(完整)八年级上册勾股定理练习题及答案
勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。
初二上学期勾股定理练习题及答案

初二上学期勾股定理练习题及答案1.已知直角三角形中30°角所对的直角边长是23cm,则另一条直角边的长是A.cmB.cmC.cmD.3cm2.△ABC中,AB=15,AC=13,高AD=12,则△ABC 的周长为A.4 B.32C.4或D.3或33.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动A.分米B. 15分米C.分米D.分米4.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路,却踩伤了花草. . 在△ABC中,∠C=90°,已知 a =2.4,b=3.2,则c=;已知c=17,b=15,则△ABC面积等于;第4题图已知∠A=45°,c=18,则a= .6. 一个矩形的抽斗长为24cm,宽为7cm,在里面放一根铁条,那么铁条最长可以是.27. 在Rt△ABC中,∠C=90°,BC=12cm,S△ABC=30cm,则AB=.8. 等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为.9. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为.10.一天,小明买了一张底面是边长为260cm的正方形,厚30cm的床垫回家.到了家门口,才发现门口只有242cm高,宽100cm.你认为小明能拿进屋吗?.11.如图,你能计算出各直角三角形中未知边的长吗? 12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?5m13.有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?14.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s 后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?观测点15.将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如右图. 求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形.勾股定理同步练习题答案21.C.C.D.10.4;0;.25cm .13cm .6cm,4cm9.6,, 10 10.能 11.5;;12.612元13.5s 14.BC=72km,这辆小汽车超速了 15. h=170cm勾股定理练习题勾股定理练习题一、基础达标:1. 下列说法正确的是A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若 a、b、c是Rt△ABC的三边,?A?90?,则a2+b2=c2;D.若 a、b、c是Rt△ABC的三边,?C?90?,则a2+b2=c2.b、c,2. Rt△ABC的三条边长分别是a、则下列各式成立的是A.a?b?cB. a?b?cC. a?b?cD. a2?b2?c23.如果Rt△的两直角边长分别为k2-1,2k,那么它的斜边长是A、2kB、k+1C、k2-1D、k2+1. 已知a,b,c为△ABC 三边,且满足=0,则它的形状为A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为A.121B.120 C.90D.不能确定.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为 A.42B.32C.4或D.3或3.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为2d d8、在平面直角坐标系中,已知点P的坐标是,则OP 的长为A:3B:4C:5D:9.若△ABC中,AB=25cm,AC=26cm高AD=24,则BC 的长为A.1 B. C.17或D.以上都不对10.已知a、b、c是三角形的三边长,如果满足2c?10?0则三角形的形状是A:底与边不相等的等腰三角形B:等边三角形 C:钝角三角形 D:直角三角形 11.斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是.12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是10:8:6,则按角分类它是三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt△ABC中,斜边AB=4,则AB2+BC2+AC2=_____.17.若三角形的三个内角的比是1:2:3,最短边长为1cm,最长边长为2cm,则这个三角形三个角度数分别是,另外一边的平方是.18.如图,已知?ABC中,?C?90?,BA?15,AC?12,以直角边BC为直径作半圆,则B这个半圆的面积是.19.一长方形的一边长为3cm,面积为12cm,那么它的一条对角线长2CA是.二、综合发展:1.如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿∠CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?3.一个三角形三条边的长分别为15cm,20cm,25cm,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?BEA5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?小汽车小汽车观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x,则斜边为利用勾股定理可得方程,可以求出x.然后再求它的周长. 答案:C.4.解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.2225.解析: 勾股定理得到:17?8?15,另一条直角边是15,1?15?8?60cm22所求直角三角形面积为2.答案:0cm.6.解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:a2?b2?c2,c,直角,斜,直角.7.解析:本题由边长之比是10:8:可知满足勾股定理,即是直角三角形.答案:直角..解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:30?、60?、 90?,3.2222229.解析:由勾股定理知道:BC?AB?AC?15?12?9,所以以直角边BC?9为直径的半圆面积为10.125π.答案:10.125π.10.解析:长方形面积长×宽,即12长×3,长?4,所以一条对角线长为5.答案:5cm.二、综合发展11.解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m.22212解析:因为15?20?25,所以这三角形是直角三角形,设最长边上的高为xcm,由直角三角形面积关系,可得1?15?20?1?25?x,∴x?12.答案:12cm2213.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,2所以矩形塑料薄膜的面积是:5×20=100 .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解. 答案:6.5s. 15.解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s,可得速度是20m/s=72km/h >70km/h.答案:这辆小汽车超速了.。
八年级初二数学 数学勾股定理试题含答案

一、选择题1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF=- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④2.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m3.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .2B .6C .210D .84.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =5,AC =53CB 的反向延长线上有一动点D ,以AD 为边在右侧作等边三角形,连CE ,CE 最短长为( )A .5B .53C .532D .5345.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( )A .2n ﹣2B .2n ﹣1C .2nD .2n+16.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,AB=42,则下列结论一定正确的个数是( )①2CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等; A .1个B .2个C .3个D .4个 8.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( )A .6B .12C .62D .39.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A.9 B.5 C.53 D.4510.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.4二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连接OC.若AC=4,BC=3,AB=5,则OC 的长度的最大值是________.13.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.14.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).15.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______16.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.17.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.18.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有_____________ (填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150°④∠APC=135°19.如图,Rt△ABC中,∠BCA=90°,AB=5,AC=2,D为斜边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是_____.20.如图,直线423y x=+与x轴、y轴分别交于点B和点A,点C是线段OA上的一点,若将ABC∆沿BC折叠,点A恰好落在x轴上的'A处,则点C的坐标为______.三、解答题21.如图,在两个等腰直角ABC和CDE△中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是;(2)探究证明:把CDE△绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE△绕点C在平面内自由旋转,若AC = BC=10,DE=12,当A、E、D三点在直线上时,请直接写出 AD的长.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.24.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,25.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .26.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.27.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示) 28.如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).29.如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n满足6m-+(n﹣12)2=0.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.30.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系.(2)把图1中的正方形DEFG绕点D顺时针旋转45︒,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的.【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠,∵AF CD ⊥,∴90AGD ∠=︒,∴90FAB CDA ∠=︒-∠,∴2ACD FAB ∠=∠,故①正确;∵3CG =,1DG =,∴314CD CG DG =+=+=,∴4AC CD ==,在Rt ACG 中,AG ==,∴12ACD S AG CD =⋅= ∵90CHB ∠=︒,45B ∠=︒,∴45HCB ∠=︒,∵AC CD =,CH AD ⊥, ∴12ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠, ∴AFC ACF ∠=∠,∴4AC AF ==,故④正确;∴4GF AF AG =-=-在Rt CGF 中,2CF ===,故③正确.故选:B .【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理. 2.B解析:B【分析】由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC ∥AD ,∴∠DAE=∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC=∠DEA=90°,又∵AB=DE=400m ,∴△ABC ≌△DEA ,∴EA=BC=300m ,在Rt △ABC 中,AC=22AB BC +=500m ,∴CE=AC-AE=200, 从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.3.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD=AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF=BC=6,∴FC=AF=6,FD=AD-AF=8-6=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=故选:A.【点睛】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.4.C解析:C【分析】在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,易证△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此点E的轨迹是一条直线,过点C作CH⊥BE,则点H即为使得BE最小时的E点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.【详解】解:在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,∵∠ACB=90°,∠ABC=60°,∴△AB’B是等边三角形,∴∠B’=∠B’AB=60°,AB’=AB,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60°,∴点E在直线BE上运动,过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,∠CBH=180°-∠ABC-∠ABE=60°,∴∠BCH=30°,∴BH=12BC=52,∴CH.即BE.故选C.【点睛】本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB 构造成等边三角形,通过全等证出∠ABC 是定值,即点E 的运动轨迹是直线是解决此题的关键.5.A解析:A【分析】连续使用勾股定理求直角边和斜边,然后再求面积,观察发现规律,即可正确作答.【详解】解:∵△ABC 是边长为1的等腰直角三角形121111222ABC S -∆∴=⨯⨯== , ∴2222AC 112,AD (2)(2)2=+==+=223212212:2122122AACD ADE S S --∆∴====⨯⨯== ∴第n 个等腰直角三角形的面积是22n - ,故答案为A.【点睛】本题的难点是运用勾股定理求直角三角形的直角边,同时观察、发现也是解答本题的关键.6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴====='' 2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210. 故答案为:210.7.D 解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】 解:由2AC=BC=4,则AE=3=DE ,由勾股定理可得2, ①正确; 21>,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB ,故∠CED+∠DFB=90°=2∠EDF ,③正确; △DCE 的周长2,△BDF 的周长2+4-224个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.8.D解析:D【分析】根据直角三角形的性质求出BC ,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=6,由勾股定理得,=故选:D .【点睛】 本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.9.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt △ABC 中,AB 2=BC 2+AC 2,∵S 1=AB 2,S 2=BC 2,S 3=AC 2,∴S 1=S 2+S 3.∵S 2=7,S 3=2,∴S 1=7+2=9.故选:A .【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C.【点睛】本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.二、填空题11.103.【解析】试题解析:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.5【解析】试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.考点:勾股定理的逆定理,13..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22-=3,则P的坐标是(3,4).54-=22OP OC②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22-=3,PD DM当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.14.15厘米【分析】要想求得最短路程,首先要画出圆柱的侧面展开图,把A和C展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.【详解】解:如图,展开圆柱的半个侧面是矩形,π=厘米,矩形的宽BC=12厘米.∴矩形的长是圆柱的底面周长的一半,即AB=39∴蚂蚁需要爬行最短路程2222=+=+=厘米.AC BC AB12915故答案为:15厘米【点睛】求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.15.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,D H⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3∴EF=223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点, ∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11 ∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴52,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.16.258【分析】先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴2222AB +BC =3+4=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,∴△AFD ∽△CBA , ∴AD AC =FA BC ,即AD 5=2.54,解得AD=258;故答案为258. 【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.3.【分析】作点B关于AD的对称点B′,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,B′N的长度即为BM+MN的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.【详解】如图,作点B关于AD的对称点B′,由垂线段最短,过点B′作B′N⊥AB于N交AD于M,B′N最短,由轴对称性质,BM=B′M,∴BM+MN=B′M+MN=B′N,由轴对称的性质,AD垂直平分BB′,∴AB=AB′,∵∠BAC=60°,∴△ABB′是等边三角形,∵AB=2,∴33即BM+MN3.3.【点睛】本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M、N的位置是解题的关键,作出图形更形象直观.18.①②③【解析】【详解】解:∵△ABC是等边三角形,60ABC∴∠=,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,60PBQ PBC CBQ PBC ABP ABC∴∠=∠+∠=∠+∠=∠=,∴△BPQ是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确. 36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.19 【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA =90°,DE ⊥AC ,DF ⊥BC ,证得四边形CEDF 是矩形,连接CD ,则CD=EF ,当CD⊥AB 时,CD 最短,即.故答案为5. 点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.20.(0,34). 【分析】 由423y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122OA '=-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32-,0),在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32,∴52AB ===, ∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34, ∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 三、解答题21.