瓦斯抽放钻孔参数表

合集下载

瓦斯抽放钻孔参数表

瓦斯抽放钻孔参数表

10403回风巷瓦斯抽放钻孔参数表
10403运输巷、回风巷瓦斯抽放钻孔参数表
10403运输巷掘进工作面瓦斯抽放钻孔参数表(自煤仓口以里28米处)
10403运输巷下帮钻场瓦斯抽放钻孔参数表(10404回风巷条带预抽)
预测(效检)钻孔参数表(表一)
预测(效检)钻孔参数表(表二)
10403回风巷顺层条带瓦斯抽放钻孔参数表(两帮钻场边抽边掘,12号钻场)
10403采面顺层下行瓦斯抽放钻孔参数表(10403采面预抽)
10501运输巷上帮瓦斯抽放钻孔参数表(自开口19m-25m巷道上帮)
10501运输巷顺层条带瓦斯抽放钻孔参数表(迎头抽放)
10403开切眼顺层条带瓦斯抽放钻孔参数表(迎头抽放先抽后掘)
10401(西)回风巷运输联络上山瓦斯抽放钻孔参数表(迎头抽放先抽后掘)
预测(效检)钻孔参数表(表一)
预测(效检)钻孔参数表(表二)
10401(西)回风巷运输联络上山瓦斯排放钻孔参数表
10403开切眼掘进工作面瓦斯排放钻孔参数表
10501巷掘进工作面瓦斯排放钻孔参数表
10501运输巷顺层条带瓦斯抽放钻孔参数表(表一)
(迎头抽放先抽后掘,自开口处)
10501运输巷顺层条带瓦斯抽放钻孔参数表(表二)
(迎头抽放先抽后掘,自开口处)
10501运输巷顺层条带瓦斯抽放钻孔参数表(两帮钻场)
10403运输巷穿层瓦斯抽放钻孔参数表(顶板穿层)(迎头抽放先抽后掘,自开口315M处)。

穿层瓦斯抽放钻孔参数计算表

穿层瓦斯抽放钻孔参数计算表
0.76 ##### 30 10.5 0.76 ##### 30 10.5 0.76 ##### 30 10.5 0.76 ##### 30 10.5 0.76 ##### 30 10.5 0.76 ##### 30 10.5 0.76 ##### 30 10.5 0.76 ##### 30 10.5 0.76 ##### 30 10.5
钻杆 有效 长度 m/根
基孔 方位
角 °
煤层 倾角 °
巷道 距煤 层底 板法 向距
0.76 ##### 30 10.5
0.76 ##### 30 10.5
0.76 ##### 30 10.5
0.76 ##### 30 10.5
0.76 ##### 30 10.5
0.76 ##### 30 10.5
0.76 ##### 30 10.5
孔底至 中线横 向水平 距离m
基孔孔 口距底 板高度
m
孔口 后退 长度
m
20.0 0.0 1.2
16.0 0.0 1.2
12.0 0.0 1.2
8.0 0.0 1.2
4.0 0.0 1.2
0.0 0.0 1.2
-4.0 0.0 1.2
-8.0 0.0 1.2
-12.0 0.0 1.2
-16.0 0.0 1.2 5.0
4 0.0 1.6 30.2
左用-表 6.8 0.0 ##### 40 示;孔
5 0.0 1.4 26.6
3.9 0.0 ##### 35 口位置 在中线
6 0.0 1.2 23.1 0.0 0.0 ##### 30 右边用+
7 0.0 1
表示, 19.7 -5.2 0.0 ##### 26 在中线

瓦斯抽放参数

瓦斯抽放参数

7.0 2.1 19.0 4.8 10.5 2.1 4.2
17 7 4 20 21 14 11
#REF! #REF! #REF! #REF! #REF! #REF! #REF!
#REF! #REF! #REF! #REF! #REF! #REF! #REF!
18 18 18 18 18 18 18
760 760 760 760 760 760 760
温度(℃) 管内
760 760 760 760 760
大气压 (mmHg)
0.0314 0.0314 0.0314 0.0314 0.0314
管断面(m )
2
地点
10123回风巷
流量(m /min) 纯量
110 127
7.6 8.4
32 20
#REF! #REF!
#REF! #REF!
16 16
760 760
大气压 (mmHg)
0.0314 0.0314
管断面(m )
0.0314
管断面(m2)
地点
10123回风巷 10123高位巷
流量(m /min) 纯量
125 110
负压 (mmHg)
7.8 2.1
动压(mmH2O)
23 18
瓦斯浓度 (%)
#REF! #REF!
混量
#REF! #REF!
纯量
17 18
温度(℃) 管内
760 760
大气压 (mmHg)
0.0314 0.0314
管断面(m2)
地点
131819上巷 131419留管 131419下巷
流量(m3/min)
84 55 95.2
2.1 7.7 2.8

瓦斯抽采水力压裂增透技术

瓦斯抽采水力压裂增透技术

瓦斯抽采水力压裂增透技术六枝工矿(集团)化处煤炭分公司2015年4月一、矿井煤层瓦斯赋存情况化处煤炭分公司为六枝工矿(集团)有限责任公司下属公司(以下简称化处煤矿),位于大煤山背斜西翼,矿区总面积11.1698km2,主采7号煤层。

设计生产能力30万t/a,核定生产能力36万t/a。

7号煤层厚度为0.33~9.80m,一般3~4m,平均倾角22°,瓦斯放散初速度为16、煤层透气性系数为0.3262~0.7601m2/(MPa2.d)、钻孔瓦斯流量衰减系数为0.0562~0.8167d-1、坚固性系数为0.11。

煤层瓦斯压力超过1.3MPa,瓦斯含量超过15m3/t。

7号煤层煤尘有爆炸危险,自燃倾向等级为二类自燃,最短发火期为1个月。

二、瓦斯抽采水力压裂增透技术应用1、水力压裂增透技术实施背景化处煤矿单一开采7号煤层,不具备保护层开采条件,煤层透气性差,常规瓦斯抽采技术预抽困难,煤层松软,钻孔塌孔、卡钻、喷孔现象严重,钻孔流量不稳定、衰减速度快,难以保证抽采效果,瓦斯治理投入大等。

为解决上述问题,于2010年底分别在2372机巷、机巷迎头和1470底板抽放巷实施了本煤层和底板穿层水力压裂增透技术。

2、压裂钻孔的布置及参数⑴2372机巷施工本煤层上行钻孔1#、2#、3#,压裂孔间距依次为25m 和30.6m,3个压裂孔控制压裂区域110米左右如图2-1,钻孔参数如表2-1。

