建筑声学1---基本知识要点20140118

合集下载

建筑声学基本知识

建筑声学基本知识

建筑声学基本知识一.声音得产生与声波得物理量1.振动产生声音振动物体得往复运动,挤压弹性介质形成往复变化得振动波;振动波在介质中传播,激起人耳得振动感受而产生声音。

声波就是一种纵波,这给人耳或者绝大多数动物得听觉器官构造有关。

声波得传播就是能量得传递,而非质点得转移。

介质质点只在其平衡点附近来回振动而不传向远处。

声音就是我们能够感到存在得振动纵波,人耳能感受得频率范围标准规定为20Hz~20000H;低于这个范围得就是次声波, 高于这个范围得就是超声波。

2.声波得基本物理量声波得特性可以由波得基本物理量来描述。

频率:在1秒钟内完成全振动得次数,记作f,单位就是Hz。

波长:声波在传播途径上,两相邻同相位质点之间得距离,记作λ,单位就是m。

声速:声波在介质中传播得速度,记作c,单位就是m/s,c=λf。

声速与声源特性无关,而与介质得压强与温度有关。

表达式为:c0=√(γP0/ρ0)γ为空气比热比;P0大气剪静压;ρ0为空气密度。

常温常压下,空气中声速就是343m/s,其她介质下各不相同。

压强得变化与压强变化引起得得空气密度变化互相抵消,声速主要与温度相关。

3.在声环境评价与设计中得物理量。

声压:声波在介质中传播时,介质中得压强相对于无声波时得介质静压强得改变量。

表达式为:P= P0 cos (ωt-kr+φ)P为r位置处得声压P a(N/m²);P0为最大声压P a(N/m²);k=ω/c0;φ为与轴向相位角。

常温下1个大气压强为1、0325x105P a声强:就是在单位时间内,通过垂直于传播方向上得单位面积内得平均声能量,就是一个有方向矢量。

I表示,单位就是W/m²。

声强与声压得关系就是:I= P²/(ρ0c0)ρ0为大气密度,常温下ρ0 =1、21kg/m³;c0为声波在介质中传播得速度m/s。

声功率:声源在单位时间内向外辐射得声能,W表示,单位W。

01建筑声学基本知识

01建筑声学基本知识

建筑声学基础知识
声学漫画——声源、噪声
R 10lg 1
建筑声学基础知识
声学漫画——音质
R 10lg 1
谢 谢!
建筑声学基础知识
室内声现象
声反射 声吸收 声隔绝
建筑声学基础知识
声反射实例天坛
三音石 回声壁 圜丘
建筑声学基础知识
声反射/Sound reflection
概念:声波前进过程中遇到尺寸大于波长的界面,发生反射
建筑声学基础知识
声反射/Sound reflection
镜像反射 条件:声波前进过程中遇到光滑表面 符合反射定律——入射声线、反射声线和界面法线在同一平面内 反射声能与界面的吸声系数α有关
建筑声学基础知识
隔声/Sound Isolation
隔声——噪声控制的重要手段
空气声隔绝——隔声量R
R 10lg 1
R 10lg 1
式中:τ——构件透射系数
隔声构件的结构形式:
单层匀质密实墙、双层匀质密实墙、轻质墙、门窗、组合墙
隔声特性:质量定律、吻合效应
固体声隔绝 噪声产生:振动物体直接撞击结构物 噪声传播途径:物体直接撞击、受撞击而振动的结构与其它建筑构件连接而传播 隔绝途径:减弱振动源的振动、阻隔振动传播、阻隔振动结构向空间辐射声能 实例:楼板下做隔声吊顶
建筑声学基础知识
室内声场
在室内放置一个持 续发声的稳定声源, 经过一定时间的直 达声和来自各个界 面的反射声(混响) 声的共同作用,室 内声场会达到一个 稳态。此时,如果 声源停止发生,则 室内稳态声压级离 开开始衰减。
ห้องสมุดไป่ตู้
建筑声学基础知识
混响时间/Reverberation Time

建筑物理声学基本知识

建筑物理声学基本知识

第一章 建筑声学基本知识
声波的性质>>声波的衍射(绕射) ➢ 声波的衍射(绕射)
▪ 声影区的声音——衍射声 ▪ 边缘绕射的程度
• 障板尺度 • 声波的频率
11
2020年7月18日星期六
Architectural Acoustics
第一章 建筑声学基本知识
声波的性质>>声扩散、吸收和透射
➢ 声扩散
• 对中、高频敏感;对低频不敏感
▪ 听闻范围
➢ 响度
▪ 人耳所感觉的声音的大小称为响度
• 相同声压级,不同频率的声音,响度不同
• 相同频率,不同声压级的声音,响度不同
• 等响
▪ 响度的单位为宋(sone)
➢ 频谱的划分
▪ 对声音整个频率范围分段 ▪ 倍频程和1/3倍频程
5
2020年7月18日星期六
Architectural Acoustics
第一章 建筑声学基本知识
声音的计量 ➢ 声音的叠加
▪ 多个声音的叠加
6
2020年7月18日星期六
Architectural Acoustics
第一章 建筑声学基本知识
第一章 建筑声学基本知识
声音在户外的传播
➢ 点源声音随距离的衰减
▪ 球面声波的向外扩展
Lp Lw 10lg 4 10lg r2 Lw 11 20lg r
▪ 传Lp播2 距L离p1加 倍20,lg声rr12压级Lp降1 低206lgdBn
➢ 线源声音随距离的衰减
▪ 无限长线声源:传播距离加倍,声压级降低 3 dB ▪ 有限长线声源:传播距离加倍,声压级降低 3~6 dB
声音的频谱
➢ 频谱
▪ 声音往往包含多个频率,所有频率的集合成为频谱 ▪ 线状谱:由一些离散的频率成分形成的谱 ▪ 连续谱:在一定频率范围内频率成分连续的谱