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.22.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-= ∴S △ADC =1423432⨯⨯=S △ABC =12AB×BC =3, ∴S 四边形ABCD =S △ADC +S △ABC =3②当CD =CB =BD =3∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒, ∴132BE BD == ()()22222333DE BD BE =-=-=, ∴S △BDC =1233332⨯= 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=123 S △ADB =12332⨯=, ∴S 四边形ABCD =S △BDC +S △ADB =3;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.24.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.25.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++∵11AB AC=BC AH 22⋅⋅∴∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,AA'=2AH=5,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.26.(1)详见解析;(2;(3【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE =,,根据(1)思路得.【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以222AB AC AC +因为AB AC =所以AE 2=又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以3AB所以33 AD ABAB AB==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.27.(1)∠CBD=20°;(2)AD=164;(3) △BCD的周长为m+2【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;(3)根据三角形ACB的面积可得11 2AC CB m=+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,设CD=x,则AD=BD=8-x,在Rt△CDB中,CD2+CB2=BD2,x 2+62=(8-x )2,解得:x=74, AD=8-74=164; (3)∵△ABC 的面积为m+1, ∴12AC •BC=m+1, ∴AC •BC=2m+2, ∵在Rt △CAB 中,CA 2+CB 2=BA 2,∴CA 2+CB 2+2AC •BC=BA 2+2AC •BC ,∴(CA+BC )2=m 2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB ,∴CD+DB+BC=m+2.即△BCD 的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.28.(1)见解析;(2)26;(3)3a+ 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,3EN∵BN=a∴BE=2EN=23a=AD∴AE=AD+DE=2323+a b【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键. 29.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵6m-+(n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,。
(新)八年级数学《勾股定理》精选练习题及答案解析

勾股定理精选题一、选择题1.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为a,较短的直角边为b,且a:b=4:3,则大正方形面积与小正方形面积之比为()A.25:9 B.25:1 C.4:3 D.16:92.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m3.下列结沦中,错误的有()①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c,若a2+b2=c2,则∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy.A.0个B.1个C.2个D.3个4.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4πC.8πD.85.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:256.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)27.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,等腰△ABC中,AB=AC=10cm,BC=12cm,D为BC上一点,连接AD,E为AD上一点,连接BE,若∠ABE=∠BAE═∠BAC,则DE的长为()A.cm B.cm C.cm D.1cm9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.满足下列条件的△ABC不是直角三角形的是()A.AC=3,BC=5,AB=4 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:5二、填空题11.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.12.如图所示,一棵36m高的树被风刮断了,树顶落在离树根24m处,则折断处的高度AB是m.13.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.14.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.15.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.t=时△ABP为直角三角形.16.已知等腰△ABC中,AB=AC=5,BC=6,则△ABC的面积为.17.已知△ABC中,AB=10,BC=21,CA=17,则△ABC的面积等于.18.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.19.已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.20.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.三、解答题21.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?22.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.B'=3.将纸片沿某条直线折叠,使点B落在点B' 23.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,C处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.24.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.26.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.27.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P 运动几秒时,P点与顶点A的连线PA与腰垂直.28.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.29.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.30.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B 方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.勾股定理精选题(参考答案)一、选择题1.【答案】【解析】解:∵a:b=4:3,∴大正方形面积与小正方形面积之比为(a2+b2):(a﹣b)2=b2:b2=25:1.故选:B.2.【答案】【解析】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.3.【答案】【解析】C4.【答案】【解析】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.5.【答案】【解析】解:(A)当∠A=90°时,此时a2=b2+c2,故A能成立.(B)∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故B能成立.(C)设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴x=15°,∴∠C=75°,故C不能成立.当∠C=90°,∴a2+b2=c2,故D能成立,故选:C.6.【答案】【解析】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:D.7.【答案】【解析】解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.8.【答案】【分析】根据条件得出AE=BE,再使用勾股定理计算.【解析】解:∵AB=AC,∠BAE═∠BAC,∴AD⊥BC,∴∠BDE=90°,BD=BC=6,∵AB=10,∴AD==8,∵∠ABE=∠BAE,∴AE=BE,设DE=x,则AE=BE=8﹣x,在Rt△BDE中,BE2=DE2+BD2,∴(8﹣x)2=x2+62,解得:x=,即DE=cm,故选:C.9.【答案】【解析】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故选:D.10.【答案】【解析】解:A、∵32+42=52∴满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.二、填空题11.【答案】【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.12.【答案】【解析】根据题意构造直角三角形,设AB=x米,则AC=(36﹣x)米,BC=24米,由勾股定理得出方程,解方程即可.解:由勾股定理得:x2+242=(36﹣x)2,解得:x=10;即折断处的高度AB是10m;故答案为:10.13.【答案】【解析】解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:2414.【答案】【解析】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.15.【答案】【解析】解:在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm,由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即2t=4,t=2;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(2t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=2或t=,故答案为:2s或s16.【答案】【解析】解:如图,过点A作AD⊥BC,垂足为点D,∵AB=AC=5,BC=6,∴BD=CD=BC=×6=3,∵AD2+BD2=AB2,∴AD==4,∴S△ABC=BC•AD=×4×6=12,故答案为:12.17.【答案】【解析】解:过点A作AD⊥BC.设BD=x,则CD=21﹣x,在Rt△ABD中,AD2=102﹣x2,在Rt△ADC中,AD2=172﹣(21﹣x)2,∴102﹣x2=172﹣(21﹣x)2,100﹣x2=289﹣441+42x﹣x2,解得x=6,∴CD=15,在Rt△ACD中,AD==8,∴△ABC的面积=×BC•AD=×21×8=84.故答案为:84.18.【答案】3.6或4.32或4.8【解析】19.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.20.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.三、解答题21.【答案】【解析】解:设运动x 秒时,它们相距15cm ,则CP =xcm ,CQ =(21﹣x )cm ,依题意有 x 2+(21﹣x )2=152,解得x 1=9,x 2=12.故运动9秒或12秒时,它们相距15cm .22.【答案】【解析】因为a 2+b 2+c 2+50=6a+8b+10c ,所以a 2+b 2+c 2-6a-8b-10c+50=0,即a 2-6a+9+b 2-8b+16+c 2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a 2+b 2=c 2,所以三角形为直角三角形.23.【答案】 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.24.【答案】【解析】设EC=xcm ,则DE=(8-x )cm ,由折叠可知,EF=DE ,AD=AF ,在直角△ABF 中,由勾股定理得AB 2+BF 2=AF 2,即82+BF 2=102,所以BF=6cm ,所以FC=10-6=4(cm ).在直角△EFC 中,由勾股定理得FC 2+CE 2=EF 2,即42+x 2=(8-x )2,解之得x=3,即EC 的长度为3cm.25.【答案】【解析】过D 作DE ⊥AB ,垂足为E ,因为∠1=∠2,所以CD=DE=15,在Rt △BDE 中,BE 2=BD 2-DE 2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD ,所以Rt △ACD ≌Rt △AED ,又因为AB 2=AC 2+BC 2,即(AC+20)2=AC 2+(15+25)2,解得AC=30.26.【答案】【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=, 故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.27.【答案】【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.28.【答案】【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,所以AF=13,所以AE=AF=6.5.29.【答案】【解析】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.30.【答案】【解析】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。
八年级数学上册勾股定理单元综合测试题(含答案解析)

第1章勾股定理一、填空:(每空4分,共计28分)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方为__________.2.求如图中直角三角形中未知的长度:b=__________,c=__________.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为__________cm2.4.小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答:__________(填“能”、或“不能”)5.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为__________.6.如图,四边形ABCD中,CD∥AB,AD⊥DC,DC=5,CB=15,AB=17.则四边形ABCD的面积为__________.7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为__________dm.二、选择题(每题4分,共28分)8.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm9.观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )组.A.1 B.2 C.3 D.410.如图,正方形ABCD的边长为1,则正方形ACEF的面积为( )A.2 B.3 C.4 D.511.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米12.满足下列条件的△ABC中,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:513.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为( )A.12 cm B.10 cm C.8 cm D.6 cm14.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对三、解答题:(每题11分,共计44分)15.一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)16.小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?17.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;(1)求BD的长;(2)求四边形ABCD的面积.18.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.北师大新版八年级上册《第1章勾股定理》2015年单元测试卷(广东省深圳市观澜二中)一、填空:(每空4分,共计28分)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方为7或25.【考点】勾股定理.【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【解答】解:分两种情况:当3、4都为直角边时,第三边长的平方=32+42=25;当3为直角边,4为斜边时,第三边长的平方=42﹣32=7.故答案为:7或25.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.求如图中直角三角形中未知的长度:b=12,c=10.【考点】勾股定理.【分析】根据勾股定理进行计算即可.【解答】解:b==12;c==10,故答案为:12;10.【点评】本题考查的是勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.4.小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答:能(填“能”、或“不能”)【考点】勾股定理的应用.【分析】能,在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较即可.【解答】解:能,理由如下:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案为能.【点评】本题考查了勾股定理的应用,解题的关键是求出木箱内木棒的最大长度.5.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为2.4cm.【考点】勾股定理.【专题】计算题.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为3cm,4cm,∴斜边为=5cm,设斜边上的高为h,则直角三角形的面积为×3×4=×5h,h=2.4cm,这个直角三角形斜边上的高为2.4cm.故答案为:2.4cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.6.如图,四边形ABCD中,CD∥AB,AD⊥DC,DC=5,CB=15,AB=17.则四边形ABCD的面积为99.【考点】勾股定理;勾股定理的逆定理.【分析】作CE⊥AB于E,则四边形AECD是矩形,∠BEC=90°,得出AE=CD=5,BE=AB﹣AE=12,由勾股定理求出CE,即可求出四边形ABCD的面积.【解答】解:作CE⊥AB于E,如图所示:则四边形AECD是矩形,∠BEC=90°,∴AE=CD=5,∴BE=AB﹣AE=17﹣5=12,由勾股定理得:CE===9,∵CD∥AB,∴四边形ABCD的面积=(AB+CD)×CE=(17+5)×9=99;故答案为:99.【点评】本题考查了梯形的性质、勾股定理、矩形的判定与性质,熟练掌握梯形的性质,由勾股定理求出梯形的高是解决问题的关键.7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为25dm.【考点】平面展开-最短路径问题.【专题】计算题;压轴题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.二、选择题(每题4分,共28分)8.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm【考点】勾股定理;三角形中位线定理.【分析】利用勾股定理列式求出斜边,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【解答】解:∵Rt△ABC两直角边的长分别为6cm和8cm,∴斜边==10cm,∴连接这两条直角边中点的线段长为×10=5cm.故选D.【点评】本题考查了勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.9.观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )组.A.1 B.2 C.3 D.4【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:①82+152=172,根据勾股定理的逆定理是直角三角形,故正确;②72+122≠152,根据勾股定理的逆定理不是直角三角形,故错误;③122+152≠202,根据勾股定理的逆定理不是直角三角形,故错误;④72+242=252,根据勾股定理的逆定理是直角三角形,故正确.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.如图,正方形ABCD的边长为1,则正方形ACEF的面积为( )A.2 B.3 C.4 D.5【考点】算术平方根.【分析】根据勾股定理,可得AC的长,再根据乘方运算,可得答案.【解答】解:由勾股定理,得AC=,乘方,得()2=2,故选:A.【点评】本题考查了算术平方根,先求出AC的长,再求出正方形的面积.11.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】应用题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.12.满足下列条件的△ABC中,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】由勾股定理的逆定理得出A、C是直角三角形,D不是直角三角形;由三角形内角和定理得出B是直角三角形;即可得出结果.