2#、3#压裂孔间施工9个抽采孔,1#、2#压裂孔间施工8个,1#、3#压裂孔外各施工5个,抽采孔间距由2米提高到3米。

⑵2372机巷迎头施工4#、5#压裂孔如图2-2,钻孔参数如表2-2。

⑶在1470中巷19#、20#、21#钻场施工1个压裂孔、1个卸压孔,并在钻场间巷道中部施工高角度孔各1个,共计5个压裂孔如图2-3,钻孔参数如表2-3。

图2-2 2372机巷迎头水力压裂钻孔布置图表2-2 2372机巷迎头水力压裂钻孔参数图2-3 1470中巷水力压裂钻孔布置图19#钻场图2-4 19#钻场钻孔布置剖面示意图表2-4 1470中巷水力压裂钻孔参数3、压裂范围的确定⑴每组压裂孔设计3个,每组压裂钻孔间距为30m,1号孔为压裂孔,设计在1470机巷掘进条巷道中间,2号为卸压孔,设计在1470机巷掘进巷道上帮轮廓线往上20m位置,3号孔为卸压孔,设计在1470机巷掘进巷道下帮轮廓线往下20m位置,压裂孔压裂半径为:纵向40m,横向30m。

综采工作面瓦斯抽放钻孔布置方案及措施

综采工作面瓦斯抽放钻孔布置方案及措施

综采工作面瓦斯抽放钻孔布置方案及措施一、1014综采工作面概述1、1014综采工作面+1706m东翼回风顺槽长2846m,+1653m东翼运输顺槽长2754m,工作面倾斜长度177m,煤层倾角8°-12°,采用综采一次采全高采煤法,全部垮落法管理顶板。

目前已回采511.6m。

2、1014综采工作面瓦斯情况根据1014综采工作面2017.5.1~2017.7.5瓦斯监控报表及测风记录计算,在此期间1014综采工作面风排瓦斯量为0~4.98m3/min,平均风排瓦斯量为0.72m3/min。

1014综采工作面2017.5.1~2017.7.5回风巷平均瓦斯浓度变化情况见图1,上隅角瓦斯最大浓度变化情况图2,上端头回风最大瓦斯浓度变化情况图3,风排瓦斯量变化情况见图4,产量变化情况见图5。

图1 1014综采工作面2017.5.1~7.5回风巷平均瓦斯浓度量变化情况图2 1014综采工作面2017.5.1~7.5上隅角最大瓦斯浓度量变化情况图3 1014综采工作面2017.5.1~7.5上端头回风最大瓦斯浓度量变化情况图4 1014综采工作面2017.5.1~7.5风排瓦斯量变化情况图5 1014综采工作面2017.5.1~7.5日产量变化情况3、瓦斯超限情况2017年5月回采过程中上隅角瓦斯浓度逐渐升高,6月期间,上隅角瓦斯浓度持续超限。

6月12日老顶压力积压采空区瓦斯大量涌出,造成上隅角和上端头回风巷瓦斯超限,上隅角最高为3.1%。

4、瓦斯来源分析依据1014工作面瓦斯涌出量预测结果,采空区丢煤及邻近层瓦斯涌出是采空区积聚瓦斯的主要来源,其中采空区丢煤占63%。

采空区积聚的大量高浓度瓦斯因瓦斯密度小,沿倾斜向上运移,使部分瓦斯容易聚集在上隅角附近,形成高瓦斯区。

上隅角又是采空区漏风的出口,漏风将采空区高浓度瓦斯带到上隅角,因上隅角存在涡流区,瓦斯难于被风流冲淡排出造成上隅角超限。

低瓦斯矿井高瓦斯区的瓦斯防治及管理

低瓦斯矿井高瓦斯区的瓦斯防治及管理

低瓦斯矿井高瓦斯区的瓦斯防治及管理一、概况冯家塔煤矿属低瓦斯矿井,煤尘具有爆炸危险性,属不易自燃易自燃煤层。

矿井投产后,形成主斜井、副斜井进风,一号回风斜井回风的中央并列式通风系统。

井田内各煤层瓦斯含量低,变化在0・020・18ml/gr之间。

其中各煤层沼气(CH 4 )含量为0.02〜0.18ml/gr,均属于低沼气等级;CO2含量变化在0.01〜0.12 ml/gr。

瓦斯自然成分主要为N2,占总量的89.93 - 99.35% ;次为CO 2,占总量的0.65〜10.07%,且随深度加大而增高的趋势较明显;CH4占总量的0.〜1.41 %, 一般为0. %.各煤层N2含量〉89%,CO 2含量一般<6 %,故井田内各煤层均处于氮气带。

按用风地点确定矿井一期风量为127 m 3/s, 二期风量为164m 3/s。

一号回风斜井选用FBCDZ-8-No28 型防爆轴流式通风机2台,1台工作,1台备用.初期每台通风机配2台YBF450S 1 8 型隔爆电动机(160kW、10kV、750r/min );后期更换电动机,每台通风机配2台YBF560S 2-8型隔爆电动机(280kW、10kV、750r/min)。

二、瓦斯防治及管理通过对本区域瓦斯的赋存状况分析,瓦斯涌出量若有所增大,即使增大幅度较小,但在采取常规瓦斯防治和管理的同时,采取煤层工作面瓦斯提前释放的瓦斯防治措施。

(一)常规措施1)加强通风系统管理,建立稳定可靠的通风系统。

不能靠无限地增加风量来解决瓦斯问题:一是风量过大将使煤尘飞扬;二是随着风量的增大,流经采空区的风量、风速加大、瓦斯流线延深、变密,强化了风流和采空区的瓦斯交换,风流携带出的采空区瓦斯量也相应增加。

故掘进巷道使用双风机、双电源、自动分风和三专两闭锁"装置,并有专人检查试验其性能,保证完好。

2)加强瓦斯检查与监测.严格落实先抽后采、监测监控、以风定产”瓦斯综合治理12字方针.虽然冯家塔煤矿是低瓦斯矿井,但按照高瓦斯矿井管理,每一个采掘工作面均有瓦斯检查人员,一人一面,坚持一炮三检"和三人连锁放炮"制度。

瓦斯抽放

瓦斯抽放

瓦斯抽放一、抽放量及抽放年限(一)采区瓦斯储量及可抽量。

1、各煤层平均瓦斯含量。

根据地质报告提供的资料,各煤层平均瓦斯含量见表4—5—1。

煤层号2#4#7#8#11#平均瓦斯含量(m3/t)7.9713.4125 4.438.892315.782、矿井瓦斯储量及可抽量矿井瓦斯储量是指在煤田开发过程中能够向矿井排放瓦斯的煤层及围岩所赋存的瓦斯总量。

瓦斯储量可按下式计算:W c=(1+K)(∑A1i×W1i+∑A2i×W2i)式中:Wc—矿井瓦斯储量,万m3;K—围岩瓦斯储量系数,一般取0.05~0.20;A1i—第i个可采煤层地质储量,万t;W1i—第i个可采煤层平均瓦斯含量,m3/t;A2i—受采动影响能够向开采空间排放的第i个不可采煤层地质储量,万t;W2i—受采动影响能够向开采空间排放的第i个不可采煤层平均瓦斯含量,m3/t。

瓦斯可抽量是指在瓦斯储量中能被抽出的最大瓦斯量,其计算公式为:W抽=Wc×k可式中:W抽—可抽瓦斯量,万m3K可—可抽系数,K可=K3×K4×K5K3—煤层的瓦斯排放系数,K3=K5(W0+W残)/W0K4—负压抽放时的抽放作用系数1.2K5—瓦斯涌出程度系数W0—煤层平均CH4含量W残—运到地表煤的残余瓦斯含量m3/t。