建筑物理 +声学部分+《第1章:建筑声学基础知识》

建筑物理 +声学部分+《第1章:建筑声学基础知识》

0c 又称为介质的特性阻抗。
郑州华信学院
建筑物理
第1章 建筑声学
1.2.2 声功率级、声强级和声压级 人耳刚能听见的下限声强为10-12w/m2,相应的声压为 2×10-5N/m2;使人感到疼痛的上限声强为1w/m 2,相 应的声压为20N/m2。所以用声强和声压计量声音很难。 1.声功率级( LW ) 声功率级是声功率与基准功率之比的对数的10倍。记为 LW W LW 10 lg (dB) W0
郑州华信学院
建筑物理
第1章 建筑声学
2.声强级(LI ) 声强级是声强与基准声强之比的对数的10倍。记为 LI
I LI 10 lg I0
(dB)
郑州华信学院
建筑物理
第1章 建筑声学
3.声压级(Lp) 声压级是声压与基准声压之比的对数的20倍。记为 Lp
p L p 20 lg (dB) p0
郑州华信学院
建筑物理
第1章 建筑声学
1.1.4 声音的透射、反射和吸收
当声波入射到建筑构件(如墙、天花)时,声能的一部 分被反射,一部分透过构件,还有一部分被构件吸收。 根据能量守恒定律,若入射总声能为E0,反射的声能 为Eρ,构件吸收的声能为Eα,透过构件的声能为Eτ, 则互相间有如下的关系:
E0=E 十Eα十E τ
Lp LW 20lg r 8
郑州华信学院
建筑物理
第1章 建筑声学
1.4.2 室内声压级的计算
1.直达声、早期反射声及混响声。
1.直达声:是指声源直接到达接收点的声音。 2.早期反射声:一般指直达声到达以后,相对延 迟时间为50ms内到达的反射声。(对于音乐声可 放宽至80ms)。 3.混响声:在早期反射声之后陆续到达的,经过 多次反射后的声音统称为混响声。

1-建筑声学的基本知识 1

1-建筑声学的基本知识 1
就会被分解成许多较小的反射声线,并且使传播的立 体角扩大,这种现象称之为扩散反射。适当的声波扩 散反射可以促进声音分布均匀,并可防止一些声学缺 陷的出现。
1-建筑声学的基本知识
• 扩散反射可分为完全扩散反射和部分扩散反射两 种。前者是将入射的声线均匀地向四面八方反射,即 反射的方向分布完全与入射方向无关;作后者是指反 射同时具有镜像和扩散两种性质,即部分镜像反射, 部分作扩散反射。

声源辐射声波时对外作功。声功率是指声源在单位时
间内向外辐射的声能,记作W,单位是瓦(W)或微瓦
(μW)。 是属于声源本身的一种特性。
声源种类 喷气飞机 汽锤 汽车 钢琴 女高音 对话
几种不同声源的声功率 声功率
10kW 1W 0.1W 2mw 1000-7200μW 20μW
1-建筑声学的基本知识
1-建筑声学的基本知识
• 第1章 建筑声 1 声音的物理性质
• 本节要点: • 1.
1-建筑声学的基本知识
• 1.1声音 声源 空气中的声波
声音是人耳所能感觉 到的“弹性”介质的振动, 是压力迅速而微小的起伏 变化。
声音产生于物质的振 动,例如扬声器的膜片、 拨动的琴弦等。这些振动 的物体称之为声源。
1-建筑声学的基本知识
• 二、声强级LI

声强级是声强与基准声强之比的对数的10倍,
记作LI,单位也是分贝(dB),可用下式表示:
I LI 10 lg I0
式中 I ——某点的声强,W/m2;
I 0 ——基准声强,10-12W/m2。
1-建筑声学的基本知识
• 三、声压级

