甲涂黑为Na+,与之相隔均要涂黑(1)分析图为8个小立方体构成,为晶体的晶胞,(2)计算在该晶胞中含有Na+的数目。
在晶胞中心有1个Na+外,在棱上共有4个Na+,一个晶胞有6个面,与这6个面相接的其他晶胞还有6个面,共12个面。
又因棱上每个Na+又为四周4个晶胞所共有,所以该晶胞独占的是12×1/4=3个.该晶胞共有的Na+为4个。
晶胞中含有的Cl-数:Cl-位于顶点及面心处,每.个平面上有4个顶点与1个面心,而每个顶点上的氯离于又为8个晶胞(本层4个,上层4个)所共有。
该晶胞独占8×1/8=1个。
一个晶胞有6个面,每面有一个面心氯离子,又为两个晶胞共有,所以该晶胞中独占的Cl-数为6×1/2=3。
高中化学知识总结离子晶体、分子晶体和原子晶体
离子晶体、分子晶体和原子晶体[学法指导]在学习中要加强对化学键中的非极性键、极性键、离子键、晶体类型及结构的认识与理解;在掌握粒子半径递变规律的基础上,分析离子晶体、原子晶体、分子晶体的熔点、沸点等物理性质的变化规律;并在认识晶体的空间结构的过程中,培养空间想象能力及思维的严密性和抽象性。
同时,关于晶体空间结构的问题,很容易与数学等学科知识结合起来,在综合题的命题中具有广阔的空间,因此,一定要把握基础、领会实质,建立同类题的解题策略和相应的思维模式。
[要点分析]一、晶体固体可以分为两种存在形式:晶体和非晶体。
晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。
气体、液体和非晶体在一定条件下也可转变为晶体。
晶体是经过结晶过程而形成的具有规则的几何外形的固体。
晶体中原子或分子在空间按一定规律周期性重复的排列,从而使晶体内部各个部分的宏观性质是相同的,而且具有固定的熔点和规则的几何外形。
NaCl晶体结构食盐晶体金刚石晶体金刚石晶体模型钻石C60分子二、晶体结构1.几种晶体的结构、性质比较2.几种典型的晶体结构:(1)NaCl晶体(如图1):每个Na+周围有6个Cl-,每个Cl-周围有6个Na+,离子个数比为1:1。
(2)CsCl晶体(如图2):每个Cl-周围有8个Cs+,每个Cs+周围有8个Cl-;距离Cs+最近的且距离相等的Cs+有6个,距离每个Cl-最近的且距离相等的Cl-也有6个,Cs+和Cl-的离子个数比为1:1。
(3)金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展,键角都是109°28',最小的碳环上有六个碳原子。
(4)石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,每个正六边形平均拥有两个碳原子。
片层间存在范德华力,是混合型晶体。
熔点比金刚石高。
(5)干冰(如图6):分子晶体。
(6)SiO2:原子晶体,空间网状结构,Si原子构成正四面体,O原子位于Si-Si键中间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、物理特性:
(1)较低的熔点和沸点,易升华; (2)较小的硬度; (3)一般都是绝缘体,熔融状态也不导电。
原因:分子间作用力较弱
3、典型的分子晶体:
–非金属氢化物:H2O,H2S,NH3,CH4,HX –酸:H2SO4,HNO3,H3PO4 –部分非金属单质:X2,O2,H2, S8,P4, C60 –部分非金属氧化物: CO2, SO2, NO2, P4O6, P4O10 –大多数有机物:乙醇,冰醋酸,蔗糖
思考1 原子晶体的化学式是否可以代表其分子式?
不能。因为原子晶体是一个三维的网状结构,无 小分子存在。
思考2 以金刚石为例,说明原子晶体的微观结构与分 子晶体有哪些不同? (1)组成微粒不同,原子晶体中只存在原子,没有
分子。 (2)相互作用不同,原子晶体中存在的是共价键。
4、原子晶体熔、沸点比较规律
①二氧化硅中Si原子均以sp3杂化,分别 与4个O原子成键,每个O原子与2个Si原子 成键; ②晶体中的最小环为十二元环,其中有6 个Si原子和6个O原子,含有12个Si-O键; 每个Si原子被12个十二元环共有,每个O原 子被6个十二元环共有,每个Si-O键被6个 十二元环共有;每个十二元环所拥有的Si 原子数为6×1/12=1/2,拥有的O原子数为 6×1/6=1,拥有的Si-O键数为12×1/6=2, 则Si原子数与O原子数之比为1:2。
Na+
(1)NaCl的晶体结构
立方结构(基本结构单元是立方体)
晶胞:
讨论:
晶体中最小的重复单元
6 1、每个Na 离子周围有____个Cl-离子,每 个Cl- 离子周围有____个Na+ 离子。 6
+
2、每个Na+离子周围与Na+最近且等距离的 Na+有____个,每个Cl- 离子周围与Cl-最近且 12 12 等距离的Cl-有____个。
4、分子晶体结构特征
–只有范德华力,无分子间氢键——分子 密堆积
• 每个分子周围有12个紧邻的分子,如:C60、 干冰 、I2、O2
–有分子间氢键——不具有分子密堆积特 征
• 如:HF 、冰、NH3
分子的密堆积
氧(O2)的晶体结构
碳60的晶胞
(与每个分子距离最近的相同分子共有12个 )
分子的密堆积
观察与思考: 下列两种晶体有什么共同点?