根据各煤层的瓦斯含量,煤炭储量及可抽系数计算各煤层的可抽瓦斯量见表4—5—2。

表4—5—2 各煤层的可抽瓦斯量序号煤层号瓦斯含量(m3/t)煤炭地质储量(万吨)瓦斯储量(万m3)可抽系数瓦斯可抽量(万m3)127.97217.42079.220.5251091.59 23、413.4125250.54031.800.5182088.47 37 4.43211.11122.200.523589.91 48、98.8923303.3233.240.5221687.75 51115.78639.012100.10.5166243.656不可采煤层7.08272.52315.160.5091178.42合计2488212880经计算,三采区瓦斯储量:24882万m3,可抽量:12880万m3。

掘进工作面瓦斯抽采设计

掘进工作面瓦斯抽采设计

绮陌煤矿1290掘进工作面瓦斯抽采设计说明书二0一二年十二月目录编写依据 (3)第一章工作面地质简况 (3)一、工作面地质简况 (3)二、开采技术条件 (3)三、掘进方式: (4)四、瓦斯来源和通风方式 (4)五、瓦斯抽采地可行性和必要性 (5)第二章工作面抽采设计 (5)一、抽放瓦斯方法选择 (5)二、1290工作面区段抽采 (6)三、掘进工作面超前预抽 (6)四、抽采管路阻力损失计算 (8)五、抽采钻孔封孔设计 (9)第三章瓦斯抽放泵站设备选择及管路布置 (10)一、抽采设备地选择 (10)二、抽放管路与抽放孔地连接 (10)三、瓦斯抽放管路地附属装置 (12)第四章安全与监测 (12)一、防爆、防回火装置 (12)二、消防设施 (12)三、瓦斯抽放参数监测 (13)第五章安全技术管理措施 (14)一、打钻过程中注意事项 (14)二、管路安装要求 (16)三、泵站和钻孔观测 (17)四、煤层参数观测 (18)第六章施工组织 (18)一、劳动定员 (18)二、工作制度 (19)第七章避灾路线 (19)一、避灾原则 (19)二、发生水灾撤离路线 (19)三、发生火灾、煤尘瓦斯爆炸撤离路线 (20)附件:附图1:矿井通风系统图附图2:矿井瓦斯抽放系统图附图3:矿井避灾路线图附图4:巷道钻孔布置图1290掘进工作面瓦斯抽采设计说明书编写依据1、绮陌煤矿开采方案设计说明书;2、绮陌煤矿安全专篇;3、《对毕节地区煤矿2010年度矿井瓦斯等级鉴定报告地批复》;3、煤地自燃倾向性等级鉴定报告及煤尘爆炸性鉴定报告;4、绮陌煤矿瓦斯抽放设计说明书;5、1290运输巷掘进工作面作业规程;6、《矿井瓦斯抽放管理规范》;7、《煤矿安全规程》(2010版);8、《防治煤与瓦斯突出规定》.第一章工作面地质简况一、1290工作面地质简况工作面位于副斜井北翼, 工作面设计走向长度420M,倾斜长度为110M,煤层倾角16—45度,煤层平均厚度1.73 M;区内煤层稳定,该龙潭组为区内含煤地层,主要由浅灰色、灰色及深灰色,薄至中厚层状细砂岩、粉砂岩、泥质粉砂岩、粉砂质泥岩、泥岩、炭质泥岩、煤层及石灰岩等组成.二、开采技术条件1、瓦斯根据黔能源发(2010)699号《对毕节地区煤矿2010年度矿井瓦斯等级鉴定报告地批复》,绮陌煤矿绝对瓦斯涌出量为2.86m3/min,二氧化碳绝对涌出量为0.69m3/min,矿井为高瓦斯矿井.2、煤尘爆炸性根据绮陌煤矿提供地煤尘爆炸性鉴定报告,矿区内14、16、27、30号煤层煤尘爆炸性鉴定为煤尘无爆炸性,矿井按煤尘没有爆炸性设计.3、煤层自然发火倾向性据绮陌煤矿提供地煤炭自燃倾向等级鉴定报告,矿区内14、16、27、30号煤层为自然倾向三类不易自燃煤层,按自燃倾向为三类不易自燃煤层设计.4、地温本井田属地温正常区,无热害影响.5、煤与瓦斯突出本矿区按煤与瓦斯突出矿井进行设计与管理.三、掘进方式工作面掘进期间采用打眼爆破掘进方式.四、瓦斯来源和通风方式:1、工作面掘进期间瓦斯来源:现1290工作面运输巷瓦斯来源主要为本煤层瓦斯,工作面在掘进过程中,工作面瓦斯来源包括巷道煤壁瓦斯涌出和掘进落煤中地瓦斯涌出两部分.根据《煤矿安全规程》规定,瓦斯涌出量达5m3/min 以上必须进行瓦斯抽放.2、通风方式:1290运输巷掘进期间,采用局扇压入式通风.局扇安装在1290运输石门进风流中,供风量为280-460 m3/min,风压为880-3400Pa.3、工作面瓦斯预抽时间根据矿井生产安排, 工作面从 2012年10月份开始掘进到工作面形成系统,预计工作面预抽时间可达 6个月以上. 工作面预计布置84个本煤层顺层钻孔,8组48个单孔,采用边抽边掘方式.五、瓦斯抽采地可行性和必要性.1、根据矿井生产过程中地实际情况判定,属于可以抽采煤层,具有本煤层抽采地条件.2、根据矿区瓦斯涌出量预测,本矿井内煤层大部分地区位于瓦斯带内,瓦斯含量具有随煤层埋藏深度增加而增加地趋势.根据掘进工作面瓦斯涌出量预测结果,本矿井前期开采煤层具备瓦斯抽放条件.3、根据矿井瓦斯治理地要求,全面树立“多抽一方瓦斯, 矿井就多一份平安”“抽采瓦斯是解放生产力,治理瓦斯是发展生产力”地瓦斯治理理念.第一步搞好边采(掘)边抽,解决采掘期间瓦斯治理问题,第二步积极开展区域瓦斯预抽,最终实现高瓦斯矿井低瓦斯状态下开采.第二章工作面抽采设计一、抽放瓦斯方法选择矿井抽放系统抽放瓦斯地目地是为了消除突出危险和减少风排瓦斯涌出量,为煤炭开采提供安全生产环境.因此,根据矿井地瓦斯赋存状况、矿井开拓及抽放瓦斯地目地,结合抽放瓦斯方法选择地原则,确定矿井抽放瓦斯方法为开采层内进行钻孔预抽瓦斯和回采工作面顺层抽放瓦斯.它主要包括煤巷掘进边掘边抽、煤巷掘进先抽后掘、回采工作面本煤层边采边抽、回采工作面采空区瓦斯抽放,已采空区瓦斯抽放等方式.根据矿井瓦斯涌出地特点,煤巷掘进选择边抽边掘.回采工作面采用本煤层顺层抽放地抽放方法.二、 1290工作面区段预抽1290运输巷掘进防突措施采用顺层钻孔预抽区段煤层瓦斯,巷帮钻场超前钻孔预抽煤层瓦斯等防突措施.1290运输巷区段预抽钻孔布置:在煤层上帮钻孔沿煤层倾斜方向布置,孔深105M,每孔间距5M,单孔抽放半径2.5m,孔径75mm,钻孔工程量8820 m.三、掘进工作面超前预抽掘进工作面采用边掘边抽方式预抽煤层瓦斯,预抽瓦斯钻孔深度80m,工作面距未预抽前方边界不得小于20m,预抽巷道循环距离60m.逐步推进共设置8个钻场,钻场布置在巷道上、下帮,上帮钻场沿煤层底板掘进,钻场规格:深×(下)宽×高=4m×2.8m×2m, 钻场采用梯形11#工字钢支护, 采用扩散通风.下帮钻场沿煤层顶板掘进,钻场规格:深×(下)宽×高=4m×2.8m×2m, 钻场采用梯形11#工字钢支护, 采用扩散通风.超前钻孔布置方式:1#、2#、3#孔在上帮钻场布置,1#孔沿巷道中心轴线成左11°夹角,孔深80m,孔径75mm,控制巷道上帮范围15.2m;2#孔沿巷道中心轴线成左6°夹角,孔深80m,孔径75mm ,3#孔沿巷道中心轴线巷帮方向,孔深80m,孔径75mm.4#、5#、6#孔在下帮钻场布置,4#孔沿巷道中心轴线巷帮方向,孔深80m,孔径75mm, 5#孔沿巷道中心轴线成右6°夹角,孔深80m,孔径75mm ,6#孔沿巷道中心轴线成右11°夹角,孔深80m,孔径75mm,控制巷道下帮范围15.2m.