声压级是声压与基准声压之比的对数乘以20,
• 应注意不同波长与扩散反射之间的关系

建筑声学声学室内声学基本原理

建筑声学声学室内声学基本原理
4m 空气吸收系数,当频率大于 1000Hz时,必须考虑空气吸收
改进的内容: 1、能够正确反映平均吸声系数与混响时间的关系 2、考虑了空气吸收的影响
二、室内声场
第四节 室内声学基本原理
3.混响时间
计算混响时间时,一般取125、250、500、1000、2000、 4000Hz六个倍频程中心频率。对于录音室和播音室还应 追加63Hz和8000Hz的混响时间。
第四节 室内声学基本原理
前述之室内声音的增长和衰减过程,均未考虑频率这一 因素的影响,这是不全面的。
实际房间受到声源激发时,对不同频率有不同响应,最 容易被激发的频率就是房间的共振频率。
房间被外界干扰振动激发时,将按照他本身的共振频率 (固有频率或简正频率)之一而振动。激发频率越接近 某一共振频率时,共振就越明显,这个频率的声能密度 就得到加强 。 房间共振用驻波原理来解释
1
第一部分 声学基本知识
第四节 室内声学基本原理
点声源在自由声场中声压级随测点距离声源的变化:
LP = LW - 20 lg r -11 (dB)
r —测点与声源的距离 如果距离声源r1处的声压级为L1,则距离声源r2处 的声压级L2为
L2 = L1 - 20lg (r2 / r1)(dB)
4
通常把房间内的声场分成两部分,一部分是由声源直接 传到接收点的直达声所形成的声场,称为直达声场。另 一部分是经过室内表面反射后到达接收点的反射声所形 成的声场,称为混响声场。房间的总声场可以理解为直 达声场和混响声场的迭加
距离声源r处的声压级:
LP
LW
10lg( Q
4r 2
4) R
R Sa
L W — 声源声功率级,dB;
做好声学设计,应对声波在室内的传播规律及室内声场 的特点有所了解

建筑物理-声学基本知识

建筑物理-声学基本知识
2000Hz 4000Hz
1000Hz
4m
21
0.004
0.01
0.024
Architectural Acoustics
2019年3月8日星期五
第一章 建筑声学基本知识

室内声学原理 混响与混响时间


混响时间的意义及影响因素
• •
反映了声波在房间衰减的快慢程度; 大致反映了直达声与反射声的比例;

人耳的主观听觉特性 人耳的听闻范围
听觉过程:外耳——中耳——内耳——大脑 人耳对不同频率的声音的敏感程度不一样



对中、高频敏感;对低频不敏感

听闻范围
人耳所感觉的声音的大小称为响度
相同声压级,不同频率的声音,响度不同 • 相同频率,不同声压级的声音,响度不同 • 等响


响度


响度的单位为宋(sone)

线源声音随距离的衰减
无限长线声源:传播距离加倍,声压级降低 3 dB 有限长线声源:传播距离加倍,声压级降低 3~6 dB


面源声音随距离的衰减
近处:声能没有衰减 远处:传播距离加倍,声压级降低3~6dB

14
2019年3月8日星期五
Architectural Acoustics
第一章 建筑声学基本知识

声波的性质>>声波的折射 声波的折射
介质的温度、密度等条件发生变化后,会产生声传播的弯曲现象 温度的影响:



白天,地面附近的空气温度高,声波向上弯曲; 夜间,地面附近的空气温度低,声波向下弯曲

风的影响:

顺风时声波向下弯曲;逆风时向上弯曲

《建筑声学》第1部分4室内声学基本原理(1)

《建筑声学》第1部分4室内声学基本原理(1)

a为平均吸声系数
T?o=
0.161V Sa
二、室内声场
第四节室内声学基本原理
3.混响时间
赛宾公式:
T?o=
0.161V

控制混响时间主要有两种方法:
改变房间的容积和改变房间表面吸声量。尽管在设计时
可以改变房间的体积,但调整混响时间更实用的方法是
改变吸声量。
第四节室内声学基本原理
Lucerne, Switzeriand
150 0.21 31.5|0.73109.50.21 31.5 0.19 28.5 0.08 12 0.12 18
4 墙面
5 墙面 6 走道、乐池 7门
9.5mm厚穿孔石
膏板,P=8%; 板后贴桑皮纸,
100 0.17 17 0.48 48 0.92 92 0.75 75 0.31 31 0.13 13
来自各个反射面的反射声,它们有的经过一次反射,有 的经过多次反射。
二、室内声场
第四节室内声学基本原理
声波在各界面除了反射外,还有散射、透射和吸收等声 学现象发生。
声音沿结构传播
声音被吸声表面吸收
反射声
透射声
直达声 声源
声音在结 构内损耗
扩散反射\
二、室内声场
2.室内声音的变化过程
第四节室内声学基本原理
L?=L-20lg(r?/r)(dB)

一、声波在室内空间的传播
第四节室内声学基本原理
在建筑声学中,多数情况涉及到声波在一个封闭空间内
(剧院观众厅、播音室等)传播的问题。声波传播将受到 封闭空间各个界面(墙面、顶棚、地面等)约束,形成一 个比自由声场要复杂得多的“声场”。
这种声场具有特有的声学现象

第1章建筑声学基本知识

第1章建筑声学基本知识
反射系数、透射系数、吸收系数; 隔声材料与吸声材料
第1章建筑声学基本知识
第二节 声音的计量 主要内容提要 声功率、声强和声压 声压级、声强级、声功率级及其
叠功率、声强和声压
1.声功率
声源辐射声波时对外作功,声功率是指声源在单位时间内向 外辐射的声能,记为W,单位为瓦(w)。声源声功率有时是指
声速、波长和频率有如下关系:C=λ*f 或C=λ/T
第1章建筑声学基本知识
当温度为0℃时,声波在不同介质中的速度为: 松木 3320 m/s 软木 500 m/s 钢 5000 m/s 水 1450m/s
声速不是质点振动的速度,而是振动状态传播的速度:它的 大小与振动的特性无关,而与介质的弹性、密度以及温度有 关。在空气中,声速与温度的关系如下:
6.声波的类型 波的传播过程中,空气质点的振动方向与波传播的方 向相平行,称为纵波。若介质质点的振动方向与波传 播的方向相垂直,则称为横波,如水的表面波。 根据介质的不同,声音可分为空气声和固体声 ,通过 空气传播的声音为空气声,通过固体传播的声音为固 体声。
第1章建筑声学基本知识
二、频率、波长与声速
任一点的声压都是随时间而不断变化的,每一 瞬间的声压称瞬时声压,某段时间内瞬时声压 的均方根值称为有效声压。
如未说明,通常所指的声压即为有效声压。
第1章建筑声学基本知识
声压与声强有着
密切的关系。在 自由声场中,某 处的声强与该处 声压的平方成正 比而与介质密度 与声速的乘积成 反比。
第1章建筑声学基本知识
第1章建筑声学基本知识
3. 如用小锤敲打音叉,音叉便会发生振动,并带动邻近的空 气发生振动,当音叉向某一方向振动时,便压缩其邻近的 空气发生振动,使之变密;当音叉向另一方向振动时,便 反向拉伸这一部分空气,使之变疏,从而导致上述部分空 气随着音叉的振动频率,产生一密一疏的周期变化,即形 成振动。而后,其又带动较远部分的空气亦随之发生振动, 使音叉的振动在空气中由近及远,向四面八方传播。