【解答】解:∵a:b:c=3:4:5,32+42=52,∴这个三角形是直角三角形,A是直角三角形;∵∠A:∠B:∠C=1:2:3,∴∠C=90°,B是直角三角形;∵a2:b2:c2=1:2:3,∴a2+b2=c2,∴三角形是直角三角形,C是直角三角形;∵a2:b2:c2=3:4:5,∴a2+b2≠c2,∴三角形不是直角三角形;故选:D【点评】本题考查了勾股定理的逆定理、三角形内角和定理;熟练掌握勾股定理的逆定理和三角形内角和定理,通过计算得出结果是解决问题的关键.13.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为( )A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出BD,然后在RT△ABD中,可根据勾股定理进行求解.【解答】解:如图:由题意得:AB=AC=10cm,BC=16cm,作AD⊥BC于点D,则有DB=BC=8cm,在Rt△ABD中,AD==6cm.故选D.【点评】本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理直角三角形的边长.14.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.三、解答题:(每题11分,共计44分)15.一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)【考点】勾股定理的应用.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.【解答】解:如图所示:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?【考点】勾股定理的应用.【分析】根据题意求出小东与哥哥各自行走的距离,根据勾股定理计算即可.【解答】解:由题意得,AC=6×=3km,BC=8×=4km,∠ACB=90°,则AB==5km.【点评】本题考查的是勾股定理的应用,正确构造直角三角形、灵活运用勾股定理是解题的关键.17.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;(1)求BD的长;(2)求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】(1)在Rt△ABD中,利用勾股定理可求出BD的长度;(2)利用勾股定理的逆定理判断出△BDC为直角三角形,根据S四边形ABCD=S△ABD+S△BDC,即可得出答案.【解答】解:(1)∵∠A=90°,∴△ABD为直角三角形,则BD2=AB2+AD2=25,解得:BD=5.(2)∵BC=13cm,CD=12cm,BD=5cm,∴BD2+CD2=BC2,∴BD⊥CD,故S四边形ABCD=S△ABD+S△BDC=AB×AD+BD×DC=6+30=36.【点评】本题考查了勾股定理及勾股定理的逆定理,在求不规则图形的面积时,我们可以利用分解法,将不规则图形的面积转化为几个规则图形的面积之和.18.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?【考点】翻折变换(折叠问题).【专题】应用题;操作型.【分析】由折叠的性质得到三角形BDC与三角形BDE全等,进而得到对应边相等,对应角相等,再由两直线平行内错角相等,等量代换及等角对等边得到FD=FB,设FD=FB=xcm,则AF=(8﹣x)cm,在直角三角形AFB中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出FD的长,进而求出三角形BDF面积.【解答】解:由折叠可得:△BDC≌△BDE,∴∠CBD=∠EBD,BC=BE=8cm,ED=DC=AB=6cm,∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴FD=FB,设FD=FB=xcm,则有AF=AD﹣FD=(8﹣x)cm,在Rt△ABF中,根据勾股定理得:x2=(8﹣x)2+62,解得:x=,即FD=cm,则S△BDF=FD•AB=cm2.【点评】此题考查了翻折变换(折叠问题),涉及的知识有:折叠的性质,全等三角形的性质,平行线的性质,等腰三角形的判定,以及勾股定理,熟练掌握性质及定理是解本题的关键.四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.【考点】勾股定理的应用;三角形的面积;勾股定理的逆定理.【专题】应用题.【分析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【解答】解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.【点评】解答此题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】(1)延长ED至点G,使得EG=DE,连接FG,CG,易证EF=FG和△BDE≌△CDG,可得BE=CG,∠DCG=∠DBE,即可求得∠FCG=90°,根据勾股定理即可解题;(2)连接AD,易证∠ADE=∠CDF,即可证明△ADE≌△CDF,可得AE=CF,BE=AF,S四边形AEDF=S△ABC,再根据△DEF的面积=S△ABC﹣S△AEF,即可解题.【解答】(1)证明:延长ED至点G,使得DG=DE,连接FG,CG,∵DE=DG,DF⊥DE,∴DF垂直平分DE,∴EF=FG,∵D是BC中点,∴BD=CD,在△BDE和△CDG中,,∴△BDE≌△CDG(SAS),∴BE=CG,∠DCG=∠DBE,∵∠ACB+∠DBE=90°,∴∠ACB+∠DCG=90°,即∠FCG=90°,∵CG2+CF2=FG2,∴BE2+CF2=EF2;(2)解:连接AD,∵AB=AC,D是BC中点,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,BE=AF,AB=AC=17,∴S四边形AEDF=S△ABC,∴S△AEF=×5×12=30,∴△DEF的面积=S△ABC﹣S△AEF=.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BDE≌△CDG和△ADE≌△CDF是解题的关键.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
八年级数学上册《第一章 勾股定理的应用》练习题-带答案(北师大版)

八年级数学上册《第一章勾股定理的应用》练习题-带答案(北师大版)一、选择题1.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距( )A.12海里B.16海里C.20海里D.28海里2.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是( )A.6mB.8mC.10mD.12m3.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A.6秒B.5秒C.4秒D.3秒4.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m5.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8米B.10米C.12米D.14米6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )A.5≤h≤12B.5≤h≤24C.11≤h≤12D.12≤h≤247.如图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,则A,C 两村之间的距离为( )A.250kmB.240kmC.200kmD.180km8.如图,O是Rt△ABC的角平分线的交点,OD∥AC,AC=5,BC=12,OD等于( )A.2B.3C.1D.1二、填空题9.如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为.10.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.12.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.13.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.14.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.三、解答题15.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,请算出旗杆的高度.16.如图①,一架梯子AB长2.5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5m,梯子滑动后停在DE的位置上.如图②所示,测得BD=0.5m,求梯子顶端A下滑的距离.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?18.如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?19.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.参考答案1.C.2.D.3.C4.A.5.B6.C.7.C.8.A.9.答案为:12,24.10.答案为:8.11.答案为:10.12.答案为:13,1.13.答案为:17m.14.答案为:7或25.15.解:设旗杆的高度为x米,根据勾股定理得x2+52=(x+1)2解得:x=12;答:旗杆的高度为12米.16.解:在Rt△ABC中,AB=2.5m,BC=1.5m故AC=2m在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)=2m 故EC=1.5m故AE=AC﹣CE=2﹣1.5=0.5m答:梯子顶端A下落了0.5m.17.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.18.解:过B作BD⊥公路于D.∵82+152=172∴AC2+BC2=AB2∴△ABC是直角三角形,且∠ACB=90°.∵∠1=30°∴∠BCD=180°﹣90°﹣30°=60°.在Rt△BCD中∵∠BCD=60°∴∠CBD=30°∴CD=0.5BC=0.5×15=7.5(km).∵7.5÷2.5=3(h)∴3小时后这人距离B送奶站最近.19.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.20.解:(1)设存在点P,使得PA=PB此时PA=PB=2t,PC=4﹣2t在Rt△PCB中,PC2+CB2=PB2即:(4﹣2t)2+32=(2t)2解得:t =∴当t =时,PA =PB ;(2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E 此时BP =7﹣2t ,PE =PC =2t ﹣4,BE =5﹣4=1在Rt △BEP 中,PE 2+BE 2=BP 2即:(2t ﹣4)2+12=(7﹣2t)2解得:t =83∴当t =83时,P 在△ABC 的角平分线上.。
八年级数学(上)第一章《勾股定理》测试题及答案

八年级数学(上)第一章《勾股定理》测试题及答案选择题
1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()
A.4
B.8
C.10
D.12
2.小丰的妈妈买了一部29英寸(74m)的电视机,下列对29英寸的说法中正确的是()
A.小丰认为指的是屏幕的长度
B.小丰的妈妈认为指的是屏幕的宽度
C.小丰的爸爸认为指的是屏幕的周长
D.售货员认为指的是屏幕对角线的长度
3.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()
A.钝角三角形
B.锐角三角形
C.直角三角形
D. 等腰三角形
4.一直角三角形的一条直角边长是 7cm,另一条直角边与斜边长的和是 49cm,则斜边的长()
A.18cm
B.20 cm
C.24 cm
D.25cm
填空题
1. 小华和小红都从同一点0出发,小华向北走了9米到 A 点,小红向东走了12米到了B点,则AB=_____米。
2.一个三角形三边满足(a+b)2-c2=2ab,则这个三角形是_____三角形。
3.木工做一个长方形桌面,量得桌面的长为 60cm,宽为
32cm,对角线为 68cm,这个桌面______(填“合格”或“不合格”)。
4.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为_______。
参考答案:
选择题:CDCD
填空题:1.15;2.直角;3.合格;4.30。
(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。
3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。
5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。
E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。
7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。
八年级数学:勾股定理练习题(含解析)

八年级数学:勾股定理练习题(含解析)一、单选题1.已知直角三角形的两条直角边的长分别是1 )A .1BC .2D .32.下面各图中,不能证明勾股定理正确性的是( )A .B .C .D .3.一直角三角形的三边分别为2、3、x ,那么x 为( )A B C D .无法确定4.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A .2cmB .3cmC .4cmD .5cm5.如图,在Rt ABC ∆中,90ACB ∠=o ,正方形,AEDC BCFG 的面积分别为25和144,则AB 的长度为( )A .13B .169C .12D .56.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD⊥AC 于点D .则BD 的长为()A B C D 7.如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A B . C .3 D .8.如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .123S S S +=B .222123S S S +=C .123S S S +>D .123S S S +<9.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( )A .9B .10C .D .10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度(滑轮上方的部分忽略不计)为( )A .12 mB .13 mC .16 mD .17 m11.在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=( )A.4 B.5 C.6 D.7二、填空题12.△ABC,∠A=90°,a=15,b=12,则c=________.13.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.14.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:尺)的正方形,在水池正中央长有一根芦苇,“有一个水池,水面是一个边长为1丈(1丈10芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x尺,根据题意,可列方程为__________.15.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共__个.16.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.三、解答题17.如图,四边形ABCD中,∠B=90°,BB=12,BB=9,BB=8,BB=17,求四边形ABCD的面积.18.如图,三个村庄A,B,C之间的距离分别为BB=5km,BB=12 km,BB=13 km.要从B修一条公路直达AC,已知公路的造价为26000元/km,修这条公路的最低造价是多少?19.“中华人民共和国道路交通管理条例”规定,小汽车在设有中心双实线、中心分隔带、机动车道与非机动车道分隔设施的城市街道上的行驶速度不得超过70千米/时.如图,一辆“小汽车”在一条城市道路上沿直线行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米的C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由20.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.21.设a=b=c=(1)当x取什么实数时,a,b,c都有意义;(2)若Rt△ABC三条边的长分别为a,b,c,求x的值.参考答案1.C【解析】解:直角三角形的两条直角边的长分别为1;故选C.2.C【解析】解:A、∵12ab+12c2+12ab=12(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×12ab +(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、根据图形不能证明勾股定理,故本选项符合题意;D、∵4×12ab +c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;故选C.3.C【解析】解:当3为斜边时,32=22+x2,解得:当x为斜边时,x2=32+22,解得:∴x故选C.4.A【解析】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.5.A【解析】解:∵在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,又∵AC2=144,BC2=25,∴AB2=25+144=169,.故选:A.6.A【解析】如图,△ABC 的面积=12×BC×AE=2,由勾股定理得,则12解得 故选A .7.B【解析】解:E B A Q 沿过点的直线折叠,使点与点重合, B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒Q 点为中点,且,1EF AB 2∴=, 3EF 2=Q , 3AB 2EF 232∴==⨯=, ΔRtABC 在中, AB =AC ,AB 3,=BC∴===故选B.8.A【解析】解:设三个半圆的直径分别为:d1、d2、d3,S 1=12×π×(12d)2=21π8d,S 2=12×π×(22d)2=22π8d,S 3=12×π×(32d)2=23π8d.由勾股定理可得:d 12+d22=d32,∴S1+S2=π8(d12+d22)=23π8d=S3,所以S1、S2、S3的关系是:S1+S2=S3.故选A.9.B【解析】如图=如图10==.故选B.10.D【解析】设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.11.A【解析】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.12.9【解析】c9.==故答案为9.13.4【解析】解如图所示:在Rt ∆ABC 中,BC=3,AC=5, 由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52, 解得x=4 故答案为:4.14.2225(1)x x +=+ 【解析】设由题意可得:2225(1)x x +=+.故答案为2225(1)x x +=+. 15.4 【解析】解:根据题意可得以AB 为边画直角△ABC,使点C 在格点上,满足这样条件的点C 共 8个.故答案为8.16.)2018 【解析】解:∵△ABC是腰长为1的等腰直角三形,∴△ABC,第2=)2,第3个等腰直角三角形的斜边长是:2=)3,…,∴第2012)2018.2018.17.114【解析】解:如图所示,连接AC,∵∠B=90°,∴BB2=BB2+BB2=225=152,∵BB2+BB2=152+82=289,BB2=289,∴BB2+BB2=BB2,∴BB⊥BB,∴B 四边形BBBB =B Rt △BBB +B Rt △BBB =12×12×9+12×8×15=54+60=114.18.修这条公路的最低造价是12万元. 【解析】解:∵BC 2+AB 2=122+52=169,AC 2=132=169, ∴BC 2+AB 2=AC 2,∴∠ABC=90°,当BD⊥AC 时BD 最短,造价最低,∵S △ABC =12AB•BC=12AC•BD, ∴BB =BB •BB BB=6013km ,6013×2600=12000(万元), 答:最低造价为12000万元. 19.这辆“小汽车”超速了. 【解析】解:这辆“小汽车”超速了,理由:由题意知,130AB =米,50AC =米,且ABC △为直角三角形,AB 是斜边, 根据勾股定理,得222AB BC AC =+, 可以求得:120BC =米0.12=千米,6秒63600=时, 所以速度为小车此时速度为60.12723600÷=千米/时,所以这辆“小汽车”超速了.20.(1)BD=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明见解析. 【解析】(1)∵AO⊥OD,AO=4m ,AB=5m ,,∵梯子的顶端A 沿墙下滑1m 至C 点, ∴OC=AO﹣AC=3m , ∵CD=AB=5m,∴由勾股定理得:OD=4m , ∴BD=OD﹣OB=4m ﹣3m=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明如下: 连接CB ,由(1)知:AO=DO=4m ,AB=CD=5m , ∵∠AOB=∠DOC=90°, 在Rt△AOB 和Rt△DOC 中AB DCAO DO =⎧⎨=⎩, ∴Rt△AOB≌Rt△DOC(HL ), ∴∠ABO=∠DCO,OC=OB , ∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB, ∴∠EBC=∠ECB,∴CE=BE.21.(1)483x-≤≤;(2)x=25或2.【解析】解:(1)由二次根式的性质,得80 34020xxx-≥⎧⎪+≥⎨⎪+≥⎩,解得483x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.。
初二勾股定理试题及答案

初二勾股定理试题及答案一、选择题1. 下列选项中,哪一项是勾股定理的表达式?A. a + b = cB. a² + b² = c²C. a × b = cD. a ÷ b = c答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 7C. 8D. 9答案:A3. 一个直角三角形的斜边长为10,一条直角边长为6,那么另一条直角边的长度是多少?A. 8B. 4C. 6D. 10答案:A二、填空题1. 已知直角三角形的两条直角边长分别为6和8,根据勾股定理,斜边的长度为______。
答案:102. 如果一个直角三角形的斜边长为13,其中一条直角边长为5,那么另一条直角边的长度是______。
答案:12三、解答题1. 一个直角三角形的两条直角边长分别为9和12,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(9² + 12²) = √(81 + 144) = √225 = 15。
2. 一个直角三角形的斜边长为17,其中一条直角边长为8,求另一条直角边的长度。
答案:设另一条直角边的长度为x,根据勾股定理,有x² + 8² =17²,即x² + 64 = 289,解得x² = 225,所以x = √225 = 15。
四、证明题1. 证明:如果直角三角形的两条直角边长分别为a和b,斜边长为c,那么a² + b² = c²。
答案:设直角三角形的两条直角边分别为a和b,斜边为c。