钻场、钻孔布置见2-2-1图所示巷道掘进瓦斯抽放钻场、钻孔布置图A-A剖面在钻场施工前,施工单位负责人要与地测科及时联系,现场观察,准确定位钻孔地方位角、倾角,防止出现误差.在施工过程中如遇地质构造等其它情况,可根据工作面实际情况对钻孔参数进行调整.见表1表1 抽放瓦斯钻孔参数表:四、管路阻力损失计算:1、管道阻力损失按下式计算:H=9.81(LQ2△/K O D5)=9.81×650×0.822×102002/0.71×805=0.24KPa式中H——阻力损失PaL——管道长度mQ——混合气体流量寸/hD——管道内径cmKo——阻力系数(查表)△——混合瓦斯对空气地相对密度.瓦斯管道阻力损失计算应选择抽放系统服务年限内阻力最大地一条抽放管路进行计算.根据矿井开拓布置管路按650m计算抽放管道阻力损失.2、抽采负压计算:根据抽采系统运行负压为 24.2KPa ,钻孔抽采负压h=24.2-0.24=23.96KPa五、抽采钻孔封孔设计瓦斯抽放钻孔采用人工水泥砂浆封孔:一般在打钻将要结束时就可开始准备水泥砂浆,水泥砂浆一般应加入适量地膨胀剂,以避免凝固后收缩出现裂缝,当钻孔倾角较小时可适当增大浆液地浓度;封孔前应将孔内积水、岩屑清理干净,以保证封孔质量.由于采用人工封孔时封孔长度只能达到3-5m,因此通常采用压气封孔或利用泥浆泵封孔,要求封孔长度岩孔5m,煤孔8m.井下封孔操作方法为:1、检查封孔泵是否完好,封孔所需用地工具,配件等是否齐全.2、检查抽放钻孔所需地抽放管是否齐全,长度是否达到要求(直径25mm,长度6m).3、根据井下抽放钻孔地封孔深度,计算所需要地水泥量,一般封5m地钻孔用一包水泥,水泥:砂=1:0.4(重量比).4、直接将井下装水泥地袋子缠绕在抽放管上,用麻绳或麻线等,将抽放管、注浆管及水泥袋捆紧送入钻孔内封住孔口.5、按泵地操作规程,开动泵拌水泥浆,均匀后开始注浆,水泥浆先将袋子胀大,并封住钻孔,继续注浆直到注完为止,注浆时,孔口可能会漏一些浆,但不会影响整个封孔质量.注完后即可直接将注浆胶管拨出.6、所有要封地钻孔封完后,要将封孔泵清洗干净.根据本矿井实际情况,采取人工水泥砂浆封孔较为方便.第三章瓦斯抽放泵站设备选型及管路布置一、抽采设备地选择工作面瓦斯抽采由两台 2BE1-303-0 型水环真空泵及配套设施构成瓦斯所放系统,专用抽采管路敷设为:抽排钻孔→钻孔下口→1290运输巷→1300斜巷→1300运输石门→12702运输巷→12702专用回风巷→回风斜井→地面抽放泵.钻机选用ZDY-750型钻机 2 台,1290运输巷抽采干管选用Φ175mm钢管,且要求管路随着工作面地向前推进逐步延接.二、抽放管路与抽放孔地连接抽放瓦斯管路与钻孔可用高压胶皮软管通过抽放多通连接,高压胶皮软管地尺寸可根据封孔套管地直径来选择,煤层钻孔一般选用3英寸地高压胶管.顺层抽放每5个钻孔设置人组,配置75mm软管于钻孔连接至放水器上,放水器上设5个接口,再用软管与主管连接,每个水平设置1个三通闸阀.掘进期间与主瓦斯抽采管路联接利用高浓度抽采系统进行掘进工作面地瓦斯抽采工作.管路安装完毕后,投入运行前必须进行气密性实验,并写出书面报告,要求静压力大于 30kpa 时为合格.瓦斯抽放管路安装及拆卸注意事项:1、管路要托挂或垫起,吊挂要平直,拐弯处设弯头,不拐急弯.管子地接头接口要拧紧,用法兰盘连接地管子必须加垫圈,做到不漏气、不漏水.2、在倾斜和水平巷中安设管路时,必须先安管子托,管托间距不大于10m,要接好一节运一节,并把接好地管子用卡子或8~l 0号铁丝卡在或绑在预先打好地管子托架上.3、在通风不良处或瓦斯尾巷中安装管路时,除要有措施外,还应配有瓦检员,在检查瓦斯符合有关规定后方可工作.4、拆卸管子时,要两人托住管子,一人扭下螺丝.5、当管路通过风门、风桥等设施时,管子要从墙地一角打孔通过,接好后用灰浆堵严.6、在有电缆地巷道内铺设管路时,应铺设在电缆地另一侧,严禁瓦斯管路与电缆管路同侧吊挂.7、用法兰盘接管子时,严禁手指插入两个法兰盘间隙及螺丝眼,以错动挤手.8、管路铺设时每隔节要有一吊支点,保持平、直、稳.井下严禁使用摩擦产生静电地塑料管.9、新安装或更换地管路要进行漏气和漏水实验,不合标准地不准使用.10、联接瓦斯管路时必须加胶垫、上全法兰盘螺丝并拧紧,以确保不漏气.安装孔板流量计时,必须严格按质量标准施工.拆除或更换瓦斯管路时,必须把计划拆除地管路与在使用地管路用闸阀或闸门隔开,瓦斯管路内地瓦斯经排除后方可动工拆除.三、瓦斯抽采管路地附属装置1、阀门:在瓦斯抽采管路(干管、支管)上和每个抽采钻孔管路上,均需安设阀门,主要用于调节和控制各个抽采地点地抽采负压,瓦斯浓度,抽采量等,同时修理和更换瓦斯管时可关闭阀门切断回路.2、放水器:在抽放管路系统最低点安设人工放水器,及时放空抽放管路中地积水,降低抽放阻力,提高系统抽放效果.3、计量装置:在井下与主管道汇合地各抽放支管处各安设一个孔板流量计,计量各支管地瓦斯抽放量.在抽放系统地主管道上也应安设孔板流量计,计量整个抽放系统地瓦斯抽放量.第四章安全与监测一、防爆、防回火装置瓦斯抽放泵进气侧和排气管路上均应安设防回火、防回气、防爆炸装置,并定期检查,保持性能良好.二、消防设施瓦斯抽放泵应制定防灭火计划和措施,并纳入矿井“灾防“计划之中实施,严防火灾及瓦斯事故发生.抽放站应按防灭火计划配置足够地防灭火器材和设施,抽放站应设置专用地防火栓,并配备不少于0.5m3地灭火砂和至少4只灭火器.应定期对防火设施和器材进行检查,对不合格(失效)地灭火器材及时更换.抽放站周围严禁存放油脂,严禁堆放易燃易爆物品.三、瓦斯抽放参数监测为保证瓦斯抽放系统安全运行和达到较好抽放效果,对抽放系统实施监测.1、抽放泵站必须安设瓦斯浓度检测装置及仪器,实现自动连续监测.瓦斯浓度超限,能够自动报警,瓦斯浓度超限时,还应能自动切断电源停机.2、水环式真空泵必须设置缺水保护装置,在抽放泵冷却水不足或断水时,能报警并能自动停机.3、抽放泵侧应安设防护网,防止杂物进入泵内而损坏设备.4、抽放瓦斯系统运行后,对瓦斯抽放参数(如抽放负压、抽放流量、瓦斯浓度等)应进行连续性监测,其具体功能和要求如下:1)以分、时、班、天为单位,统计瓦斯抽放混合量和纯量;2)应根据瓦斯抽放参数地变化(如钻孔抽放衰减趋势,抽放负压和流量之相互关系等),及时对抽放系统进行相应调整或采取有效技术措施,提高抽放效果;3)及时发现瓦斯抽放系统及抽放泵站存在地隐患.5、在瓦斯抽放系统地主管、支管和钻场管路上安设孔板流量计, 配合相应地仪器、仪表,可以对其抽放负压、瓦斯浓度、流量进行定期检测.6、在瓦斯泵吸气侧管道上必须安设高浓度瓦斯传感器,以监测瓦斯抽放浓度;在抽放泵站内安设低浓度瓦斯传感器,瓦斯超限时报警并断电;在抽放硐室顶部应悬挂安设便携式瓦斯检测报警仪对室内瓦斯浓度进行监测.7、抽放钻场应设置瓦斯传感器,对其瓦斯浓度进行连续监测.