[建筑声学] 第1讲 声学基本知识

[建筑声学] 第1讲 声学基本知识

一、振动与声波
【 声 音 的 产 生 与 传 播 】
• 2、振动在空气中的传播——声波 • 必须注意:声波的传播是能量的传递,而非质点的 转移。空气质点总是在其平衡点附近来回振动,而 不传向远处。
一、振动与声波
【 声 音 的 产 生 与 传 播 】
• 2、振动在空气中的传播——声波
• 纵波 — 质点的振动方向与传播方向一致的波。
【 声 音 的 产 生 与 传 播 】
皇穹宇
四、声波的反射和扩散
【 声 音 的 产 生 与 传 播 】
• 回音壁
四、声波的反射和扩散
【 声 音 的 产 生 与 传 播 】
• 三音石
五、声波的绕射(衍射)
【 声 音 的 产 生 与 传 播 】
• 绕射(衍射)
五、声波的绕射(衍射)
【 声 音 的 产 生 与 传 播 】
• 每一瞬间的声压叫瞬时声压,某段时间内瞬时 声压的平均值称为有效声压,用它的均方根值 来表示。
一、声功率、声强、声压
【 声 音 的 计 量 与 听 觉 特 性 】
• 声强与声压的平方成正比。
I
p
2
c
0
二、声强级、声压级、声功率级
【 声 音 的 计 量 与 听 觉 特 性 】
• 由于以下两个原因,实际应用中,表示声音强 弱的单位并不采用声压或声功率的绝对值,而 采用相对单位——级(类似于风级、地震级)。 • 1)声压对人耳感觉的变化非常大。
• 注意:① 声功率所指的频率范围。 ② 声功率≠电功率
一、声功率、声强、声压
【 声 音 的 计 量 与 听 觉 特 性 】
• 声强是指在单位时间内在垂直于声波传播方向 的单位面积上的所通过的声能,记作 I ,单位 是 w/m2。

建筑声学基本知识

建筑声学基本知识

1、 第一章中基本概念的理解。

声波:声源振动引起弹性媒质的压力变化,并在弹性媒质中传播的机械波。

声源:振动的固体、液体、气体。

声压:空气质点由于声波作用而产生振动时所引起的大气压力起伏。

(空气压强的变化量,10-5~10 Pa 量级)特性:波长λ、频率 f 、声速 c声源:通常把受到外力作用而产生振动的物体称为声源。

原理:声源在空气中振动,使邻近的空气振动并以波动的方式向四周传播开来,传入人耳,引起耳膜振动,通过听觉神经产生声音的感觉。

振动的产生:这里只介绍最简单的振动——简谐振动。

物体振动时离开平衡位置的最大位移称为振幅,记作A ,单位米(m)或者厘米(cm );完成一次振动所经历的时间称为周期,记作T, [单位秒(s )]。

一秒钟内振动的次数称为频率,记作f ,[单位赫兹(Hz )]。

它们之间的关系 f = 1/T 。

如果系统不受其它外力,没有能量损耗的振动,称为“自由振动”,其振动频率叫做该系统的“固有频率”记作f0 。

振动在空气中的传播──声波:分为横波和纵波。

质点的振动方向和波的传播方向相垂直,称为横波。

如果质点的振动方向和波的传播方向相平行,则称为纵波。

在空气中传播声波就属纵波。

声波的传播是能量的传递,而非质点的转移。

空气质点总是在其平衡点附近来回振动而不传向远处。

声速与媒质的弹性、密度和温度有关空气中的声速:理想气体中空气中声速是温度的单值函数。

在建筑环境领域中变化范围很小,近似:340 m/s固液体中的声速❑ 钢 5000 m/s❑ 松木 3320 m/s❑ 水 1450 m/s❑ 软木 500 m/s波阵面:声波从声源发出,在同一介质中按一定方向传播,在某一时刻,波动所到达的各点的包迹面称为波阵面。