在三角形中,我们可以构造一个边长为a和b的正方形,以及一个边长为c的正方形。
在这两个正方形中,我们可以画出四个相同的直角三角形,每个三角形的直角边长分别为a和b,斜边长为c。
这样,我们可以将这四个三角形拼成一个边长为a+b的正方形,其面积为(a+b)²。
八年级数学上册勾股定理练习题

八年级数学上册勾股定理练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.在Rt△ABC中,∠C=90°,且AC∠BC=1∠7,AB=100米,则AC=_________米.2.如图,AC=BC=10 cm,∠B=15°,若AD∠BD于点D,则AD的长为____________.3.若一个直角三角形的两边长分别是4cm,3cm,则第三条边长是________cm.BC的长为半4.如图,在Rt ABC中,∠ACB=90°,AB=13,BC=12,分别以点B和点C为圆心、大于12径作弧,两弧相交于E,F两点,作直线EF交AB于点D,连接CD,则ACD的周长是_____.5.如图,在ABC中,60∠=︒,3ABC△,则BD的长为AB=,5BC=,以AC为边在ABC外作正ACD___________.6.把二次根式(x-1__.二、单选题7.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了()m的路,却踩伤了花草.A .5B .4C .3D .28.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .209.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AD =AECF 的面积为( )A .B .C .4D .810.如图,∠O 是∠ABC 的外接圆,∠B =60°,OP ∠AC 于点P ,OP =2,则AC 的长为( )A .4B .C .D .11.如图,已知点B 、D 、C 、F 在同一条直线上,AB EF ,AB =EF ,AC DE ,如果BF =6,DC =3,那么BD 的长等于()A .1B .32C .2D .312.如图,ABC 中,60,BAC BAC ∠=︒∠的平分线AD 与边BC 的垂直平分线MD 相交于,D DE AB ⊥交AB的延长线于E DF AC ⊥,于F ,现有下列结论:∠DE DF =;∠DE DF AD +=;∠MD 平分EDF ∠;∠若3AE =,则6AB AC +=.其中正确的个数为( )A .1个B .2个C .3个D .4个三、解答题13.如图1所示的是某超市人口的双翼闸门,当它的双翼展开时,如图2,双翼边缘的端点A 与B 之间的距离为12cm ,双翼的边缘AC =BD =62cm ,且与闸机侧立面夹角∠ACP =∠BDQ =30°.求当双翼收起时,可以通过闸机的物体的最大宽度.14.如图.在平面直角坐标系中.点A 的坐标是(4,0),点P 在第一象限,且在直线y =﹣x +6上,设点P 的横坐标为a .∠P AO 的面积为S .(1)求S关于a的函数表达式;(2)若PO=P A,求S的值.-.15.已知a满足2021a aa的取值范围是______;则在这个条件下将2021a-去掉绝对值符号可得2021a-= ______.(2)根据(1)的分析,求2a-的值.2021参考答案:1.【分析】首先根据BC,AC的比设出BC,AC,然后利用勾股定理列式计算求得a,即可求解.【详解】解:∠AC∠BC=1∠7,∠设AC=a,则BC=7a,∠∠C=90°,∠AB2=AC2+BC2,∠1002=a2+(7a)2,解得:a∠AC米.故答案为:【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.2.5cm【分析】由题意可得∠ACD 的度数为30,利用含30角的直角三角形的性质可求【详解】10AC BC cm ==,15B BAC ∴∠=∠=︒,151530ACD B BAC ∴∠=∠+∠=︒+︒=︒,AD BC ⊥,1110522AD AC ∴==⨯= 故答案为:5cm【点睛】本题考查三角形外角的性质、解含30角的直角三角形,掌握含30角的直角三角形的性质是解题的关键3.5【分析】分两种情况,根据勾股定理即可求解.【详解】解:∠直角三角形的两边长分别是4cm ,3cm ,则第三条边长5=(cm );∠当直角边为3cm ,斜边长为4cm 时,第三条边长cm )故答案为:5【点睛】本题主要考查勾股定理,掌握勾股定理是解题的关键.4.18【分析】由题可知,EF 为线段BC 的垂直平分线,则CD =BD ,由勾股定理可得AC =5,则∠ACD 的周长为AC +AD +CD =AC +AD +BD =AC +AB ,即可得出答案.【详解】解:由题可知,EF 为线段BC 的垂直平分线,∠CD =BD ,∠∠ACB =90°,AB =13,BC =12,∠AC 5,∠∠ACD 的周长为AC +AD +CD =AC +AD +BD =AC +AB =5+13=18.故答案为:18.【点睛】本题考查尺规作图、线段垂直平分线的性质、勾股定理,熟练掌握线段垂直平分线的性质及勾股定理是详解本题的关键.5.7【分析】方法1:求BD 的长度,若能构造以BD 为边的直角三角形,通过勾股定理可求得BD ,于是过点D 作BA 延长线的垂线,垂足为E .求出BE ,DE 是关键.利用ABC DAC ∠=∠以及AC CD =,构造一对全等三角形,将求DE ,AE 转化为求AF ,CF .方法2:利用ABC ACD ∠=∠以及AC CD =,构造“一线三等角”的全等模型,转移、集中已知条件,建立与BD 的联系,再将BD 置于直角三角形中求解.方法3:根据旋转变换的思想,在形外构造以AB 为边的等边三角形,使已知条件可围绕点B 与点C 形成可解的直角三角形.方法4:根据旋转变换的思想,也可在形内构造以AB 为边的等边三角形,使已知条件可围绕点B 与点C 形成BDE ,将BD 直接置于这个三角形中加以解决.方法5:根据旋转变换的思想,也可在形外构造以BD 为边的等边三角形,使已知条件可围绕点A 与点B 形成BCE ,将BD 转化为BE 加以解决.【详解】方法1:如图,过点D 作DE BA ⊥延长线于点E ,过点A 作AF BC ⊥于点F ,得90AFC AED ∠=∠=︒.因为ACD △是等边三角形,所以AC AD =,60=︒∠DAC .因为180BAC ABC ACB ∠+∠+∠=︒,180BAC DAC EAD ∠+∠+∠=︒,又60ABC DAC ∠=∠=︒,所以ACF DAE ∠=∠,所以Rt AFC Rt DEA ∆∆,所以AF DE =,CF AE =.在Rt ABF ∆中,90906030BAF ABC =︒--∠=︒=∠︒︒,所以1322BF AB ==,AF = 所以72CF BC BF =-=,所以 72AE CF ==,713322BE AB AE =+=+=,DE AF ==在Rt BDE ∆中,由勾股定理得7BD ===. 方法2:如图,延长BC 到点E ,使3CE AB ==,过点B 作BF DE ⊥于点F .因为ACD △是等边三角形,所以AC AD =,60ACD ∠=︒.因为ACE ACD DCE ABC BAC ∠=∠+∠=∠+∠,60ABC ACD ∠=∠=︒,所以DCE BAC ∠=∠.又因为CE AB =,AC CD =,所以()ABC CED SAS ∆≅∆,所以5DE BC ==,60E ABC ∠=∠=︒,所以538BE BC CE =+=+=.在Rt BEF ∆中,604EF BE cos ⋅=︒=,tan 60BF EF ︒==⋅,所以541DF DE EF =-=-=.在Rt BDF ∆中,由勾股定理求得7BD ===.(在BDE 中,也可作DF BE ⊥于点F ,求BD .)方法3:如图,以点A 为旋转中心,将ABD △顺时针旋转60︒得AEC △,连接BE ,再过点E 作EF BC ⊥交CB 的延长线于点F .由旋转的性质,可得AEC ABD ≌,所以BD EC =,AE AB =,EAC BAD ∠=∠,所以60EAB CAD ∠=∠=︒,所以EAB 是等边三角形,所以3BE AB ==,60ABE ∠=︒,所以6060120EBC ABE ABC ∠=∠+∠=︒+︒=︒,所以18060EBF EBC ∠=︒-∠=︒.在Rt EFB ∆中sin 603EF EB ︒=⋅== 3cos602FB EB ︒=⨯=,所以在Rt EFC ∆中7EC , 所以7BD EC ==. 方法4:如图,以点A 为旋转中心.将ABC 逆时针旋转60︒得AED ,连接AE ,再过点D 作DF BC ⊥的延长线于点F .由旋转的性质,可得AED ABC △≌△,所以5DE BC ==,AE AB =,EAD BAC ∠=∠,60AED ABC ∠=∠=︒,所以60BAE CAD ∠=∠=︒,所以ABE △是等边三角形,所以3BE AB ==,60AEB ∠=︒,所以6060120BED AEB AED ∠∠∠︒︒=+=+=︒,所以18060DEF BED ∠=︒-∠=︒.在Rt DEF ∆中,sin 605DF DE ︒=⋅== ,5cos602EF DE ︒=⋅=,所以在Rt BDF ∆中,7BD =. 方法5:如图,以点D 为旋转中心,将DAB 逆时针旋转60︒得DCE ,连接BE ,再过点E 作EF BF ⊥交BC 的延长线于点F .由旋转的性质,可得DCE DAB ≌,所以BD DE =,3CE AB ==,DCE DAB ∠=∠,ADB CDE ∠=∠,所以60BDE ADC ∠=∠=︒,所以DBE 是等边三角形,所以BE BD =,又因为360ABC ADC BAD BCD ∠+∠+∠+∠=︒(四边形内角和为360︒),而360BCE BAD BCD ∠+∠+∠=︒ (周角),所以120BCE ∠=︒,所以18060ECF BED ∠=︒-∠=︒.在Rt ECF ∆中,sin 603EF CE ︒=⋅==, 3cos602CF CE ︒=⋅=,所以在Rt BEF ∆中, 7BE ===. 所以7BD BE ==.6.【分析】根据二次根式有意义的条件可以判断x -1的符号,即可化简.【详解】解:(x -x 1x 1=-=-=((故答案是:【点睛】本题主要考查了二次根式的化简,正确根据二次根式有意义的条件,判断1-x >0,从而正确化简|1-x|是解决本题的关键.7.B【分析】结合题意,根据勾股定理计算得花圃内一条“路”的长度,从而完成求解.【详解】根据题意,得:长方形花圃的四个角为90︒∠花圃内的一条“路”长13m =∠仅仅少走了512134m +-=故选:B .【点睛】本题考查了勾股定理的知识;解题的关键是熟练掌握勾股定理的性质,从而完成求解.8.D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键.9.A【分析】根据翻折的性质可得∠DAF =∠OAF ,OA =AD ,再根据菱形的对角线平分一组对角可得∠OAF =∠OAE ,然后求出∠OAE =30°,再利用勾股定理求出OE ,可得AE ,再根据菱形的面积公式列式计算即可得解.【详解】解:由翻折的性质得,∠DAF =∠OAF ,OA =AD在菱形AECF 中,∠OAF =∠OAE ,∠∠OAE =13×90°=30°, ∠AE =2OE ,∠在Rt △AOE 中,由勾股定理得:222OA OE AE +=,∠2234OE OE +=,∠OE=1或OE=-1(舍去),∠AE=2OE=2,∠菱形AECF的面积=AE·AD=故选:A.【点睛】本题考查了矩形的性质,翻折变换的性质,菱形的性质,勾股定理,含30°角的直角三角形的性质,熟练掌握翻折变换的性质并求出∠OAE=30°是解题的关键.10.C【分析】由圆周角定理得出∠AOC=2∠B=120°,由等腰三角形的性质和三角形内角和定理得出∠OAC=∠OCA=30°,由垂径定理得出AP=CP,由勾股定理得出AP=【详解】解:∠∠B=60°,∠∠AOC=2∠B=120°,∠OA=OC,∠∠OAC=∠OCA=30°,∠OP∠AC,∠AP=CP,OA=2OP=4,∠AP=∠AC=2AP=故选:C.【点睛】本题考查了圆周角定理、垂径定理、勾股定理、直角三角形的性质等知识;熟练掌握圆周角定理和垂径定理是解题的关键.11.B【分析】由AB EF得∠B=∠F,由AC DE得∠ACB=∠EDF,从而证明∠ABC∠∠EFD得BC=FD,即可求得BD的长.【详解】解:∠AB EF,∠∠B=∠F,∠AC DE,∠∠ACB=∠EDF,在∠ABC和∠EFD中,ACB EDF B FAB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠ABC ∠∠EFD (AAS ),∠BC =FD ,∠BC ﹣DC =FD ﹣DC ,∠BD =FC ,∠BD =12(BF ﹣DC )=12(6﹣3)=32. 故选:B .【点睛】本题主要考查了平行线的性质、三角形全的的判定及性质,熟练掌握三角形全的的判定方法是解题的关键.12.C【分析】∠由角平分线的性质可知∠正确;∠由题意可知∠EAD=∠FAD=30°,故此可知ED=12,DF=12,从而可证明∠正确;∠若DM 平分∠ADF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故∠错误;∠连接BD 、DC ,然后证明∠EBD∠∠DFC ,从而得到BE=FC ,从而可证明∠;【详解】如图所示:连接BD 、DC ,∠∠AD 平分∠BAC ,DE∠AB ,DF∠AC ,∠ ED=DF ,∠∠正确;∠∠∠EAC=60°,AD 平分∠BAC ,∠ ∠EAD=∠FAD=30°,∠ DE∠AB ,∠∠AED=90°,∠∠AED=90°,∠EAD=30°, ∠ED=12AD ,同理:DF=12AD , ∠DE+DF=AD ,∠∠正确;∠由题意可知:∠EDA=∠ADF=60°,假设MD 平分∠ADF ,则∠ADM=30°,则∠EDM=90°,又∠∠E=∠BMD=90°,∠ ∠EBM=90°,∠∠ABC=90°,∠∠ABC 是否等于90°不知道∠不能判定MD 平分∠ADF ,故∠错误;∠∠ DM 是BC 的垂直平分线,∠DB=DC ,在Rt∠BED 和Rt∠CFD 中DE DF BD DC =⎧⎨=⎩∠Rt △BED∠Rt △CFD ,∠ BE=FC ,∠AB+AC=AE -BE+AF+FC ,又∠AE=AF ,BE=FC ,∠ AB+AC=2AE ,∠ 当AE=3时,AB+AC=6,故∠正确;故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键;13.74cm【分析】过点A作AE∠CP于点E,过点B作BF∠DQ于点F,根据含30度角的直角三角形的性质可得31AE= cm,同理可得,BF=31cm,然后结合图形即可求解.【详解】解:如图,过点A作AE∠CP于点E,过点B作BF∠DQ于点F,在Rt∠ACE中,∠ACE=30°,∠AE=12AC=12×62=31(cm),同理可得,BF=31cm,又∠双翼边缘的端点A与B之间的距离为12cm,∠31+12+31=74(cm),∠当双翼收起时,可以通过闸机的物体的最大宽度为74cm.【点睛】本题考查了含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解题的关键.14.(1)S=﹣2a+12(0<a<6);(2)8S=【分析】(1)作PD∠OA于D.可知S△OAP=12OA•PD,将坐标代入等式可求;(2)当PO=P A时,OD=AD.求出点P坐标后易求∠P AO的面积.(1)解:过P作PD∠OA于D.∠点A的坐标是(4,0),∠OA=4,∠点P的横坐标为a.且在直线y=﹣x+6上,∠点p(a,﹣a+6),∠PD =﹣a +6,∠S △OAP =12OA •PD ,∠S =12×4×(﹣a +6)=2(﹣a +6). 即S =﹣2a +12(0<a <6);(2)解∠当PO =P A 时,OD =AD =12OA =2,即a =2,∠点P 坐标为(2,4).S =﹣2a +12=﹣2×2+12=8.【点睛】本题考查的是一次函数的性质,三角形的面积,等腰三角形的性质,难度中等.利用数形结合是解题的关键.15.(1)2022a ≥;2021a -(2)220212022-=a【分析】(1)先根据二次根式有意义的条件求出a 的范围,再根据绝对值的性质化简;(2)去掉绝对值符号,然后根据二次根式的性质求解即可.(1)解:∠20220a -≥,∠2022a ≥,∠20210a -<, ∠20212021a a -=-;故答案为:2022a ≥;2021a -;(2)∠2021a a -,∠2021a a -=,2021,∠220222021a -=,∠220212022-=a .【点睛】本题考查了绝对值的意义,二次根式有意义的条件,二次根式的性质与化简,能求出a ≥2022是解此题的关键.。
八年级数学勾股定理的实际应用专题练习(含解析答案)

八年级数学勾股定理的实际应用专题练习一.选择题(共5小题)1.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15 C.5≤a≤12D.5≤a≤133.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是_________.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是_________,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为_________,请说明理由.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?19.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.20.请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:=_________.路线2:=_________.所以选择路线_________(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.21.如图,正方体边长为30cm,B点距离C点10cm,有一只蚂蚁沿着正方体表面从A点爬到B点,其爬行速度为每秒2cm,则这只蚂蚁最快多长时间可爬到B点?22.如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.若AB=4,BC=4,CC1=5,(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;(2)求蚂蚁爬过的最短路径的长.24.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.26.如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?27.如图所示,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是多少米?(结果不取近似值)参考答案与试题解析一.选择题(共5小题)1.图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m考点:勾股定理的应用.专题:应用题;压轴题.分析:为了不让羊吃到菜,必须<等于点A到圆的最小距离.要确定最小距离,连接OA交半圆于点E,即AE 是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.解答:解:连接OA,交半圆O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4m,故选A.点评:此题确定点到半圆的最短距离是难点.熟练运用勾股定理.2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选A.点评:主要是运用勾股定理求得a的最大值,此题比较常见,有一定的难度.3.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时考点:勾股定理的应用;方向角.专题:应用题.分析:首先画图,构造直角三角形,利用勾股定理求出船8时到10时航行的距离,再求速度即可解答.解答:解:如图在Rt△ABC中,∠ABC=90°﹣60°=30°,AB=72海里,故AC=36海里,BC==36海里,艘船航行的速度为36÷2=18海里/时.故选B.点评:本题考查方位角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m考点:勾股定理的应用;垂径定理的应用.分析:本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.解答:解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=AB=4m.根据勾股定理可得OM=3m,则油的最大深度ME为5﹣3=2m.故选B.点评:考查了勾股定理的应用和垂径定理的应用,圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4考点:勾股定理的应用.分析:根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的长度最长为16﹣12=4cm;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.解答:解:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16﹣12=4(cm);②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线直径为5cm,高为12cm,由勾股定理可得杯里面管长为=13cm,则露在杯口外的长度最长为16﹣13=3cm;则可得露在杯口外的长度在3cm和4cm范围变化.故选B.点评:本题考查了矩形中勾股定理的运用,解答此题的关键是要找出管最长和最短时在杯中所处的位置,然后计算求解.二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?考点:勾股定理的应用.专题:应用题.分析:(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC 之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可.解答:解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.点评:此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)考点:勾股定理的应用.分析:作CD⊥AB交AB延长线于D,根据勾股定理分别计算出AB和BC的长度,利用速度、时间、路程之间的关系求出各自的时间比较大小即可.解答:解:作CD⊥AB交AB延长线于D,由已知得:∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=90°﹣60°=30°,∵∠1+∠3=∠2,∴∠3=30°,∴∠1=∠3,∴AB=BC=100,在Rt△BDC中,BD=BC=50,∴DC==50,∵AD=AB+BD=150,∴在Rt△ACD中,AC==100,∴t1号==≈4.25,t2号==,∵<4.25,∴搜救中心应派2号艘救助轮才能尽早赶到C处救援.点评:本题考查了勾股定理的运用、等腰三角形的判定和性质以及速度、时间、路程之间的关系.8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?考点:勾股定理的应用.分析:根据题意,知还需要求出BC的长,根据勾股定理即可.解答:解:由勾股定理AB2=BC2+AC2,得BC===2,AC+BC=2+2(米).答:所需地毯的长度为(2+2)米.点评:能够运用数学知识解决生活中的实际问题.熟练运用勾股定理.9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.考点:勾股定理的应用;三角形的面积;含30度角的直角三角形;等腰直角三角形.分析:首先过A作AD⊥CB,根据∠C=45°,可以求出AD=DC,再利用勾股定理求出AD的长,再根据直角三角形的性质求出AB的长,利用勾股定理求出BD的长,最后根据三角形的面积公式可求出△ABC的面积.解答:解:过A作AD⊥CB,∵∠C=45°,∴∠DAC=45°,∴AD=DC,设AD=DC=x,则x2+x2=(12)2,解得:x=12,∵∠B=30°,∴AB=2AD=24,∴BD==12,∴CB=12+12,∴△ABC的面积=CB•AD=72+72.