有自燃发火地煤层,还应设置温度传感器和C0传感器.8、瓦斯抽放泵站值班人员,应对抽放泵地运行状况(如电机温度、各部位轴承温度、瓦斯泵地冷却水进出水温度等)以及抽放泵站周围地进行巡查监视,发现问题及时向矿调度室汇报,并积极采取有效措施进行处理和防范.第五章安全技术管理措施一、打钻过程中注意事项:1、瓦斯抽放孔施工前,现场施工负责人必须安排专人对钻机地液压、电动系统进行全面检查,确保钻机液压系统畅通,零部件齐全,电器地完好符合规定,严禁出现失爆.2、钻机必须架设在顶板完整,支架完好地地点,稳固钻机时,螺旋支柱必须齐全且升足劲,防止钻机歪倒伤人.3、钻机电源地开和关由专职地机电维护员担任,其他人员不得擅自操作.4、钻机操作必须由经过培训地人员担任,每班钻机第一次运行前,必须对钻机空转几分钟,确认无问题,方可接上钻杆、钻头,正式运转.5、钻机上、下调整角度必须在松开固定螺丝、作业人员躲到两侧后进行.6、钻机开始运行时,加压不宜过大,待钻头对准孔位进入煤体实茬后,方可匀速推进,由于煤层较松软,推进速度不宜过快.7、钻机在运行过程中,钻机司机必须集中精力,谨慎操作,操作过程中,必须密切关注压力表地变化、钻进速度等.8、钻进过程中,现场负责人必须监护巷道顶板状况,如发现顶板有掉碴,压力增大,冒顶等征兆时,必须立即停止作业,并向地面值班室汇报.9、瓦斯抽放孔施工必须严格按抽放孔设计地方位,倾角和孔深进行施工.10、钻进过程中,施工人员必须站在孔口两侧,不准站在孔口地正后方及钻孔延长线上,严禁面对孔口观察钻进情况,以免发生喷孔伤人事故,作业人员必须穿戴整齐,袖口扎紧,不允许带毛巾,严禁戴手套作业.11、钻进过程中,施工负责人必须密切观察喷孔、夹钻、响煤炮等瓦斯动力现缘,当发生严重喷孔、响煤炮等动力现象时,成立即停止作业、撤出作业人员,并汇报矿调度室及通风值班室,待动力现象消失,且瓦斯浓度小于0.8%,方可恢复作业.12、钻进过程中,遇到喷孔严重,立即将钻杆后退0.5~1.0m,打钻人员及时撤出工作地点,并及时向现场带班人员或调度室汇报.13、换接钻杆时,必须先检查钻杆是否透气,丝口是否完好,不透气及丝口损坏地钻杆不准使用.14、钻进过程中,必须有专人记录钻进进度及钻进过程中地动力现象.15、钻进过程中,瓦斯检查员必须随时检查瓦斯浓度,瓦斯浓度超过0.8%必须停止作业.16、打钻附近必须安设电话,便于联系.17、钻孔施工完毕后,派专人对钻孔进行验收,钻孔深度误差不得大于 ±1m,角度误差不得大于±1°.18、钻进过程中,采用干打眼方法进行施工,压风排碴,必须采取降尘措施.19、钻进时,钻场内严禁敲打、撞击金属物品,敲打工具应采用铜锤,以防产生火花.二、管路安装要求:1、抽采管路沿巷道右侧敷设,距巷道底不得小于400mm 地距离, 要求每根抽采管路采用砖垛支设;2、抽采管路按设计支设,做到平、直、稳、严密,统一高度;3、管路跨过巷道或硐室时要设龙门,与主管路连接处要上阀门和过滤装置;4、从停采线以里每 12 M安设一个三通,三通方向垂直向上,变头处必须安装过滤装置,以防杂物进入管路;5、井下管路应尽量避免与通讯、动力电缆敷设在一起,以防管路带电.如非布置在一侧时必须间隔 500mm 地安全距离;6、连接管路时必须将管内杂物清理干净,胶垫要垫合适,法兰盘螺丝要上齐全,全部紧固,保证不漏气;7、瓦斯管路铺设地段严禁施工,如确需施工时,必须做好管路保护措施,并与通风区联系,待通风区采取措施后,方可施工;8、抽采管路与主管路连接处安装碟阀,管路铺设期间每隔200M 安装一个碟阀,便于管路地放水及维护.9、抽采管路每一低洼处安装一个放水器,管路末端加设一个放水器,保证管路内积水及时排放.10、在掘进期间,如需施工其它工程时,必须提前施工,以尽可能避免瓦斯管路得调整,提高抽采率、抽放效果.11、抽采管路施工完成后,由总工程师组织有关单位进行验收,在合格后方可投入使用.三、泵站和钻孔观测1、瓦斯泵运行后,三班必须设泵站司机,司机必须持证上岗,严格按照抽采泵地操作规程进行操作,在泵运行过程中,若有异常情况,必须立即停止泵地运转,然后汇报矿调度和通风区,若遇其它情况需停泵时,应先请示,征得同意后,方可停泵.发现安全隐患,及时汇报处理,确认无误后方可开泵,并严格执行现场交接班制度.2、瓦斯泵站必须设一部直通矿调度室地电话,并有检测瓦斯浓度、流量、抽采负压等必要地仪器仪表;泵站司机每一小时测定一次,并向通风调度汇报,所有记录本要记录齐全、清楚.3、瓦斯泵前后20m范围内不得有易燃易爆物品,且泵站必须设有4只灭火器和0.5m3 黄砂,所有工作人员必须熟悉灭火器材地使用方法.4、每天设专人对抽采系统进行检查,发现漏气等现象及时汇报处理.5、保证地面抽放系统管路地防回火、防回气和防爆炸作用地安全装置完好,因井下管路或地面检修等原因停泵时,及时打开被检修泵地地面放空阀.检修管路前,必须先检查瓦斯浓度,管路中瓦斯浓度降至0.7%以下时才准工作.6、地面泵房内设监控分站一台,并与矿安全监控系统相连,随时对瓦斯泵站运行参数进行监控.泵站司机必须密切注意流量表和压力表地变化,并按时检查瓦斯浓度.7、安装有孔板流量计地抽采钻孔、抽采管路支管必须设置钻孔观测牌板.8、每天安排专人测定钻孔及抽采管路支管地抽采参数,并将测定结果填写在钻孔记录牌板和记录本上.9、钻孔记录牌板要求填写钻孔施工时间、孔号、角度、钻孔长度、孔径(开孔、终孔)、封孔长度、封孔材料、抽采瓦斯浓度、抽采负压、测定时间、抽采量(混合量、纯量)、瓦斯管内、外温度等.四、煤层参数观测1、由抽采实验室人员定期测定巷道掘进期间瓦斯含量、瓦斯压力等参数,并做好预测预报工作.2、在工作面回采前,测定煤体预抽后地煤体瓦斯参数.第六章施工组织一、劳动定员根据瓦斯抽放系统工作岗位设置需要,结合矿井开采规模,瓦斯抽放系统工作量及本矿井生产管理模式和状况,矿井瓦斯抽放系统工作人员定为17人,详见下表.二、工作制度抽放泵站值班人员实行“三、八”工作制,并按矿井重要机房进行管理,严格执行《岗位责任制》、《交接班制度》、《巡回检查制》等规章制度,认真填写各种记录.钻探、安装工分三个点班,具体负责钻场、钻孔施工和抽放管道安装.抽放管道地巡回检查,维护及放水工作一人即可作业,三班都要有人上班.技术管理人员上大班,负责全面技术管理工作,抽放系统发生问题,应随时到现场解决.日常应注意收集整理瓦斯抽放资料,根据实际情况,调整抽放系统地布局地抽放参数,提高抽放效果.第七章避灾路线一、避灾原则水灾:人员应由低处往高处撤退,找最近地安全出口,但不得进入独头巷内.火灾、瓦斯煤尘爆炸:应遵循就近进入新鲜风流巷地原则.二、发生水灾撤离路线工作面→1290运输巷→1290石门→副斜井→至地面.工作面→1290运输巷→1290斜巷→1300运输石门→主斜井→至地面.三、发生火灾、煤尘瓦斯爆炸撤离路线工作面→1290运输巷→1290石门→副斜井→至地面.附件:附图1:矿井通风系统图附图2:矿井瓦斯抽放系统图附图3:矿井避灾路线图附图4:巷道钻孔布置示意图2012年12月3日。