波阵面为平面的称为平面波,波阵面为球面的称为球面波。

次声波和超声波:人耳能感受到的声波的频率范围大约在20-20000Hz 之间。

低于20Hz 声波成为次声波,高于20000Hz 称为超声波。

建筑声学基本知识

建筑声学基本知识

建筑声学基本知识建筑声学是一门研究建筑物内声音环境问题的科学,涉及室内音质和建筑环境的噪声控制。

以下是建筑声学的一些基本知识:房间体型和容积的选择:建筑声学中,房间的体型和容积对声音的传播和反射有很大影响。

适当的选择可以提高室内音质,降低噪声影响。

在建筑声学中,房间的体型和容积对声音的传播和反射起着至关重要的作用。

不同的房间体型和容积会影响声音的吸收和反射,进而影响室内音质。

适当的选择房间体型和容积,可以有效地提高室内音质,降低噪声影响,为我们创造一个更加舒适、健康的生活环境。

在选择房间体型和容积时,需要考虑房间的功能、用途和面积等因素。

例如,音乐厅、电影院等需要较高的音质效果,可以选择较为规整的房间体型和较大的容积,以利于声音的扩散和反射。

同时,在选择材料时,需要考虑材料的吸声性能和反射性能等因素,以进一步优化室内音质。

除了房间体型和容积的选择,还需要考虑室内的家具、装饰等因素对声音的影响。

例如,软包墙面、地毯等可以吸收噪声、减少反射,提高室内音质。

而硬质墙面、玻璃等则容易产生回声、颤动等声学问题,需要合理处理。

总之,建筑声学中,房间的体型和容积的选择对声音的传播和反射有很大的影响,适当的选择可以提高室内音质,降低噪声影响。

同时,需要考虑多种因素的综合作用,创造一个舒适、健康的生活环境。

最佳混响时间及其频率特性的选择和确定:混响时间是指声音在室内衰减至原强度的一定比例所需的时间。

合理设置混响时间可以提高音质,避免回声和共鸣等问题。

最佳混响时间及其频率特性的选择和确定是室内声学设计中的重要环节。

混响时间是指声音在室内衰减至原强度的一定比例所需的时间,它与室内材质、空间大小、温度等因素密切相关。

合理地设置混响时间可以有效地提高音质,避免回声和共鸣等声学问题。

在音乐厅、录音室等场所,混响时间的合理设置更是至关重要,因为它直接影响到观众和录音师对声音的感受和评价。

频率特性是指声音在不同频率下的传递特性。

建筑声学必背知识点

建筑声学必背知识点

建筑声学一、名词解释△声场(09):有声波存在的空间。

波阵面(波前):某一时刻,波动所到达形成的包迹面。

反射定律:1.入射声线、反射声线和反射面的法线在同一平面内;2.入射声线和反射声线分别位于法线的两侧;3.入射角等于反射角。

虚声源原理:即声源和虚声源的对称关系。

有一点声源S 在一个尺度大于声波波长的平的反射面的一侧发声时,则可近似与光源在一镜面上成像那样,在i 沿着声源到平面的垂线延长线上,在平面的另一侧等距处,也有一“声像”或虚声源S'在同时发声。

因此,声波在平面时某一点的反射声线,也就是由虚声源与反射点连线的延长线。

△声影区(07):当声波遇到障碍物或孔洞,其大小比声波波长大得多时,可以认为声波仍沿直线传播,由于障碍物的反射作用,正是由于障碍物对声波的遮挡作用,在障碍物后面形成一个使直达声或早期反射声不能达到的区域,即“声影区”。

绕射(衍射):障碍物或孔洞的大小比声波波长小得很多时,则声波不是沿直线传播,而是改变前进方向绕过障碍物或孔洞,达到按直线传播是要成为“阴影”的地方。

干涉:当具有相同频率、相同相位的两个波源发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强,我们听到的声音也强;而在另一些位置,振动始终相互削弱或抵消,我们听到的声音也弱,这种现象成为波的干涉。

透射:声音透光障碍物的现象称为声波的透射。

△透射系数(08):透射声能与入射声能之比。

常把oE E ττ=值小的材料称为隔声材料。

反射系数:反射声能与入射声能之比。

常把oE E γγ=值小的材料称为吸声材料。

吸声系数:从入射波和反射波所在的空间考虑问题,常用下式来定义材料的吸声系数oo -1-1E E E E E ταγγα+===,即没有被表面反射的部分均认为是被吸收的声能。

吸声量:材料的吸声量等于按平方米计算的面积乘以吸声系数。

声功率:声源在单位时间内向外辐射的总声能量,单位瓦(W),1W=610μW。

02建筑声学基本知识

02建筑声学基本知识
声波具有能量,简称声能。 当声波碰到室内某一界面后(如天花、墙),一部分声能被反射,一部 分被吸收(主要是转化成热能),一部分穿透到另一空间。
透射系数:

Ei Eo
反射系数: Eo 吸声系数:
I p 2 0c
Er
Eo E E E
应用:不同材料,不同的构造对声音具有不同的性能。在隔声中希望用透射 系数小的材料防止噪声。在音质设计中需要选择吸声材料,控制室内声场。
P P 1 P 2 ... P n
2
2
2
2
2 2
P P 1 P 1 ... P n Lp 20 lg 20 lg Po Po 20 lg 10
Lp 1 20
2
2014年9月28日
10
Lp 2 20
... 10
例题1 两辆汽车声压级分别77dB和80dB,求总声 压级 例题2 车间总声压级92dB,停止运转一台设备,背 景噪声为88dB,求该设备运转时的噪声级。
2014年9月28日
建筑声学20
建筑声学基本知识
第三节 人的听觉感觉
1、声音的频谱与声源的指向性
A、 声音的频谱 频谱——表示某种声音 频率成分及其声压级组成情况的图形, 傅立叶理论及现代信号处理技术证明: 理论上任何振动的波形都可以分解为若干单频简谐振动的合成。 分立谱:如弦振动产生的声音。 连续谱:谈话、机器的噪声,大多的自然声。 频谱通常根据需要分成若干个频带,带宽(Band)可宽可 窄。最常用的有倍频带和1/3倍频带。
——建筑声学的新挑战
4、声学发展简史:
公元前古希腊、罗马的露天圆形剧场
2014年9月28日

