带电粒子在有界磁场中运动(超经典)
带电粒子在有界磁场磁场中的运动
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电
高考物理一轮复习讲义带电粒子在复合场中的运动
课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
《带电粒子在磁场中的运动》 说课稿
《带电粒子在磁场中的运动》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“带电粒子在磁场中的运动”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计以及教学反思这几个方面来展开我的说课。
一、教材分析“带电粒子在磁场中的运动”是高中物理选修 3-1 第三章第六节的内容。
这部分知识是磁场这一章的重点和难点,也是高考的热点之一。
它不仅在电磁学中有着重要的地位,还为后续学习带电粒子在复合场中的运动以及现代科技中的应用奠定了基础。
本节课的主要内容包括:带电粒子在匀强磁场中的运动规律,如匀速圆周运动的半径和周期公式;带电粒子在有界磁场中的运动轨迹分析。
教材在编排上,先通过实验引入,让学生观察带电粒子在磁场中的运动现象,然后从理论上进行分析推导,得出运动规律。
这种从感性认识到理性认识的过程,符合学生的认知规律,有助于学生对知识的理解和掌握。
二、学情分析学生已经学习了电场、磁场的基本概念和性质,掌握了牛顿运动定律、圆周运动的相关知识,具备了一定的分析和解决问题的能力。
但是,对于带电粒子在磁场中的运动这一较为抽象的内容,学生可能会感到理解困难。
在学习过程中,学生可能会遇到以下几个问题:一是对洛伦兹力的方向判断不够熟练;二是难以将牛顿运动定律和圆周运动的知识灵活应用到带电粒子在磁场中的运动分析中;三是对于有界磁场中带电粒子运动轨迹的分析,空间想象力不足。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解带电粒子在匀强磁场中做匀速圆周运动的条件和规律。
(2)掌握带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能熟练应用。
(3)学会分析带电粒子在有界磁场中的运动轨迹。
2、过程与方法目标(1)通过实验观察和理论推导,培养学生的观察能力、分析推理能力和逻辑思维能力。
(2)通过对带电粒子在有界磁场中运动轨迹的分析,提高学生的空间想象力和应用数学知识解决物理问题的能力。
带电粒子在有界磁场中的运动轨迹
S
P
Q
Q
v
S
v
圆心在过入射点跟边 界垂直的直线上
圆心在磁场原边界上
v
圆心在过入射点跟速 度方向垂直的直线上
S
①v较小时,作半圆从原边出; ①v较小时,作整圆过射入点; ②v为某临界值时,作部分圆 ②v为某临界值时,粒子作整圆 轨迹与另一边界相切; 轨迹与边界相切; ③v较大时,作部分圆从另一 ③v较大时,作部分圆从另一边 边界出 界出
(边界的切线圆)
带电粒子在圆形边界磁场中的运动 带电粒子在圆形磁场中的运动 从几何角度看,是轨迹圆与磁场圆的相交问题。
O'
径 向 r 射 v 入
r
•
轨迹圆
v
O
B
磁 场 圆
结论1:径向射入必径向射出。 结论2:径向射入,速度大圆心角小时间短。
带电粒子在圆形边界磁场中的运动 带电粒子在圆形磁场中的运动 从几何角度看,是轨迹圆与磁场圆的相交问题。
d
o B θ 圆心在磁场原边界上 v a b ①速度较小时粒子作半 圆运动后从原边界飞出; ①速度较小时粒子作部分圆周 ②速度在某一范围内时 运动后从原边界飞出;②速度 从侧面边界飞出;③速 在某一范围内从侧面边界飞; 度较大时粒子作部分圆 ③速度较大时粒子作部分圆周 周运动从对面边界飞出。 运动从另一侧面边界飞出。
O1 +q
v
粒子擦着上板从左边穿出时,圆 心在O1点,有 r L
1
O2
r2
r2
O1 +q
v2 qvB m r
4
v
qBr1 qBL v1 m 4穿出时,圆心在O2点,有
L 2 r L (r ) 2
高考物理一轮复习课件 第十章 专题强化十八 带电粒子在有界匀强磁场中的运动
场的磁感应强度大小均为B、方向分别垂直纸面向里、向外.三角形顶点A
处有一质子源,能沿∠A的角平分线发射速度大小不等、方向相同的质子
(质子重力不计、质子间的相互作用可忽略),所有质子恰能通过D点,已
知质子的比荷 q=k,则质子的速度L
3BkL C. 2
√D.B8kL
质子可能的运动轨迹如图所示,由几何关系可得 2nRcos 60°=L(n= 1,2,…),由洛伦兹力提供向心力,则有 Bqv=mvR2,联立解得 v=BmqR =BnkL(n=1,2,…),所以 A、B、D 正确,C 错误.
可知,在此过程中每个电子的速度方向都改变2θ,即轨迹圆心角为2θ,
电子在磁场中的运动时间t=22πθ T,故不同速率的电子在磁场中运动时
间都相同,C错误,D正确.
1 2 3 4 5 6 7 8 9 10 11 12
2.(多选)如图所示,水平放置的挡板上方有垂直纸面向里的匀强磁场,一
带电粒子a垂直于挡板从板上的小孔O射入磁场,另一带电粒子b垂直于
电子从 a 点射出时,其运动轨迹如图线①,轨迹半径为 ra=4l , 由洛伦兹力提供向心力,有 evaB=mvraa2,
又me =k,解得 va=k4Bl; 电子从 d 点射出时,运动轨迹如图线②,由几何关系有 rd2=l2+(rd-2l)2,解 得:rd=54l,由洛伦兹力提供向心力,有 evdB=mvrdd2,又me =k,解得 vd=5k4Bl, 选项 B 正确.