点评:此题主要考查了勾股定理的应用,以及直角三角形的性质,关键是熟练利用直角三角形的性质求出BD、AD的长.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?考点:勾股定理的应用.分析:(1)根据题意可知∠C=90°,AB=2.5m,BC=0.7m,根据勾股定理可求出AC的长度,根据梯子顶端B沿墙下滑0.9m,可求出A1C的长度,梯子的长度不变,根据勾股定理可求出B1C的长度,进而求出BB1的长度.(2)可设点B向外移动的距离的一半为2x,则梯子从顶端A处沿墙AC下滑的距离是x,根据勾股定理建立方程,解方程即可.解答:解:(1)∵AB=2.5m,BC=O.7m,∴AC==2.4m∴A1C=AC﹣AA1=2.4﹣0.9=1.5m,∴B1C==2m,∴BB1=B1C﹣BC=0.5m;(2)梯子从顶端A处沿墙AC下滑的距离是x,则点B向外移动的距离的一半为2x,由勾股定理得:(2.4﹣x)2+(0.7+2x)2=2.52,解得:x=,答:梯子沿墙AC下滑的距离是米.点评:本题考查勾股定理的应用,在直角三角形里根据勾股定理,知道其中两边就可求出第三边,从而可求解.11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.考点:勾股定理的应用.分析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2,BC=a(米),AC=b(米),AD=x(米),根据两只猴子经过的路程一样可得10+a=x+b=15解方程组可以求x的值,即可计算树高=10+x.解答:解:Rt△ABC中,∠B=90°,设BC=a(米),AC=b(米),AD=x(米)则10+a=x+b=15(米).∴a=5(米),b=15﹣x(米)又在Rt△ABC中,由勾股定理得:(10+x)2+a2=b2,∴(10+x)2+52=(15﹣x)2,解得,x=2,即AD=2(米)∴AB=AD+DB=2+10=12(米)答:树高AB为12米.点评:本题考查了勾股定理在实际生活中的应用,本题中找到两只猴子行走路程相等的等量关系,并且正确地运用勾股定理求AD的值是解题的关键.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?考点:勾股定理的应用.分析:地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.解答:解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.点评:正确理解地毯的长度的计算是解题的关键.13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?考点:勾股定理的应用.分析:(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解答:解:(1)在Rt△ABD中,根据勾股定理,得BD===240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD﹣DE=240﹣30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.点评:本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.考点:勾股定理的应用.专题:计算题.分析:由题意知,△ABC为直角三角形,且AB是斜边,已知AB,AC根据勾股定理可以求BC,根据BC的长度和时间可以求小汽车在BC路程中的速度,若速度大于70千米/时,则小汽车超速;若速度小于70千米/时,则小汽车没有超速.解答:解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒=时,所以速度为=72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.点评:本题考查了勾股定理在实际生活中的应用,本题中准确的求出BC的长度,并计算小汽车的行驶速度是解题的关键.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.考点:勾股定理的应用.专题:应用题.分析:根据题中的已知条件可将BB′的长求出,和卡车的高进行比较,若门高低于卡车的高则不能通过否则能通过.解答:解:设BB′与矩形的宽的交点为C,∵AB=1米,AC=0.8米,∠ACB=90°,∴BC===0.6米,∵BB′=BC+CB′=2.3+0.6=2.9<3.0,∴不能通过.点评:考查了勾股定理的应用,本题的关键是建立数学模型,善于观察题目的信息是解题以及学好数学的关键.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为S1+S2=S3,请说明理由.考点:勾股定理的应用.专题:探究型.分析:(1)利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理.(2)利用直角△ABC的边长就可以表示出半圆S1、S2、S3的大小,满足勾股定理.解答:解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2(1)S1+S2=S3,证明如下:∵S3=,S1=,S2=∴S1+S2==S3;(2)S1+S2=S3.证明如下:∵S3=,S1=,S2=∴S1+S2=+==S3;(3)过D点作DE∥AB,交BC于E,设梯形的边AB、DC、AD的长分别为a、b、c,可证EC=AD=c,DE=AB=a,∠EDC=180°﹣(∠DEC+∠BCD)=180°﹣(∠ABC+∠BCD)=90°,则c2=a2+b2∵S1=a2、S2=b2、S3=c2,表示,则S1+S2=S3.故答案为:S1+S2=S3;S1+S2=S3;S1+S2=S3.点评:考查了三角形、正方形、圆的面积的计算以及勾股定理的应用.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?考点:勾股定理的应用.专题:计算题.分析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.解答:解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.。
八年级初二数学勾股定理练习题含答案

一、选择题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m 2.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( )A .4或14B .10或14C .14D .103.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .1054.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 5.在ΔABC 中,211a b c =+,则∠A( ) A .一定是锐角 B .一定是直角 C .一定是钝角 D .非上述答案6.如图,△ABC 中,AB=10,BC=12,AC=13△ABC 的面积是( ).A .36B .1013C .60D .1213 7.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形8.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对9.已知三组数据:①2,3,4;②3,4,5;③1,2,5,分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的是( )A .②B .①②C .①③D .②③ 10.已知一个直角三角形的两边长分别为3和5,则第三边长是( )A .5B .4C .34D .4或34 二、填空题11.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.12.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.13.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.14.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.15.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.16.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.17.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.18.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.19.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________20.如图,直线423y x =+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.28.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,22AB BC=500m,∴CE=AC-AE=200,从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.2.A解析:A【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度.【详解】∵AC =13,AD =12,CD =5,∴222AD CD AC +=,∴△ABD 是直角三角形,AD ⊥BC ,由于点D 在直线BC 上,分两种情况讨论:当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=, 则4BC BD CD =-=. 故答案为:A.【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.3.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==>>∴25>>∴需要爬行的最短距离为25cm故选:A .【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.4.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.5.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc >a 2 ,再根据(b-c ) 2 ≥0,可推导得出b 2 +c 2 >a 2 ,据此进行判断即可得. 【详解】∵211a b c =+, ∴2b c a bc+=,∴2bc=a (b+c ),∵a 、b 、c 是三角形的三条边,∴b+c >a ,∴2bc >a·a , 即2bc >a 2 ,∵(b-c ) 2 ≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2 ≥2bc ,∴b 2 +c 2 >a 2 ,∴一定为锐角,故选A .【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2 >a 2 是解题的关键.6.A解析:A【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴(()22221021312x x -=-- ∴8x = ∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.D解析:D【分析】由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形.【详解】解:∵(a-b )(a 2-b 2-c 2)=0,∴a-b=0,或a 2-b 2-c 2=0,即a=b 或a 2=b 2+c 2,∴△ABC 的形状为等腰三角形或直角三角形.故选:D .【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.8.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.9.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③()2221+2=5=5 , 所以能构成直角三角形的是②③. 故选D . 【点睛】 考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 10.D 解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x =2253-=4;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x =2253+=34故选:D二、填空题11.【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.12.21021332【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==, ∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即455BE =,1455DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅,∴45BE = 355CE ∴= ∵ABD △为等腰直角三角形 ∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 13.48【分析】用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b +=2248a b +=,∴248S=.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.14.(0,21009)【解析】【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,∴OA1=2,OA2=(2)2,…,OA2018=(2)2018,∵A1、A2、…,每8个一循环,∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018=()20182=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.15.413【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,222264213BD BE DE=++=,∴BC =2BD =413, 故答案为:413.【点睛】 本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.16.23或2【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4, ∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.17.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=,∴2ab=120,a2+b2=169,∴(a+b)2=a2+b2+2ab=169+120=289,∴a+b=17,∵a﹣b=7,解得:a=12,b=5,∴AE=12,DE=5,∴AH=12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.18.7或29或65【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD2229=+=;DE BE(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD2265=+=.DE BE故答案为:7或29或65.【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.19.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.20.(0,34).【分析】由423y x=+求出点A、B的坐标,利用勾股定理求得AB的长度,由此得到53122OA'=-=,设点C的坐标为(0,m),利用勾股定理解得m的值即可得到答案.【详解】在423y x=+中,当x=0时,得y=2,∴A(0,2)当y=0时,得4203x +=,∴32x =-,∴B(32-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32,∴52AB ===, ∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34, ∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN=FN,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴BF ===【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,)PQ cm ==;(2)解:根据题意得:BQ BP =,即28t t =-, 解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.24.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(3BF)2∴DE2=(EB+12AD)2+(3AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)12;(2)t=12.5s时,13 cm;(3)11s或12s或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC= PA=t,则PB=16-t.在Rt△BPC中,由勾股定理可求得t的值,判断出此时,点Q在边AC上,根据CQ=2t-BC计算即可;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.【详解】(1)在Rt△ABC中,BC2222212016AC AB=-=-=(cm).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=, ∵2AE AP ==90EAP ∠=︒,∴22PE AE ==,∴()22227BE +=,解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确; ③在Rt AHB 中,由①知:6EH HB == ∴62AH AE EH =+=, 22222256623AB AH BH =+=+=+⎭⎝⎭,21153222ABD S AB AD AB ∆=⋅==+ ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+,∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.28.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --∴AB 13==故A 、B 两点间的距离为:13.∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1∴()MN 415=--=故M 、N 两点的距离为5.(2)∵()1, 6D 、()3, 3E -、()4, 2F∴()()22DE 13635=++-= ()()22DF 14625=-+-= ()()22EF 343252=--+-=∴DE=DF ,222DE DF EF +=∴△DEF 为等腰直角三角形 (3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短设直线DF'的解析式为y=kx+b 将D (1,6),F'(4,-2)代入得:642k b k b +=⎧⎨+=-⎩解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线DF'的解析式为:826y 33x =-+ 令y=0,解得13x 4=,即P 的坐标为(1304,) ∵PF=PF'∴PD+PF=PD+ PF'= DF'()()22146273-++=故当P 的坐标为(1304,)时,PD+PF 73 【点睛】本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.29.(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【详解】(1)①解:BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.【点睛】本題是四边形综合题目,考查的是全等三角形的判定和性质、等直角三角形的性质、勾股定理、直角三角形的判定等知识:本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.30.(1)t,45;(2)详见解析;(3)90°;(4)t的值为2﹣1或2+1,BE=3.【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)根据SAS即可证明△ADE≌△CDF;(3)由△ADE≌△CDF,即可推出∠ADE=∠CDF,推出∠EDF=∠ADC=90°;(4)分两种情形分别求解即可解决问题.【详解】(1)由题意:AE=t.∵CA=CB,∠ACB=90°,CD⊥AB,∴∠BCD=∠ACD=45°.故答案为t,45.(2)∵∠ACB=90°,CA=CB,CD⊥AB,∴CD=AD=BD,∴∠A=∠DCB=45°.∵AE=CF,∴△ADE≌△CDF(SAS).(3)∵点E在边AC上运动时,△ADE≌△CDF,∴∠ADE=∠CDF,∴∠EDF=∠ADC=90°.(4)①当点E在AC边上时,如图1.在Rt△ACB中,∵∠ACB=90°,AC=CB,AB=2,CD⊥AB,∴CD=AD=DB=1,AC=BC2=∵CE=CD=1,∴AE=AC﹣CE2=1.=1,∴t2。
八年级数学勾股定理30道必做题(含答案和解析)