建筑声学第一章 建筑声学基本知识

建筑声学第一章 建筑声学基本知识

建筑声学6
建筑声环境概述
15世纪天坛的回音壁----利用回声 知识建造回音壁、三音石和圜丘。
我国50年代初,中科院电子学研究所 马大猷教授开创建筑声学系统;58年 人民大会堂万人大礼堂(10000座) 声学设计成功;
现代大都市电影院、剧场、音乐厅、歌 厅、演播室。
17.01.2021
建筑声学7
17.01.2021
建筑声学13
第十章 建筑声学基本知识
第一节 声音的产生和传播
3、声波的散射 当障碍物的尺寸与声波相 当时,将不会形成定向反 射,而以障碍物为一子波 源,向不同方向发生不规 则的反射、折射、绕射
17.01.2021
建筑声学14
第十章 建筑声学基本知识
第一节 声音的产生和传播
4、声波的透射与吸收
17.01.2021
建筑声学16
第十章 建筑声学基本知识
第二节 声音的计量
2、声强:单位时间内通过与声波传播方向垂直的单位面积波阵面 上的声能的多少。 符号:I 单位:w/m 2 可听声强范围10 -12 w/m 2——1 w/m 2
对于点声源有:
I
W
4r2
(w/m2)
-------距离平方反比定律
17.01.2021
建筑声学10
第十章 建筑声学基本知识
第一节 声音的产生和传播
三 、声波的绕射、反射和散射、透射和吸收
1、声波的绕射:由于媒质中的障碍物或其它不连续引起的波 阵面畸变。 声波在传播过程中遇到障碍或孔洞时将发生绕射。绕射的情 况与声波的波长和障碍物(或孔)的尺寸有关。
17.01.2021
3、声压:指在某一瞬时压强相对于无声波时的压强变化。符号P 单位N/m 2(牛顿/米2 ) 或Pa(帕斯卡)范围2×10 -5N/m 2—20

大学建筑物理声学基本知识

大学建筑物理声学基本知识

37
两个不同声源叠加,差别超过10~15 dB,可以忽略。
增加的声级数
声源声级差
38
39
【例10-1】测得某机器的噪声频带声压级如下:
倍频程中心 频率(HZ) 63 125 250 500 1000 2000 4000 8000
声压级(dB) 90
95
100
93
82
75
70
70
声压级的大小排序 100、95、93、90、82…dB 查10-3表得1.2 +100=101.2 100-95=5.0 101.2-93=8.2 查10-3表得0.6 +101.2=101.8 101.8-90=11.8 查10-3表得0.3 +101.8=102.1≈102dB
仅在均匀、各向同性的介质中,声线是直线。 声线的意义: 声线代表了声传播的方向但不考虑波动性,因此声传 播问题得到了简化,它是一种研究声传播规律的简明 工具。 几何声学: 用声线来研究声传播的声学。
6
7
3)、 声波与振动的区别
相 振动: 声波:
同 点


点 能量守恒 能量传递
机械运动 机械振动
质点平衡位置往返, 若干质点,各自平衡位置往返
13
4)反射定律 a 反射线、入射线、 法线在同一平面。 b 反射线、入射线 在法线的两侧 c 反射角=入射角 5)典型反射面的应用 平面——镜象反射 凹面——形成声聚焦 凸面——声扩散 (尺度应与λ比较)
14
特点: 1、反射波就象从声波的映象--O’发出似的。 O’------O 对称。 2、声线入射角等于反射角。 O i
总声压级:
L p L p1 10 lg(1 10

建筑声学复习要点

建筑声学复习要点

建筑声学复习要点建筑声学复习要点第3.1章建筑声学基本知识一、声音的基本性质人耳可听到的声波频率范围是20-20000Hz 。

将声音的频率范围划分为若干个区段,称频带。

声学设计和测量中常用倍频带和1/3倍频带。

倍频带的常用频率有8个:63、125、250、500、1000、2000、4000、8000Hz 。

声波在传播过程中会发生反射、绕射、干涉现象。

二、声音的计量声功率W :声源在单位时间内向外辐射的声能。

声强I :单位时间,垂直于声波传播方向上单位面积通过的声能。

声压p :介质有无声波传播时压强的改变量。

级的概念,声压级0/lg 20p p L p =;声强级0/lg 10I I L I =;声功率级 0/lg 10W W L W =;几个等声压级的叠加n p p L p lg 10lg 200+=。