煤矿瓦斯有效抽放半径的测定计算方法(知识共享,非营利性)

煤矿瓦斯有效抽放半径的测定计算方法(知识共享,非营利性)
2 抽放半径测定考察方法
211 抽放半径测定钻孔施工条件 为保证瓦斯抽放半径测定结果的科学性 、可靠 性 , 试验区域的选择必须满足以下条件 : ① 必须 选择未进行过瓦斯抽放的原始煤层 ; ② 最好选择 可以施工穿岩钻孔的区域 , 否则必须选择新暴露的 煤巷掘进工作面 ; ③ 必须保证各钻孔终孔位置距 离煤层暴露点最小距离不小于 10 m; ④ 必须保证 在整个测试过程中测试区域不受采动影响 ; ⑤ 方 便接入抽放系统 , 并可独立测定抽放参数 。 212 测定钻孔布置 根据以上条件并结合试验地点的实际条件 , 在 2个煤矿均选定新暴露的煤巷进行钻孔布置 : ① 巷道掘进过程中 , 顺煤层施工一斜向钻孔 ( 1号 ) , 孔深 5312 m , 孔径 75 mm , 用水泥砂浆或聚氨酯 封孔 , 每天测定钻孔瓦斯抽放参数 ; ② 距离 1 号 钻孔一定距离施工 9个观察钻孔 , 这些观察孔垂直 1号钻孔 , 且垂距为 210~610 m。 ③施工完毕后 , 用铁管及水泥砂浆或聚氨酯封孔 , 前端接集气管 , 2号矿钻场内 9个观察孔尾端用孔塞封闭 。 ④每天 定时测定孔内瓦斯浓度 、瓦斯涌出初速度变化 ; ⑤ 将各观察孔不同抽放时间的瓦斯浓度 、瓦斯涌出初 速度随抽放时间变化绘制曲线 , 分析数据 。钻孔布 置平面图如图 1所示 , 详细参数见表 1。
钻孔的抽放影响范围内 。但由图 1可知 , 6号孔受
1号孔抽放的影响程度不大 。
综上分析后将 75 mm 抽放钻孔的 67 d有效抽
放半径 R 确定为 : 315 m ≤ R ≤ 410 m , 极限抽放
时间内 R 的最大值即 Rmax = 410 m。 综合考虑 R 的影响因素 (抽放时间 t、抽放负 压 Pf、α) , R 有如下性质 : 在 Pf一定时 , R 与 t成 某种函数关系 , 该函数在 t = 67 d处可导 , 且关于