八年级数学勾股定理30道必做题(含答案和解析)1、如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a ,b ,c. A ,B ,N ,E ,F 五点在同一直线上,则c = .(用含有a ,b 的代数式表示).答案:√a 2+b 2.解析:由三个正方形如图的摆放.∵四边形ABCD ,EFGH ,NHMC 都是正方形. ∴∠CNB +∠ENH =90°.又∵∠CNB +∠NCB =90°,∠ENH +∠EHN =90°. ∴∠CNB =∠EHN ,∠NCB =∠ENH. 在△CBN 和△NEH 中:{∠BNC =∠EHNNC =HN ∠NCB =∠HNE .∴△CBN ≌△NEH (ASA ). ∴HE =BN.在Rt △CBN 中,BC 2+BN 2=CN 2.又已知三个正方形的边长分别为a ,b ,c. 则有a 2+b 2=c 2. ∴c =√a 2+b 2.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理. 四边形——正方形——正方形的性质.2、在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( ). A.9 B.18 C.6 D. 无法计算答案:B.解析:在Rt△ABC中,斜边长BC=3.BC2=AB2+AC2=9.∴AB2+AC2+BC2=9+9=18.考点:三角形——直角三角形——勾股定理.3、三角形三边长分别为① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.其中能构成直角三角形的有.答案:①②③④⑤⑥.解析:① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.全都能构成直角三角形.考点:三角形——直角三角形——勾股数.4、已知点A(3,5),B(-1,1)那么线段AB的长度为().A.4B.3√2C.4√2D.5答案:C.解析:已知A(3,5)和B(-1,1),由两点间的距离公式可知AB=√(3+1)2+(5−1)2=4√2.考点:函数——平面直角坐标系——坐标与距离.5、等腰直角三角形的斜边为10,则腰长为,斜边上的高为.答案:1.5√2.2.5.解析:等腰三角形的三边关系为1∶1∶√2.因为等腰直角三角形的斜边为10,则腰长为5√2.斜边上的高,即为斜边的中线,为斜边的一半,长为5.考点:三角形——直角三角形——等腰直角三角形——勾股定理.6、若正方形的周长为40,则其对角线长为().A.100B.20√2C.10√2D.10答案:C.解析:正方形边长为10,根据勾股定理得对角线长为10√2.考点:三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.7、在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC的长是().A.2B.√32C.√3D.√3+2答案:C.解析:略.考点:三角形——直角三角形——勾股定理.8、等边三角形的边长为4,则它的面积是.答案:4√3 .解析:等边三角形的面积=√34×42=4√3.考点:三角形——直角三角形——含30°角的直角三角形.9、已知一个直角三角形的两条直角边分别为3,4,则此三角形斜边是__________,斜边上的高为__________.A.5;125B.6;145C.6;125D.5;145答案:A.解析:略.考点:三角形——三角形基础——三角形面积及等积变换.直角三角形——勾股定理.10、直角三角形两直角边长分别为5和12,则它的斜边上的高为.答案:6013.解析:设斜边的长为c,斜边上的高为h.∵直角三角形的两直角边长分别为5和12.∴c=√52+122=13.∴5×12=13h,解得h=60.13考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.11、如图所示,小明同学在距离某建筑物6米的点A处测得条幅两端点B,C点的仰角分别为60°和30°,则条幅的高度BC为米(结果可以保留根号).答案:4√3.=2√3,BC=BD−CD=4√3.解析:依题可知,BC=6√3,CD=√3考点:三角形——直角三角形——含30°角的直角三角形.三角形——锐角三角函数——解直角三角形.12、一张直角三角形的纸片,按图所示折叠,使两个锐角的顶点A,B重合,若∠B=30°,AC=√3,则DC的长为.答案:1.解析:由题知∠DAE=∠B=30°.∴∠DAC=90°-∠B-∠DAE=30°.AC=1.∴在Rt△ADC中,DC=√33考点:三角形——直角三角形——含30°角的直角三角形.13、已知:如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,D是AB延长线上一点且∠CDB=45°.求DB与DC的长.答案:证明见解析.解析:过C作CE⊥AB于E.在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4.∴BC=2,∠ABC=60°.∴∠BCE=30°.∴BE=1,CE=√3.在Rt△CDE中,∠CED=90°,∠CDB=45°.∴∠ECD=45°.∴DE=CE=√3.∴CD=√CE2+DE2=√6.∴BD=√3-1.考点:三角形——直角三角形——含30°角的直角三角形——等腰直角三角形——勾股定理.14、如图,数轴上有两个Rt△OAB,Rt△OCD,OA,OC是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA,OC为半径画弧交x轴于E,F,则E,F分别对应的数是.答案:−√2,√5.解析:在Rt△OAB中,OA=√OB2+AB2=√2.∴OE=√2.∴点E对应的数为−√2.在Rt△OCD中,OC=√OD2+CD2=√5.∴OF=√5.∴点F对应的数为√5.考点:数——有理数——数轴.三角形——直角三角形——勾股定理.15、在△ABC中,三条边的长分别为AB=√5,BC=√10,AC=√13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格,其中每个小正方形的边长为1,再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样就不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为√2a,√13a,√17a(a>0).请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上.(3)若△ABC中有两边的长分别为√2a,√10a(a>0).且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上..答案:(1)72a2.(2)52(3)4a或2√2a.解析:(1)△ABC的面积为72.(2)△ABC的面积为52a2.(3)图中三角形为符合题意的三角形.第三边的长度为4a或2√2a.考点:函数——平面直角坐标系——坐标与面积.三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.16、在Rt△ABC中,∠C=90°,若a+b=5,c=4,则S△ABC=.答案:94.解析:在Rt△ABC中,由勾股定理得,a2+b2=c2.又有(a+b)2=a2+b2+2ab,∴(a+b)2-c2=2ab.∴S△ABC=12ab=94.考点:三角形——直角三角形——勾股定理.17、已知Rt△ABC的周长为2+√6,其中斜边AB=2,则这个三角形的面积为.答案:12.解析:在Rt△ABC中,设BC=a,AC=b.由勾股定理得a2+b2=4.由题意得a +b +2=2+√6. ∴a +b =√6. ∴ab =(a+b)2−(a 2+b 2)2=6−42=1.∴s =12ab =12.考点:式——整式——完全平方公式.三角形——直角三角形——勾股定理.18、在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为 . 答案:132cm. 解析:略.考点:三角形——直角三角形——勾股定理.19、如图所示,在平静的湖面上,有一支红莲,高出水面1m ,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求水深是多少?答案:水深为1.5米.解析:设水深AC 为x 米.则红莲的长是(x +1)米.在Rt △ABC 中,根据勾股定理得,AC 2+BC 2=AB 2. ∴(x +1)2=x 2+4. 解得x =1.5. 答:水深为1.5米.考点:三角形——直角三角形——勾股定理——勾股定理的应用.20、如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD =1,BD =√17,则BC 的长为 ..答案:178解析:在Rt△ABD中,由勾股定理可知,AD=1,BD=√17,AB=4.设BC=BD=x,AC=4-x..由勾股定理可知12+(4-x)2=x2,解得x=178考点:三角形——直角三角形——勾股定理.21、如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于.答案:6.解析:∵AB=10,EF=2.∴大正方形的面积是100,小正方形的面积是4.∴四个直角三角形的面积和为100-4=96.ab=96.设AE=a,DE=b,即4×12∴2ab=96,a2+b2=100.∴a+b=14.∵a-b=2.解得a=8,b=6.∴AE=8,DE=6.∴AH=8-2=6.考点:方程与不等式——二元一次方程组——解二元一次方程组.三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.22、在Rt△ABC中,AC=5,BC=12,则AB边的长是.答案:13或√119.解析:若AC=5,BC=12都是直角边,则AB=13.若BC=12是斜边,则AB=√122−52=√119.考点:三角形——直角三角形——勾股定理.23、等腰三角形的一边长为12,另一边长是10,则其面积为.答案:48或5√119.解析:作出底边上的高AD.当AB=AC=12,BC=10时,BD=5.由勾股定理得:AD=√AB2−BD2=√119.∴S=12BC×AD=12×10×√119=5√119.当AB=AC=10,BC=12时,BD=6.由勾股定理得:AD=√AB2−BD2=√102−62=8.∴S=12BC×AD=48.考点:三角形——直角三角形——勾股定理.24、在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.答案:66或126.解析:如图所示,分如下两种情况:由勾股定理可得,B1H=B2H=5,CH=16.∴CB1=21,CB2=11.∴△ABC的面积为66或126cm2.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.25、下列各组数中,不能构成直角三角形的是().A.3,4,5B.1,1,√2C.5,12,13D.4,6,8答案:D.解析:∵32+42=52,∴选项A正确.∵12+12=(√2)2,∴选项B正确.∵52+122=132,∴选项C正确.∵42+62≠82,∴选项D错误.考点:三角形——直角三角形——勾股定理的逆定理.26、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是.答案:∠A和∠C.解析:∵b2-a2=c2.∴b2=a2+c2.∴△ABC为直角三角形,且∠B=90°.∴∠A+∠C=90°.考点:几何初步——角——余角和补角.三角形——直角三角形——勾股定理的逆定理.27、如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD.求证:△AEF 是直角三角形.答案:证明见解析.解析:如图所示,延长FE交AB的延长线于点G.∵∠C=∠GBE=90°,CE=BE,∠1=∠2.∴△CEF≌△BEG.∴EF=EG,CF=BG.设正方形ABCD的边长为a,则CF=14a,DF=34a.在Rt△ADF中,根据勾股定理,得AF2=AD2+DF2=a2+(34a)2=2516a2.∴AF=54a,BG=14a.∴AG=54a.∴AF=AG.∵EF=EG.∴AE⊥FG.∴∠AEF=90°.∴△AEF是直角三角形.考点:三角形——全等三角形——全等三角形的应用.三角形——等腰三角形——等腰三角形的性质.三角形——直角三角形——勾股定理——勾股定理的逆定理.28、如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.答案:四边形ABCD的面积为1+√5.解析:连接AC.∵∠ABC=90°,AB=1,BC=2.∴AC=√AB2+BC2=√5.在△ACD中,AC2+CD2=5+4=9=AD2.∴△ACD是直角三角形.∴S四边形ABCD=12AB×BC+12AC×CD=12×1×2+12×√5×2=1+√5.故四边形ABCD的面积为1+√5.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理——勾股定理的逆定理.29、在△ABC中,点D为BC的中点,点M,N分别为AB,AC上的点,且MD⊥ND.(1)若∠A=90°,以线段BM,MN,CN为边能否构成一个三角形?若能,该三角形是锐角三角形,直角三角形或钝角三角形?(2)如果BM2+CN2=DM2+DN2,求证AD2=14(AB2+AC2).答案:(1)能,该三角形是直角三角形.(2)证明见解析.解析:(1)略.(2)延长ND至E,使DE=DN,连接EB,EM,MN.因为DE=DN,DB=DC,∠BDE=∠CDN,则△BDE≌△CDN.从而BE=CN,∠DBE=∠C.而DE=DN,∠MDN=90°,故ME=MN.因此DM2+DN2=MN2=ME2.即BM2+BE2=ME2,则∠MBE=90°.即∠MBD+∠DBE=90°.因为∠DBE=∠C,故∠MBD+∠C=90°.则∠BAC=90°.AD为Rt△ABC斜边BC上的中线.BC.故AD=12(AB2+AC2).由此可得AD2=14考点:三角形——全等三角形——全等三角形常用辅助线——倍长中线.三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理.30、阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP’C,连接PP’,得到两个特殊的三角形,从而将问题解决.(1)图1中∠APB的度数等于.(2)如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17,则∠APB的度数等于,正方形的边长为.(3)如图,在正六边形ABCDEF内有一点,且PA=2,PB=1,PF=√13,则∠APB的度数等于,正六边形的边长为(并写出解答过程).答案:(1)150°.(2)1.135°.2.√13.(3)1.120°.2.√7.解析:(1)∵△ABC为正三角形,PA=P’A.∴△AP P’为正三角形.∴∠A P’P=60°,P’P=AP=3.∵P’C=PB=4,PC2=P’P2+P’C2.∴∠PP’C=90°.∴∠APB=∠AP’C=150°.(2)1.135°;2.√13.(3)图4中∠APB的度数等于120°,正六边形的边长为√7.将△APB绕点A逆时针旋转120°得到△A P’F,连接P’P.过点A作AN⊥P’P,过点A作AH⊥FP’于点H.∵△APB绕点A逆时针旋转120°得到△A P’F.∴∠PAP’=120°,P’A=PA=2,P’F=PB=1.∴∠AP’P=30°.在Rt△ANP’中,P’A=2AN=2.∴P’N=√3.∴PP’=2√3.在△FPP’中,PF=√13,PP’=2√3,P’F=2.∴PF2=P’F2+P’P2.∴∠FP’P=90°.∴∠APB=∠FP’A=∠FP’P+∠AP’P=120°.∴∠HP’A=60°.在Rt△HP’A中,AP’=2, ∠P’AH=30°.∴HP’=1.在Rt△HFA中,FA2=FH2+HA2.∴FA=√FH2+HA2=√7.考点:三角形——直角三角形——勾股定理——勾股定理的逆定理.几何变换——图形的旋转——旋转全等.。
(典型题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)

一、选择题BC=,点P移1.如图,动点P从点A出发,沿着圆柱的侧面移动到BC的中点S,若8动的最短距离为5,则圆柱的底面周长为()A.6 B.4πC.8 D.102.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是()A.12 B.13 C.15 D.243.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点A,B,C均在网格的格点上,则△ABC的三条边中边长是无理数的有()A.0条B.1条C.2条D.3条4.如图,用64个边长为1cm的小正方形拼成的网格中,点A,B,C,D,E,都在格点(小正方形顶点)上,对于线段AB,AC,AD,AE,长度为无理数的有().A .4条B .3条C .2条D .1条5.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .41 6.下列各组数是勾股数的是( ) A .0.3,0.4,0.5B .7,8,9C .6,8,10D .3,4,5 7.下列各组数据中,是勾股数的是( ) A .3,4,5B .1,2,3C .8,9,10D .5,6,9 8.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .459.如图,在长为10的线段AB 上,作如下操作:经过点B 作BC AB ⊥,使得12BC AB =;连接AC ,在CA 上截取CE CB =;在AB 上截取AD AE =,则AD 的长为( )A .555-B .1055-C .10510-D .555+ 10.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .711.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =1;再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,那么点P 表示的数是( )A .2.2B .5C .1+2D .6 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .84B .64C .48D .46二、填空题13.如图,在三角形纸片ABC 中,∠ACB =90°,BC =6,AB =10,如果在AC 边上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,那么CE 的长为________.14.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是______cm .15.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.16.如图是“赵爽弦图”,ABH ,BCG ,CDF 和DAE △是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果10AB =,且:3:4AH AE =.那么AH 等于________.17.如图,长方体的底面边长分别为3cm 和3cm ,高为5cm ,若一只蚂蚁从A 点开始经过四个侧面爬行一圈到达B 点,则蚂蚁爬行的最短路径长为_____cm .18.一根长16cm 牙刷置于底面直径为5cm 、高为12cm 的圆柱形水杯中.牙刷露在杯子外面的长度为hcm ,则h 的取值范围是___.19.如图,90AOB ∠=︒,9OA m =,3OB m =,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC 为__________.20.如图,它是四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短的直角边长为a ,较长的直角边为b ,那么+a b 的值为__________.三、解答题21.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是多少?22.已知ABC ∆中,ACB ∠=90°,如图,作三个等腰直角三角形ACD ∆,EAB ∆,FCB∆,AB,AC,BC为斜边,阴影部分的面积分别为1S,2S,3S,4S.(1)当AC=6,BC=8时,①求1S的值;②求4S-2S-3S的值;(2)请写出1S,2S,3S,4S之间的数量关系,并说明理由.23.如图,这是一个供滑板爱好者使用的U型池的示意图,该U型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为40mπ的半圆,其边缘20m==AB CD,点E在CD上,5mCE=,一滑板爱好者从A点滑到E点,则他滑行的最短距离为多少米?(边缘部分的厚度忽略不计)24.阅读下列材料:小明遇到一个问题:在ABC中,AB,BC,AC51013求ABC的面积.小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出ABC的面积.他把这种解决问题的方法称为构图法.参考小明解决问题的方法,完成下列问题:(1)图2是一个66⨯的正方形网格(每个小正方形的边长为1).①利用构图法在答卷..的图2132029DEF.②计算①中DEF的面积为__________.(直接写出答案)(2)如图3,已知PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.①判断PQR与PEF面积之间的关系,并说明理由.②若10PQ =,13PR =,3QR =,直接..写出六边形AQRDEF 的面积为__________.25.△ABC 三边长分别为,AB =25,BC =10,AC =34.(1)请在方格内画出△ABC ,使它的顶点都在格点上;(2)求△ABC 的面积;(3)求最短边上的高.26.在锐角ABC ∆中,∠BAC =45°.(1)如图1,BD ⊥AC 于D ,在BD 上取点E ,使DE =CD ,连结AE ,F 为AC 的中点,连结EF 并延长至点M ,使FM =EF ,连结CM 、BM .①求证:△AEF ≌△CMF ;②若BC =2,求线段BM 的长.(2)如图2,P 是△ABC 内的一点,22AB =(即28AB =),AC =32PA +PB +PC 的最小值,并求此时∠APC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据圆柱的侧面展开图,利用勾股定理求出AB 即可求解.【详解】解:圆柱的侧面展开图如图,点P 移动的最短距离为AS=5,根据题意,BS=12BC=4,∠ABS=90°, ∴AB=22AS BS -=2254-=3,∴圆柱的底面周长为2AB=6,故选:A .【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P 移动的最短距离是AS 是解答的关键.2.A解析:A【分析】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5,利用勾股定理即可解答.【详解】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5m ,在Rt ABC 中,222AC BC AB +=()22251x x ∴+=+解得:12x =故选:A .【点睛】本题考查了勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,利用勾股定理与方程的结合解决实际问题. 3.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】解:由勾股定理得:5AC ==,是有理数,不是无理数;BC ==AB ==即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 4.C解析:C【分析】先根据勾股定理求出AB ,AC ,AD ,AE 这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:5=,=10=,长度为无理数的有2条,故选:C .【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.5.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.【详解】解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.6.C解析:C【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为0.3,0.4,0.5不是正整数,此选项不符合题意;B 、不是勾股数,因为72+82≠92,此选项不符合题意;C 、是勾股数,因为62+82=102,此选项符合题意;D 345故选:C .【点睛】本题考查勾股数的概念,勾股数是指:①三个数均为正整数;②其中两个较小的数的平方和等于最大的数的平方.7.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、222123+≠,不能构成三角形,故不是勾股数;C 、2220981,不能构成直角三角形,故不是勾股数;D 、222569+≠,不能构成直角三角形,故不是勾股数.故选:A .【点睛】本题主要考查了勾股数的定义及勾股定理的逆定理,熟悉相关性质是解题的关键. 8.D解析:D【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2)=AC2−AB2=45.故选:D.【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.9.A解析:A【分析】由勾股定理求出AC=AD=AE=AC-CE=-5即可.