两个等声压级叠加时,总声压级比一个声压级增加3dB 。

三、声音的频谱和声源的指向性声音的频谱表示声音各组成频率的声压级分布。

声音分纯音、复音和复合音。

声源的指向性指声源辐射声音强度的空间分布。

频率越高、声源尺寸比辐射波长大得越多,声源的指向性越强。

声源因其尺寸与波长之比可分为点、线和面声源。

四、人的主观听觉特性时差效应,即哈斯效应,直达声到达后50ms 以内到达的反射声会加强直达声,直达声到达后50ms 后到达的“强”反射声会产生“回声”。

听觉定位,即双耳听闻效应,人可以根据声波到达双耳时的时间差、强度差和相位差,判断声源方位和远近,进行声像定位。

掩蔽效应,人耳对一个声音的灵敏度因另一个声音的存在而降低的现象。

响度级:以1000Hz 纯音的声压级作基准,则听起来和它同样响的其他频率的纯音的各自声压级构成一条曲线叫“等响曲线”。

1000Hz 纯音的声压级数值就是待测声音的响度级。

对于复合音,响度级要通过计算或用声级计测量得到。

声级计中设有A 、B 、C 计权网络,其中A 计权网络参考40 phon 等响曲线,对500Hz 以下的低频声衰减很大,以模拟人耳对低频不敏感的特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:在一自由声场中,距离面声源2m远的直达 声的声压级为65dB,则距声源4m处的声压级为: A. 65dB C. 61dB B. 63dB D.59dB
二、混响和混响时间计算公式
混响过程:对室内音质影响很大 声源停止后,室内声场逐渐被房间内表面所 吸收而消 失的过程。此过程与听音的质量关 系极大 。 停止发声→直达声→一次反射声→二次反、 射声→………… 多次反射声整个过程连续且 逐渐衰减——是一个逐渐衰减的混响过程.


2、定义响度级 A、 选定标准声音: 1000Hz(纯音)——Lp=50dB B、f1(2000Hz)(待测)——Lp=48dB
f2(100Hz) (待测)——Lp=59dB
他们的响度级都是: 50方 定义:某频率声音的响度级等于根据听力正 常的听音的听音判断为等响的1KHz 纯音的声压级。 单位: 方 1KHz的声压级为响度级
第二节 室内声学原理
一、自由声场(无反射)
(一)点声源观测点与声源的距离增加一倍,声压级
降低6dB。
Lp =Lw— 20lg r --11
(二)无限长的线声源观测点与声源的距离增 加一倍,声压级 降低3dB。 交通噪声观测点与声源的距离增加一倍, 声压级降低4dB。 (三)面声源观测点与声源的距离增加,声压 级不衰减。
生声扩散现象? A 凸曲面 C 平面 B 凹曲面 D 软界面
6、 (2006)两个声音传至人耳的时间差为多少 毫秒(ms)时,人们就会分辨出他们是断续的?
A 25ms
C 45ms
B 35ms
D 55ms
7、 (2005)低频声波在传播途径上遇到相对尺
寸较小的障板时,会产生下列哪种声现象? A 反射 C 扩散 答案:D B 干涉 D 绕射
C 86dB
D 87dB
3、 (2007)尺度较大的障板,对中、高频声波有下列 哪种影响
A 无影响
C 绕射
B 反射
D 透射
4、(2006)高频声波在传播途径上,遇到相对尺寸 较大的障板时,会产生哪种声学现象? A 反射 C 扩散 B 干涉 D 绕射
5、(2006)声波遇到哪种较大面积的界面,会产
直达声
反射声
dB
Q:
房间常数
(二)混响半径
Q/4 r2 ——直达声对声压级的贡献
4/R —— 混响声对声压级的贡献 当Q/4 r2 = 4/R 时 , 直达声能和混响声能相等时 rc =0.14 (Q/R) 1/2 —— 混响半径或称临界半径
当r 〉 rc 时 做吸声处理效果好;因为吸声处
答案:B
四、人的主观听觉特性
1、哈斯效应 听觉暂留:人耳的听觉暂留为50 ms, 即1/20 s 2、双耳听闻现象——确定声音的大致方位 人耳对水平方向的声音变化敏感,对垂直方 向 不敏感 3、掩蔽现象
时差效应(哈斯效应)
反射声 声源 直达声
反射声——直达声时间差> 50毫秒(ms) 人耳可能听出两个声音——可能形 成回声。
声强:
W I 2 4r
(W/m2)(点声源)
注意:人耳听觉不与这些量成线性关系,而是与 这些量的对数量成线性关系,即人耳的听
觉与这些量的对数量直接对应。
声压级:
P0=2×10-5
P Lp 20 lg P0
(dB)
人耳能听到的最小声音的声压级Lp为0 dB, 感觉疼痛的声音的声压级Lp是120 dB。 声压p每增加一倍,声压级就增加6dB, 声压p增加10倍,声压级增加20dB。
为了克服“简并”现象,使其共振频率分布 尽可能均匀,房间的几何尺寸应选取哪种比 例合适? A 7×7×7 B 6×6×9 C 6×7×8 D 3×6×9
3、(2004)混响时间是指室内声波自稳态级 衰减多少分贝(dB)所需时间? A 30 B 40
C 50
D 60
4、(2004)在计算混响时间,考虑空气吸收
例:关于声源指向性,哪一项不正确? A. 点声源无方向性 B. 声源方向性是与声源大小有关 C. 频率越高,声源指向性越强 D. 声源尺寸比波长越大,指向性越强 声源指向性取决于声源尺寸和声波波长的相对大 小,声源尺寸比波长小得多,可看成无指向性点 声源;反之声源尺寸比波长大得多时,指向性就 强。
(五)声波的透射与吸收
反射系数:
r