煤矿瓦斯抽采相关参数统计表

煤矿瓦斯抽采相关参数统计表
吨煤抽采瓦斯纯量(m3)
残余瓦斯
含量(m3/t)
预抽区域瓦斯抽采率(%)
掘进工作面名称:
预抽煤巷条带长度(m)
预抽煤巷条带宽度(m)
煤层厚度(m)
煤容重(t/m3)
预抽条带
煤量(t)
瓦斯抽采方式
瓦斯抽采巷
工程量(m)
原始瓦斯含量(m3/t)
钻孔(终孔)间距(m)
钻孔总工程量(m)
预抽条带抽采
瓦斯纯量(m3)
瓦斯纯量(m3)
预抽条带吨煤抽采瓦斯纯量(m3/t)
残余瓦斯含量(m3/t)
预抽区域瓦斯抽采率(%)
掘进工作面名称:
预抽煤巷条带长度(m)
预抽煤巷条带宽度(m)
煤层厚度(m)
煤容重(t/m3)
预抽条带
煤量(t)
瓦斯抽采方式
瓦斯抽采巷
工程量(m)
原始瓦斯含量(m3/t)
钻孔(终孔)间距(m)
钻孔总工程量(m)
煤矿瓦斯抽采相关参数统计表
采煤工作面名称:
走向长度(m)
倾斜长度(m)
采高(m)
煤容重(t/m3)
回采率(%)
瓦斯抽采方式
瓦斯抽采巷
工程量(m)
预抽区域回采煤量(t)
原始瓦斯含量(m3/t)
钻孔(终孔)间距(m)
钻孔总工程量(m)
吨煤钻孔工程量(m/t)
预抽区域抽采瓦斯纯量(m3)
吨煤抽采瓦斯纯量(m3)
钻孔总工程量(m)
预抽条带抽采
瓦斯纯量(m3)
预抽条带吨煤抽采瓦斯纯量(m3/t)
残余瓦斯含量(m3/t)
预抽区域瓦斯抽采率(%)
填表人:联系电话:日期:2014年月日

安全工程实验9.1煤层瓦斯抽采管路中瓦斯流量参数的测定

安全工程实验9.1煤层瓦斯抽采管路中瓦斯流量参数的测定

© 安全工程实验教程
星蓝海学习网
五 实验步骤
(6)利用测定的孔板上、下游压差,查阅相关技术参数,根据孔板的 压差与流量的关系计算出各抽放管路的气体混合流量; (7)根据(3)中测得的各抽放管路的气体浓度和(6)中测得的气体 混合流量计算各抽放管路中气体的纯流量。
© 安全工程实验教程
星蓝海学习网
五 实验步骤
2、CWC3型便携式瓦斯抽放多参数测定仪测定
按照图中所示结构图连接煤层瓦斯抽放模拟装置,并将CWC3型便携式 瓦斯抽放多参数测定仪串联到某一管路内;对煤样箱体充气,再开启真空 泵;待真空泵正常运转5min后,即可开始测定各参数,该仪器具体测定步 骤如下:
(1)用前准备 ①仪器使用前,应进行数据清零,否则不能安全保存数据;
© 安全工程实验教程
星蓝海学习网
六 实验结果处理
2、CWC3型便携式瓦斯抽放多参数测定仪测定
数据记录到表2中,并按照公式4计算抽放管路
中标准状态下的混合流量,按照公式5计算标
准状态下抽放管路中瓦斯的纯流量。
Qb =((27P3d .-1P5负+)t)29130.11.533Qa
(4)
© 安全工程实验教程
© 安全工程实验教程
星蓝海学习网
三、主要仪器
主要仪器设备如下:
• (1)煤层瓦斯抽采模拟装置 • (2)高负压瓦斯采样器; • (3)光干涉型瓦斯检定器; • (4)温度计; • (5)U型压差计; • (6)LGB型孔板; • (7)负压表; • (8)CWC3型便携式瓦斯抽采参数测定仪; • (9)孔板流量计。
© 安全工程实验教程
星蓝海学习网
三、主要仪器
煤层瓦斯抽采参数测定模拟装置结构图

煤矿瓦斯抽放规范(AQ 1027—2006)

煤矿瓦斯抽放规范(AQ 1027—2006)

AQ 1027—2006ICS 73.010D 09备案号:18912—2006中华人民共和国安全生产行业标准AQ 1027—2006代替MT/T692-1997煤矿瓦斯抽放规范Code for coal mine gas drainage2006-11-02 发布2006-12-01实施国家安全生产监督管理总局发布AQ 1027-2006目次前言1 范围 (1)2规范性引用文件 (1)3术语各定义 (1)4建立抽放瓦斯系统 (3)5 地面永久瓦斯抽放系统 (4)6 井下移动泵站瓦斯抽放系统 (6)7 瓦斯抽放方法 (7)8 瓦斯抽放管理 (8)9 瓦斯利用 (10)10 地面永久瓦斯抽放系统的报废 (10)附录A(规划性附录)瓦斯抽放基础参数测算 (44)附录B(规划性附录)瓦斯投放方法类别及抽放率 (14)附录C(规划性附录)瓦斯抽放参数监控系统 (16)附录D(规划性附录)瓦斯抽放工程设计 (17)附录E(规划性附录)主要单位换算 (19)前言为切实贯彻落实先抽后采的方针,加强瓦斯抽放技术管理,保证瓦斯抽放工程的安全,提高瓦斯抽放效果,防止瓦斯事故.保护环境,制定本标准。

本标准以原国家安全生产监督管理局、国家煤矿安全监察局2004年颁布的《煤矿安全规程》、原煤炭工业部1997年制定的《矿井瓦斯抽放管理规范》、矿井抽放瓦斯工程设计规范》(MT 5018——96)为依据、在充分考虑煤矿瓦斯抽政工艺技术特点和目前我国煤矿瓦斯抽故现状及发展趋势的基础上编制而成:本标准代替MT T 692—1997《煤矿瓦斯抽放技术觇范》。

奉标准与t煤矿乩斯抽放技术规范》(MT/T 692一1997)相比内容上有了较大增加:——增加了矿井瓦斯抽放工程设计的内容:——增加了移动泵站瓦斯抽敞系统;——增加了瓦斯抽放方法;——增加了瓦斯抽放管理;——增加了瓦斯利用;——增加了瓦斯抽放系统的报废;——对一些词句进行了修改;本标准的附录A、附录B、附录C、附录D、附录E为规范性附录。

瓦斯基础参数测定

瓦斯基础参数测定

1.煤层基础参数现场测定实验方案1.1煤层瓦斯压力1.1.1测试原理直接测定法是用钻机由岩层巷道或煤层巷道向预定测量瓦斯地点打一钻孔,然后在钻孔中放置测压装置、再将钻孔严密封闭堵塞并将压力表和测压装置相连来测出瓦斯压力。