【详解】解:∵BC⊥AB,AB=10,CE=BC=11105 22AB=⨯=,∴==∴AD=AE=AC-CE=5,故选:A【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.10.B解析:B【分析】由勾股定理求出AC=10,求出BE=4,设DE=x,则BD=8−x,得出(8−x)2+42=x2,解方程求出x即可得解.【详解】∵AB=6,BC=8,∠ABC=90°,∴10=,∵将△ADC沿直线AD翻折得△ADE,∴AC=AE=10,DC=DE,∴BE=AE−AB=10−6=4,在Rt △BDE 中,设DE =x ,则BD =8−x ,∵BD 2+BE 2=DE 2,∴(8−x )2+42=x 2,解得:x =5,∴DE =5.故选B .【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.11.B解析:B【分析】根据题意可知AOB 为直角三角形,再利用勾股定理即可求出OB 的长度,从而得出OP 长度,即可选择.【详解】∵AB OA ⊥∴AOB 为直角三角形.∴在Rt AOB 中,OB根据题意可知2=1OA AB =,,∴OB又∵OB OP =,∴P故选:B .【点睛】本题考查数轴和勾股定理,利用勾股定理求出OB 的长是解答本题的关键.12.B解析:B【分析】根据正方形的面积等于边长的平方和勾股定理求解即可.【详解】解:设中间直角三角形的边长分别为a 、b 、c ,且a 2=225,c 2=289,由勾股定理得b 2=c 2﹣a 2=289﹣225=64,∴字母A 所代表的正方形的面积为b 2=64,故选:B .【点睛】本题考查勾股定理的应用、正方形的面积,熟练掌握勾股定理是解答的关键.二、填空题13.3【分析】利用勾股定理可求出AC=8根据折叠的性质可得BD=ABDE=AE 根据线段的和差关系可得CD 的长设CE=x 则DE=8-x 利用勾股定理列方程求出x 的值即可得答案【详解】∵∠ACB =90°BC =解析:3【分析】利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB ,DE=AE ,根据线段的和差关系可得CD 的长,设CE=x ,则DE=8-x ,利用勾股定理列方程求出x 的值即可得答案.【详解】∵∠ACB =90°,BC =6,AB =10,∴,∵BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,∴BD=AB=10,DE=AE ,∠DCE=90°,∴CD=BD-BC=10-6=4,设CE=x ,则DE=AE=AC-CE=8-x ,∴在Rt △DCE 中,DE 2=CE 2+CD 2,即(8-x )2=x 2+42,解得:x=3,∴CE=3,故答案为:3【点睛】本题考查了翻折变换的性质及勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键. 14.13【分析】如图将容器侧面展开建立A 关于的对称点根据两点之间线段最短可知的长度即为所求【详解】将圆柱沿A 所在的高剪开展平如图所示则作A 关于的对称点连接则此时线段即为蚂蚁走的最短路径过B 作于点则在中由 解析:13【分析】如图,将容器侧面展开,建立A 关于MM '的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】将圆柱沿A 所在的高剪开,展平如图所示,则10cm MM NN '='=,作A 关于MM '的对称点A ',连接A B ',则此时线段A B '即为蚂蚁走的最短路径,过B 作BD A A ⊥'于点D ,则5,''123312cm BD NE cm A D MN A M BE ===+-=+-=,在Rt A BD '中,由勾股定理得13cm A B '==,故答案为:13.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理的应用等,正确利用侧面展开图、熟练运用相关知识是解题的关键.15.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴ 解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =, ∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+, 解得76x =. 故答案为:76.【点睛】本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.16.6【分析】根据题意设则可得即可得由勾股定理列方程求出x 的值即可得出结论【详解】解:∵∴设则和是四个全等的直角三角形在中解得:故答案为:6【点睛】此题主要考查了勾股定理的应用熟练运用勾股定理是解答此题 解析:6【分析】根据题意设3AH x =,则可得4AE x =,HE x =,即可得4BH x =,由勾股定理列方程求出x 的值即可得出结论.【详解】解:∵:3:4AH AE =∴设3AH x =,则4AE x =,HE AE AH x =-=, ABH △,BCG ,CDF 和DAE △是四个全等的直角三角形,4BH AE x ∴==,在Rt ABH △中,222AB AH BH =+,22210(3)(4)x x ∴=+,解得:2x =.36AH x ∴==.故答案为:6.【点睛】此题主要考查了勾股定理的应用,熟练运用勾股定理是解答此题的关键.17.13【分析】要求长方体中两点之间的最短路径只需将长方体展开然后利用两点之间线段最短及勾股定理求解即可【详解】解:展开图如图所示:由题意在中AD=12cmBD=5cm 蚂蚁爬行的最短路径长为:故答案为1解析:13【分析】要求长方体中两点之间的最短路径,只需将长方体展开,然后利用两点之间线段最短及勾股定理求解即可.【详解】解:展开图如图所示:由题意,在Rt ADB 中,AD=12cm ,BD=5cm ,∴蚂蚁爬行的最短路径长为:2222=+=+=,12513AB AD BD cm故答案为13.【点睛】本题主要考查最短路径问题,熟练掌握求最短路径的方法是解题的关键.18.3≤h≤4【分析】先根据题意画出图形再根据勾股定理解答即可【详解】解:当牙刷与杯底垂直时h最大h最大=16-12=4cm当牙刷与杯底及杯高构成直角三角形时h最小如图所示:此时AB==13cm故h=1解析:3≤h≤4【分析】先根据题意画出图形,再根据勾股定理解答即可.【详解】解:当牙刷与杯底垂直时h最大,h最大=16-12=4cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,2222+=+=13cm,125AC BC故h=16-13=3cm.故h的取值范围是3≤h≤4.故答案是:3≤h≤4.【点睛】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.19.5m【分析】由题意根据小球滚动的速度与机器人行走的速度相等得到BC=AC设BC=AC=xm根据勾股定理求出x的值即可【详解】解:∵小球滚动的速度与机器人行走的速度相等∴BC=AC设BC=AC=xm则解析:5m【分析】由题意根据小球滚动的速度与机器人行走的速度相等,得到BC=AC,设BC=AC=xm,根据勾股定理求出x的值即可.【详解】解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=xm,则OC=(9-x)m,在Rt△BOC中,∵OB2+OC2=BC2,∴32+(9-x)2=x2,解得x=5.故答案为:5m.【点睛】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.20.5【分析】根据题意结合图形求出ab与a2+b2的值原式利用完全平方公式化简后代入计算即可求出值【详解】解:根据题意得:c2=a2+b2=134×ab=13-1=12即2ab=12则(a+b)2=a2解析:5【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【详解】解:根据题意得:c2=a2+b2=13,4×12ab=13-1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,则a+b=5故答案为:5.【点睛】本题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解题的关键.三、解答题21.101寸【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r (寸),DE=10寸,OE=12CD=1寸, ∴AE=(r -1)寸,在Rt △ADE 中, AE 2+DE 2=AD 2,即(r -1)2+102=r 2,解得:r=50.5,∴2r=101(寸),∴AB=101寸.【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.22.(1)① 9;② 9;(2)4123S S S S =++,见解析【分析】(1)①在等腰直角三角形ACD ∆中,根据勾股定理AD =CD =②设5BEG S S ∆=,则()45235423++BEA BFC S S S S S S S S S S ∆∆-=+-=--,利用勾股定理得出AE BE ==CF BF ==即可求解;(2)设5BEG S S ∆=,假设一个等腰直角三角形的斜边为a ,则面积为214a ,利用勾股定理得出222AC BC AB +=,则222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△,依此即可求解.【详解】解:(1)①ACD ∆是等腰直角三角形,AC =6,∴AD =CD =1192S ∴=⨯=; ②ACB ∠=90°,AC =6,BC =8,∴AB =10,EAB ∆和FCB ∆是等腰直角三角形, ∴AE BE ==CF BF ==,设5BEG S S ∆=()4523542311++922BEA BFC S S S S S S S S S S ∆∆-=+-=--=⨯⨯;(2)设5BEG S S ∆=, 如图,等腰直角三角形的面积公式12ABC S AB CD =⋅=214a ,∵等腰直角三角形ACD ∆,EAB ∆,FCB ∆, ∴222111,,444ADC BFC ABE S AC S BC S AB ===△△△, ∵222AC BC AB +=,∴222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△, ∴451253S S S S S S +=+++,∴4123S S S S =++.【点睛】本题考查勾股定理,等腰直角三角形的性质,三角形的面积,有一定难度,解题关键是将勾股定理和直角三角形的面积公式进行灵活的结合和应用.23.25米【分析】要求滑行的最短距离,需将该U 型池的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:如图是其侧面展开图:AD=π•20π=20,AB=CD=20.DE=CD-CE=20-5=15,在Rt △ADE 中,22AD DE +222015+.故他滑行的最短距离约为25米.【点睛】本题考查了平面展开-最短路径问题,U 型池的侧面展开图是一个矩形,此矩形的宽等于半径为20π的半圆的弧长,矩形的长等于AB=CD=20.本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.24.(1)①见解析,②8;(2)①△PQR 与△PEF 面积相等,理由见解析,②32.【分析】(1)应用构图法,用四边形面积减去三个三角形面积即可得.(2)①根据题意作出图形;②应用构图法,用四边形面积减去三个三角形面积即可得. (3)如图,将△PQR 绕点P 逆时针旋转90°,由于四边形PQAF ,PRDE 是正方形,故F ,P ,H 共线,即△PEF 和△PQR 是等底同高的三角形,面积相等.应用构图法,求出△PQR 的面积:111432241235222PQR S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.从而由2PQR PQAF PRDE AQRDEF S S S S ∆=++正方形正方形六边形求得所求.【详解】(1)11133132132 3.5222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=. (2)①作图如下:②111452342258222ADEF S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=. (3)()()2222522331PQR PQAF PRDE AQRDEF S S S S ∆=++=⨯++=正方形正方形六边形.25.(1)见解析;(2)7;(3)105. 【分析】 (1)根据AB =2252024==+, BC 221031=+,,AC 223435+,利用勾股定理不难在网格上画出△ABC ;(2)如图,根据S △ABC =ADB BEC AFC ADEF S S S S ---⊿⊿⊿矩形不难得到答案;(3)对各边作出比较,可以找出最短边,然后根据三角形面积公式可求得最短边上的高.【详解】解:(1)如图所示:△ABC 即为所求;(2)如图,S △ABC =5×4﹣122⨯×4﹣12⨯1×3﹣12⨯3×5=7,∴△ABC 的面积是7;(3)∵10<534∴BC 是最短边,作AH ⊥BC ,交CB 延长线于点H ,∵S △ABC =12BC •AH , ∴AH =2ABC S BC =10=105. 710. 【点睛】本题考查三角形面积的综合问题,熟练掌握三角形面积的各种求解方法是解题关键. 26.(1)①见解析;②2229,此时∠APC =90°【分析】(1)①根据SAS 证明△AEF ≌△CMF 即可;②证明△BCM 是等腰直角三角形,由勾股定理求解即可;(2)将△APB 绕点A 逆时针旋转 90°得到△AFE ,连接FP 、CE ,推荐2FP =,∠EAC =135°,作 EH ⊥CA 交 CA 的延长线于H ,求得EH =AH =2,CH =5,在Rt △EHC 中,可得29CE C 、P 、F 、E 2PA +PB +PC 的最小值为CE ,故可得结论.【详解】(1)①∵F 为AC 的中点,∴AF =CF在△AEF 和△CMF 中EF FM AFE CFM AF CF =⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△CMF②由(1)得△AEF ≌△CMF ,∴AE =CM ,∠DAE =∠FCM ,∵BD ⊥AC ,∠BAC =45°,∴AD =BD在△AED 和△BCD 中90DE DC ADE BDC AD BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△AED ≌△BCD ,.∴AE =BC ,∠DAE =∠DBC ,∴BC =CM ,∠FCM =∠DBC ,∵∠BCF +∠DBC =90°,∴∠BCF +∠FCM =90°,∴△BCM 是等腰直角三角形, 由勾股定理得,22448(22)BM BC CM =+=+=或 (2)将△APB 绕点A 逆时针旋转 90°得到△AFE ,连接FP 、CE ,易知△AFP 是等腰直角三角形,∴2FP AP ,∠EAC =135°,作 EH ⊥CA 交 CA 的延长线于 H .在Rt △ EAH 中,228AE AB == ,∵∠H =90° , ∠EAH =45°, ∵222EH AH AE +==8,∴EH =AH =2,∴CH =5,在 Rt △EHC 中,2242529CE EH CH =+=+∵2+PC =FP +EF +PC ≥CE ,∴点C 、P 、F 、E 2PA +PB +PC 的最小值为CE ,此时,∠AFP+∠AFE=90°,∠BPC +∠APF=180°,∵∠AFP=∠APF=45°,∴∠AFE=∠BPC=135°,∴∠APB=∠BPC=135°∴∠APC=360°-135°-135°=90°∴+PB+PC,此时∠APC=90°【点睛】此题是三角形综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,中点的性质,勾股定理,判断出两对三角形全等是解本题的关键.。
八年级初二数学勾股定理知识点及练习题及答案

一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( ) A .4或14B .10或14C .14D .103.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm4.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .15.已知等边三角形的边长为a ,则它边上的高、面积分别是( )A.2,24a aB.23,24a aC.233,24a aD.233,44a a6.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西15︒B.南偏西75°C.南偏东15︒或北偏西15︒D.南偏西15︒或北偏东15︒7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或518.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A.12 B.10C.8 D.69.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是()A.32B.2 C.22D1010.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.111,4,5222C.3,4,5D.114,7,822二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.13.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.14.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___ 15.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______16.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.17.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.18.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.19.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.20.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________三、解答题21.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形; (2)经过多少秒,△BMN 为直角三角形.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 24.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.25.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由. ②若线段2AD EC =,求mn的值.26.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.27.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________; (2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长.28.如图,点A是射线OE:y=x(x≥0)上的一个动点,过点A作x轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.(1)若OA=52,求点B的坐标;(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.②在(3)①的条件下,在平面内另有三点P1(2,2),P2(2,22),P3(2+2,2﹣2),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)29.如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A 的坐标是(2,2), ∴OA= 22, ∴OA=AP=22∴P 的坐标是(-22,0). 故选D .2.A解析:A 【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度. 【详解】∵AC =13,AD =12,CD =5, ∴222AD CD AC +=, ∴△ABD 是直角三角形,AD ⊥BC , 由于点D 在直线BC 上,分两种情况讨论: 当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则4BC BD CD =-=.故答案为:A. 【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.3.C解析:C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.4.D解析:D【分析】作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,根据题意及作图可得出△OAD是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE是直角三角形,然后设AB=x,则OB=3+x,根据周长最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【详解】解:作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45°,由作图可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.5.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.【详解】解:如图作AD ⊥BC 于点D .∵△ABC 为等边三角形,∴∠B =60°,∠B AD =30° ∴1122BD AB a == 由勾股定理得,2222213()2AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×3a =3a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.6.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.7.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.8.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=,1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.9.D解析:D【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC中,,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.10.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A 、22272425+=,能组成直角三角形,故正确;B 、22211145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、2221147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .【点睛】 本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.