Er E0
E E0
透射系数: 吸声系数:
问题:无反射 的窗洞吸声 系数是多少?
a=1-r
二、声音的计量
(一)声功率、声强和声压 声功率:W (声源特性)
声强:
W I 2 4r
P I c
2
(W/m2)(点声源)
声压P:
二、声音的计量 (一)声功率、声强和声压
列人耳对声音的哪种特性?
A 时间计权 C 最大声级 B 频率计权 D 平均声级
提示:dB(A)是A声级的声学计量单位,人耳 对低频不敏感,对高频敏感,A声级正是反映了 声音的这种特性按频率计权得出的总声级。
2、(2007)机房内有两台同型号的噪声源, 室内总噪声级为90dB,单台噪声源的声级 应为多少? A 84dB B 85dB
对策: 1、使房间三方尺寸不成简单整数比。
2、表面作成不规则形状,作扩散处 理,
墙面不平行。
3、吸声材料不规则布置。
4、如>0.3,共振现象不明显.
作业: 1、 (2006)在计算室内混响时间时,空气对声波的 吸声影响主要在哪段频段? A 高频段 B 中、高频段 C 低频段 D 中频段 答案:A 2、 (2006)为了克服“简并”现象,使其共振频率 分布尽可能均匀,房间的几何尺寸应选取哪种比例 合适? A 7×7×7 B 6×6×9 C 6×7×8 D 8 × 8 ×9
的影响时,主要考虑下列哪个频段?
A 高频 C 中低频 B 中频 D 低频
建筑声学知识要点一
北京建筑大学 李英
第一节 建筑声学基本知识
一. 声音的基本性质
(一)声音的产生与传播 声源:振动的物体
声波:振动的传播
(二)频率、波长与声速
频率:人耳可听频率为20~20,000 Hz
波长:1.7cm-----17米
声速
钢: 5000 m/s
松木:3320 m/s 水: 1450 m/s
软木: 500 m/s
空气中的声速为 340 m/s
c=λ·f
λ=c/f
高高频——短波
低频——长波
大于1000Hz称高频,
500----1000Hz称中频
500Hz以下称低频
(三)频带 倍频带---倍频程(按2的倍数分频率的 方法 )
1000 4 22 250
常用倍频程:
63, 125, 250, 500, 1000, 2000, 4000,8000
衰减的快慢与室内的总吸声量以及房间容积有
关。 室内吸声量越大——衰减越快,混响过程越短。
房间容积越大——衰减越慢,混响过程越长。 问题:在房间内布置吸声材料能降低声能密度, 它是降低反射声能密度还是直达声能密度?
混响时间计算公式
(一)混响时间
声能衰减60dB所需的时间(也可说是声压级衰 减60dB
理只能降低混响声能(也就是反射声能)。
四、房间共振和共振频率
(一)干涉——同频率的两列声波相遇叠加使某 些点被加强,某些点被减弱 (二)驻波——同频率的两列声波相遇叠加使某 些点始终被加强,某些点始终被减弱 (二)矩形房间的共振频率(简并—共振频率的 叠加,产生声染色 声染色-----声音失真 现象:越方正的房子越容易出现声染色
1/3 倍频带
(四)声波的绕射、反射、散射和折射
1、声的绕射(衍射)



1)现象1:隔障碍物可听到声音,声波在经过 障碍物时,其传播方向要发生改变, 能绕过障碍物继续前进的现象。 。 2)现象2:声波穿过小孔,波长比孔径大的多 3) 现象3:声波遇到比波长小得多的坚实障板 时 会发生绕射 特点:声波的频率越小,波长越长绕射的现象 越明显
或反射声和直达声的声程差 大于17米可能形成回声
R1 R2 D 17m
可能会出现回声
五、声音三要素
(一)声音的强弱:声压级,声强级,响度级,频 率。
(二)音调的高低:声音的频率。
(三)音色的好坏:复合声的频率成分及强度; 乐器发出的复合声:基音、泛音的数目、频率
和强度。
作业: 1、(2007)常用的dB(A)声学计量单位反应下
等于最大声音的声压级,这时小的声压级可忽略
不计。

(三)响度级与响度——主观计量 1、声音既是一个客观物理量又是一个主观量。
频率相同,强度(声压级)不同——响度不同
强度(声压级)相同,频率不同——响度不同




例:Lp = 40 dB
f:1000Hz 响
〉 100Hz

判断:频率不同,声压级(强度)不同的两个 声音其响度一定不同吗?
A 500ms B 300ms
C 100ms
D 50ms
11、(2004)声波传至比其波长大很多的坚实障 板时,产生下列哪种情况? A 反射 B 透射 C 扩散 D 绕射 12、 (2004)声音的产生来源于物体的何种状态? A 受热 B 受冷 C 振动 D 静止 13、(2004)单一频率的声音称之为什么? A 噪声 B 纯音 C 白噪声 D 粉红噪声
8、 (2005)声波遇到下列哪种形状的界面会产
生声聚焦现象?
A 凸曲面
C 平面
B 凹曲面
D 不规则曲面
9、(2005)噪声对人影响的常用计量单位是:
A 分贝(dB)
(N/m2)
B 巴(Pa)
D 牛顿/平方米
C 分贝(A)[dB(A)]
相关文档
最新文档