干冰晶体结构
碘晶体结构
二、分子晶体
1、概念
分子间以分子间作用力(范德华力,氢键)相 结合的晶体叫分子晶体
(1)构成分子晶体的粒子是分子。 (2)粒子间的相互作用是分子间作用力。 (3)范德华力远小于化学键的作用; (4)分子晶体熔化破坏的是分子间作用力。
分子晶体有哪些物理特性,为什么?
〖思考3〗为何干冰的熔沸点比冰低,密 度却比冰大? 由于冰中除了范德华力外还有氢键作用, 破坏分子间作用力较难,所以熔沸点比干冰高。 由于分子间作用力特别是氢键的方向性, 导致晶体中有相当大的空隙,所以相同状况下 体积较大 由于CO2分子的相对分子质量>H2O,所 以干冰的密度大。
科学视野:笼装化合物 20世纪末,科学家发现海底存在大量天然气 水合物晶体。这种晶体的主要气体成分是甲 烷, 因而又称甲烷水合物。它的外形像冰, 而且在常温常压下会迅速分解释放出可燃的 甲烷,因而又称“可燃冰”………
结构决定性质
离子晶体的熔沸点高低与离子键强弱有关, 离子键越强其熔沸点越高。
阴阳离子的半径越小,离子键越强。 阴阳离子所带电荷越多,离子键越强。
rNa <rCs 故熔沸点NaCl>CsCl
+ +
练习1 比较下列晶体熔沸点高低:NaF KCl NaCl KBr CsI NaF>NaCl>KCl>KBr>CsI
思考2 比较NaC2900C
NaCl
CsCl
8010C
6450C
为什么NaCl 的熔点和沸点比CsCl的高?
离子键的强弱与离子晶体的物理性质的关系
离子键越强
离子晶体的硬度越大、 熔沸点越高
Q阴XQ F=K 2 R阳 键长
阴、阳离子电荷越 大离子半径越小
复习总结:
微粒间作用
微粒为分子: 分子间作用力(或范德华力)或氢键; 微粒为原子:极性共价键或非极性共价键; 微粒为离子:离子键。
一、离 子 晶 体
1.定义: 离子间通过离子键结合而成的晶体
2. 构成微粒: 阴、阳离子 微粒间的作用力: 离子键 3. 离子晶体的结构
NaCl晶体结构示意图:
Cl-
例题解析:
O原子 Ti原子 Ba原子
Ba:1x1 Ti:8x(1/8) O:12x(1/4) 化学式为:BaTiO3
离子晶体物理性质列表:
晶体质点 微粒间作用力 熔沸点 硬度 溶解性 导电性
阴、阳 离 子
离子键
较高
易溶于 溶于水 较 极性溶 或熔融 硬 剂 时导电
思考题: 离子晶体的熔、沸点,硬度与离子键强 弱有何关系?为什么?
练
习
看图写化学式
A2BC2
离子晶体
什么叫离子晶体?
离子间通过离子键结合而成的晶体。 离子晶体的特点?
无单个分子存在;NaCl 是化学式。 熔沸点较高,硬度较大,难挥发难压缩。 水溶液或者熔融状态下均导电。
哪些物质属于离子晶体?
离子化合物:大部分盐类、强碱、铵盐、 活泼金属的氧化物、
思考与交流
石墨和金刚石同属于碳的单质,为什 么在硬度上会相差如此之大?
共价键
三.原子晶体(共价晶体) 1、概念:
相邻原子间以共价键相结合而形成空间立 体网状结构的晶体。
– (1)构成原子晶体的粒子是原子;
– (2)原子晶体的粒子间以较强的共价键相结合; – (3)原子晶体熔化破坏的是共价键。
观察· 思考
• 对比分子晶体和原子晶体的数据,原子 晶体有何物理特性?