如果在测定中能保证钻孔封闭严密不漏气,则压力表显示的数值即为测点的实际瓦斯压力,直接测定法的关键是封闭钻孔的质量。

根据封孔原理的不同,一般将封孔方法分为被动式与主动式。

本次采用主动式封孔技术。

主动式封孔测压其基本原理是:固体封液体、液体封气体,即采用液体作为封孔介质,以解决固体物不能严密封闭钻孔周边裂隙孔道的困难,并保持封孔液体的压力在测定过程中始终大于瓦斯压力,粘液在压力作用下渗入钻孔周边裂隙,杜绝瓦斯的泄漏;为了维持封孔液体的压力和防止液体向钻孔内渗透,在封孔液体段的两端用固体封闭钻孔,形成用固体封液体、用液体封气体的封孔系统。

实践表明:在石灰岩、砂岩和页岩岩层的钻孔中,均能严密封闭钻孔,准确测得煤层的瓦斯压力。

经过几十年的发展,目前主动式瓦斯测压封孔装置主要有:普通胶圈-压力粘液封孔测压仪、可变形胶圈-压力粘液封孔测压仪、胶囊-压力粘液封孔测压仪、胶圈(囊)-三相泡沫密封液测压仪等。

MWYZ系列化主动式煤层瓦斯压力测定仪主要由钢丝胶囊、护管和连接罐、尼龙压力管(瓦斯管、胶囊液管和压力粘液管)、储能罐和压力粘液罐、手动试压泵、粘液封孔材料以及测压仪表等配件组成。

1.1.2测定仪器测试仪器选用华北科技学院研发的MWYZ-IV型和MWYZ-III型主动式煤层瓦斯压力测定仪各一套。

具体技术参数如表1.1所示。

表1.1 测压仪参数表1.1.3测点布置为了最大限度反应原始状态下的瓦斯压力,选择测压地点时可参考以下原则:1)目标煤层周围无采空区,尽量选取在最近几年新开拓的岩石巷道;2)瓦斯压力测量地点一般选择在岩石比较完整,周边地质结构单一的岩巷中进行;测压钻孔及其见煤点应避开地质构造裂隙带、巷道的卸压圈和采动影响范围,测压煤层周围岩石致密完整、无破碎带;3)煤层50m范围内无断层和大的裂隙;岩层无淋水,岩柱(垂高)至少大于10m;4)同一地点测压应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20 m。

瓦斯抽采钻孔设计

瓦斯抽采钻孔设计

仁寿县复合能源集团有限公司8237回采工作面瓦斯钻孔设计编制单位:技术科编制人员:姜永正编制日期:2013年8月16日会审签字单仁寿县复合能源集团有限公司8237回采工作面瓦斯钻孔设计一、钻孔布置原则回采工作面瓦斯抽采主要以穿层钻孔抽采布置方式,钻孔从开孔位置呈放射状进入邻近层,边回采边抽采破坏裂隙带。

随着煤层开采的推进,在受卸压影响和瓦斯压力作用下向采空大量释放瓦斯。

根据柱状图岩层性质和经验数据,破坏裂隙带一般为采高的10—30倍。

我矿开采层为1.5m左右,故钻孔终孔层位在垂高30m左右。

布置穿层钻孔抽采裂隙的瓦斯时,钻孔的倾斜长度不宜超过70m。

以确保抽采钻孔的抽采效果和钻孔覆盖率的要求。

钻孔间距应合理确定,一般为30米,布置抽放钻孔。

二、工作面穿层钻孔布置方式根据矿井整合工程初步设计的开拓布置,矿井接替工作面布置在290东翼8237采煤工作面。

煤层厚1.2~1.5m,平均厚1.35m。

工作面倾斜长780m,走向宽100m。

根据8237采煤工作面的煤层赋存情况,设计在采煤工作面回风巷中布置穿层向上钻孔抽采煤工作面的破坏裂隙带瓦斯。

钻孔具体布置为在采煤工作面运输巷中沿煤层倾向上布置单排钻孔,钻孔方位迎向工作面,与工作面呈10°夹角,钻孔倾角同煤层倾角,钻孔间距3米,单个钻孔长度75m~90m左右。

8237采煤工作面走向长约490米,设计钻孔个数164个,实际施工时可根据现场情况对钻孔参数进行适当调整。

钻孔布置详见参数表及附图。

采煤工作面顺煤层钻孔参数表三封孔方式、材料及工艺(一)、采用聚氨酯人工封孔1、采用聚氨酯人工封孔。

钻孔内抽放管选用长8m直径25mm 的抽放管,为防止堵塞,抽放管顶端钻10个直径10mm小孔,最好用双层铁筛网包扎好。

用聚氨酯封孔,封孔长度8m。

2、封孔材料钻孔采用聚氨酯封孔,对于井下封孔而言,主要要求聚氨酯在发泡后,其内所形成的孔为封闭孔,另外对发泡时间、发泡倍数、固化后的强度,可塑性等均有一定的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10403回风巷瓦斯抽放钻孔参数表
10403运输巷、回风巷瓦斯抽放钻孔参数表
10501运输巷掘进工作面探放水钻孔参数表
10403运输巷掘进工作面瓦斯抽放钻孔参数表(自煤仓口以里28米处)
10403运输巷下帮钻场瓦斯抽放钻孔参数表(10404回风巷条带预抽)
预测(效检)钻孔参数表(表一)
预测(效检)钻孔参数表(表二)
10403回风巷顺层条带瓦斯抽放钻孔参数表(两帮钻场边抽边掘,12号钻场)
10403采面顺层下行瓦斯抽放钻孔参数表(10403采面预抽)
10501运输巷上帮瓦斯抽放钻孔参数表(自开口19m-25m巷道上帮)
10501运输巷顺层条带瓦斯抽放钻孔参数表(迎头抽放)
10403开切眼顺层条带瓦斯抽放钻孔参数表(迎头抽放先抽后掘)
10401(西)回风巷运输联络上山瓦斯抽放钻孔参数表(迎头抽放先抽后掘)
预测(效检)钻孔参数表(表一)
预测(效检)钻孔参数表(表二)
10403开切眼掘进工作面探放水钻孔参数表
10401(西)回风巷运输联络上山掘进工作面探放水钻孔参数表
+1151轨道石门掘进工作面探放水钻孔参数表
10401(西)回风巷运输联络上山瓦斯排放钻孔参数表
10403开切眼掘进工作面瓦斯排放钻孔参数表
10501巷掘进工作面瓦斯排放钻孔参数表
10501运输巷顺层条带瓦斯抽放钻孔参数表(表一)
(迎头抽放先抽后掘,自开口138.5M处)
10501运输巷顺层条带瓦斯抽放钻孔参数表(表二)
(迎头抽放先抽后掘,自开口138.5M处)
10501运输巷顺层条带瓦斯抽放钻孔参数表(两帮钻场)
10403运输巷穿层瓦斯抽放钻孔参数表(顶板穿层)
(迎头抽放先抽后掘,自开口315M处)
精品文档word文档可以编辑!谢谢下载!。

相关文档
最新文档