二、填空题11.5【详解】解:如图,延长AE 交BC 于点F ,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE ==故答案为:6.5.12.15 【分析】 根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD =-=-= ∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 13.72965【分析】分三种情形讨论:(1)如图1中,以点C 所在顶点为直角时;(2)如图2中,以点D 所在顶点为直角时;(3)如图3中,以点A 所在顶点为直角时.【详解】(1)如图1中,以点C 所在顶点为直角时.∵AC =CD =4,BC =3,∴BD =CD +BC =7;(2)如图2中,以点D 所在顶点为直角时,作DE ⊥BC 与E ,连接BD .在Rt △BDE 中DE =2,BE =5,∴BD 2229DE BE +(3)如图3中,以点A 所在顶点为直角时,作DE ⊥BC 于E ,在Rt△BDE中,DE=4.BE=7,∴BD2265=+=.DE BE故答案为:7或29或65.【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.14.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P+S Q=S K为从而易求S K.【详解】解:如下图所示,若A=S P=4.B=S Q=9,C=S K,根据勾股定理,可得A+B=C,∴C=13.若A=S P=4.C=S Q=9,B=S K,根据勾股定理,可得A+B=C,∴B=9-4=5.∴S K为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.15.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3∴EF=223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点, ∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11 ∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴52,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.16.10【分析】先根据勾股定理得出a 2+b 2=c 2,利用完全平方公式得到(a +b )2﹣2ab =c 2,再将a +b =5c =5代入即可求出ab 的值.【详解】解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,∴a 2+b 2=c 2,∴(a +b )2﹣2ab =c 2,∵a +b =5c =5,∴(52﹣2ab =52,∴ab =10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.17.4或2510【分析】分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.【详解】①以A为直角顶点,向外作等腰直角三角形DAC,如图1.∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2222⨯=.在Rt△BAC中,BC2222=+=22,∴BD22222222BE DE()()=+=++= 25;③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=AC sin45°=222⨯=.又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°.又∵在Rt△ABC中,BC2222=+=22,∴BD222222210 BC CD=+=+=()().故BD的长等于4或510.故答案为4或25或10.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题, 18.65【分析】由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.【详解】解:如图,连接EF ,过点A 作AG BC ⊥于点G ,AE AD ⊥,DAE DAC 290∠∠∠∴=+=,又BAC DAC 190∠∠∠=+=,12∠∠∴=,在ABD 和ACE 中 12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS .BD CE ∴=,4B ∠∠=BAC 90∠=,AB AC =, ∴B 345∠∠==4B 45∠∠∴==,ECF 3490∠∠∠∴=+=,222CE CF EF ∴+=,222BD FC EF ∴+=,AF 平分DAE ∠,DAF EAF ∠∠∴=,在DAF 和EAF 中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,DAF ∴≌()EAF SAS .DF EF ∴=.222BD FC DF ∴+=.22222DF BD FC 68100∴=+=+=,∴DF 10=BC BD DF FC 610824∴=++=++=,AB AC =,AG BC ⊥, 1BG AG BC 122∴===, DG BG BD 1266∴=-=-=,∴22AD AG DG 65=+=故答案为65【点睛】考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.19.355【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12. 则△ABC 的面积是:4﹣1﹣1﹣12=32. 在直角△ADC 中根据勾股定理得到:AC=222+1=5.设AC 边上的高线长是x .则12AC•x=5x=32, 解得:x=355.355. 20.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形. 点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15,答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中, BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】解:(1)AE=BD,AE⊥BD,理由如下:∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE⊥BD;(2)∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;(3)如图3,若点D在AB的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.24.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,∴2881||7(15)a a c b -+-+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0, ∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.25.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ====2AD EC = 2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.26.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD ,且∠EAD=α,∴∠AED=45°,∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,∴∠AED=∠AEB=45°,BE=DE ,∴∠BED=90°,∴△BED 是等腰直角三角形,∴22222BD BE DE DE =+=, ∴2BD DE =. 【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.27.(1)2,232)证明见解析(3221(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形; (3))由(1)(2)可知,=23AC ,AD=4,∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1,∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上,则23=333PQ CQ CP =-=, ∴2223PE PQ EQ =+; ②若点P 在线段AC 的延长线上,则253=3333 PQ CQ CP=++=,∴22221 =PE PQ EQ=+;综上,PE的长为23或221.【点睛】本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF的长,二是对点P的位置要分情况进行讨论.28.(1)(5,0);(2)见解析;(3)①P(4,2),②满足△ACP与△BDC全等的点是P1、P2,P3.理由见解析【分析】(1)由题意可以假设A(a,a)(a>0),根据AB2+OB2=OA2,构建方程即可解决问题;(2)由角平分线的性质定理证明CH=CF,CG=CF即可解决问题;(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.只要证明△ACP≌△CDB(SAS),△ABP是等腰直角三角形即可解决问题;②根据SAS即可判断满足△ACP与△BDC全等的点是P1、P2,P3;【详解】解:(1)∵点A在射线y=x(x≥0)上,故可以假设A(a,a)(a>0),∵AB⊥x轴,∴AB=OB=a,即△ABO是等腰直角三角形,∴AB2+OB2=OA2,∴a2+a2=(52)2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP 1=BD ,AC =CD ,∠CAP 1=∠CDB ,根据SAS 可得△CAP 1≌△CDB ; AP 2=BD ,AC =CD ,∠CAP 2=∠CDB ,根据SAS 可得△CAP 2≌△CDB ;AC =CD ,∠ACP 3=∠BDC ,BD =CP 3根据SAS 可得△CAP 3≌△DCB ;故答案为P 1、P 2,P 3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.29.(1)见解析;(2)26;(323+3 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出3,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN,BN=3EN ∵BN=a∴BE=2EN=23a=AD∴AE=AD+DE=2323a b【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键. 30.【体验】(1),5;(2)②;③;【探索】为锐角三角形;道理见解析;【应用】.【解析】【分析】本题从各个角度证明了勾股定理,运用图形与证明结合,依次证明即可,具体见详解.【详解】体验:(1)如上图,(2)根据大角对大边,若为直角三角形,则满足,那么锐角、钝角如下;②;③.【探索】在中,,在中,,在中,,∴,∴为锐角同理,和都为锐角.∴为锐角三角形.【应用】根据【探索】中的方法,进行探究可以发现,可能是锐角三角形或直角三角形或钝角三角形,故答案选C【点睛】本题考查了勾股定理的证明及应用,以及三角形的边与边的关系,能利用数形结合是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级勾股定理练习题及答案1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?“路”4m3m第2题图第5题图第7题图第9题图第8题图5m13m第11题第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222ACBC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯xx ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8,设AB=x ,则AE=2x ,由勾股定理。
得338,8)2(222==-x x x 10. 如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线. 在Rt △A ′DB 中,由勾股定理求得A ′B =17km 11.解:根据勾股定理求得水平长为m 1251322=-,地毯的总长 为12+5=17(m ),地毯的面积为17×2=34()2m ,铺完这个楼道至少需要花为:34×18=612(元)12. 解:如图,甲从上午8:00到上午10:00一共走了2小时, 走了12千米,即OA =12.乙从上午9:00到上午10:00一共走了1小时, 走了5千米,即OB =5.在Rt △OAB 中,AB 2=122十52=169,∴AB =13, 因此,上午10:00时,甲、乙两人相距13千米. ∵15>13, ∴甲、乙两人还能保持联系.A ′勾股定理的逆定理(2)一、 选择题1.下列各组数据中,不能作为直角三角形三边长的是( ) A.9,12,15 B.43,1,45C.0.2,0.3,0.4D.40,41,92.满足下列条件的三角形中,不是直角三角形的是( ) A.三个内角比为1∶2∶1 B.三边之比为1∶2∶5C.三边之比为3∶2∶5 D. 三个内角比为1∶2∶33.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为( ) A.2 B.102 C.10224或 D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D 二、填空题5. △ABC 的三边分别是7、24、25,则三角形的最大内角的度数是 .6.三边为9、12、15的三角形,其面积为 .7.已知三角形ABC 的三边长为c b a ,,满足18,10==+ab b a ,8=c,则此三角形为 三角形. 8.在三角形ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,则BC 边上的高为AD= cm . 三、解答题9. 如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.10. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.11. 如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .12.如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AB 凿通?第9题图EACB第10题BACD. 第11题18.2勾股定理的逆定理答案:一、1.C ;2.C ;3.C ,提示:当已经给出的两边分别为直角边时,第三边为斜边=;1026222=+当6为斜边时,第三边为直角边=242622=-;4. C ;二、5.90°提示:根据勾股定理逆定理得三角形是直角三角形,所以最大的内角为 90°.6.54,提示:先根基勾股定理逆定理得三角形是直角三角形,面积为.5412921=⨯⨯7.直角,提示:2222222864182100,1002,100)(c b a ab b a b a ===⨯-=+=++=+得;8.1360,提示:先根据勾股定理逆定理判断三角形是直角三角形,再利用面积法求得AD ⨯⨯=⨯⨯132151221; 三、9. 解:连接AC ,在Rt △ABC 中, AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°. 故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.10. 解:由勾股定理得AE 2=25,EF 2=5, AF 2=20,∵AE 2= EF 2 +AF 2, ∴△AEF 是直角三角形11. 设AD =x 米,则AB 为(10+x )米,AC 为(15-x )米,BC 为5米,∴(x +10)2+52=(15-x )2,解得x =2,∴10+x =12(米)12. 解:第七组,.1131112,112)17(72,15172=+==+⨯⨯==+⨯=c b a第n 组,1)1(2),1(2,12++=+=+=n n c n n b n a勾股定理的逆定理(3)一、基础·巩固1.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值).图18图18-2-5 图18-2-63.如图18-2-5,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________.4.如图18-2-6,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=41AD,试判断△EFC的形状.5.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-76.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.二、综合·应用7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论. 图18-2-910.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3. 求:四边形ABCD的面积.图18-2-10参考答案一、基础·巩固1.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶5思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半. 由A 得有一个角是直角;B 、C 满足勾股定理的逆定理,所以应选D. 答案:D2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).图18-2-4解:过D 点作DE ∥AB 交BC 于E,则△DEC 是直角三角形.四边形ABED 是矩形, ∴AB=DE.∵∠D=120°,∴∠CDE=30°.又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm. 根据勾股定理的逆定理得,DE=3551022=- cm.∴AB=3551022=- cm.3.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.图18-2-5 图18-2-6思路分析:因为△ABC 是Rt △,所以BC 2+AC 2=AB 2,即S 1+S 2=S 3,所以S 3=12,因为S 3=AB 2,所以AB=32123==S .答案:324.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=41AD ,试判断△EFC 的形状.思路分析:分别计算EF 、CE 、CF 的长度,再利用勾股定理的逆定理判断即可. 解:∵E 为AB 中点,∴BE=2. ∴CE 2=BE 2+BC 2=22+42=20.同理可求得,EF 2=AE 2+AF 2=22+12=5,CF 2=DF 2+CD 2=32+42=25. ∵CE 2+EF 2=CF 2,∴△EFC 是以∠CEF 为直角的直角三角形.5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-7思路分析:要检验这个零件是否符合要求,只要判断△ADB 和△DBC 是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.解:在△ABD 中,AB 2+AD 2=32+42=9+16=25=BD 2,所以△ABD 为直角三角形,∠A =90°. 在△BDC 中,BD 2+DC 2=52+122=25+144=169=132=BC 2. 所以△BDC 是直角三角形,∠CDB =90°. 因此这个零件符合要求.6.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可.证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边.∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形.二、综合·应用7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?思路分析:如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形(例2已证).解:略8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.图18-2-8思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可.证明:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论.图18-2-9思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.解:∵ OA2=OA12+A1A2=32+12=10,OB2=OB12+B1B2=22+42=20,AB2=AC2+BC2=12+32=10,∴OA2+AB2=O B2.∴△OAB是以OB为斜边的等腰直角三角形.10.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______;②错误的原因是______________;③本题的正确结论是__________.思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,本题错在忽视了a有可能等于b这一条件,从而得出的结论不全面.答案:①(B) ②没有考虑a=b这种可能,当a=b时△ABC是等腰三角形;③△ABC是等腰三角形或直角三角形.11.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.思路分析:(1)移项,配成三个完全平方;(2)三个非负数的和为0,则都为0;(3)已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形.解:由已知可得a2-10a+25+b2-24b+144+c2-26c+169=0,配方并化简得,(a-5)2+(b-12)2+(c-13)2=0.∵(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.∴a-5=0,b-12=0,c-13=0.解得a=5,b=12,c=13.又∵a2+b2=169=c2,∴△ABC是直角三角形.12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD的面积.图18-2-10思路分析:(1)作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA );(2)DE=AB=4,BE=AD=3,EC=EB =3;(3)在△DEC 中,3、4、5为勾股数,△DEC 为直角三角形,DE ⊥BC ;(4)利用梯形面积公式,或利用三角形的面积可解. 解:作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ), ∴DE=AB=4,BE=AD=3. ∵BC=6,∴EC=EB=3. ∵DE 2+CE 2=32+42=25=CD 2, ∴△DEC 为直角三角形. 又∵EC=EB=3,∴△DBC 为等腰三角形,DB=DC=5. 在△BDA 中AD 2+AB 2=32+42=25=BD 2, ∴△BDA 是直角三角形. 它们的面积分别为S △BDA =21×3×4=6;S △DBC =21×6×4=12. ∴S 四边形ABCD =S △BDA +S △DBC =6+12=18.CBAD勾股定理的应用(4)1.三个半圆的面积分别为S 1=4.5π,S 2=8π,S 3=12.5π,把三个半圆拼成如图所示的图形,则△ABC 一定是直角三角形吗?说明理由。