2、原子晶体的物理特性
7、该晶胞中有几个Cs+ ?几个Cl- ?
化学式呢? 1、1、CsCl
例题分析:
• 如图所示的晶体结构是一种具有优良的压电、 铁电、光电等功能的晶体材料的最小结构单元 (晶胞)。 求晶体内与每个“Ti”紧邻的氧原子数、这 种晶体材料的化学式?(各元素所带的电荷均 已略去) O原子 Ti原子 Ba原子
3.该晶胞中实际有几个Na+ ?几个Cl- ?
有1/8属于 该立方体 有1/4属于 该立方体 有1/2属于 该立方体 完全属于该 立方体
4.晶体中结构单元微粒实际数目的计算、 离子晶体化学式的确定(均摊法)
位于顶点的微粒,晶胞完全拥有其1/8。 位于面心的微粒,晶胞完全拥有其1/2。 位于棱上的微粒,晶胞完全拥有其1/4。 位于体心上的微粒完全属于该晶胞拥有为1。
对于原子晶体,一般来说, 原子间键长越短,键能越大,共 价键越稳定,物质的熔沸点越高, 硬度越大。
思考3 为何CO2熔沸点低?而破坏CO2分子却比SiO2更 难? 因为CO2是分子晶体,SiO2是原子晶体,所以 熔化时CO2是破坏范德华力而SiO2是破坏化学键。 所以SiO2熔沸点高。破坏CO2分子与SiO2时,都是 破坏共价键,而C═O键能>Si-O键能,所以CO2分 子更稳定。 思考4 怎样从原子结构角度理解金刚石、碳化硅和锗的 熔点和硬度依次下降? 因为结构相似的原子晶体,原子半径越小,键长 越短,键能越大,晶体熔点越高,所以熔点和硬度 有如下关系:金刚石>碳化硅>锗。
• 在原子晶体中,由于原子间 以较强的共价键相结合,而 且形成空间立体网状结构, 所以原子晶体的
– 熔点和沸点高 – 硬度大 – 一般不导电 – 且难溶于一些常见的溶剂
在原子晶体中,由于原子间 以较强的共价键相结合,而且形 成空间立体网状结构,所以原子 晶体有特殊的物理性质。
3、常见的原子晶体
• 某些非金属单质:
(与CO2分子距离最近的 CO2分子共有12个 )
干冰的晶体结构图
分子的非密堆积
氢键具有方向性
冰中1个水分子周围有4个水分子
冰的结构
思考:1mol冰周围有?mol氢键
冰中1个水分子周围有4个水分子形成 什么空间构型?
• 〖归纳要点〗分子的密度取决于晶体 的体积,取决于紧密堆积程度,分子 晶体的紧密堆积由以下两个因素决定: (1)范德华力 (2)分子间氢键
12g金刚石C-C键数为多少NA?
①金刚石中每个C原子以sp3杂化,分别与4个 相邻的C 原子形成4个σ 键,故键角为 109°28′; ②每个C原子均可与相邻的4个C构成实心的正 四面体,向空间无限延伸得到立体网状的金刚 石晶体,在一个小正四面体中平均含有 1+4×1/4 =2个碳原子; ③在金刚石中最小的环是六元环,1个环中平 均含有6×1/12=1/2个C原子,含C-C键数为 6×1/6=1; ④金刚石的晶胞中含有C原子为8个,内含4个 小正四面体,含有C-C键数为16。
Si O
109º 28´
180º
共价键
• (1)二氧化硅晶体中最小环为12元环。 • SiO2晶体中Si原子的排列方式和金刚石晶体中碳原子的排列 方式是相同的。在金刚石晶体中,每个最小环上有6个碳原子, 因此SiO2晶体中每个最小环上有6个Si原子,另外六边形的每 条边上都夹入了一个氧原子,所以最小环为12元环。 • (2)每个硅原子被12个最小环共有。 • 如图可以看出,每个硅原子周围有四条边,而每条边又被6个 环所共有,同时由于每个环上有两条边是同一个硅原子周围的, 因此还要除以2以剔除重复。 • 所以最终计算式为(4×6)/2=12 • (3)每个最小环平均拥有1个氧原子,平均拥有的0.5个硅原 子。 • 由于每个硅原子被12个环共有,因此每个环只占有该硅原子 的1/12,又因为每个最小环上有6个硅原子,所以每个最小环 平均拥有的硅原子数为:6×(1/12)=0.5个。又因为SiO2晶 体是由硅原子和氧原子按1:2的比例所组成,因此氧原子的数 目为0.5×2=1个。