场边界上的a点垂直MN和磁场方向射入磁场,经t1时间从b点离开磁场.之
后电子2也由a点沿图示方向以相同速率垂直磁场方向射入磁场,经t2时
间从a、b连线的中点c离开磁场,则
t1为 t2
√A.3
B.2
带电粒子在有界磁场中的运动(上课)
三.在圆形磁场区中的运动
例6 、 如图所示,纸面内存在着一半径为R的圆形匀强磁 场,磁感应强度为B,一质量为m、带电量为q的负粒 子从A点正对着圆心O以速度v垂直磁场射入,已知当 粒子射出磁场时,速度方向偏转了θ。求粒子在磁场 中运动的轨道半径r。(不计重力)
R
A
O
解:如图所示做辅助线, 连接两圆圆心 因为速度方向偏转了θ 所以圆O1中的圆心角为θ
θ
例3、 如图所示,在y<0的区域内存在匀强磁场, 磁场方向垂直于xy平面并指向纸面外,磁感应强度 为B,一带正电的粒子以速度V0从O点射入磁场,入 射方向在xy平面内,与x轴正方向的夹角为θ,若粒 子射出磁场的位置与O点的距离为L,求粒子运动的 半径和运动时间。
y o
x
解:如图所示作辅助线, 由几何知识可得: L sin
× ×
×
×
×
+ ×
四.在中空磁场区的运动
例7 、
如图所示,在无限宽的匀强磁场B中有一边长 为L的正方形无磁场区域。在正方形的四条边上分 布着八个小孔。每个小孔到各自最近顶点的距离 都为L/3。一质量为m、带电量为q的正粒子垂直 匀强磁场从孔A射入磁场,试问粒子再次回到A点 的时间。 A
解:经分析粒子运动过程可知,粒子经过四次圆周运动 四次匀速直线运动后回到出发点。 每次圆周运动的时间为四分之三个周期, 即
故 d
R
d sin
例5 、
如图所示,长为L的水平极板间,有垂直纸面向 里的匀强磁场,磁感应强度为B,板间距离也为L, 板不带电,现有质量为m、电量为q的带正电粒子 (不计重力)从左边极板间中点处垂直磁感线以速 度v水平射入磁场,为使粒子能够打在极板上,则 粒子的速度应满足什么关系?
带电粒子在有界磁场
• 引言 • 带电粒子在磁场中的基本性质 • 有界磁场对带电粒子的影响 • 带电粒子在有界磁场中的应用 • 带电粒子在有界磁场中的研究展望
01
引言
主题简介
带电粒子在有界磁场中的运动是物理 学中的一个经典问题,涉及到磁场对 带电粒子的作用力以及粒子在磁场中 的轨迹。
有界磁场通常指的是存在一定边界条 件的磁场,带电粒子在有界磁场中的 运动轨迹会受到边界条件的影响。
霍尔元件
利用霍尔效应制成的元件,可用于 测量磁场、电流强度等物理量。
03
有界磁场对带电粒子的影响
磁场边界对粒子轨迹的影响
01
02
03
反射
当带电粒子遇到磁场边界 时,其运动轨迹可能会发 生反射,改变运动方向。
折射
当带电粒子穿过不同强度 的磁场区域时,其运动轨 迹可能会发生折射,改变 运动路径。
散射
在复杂磁场结构中,带电 粒子可能会发生散射,导 致运动轨迹变得复杂。
粒子在磁场中的旋转和进动
旋转
带电粒子在磁场中会受到洛伦兹 力的作用,使粒子围绕磁力线旋 转。
进动
当带电粒子带有一定自旋时,其 自旋轴会围绕磁力线发生旋转, 产生进动现象。
粒子在磁场中的能量变化
能量吸收
带电粒子在磁场中运动时,可能会吸 收磁场能量,导致自身动能增加。
研究带电粒子在有界磁场中的运动,还可以促进物理学中关于电磁场与带电粒子相 互作用的理论研究,推动物理学的发展。
02
带电粒子在磁场中的基本性质
洛伦兹力
洛伦兹力
带电粒子在磁场中受到的力,其大小与粒子所带电荷量、 速度和磁感应强度有关,方向垂直于粒子运动方向和磁场 方向。
洛伦兹力公式
专题:带电粒子在有界磁场中的运动(103张PPT)
R1 R2 B O s2
2m T= Bq
r R tan
t = θ 2 T mv R= Bq
2
θ2
练、某离子速度选择器的原理图如图,在半径为R=10cm
的圆形筒内有B= 1×10-4 T 的匀强磁场,方向平行于轴 线。在圆柱形筒上某一直径两端开有小孔a、b。现有一 束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射, 其中入射角 α =30º ,且不经碰撞而直接从出射孔射出的 αa 离子的速度v大小是 ( ) C
两类典型问题
1.带电粒子在有界匀强磁场中(只受洛 伦兹力)做圆弧运动; 2.带电粒子在磁场中运动时的临界问题 (或多解问题)的讨论
概述 • 1、本类问题对知识考查全面,涉及到力学、 电学、磁学等高中物理的主干知识,对学生 的空间想象能力、分析综合能力、应用数学 知识解决物理问题能力有较高的要求,是考 查学生多项能力的极好的载体,因此成为历 年高考的热点。 • 2、从试题的难度上看,多属于中等难度或 较难的计算题。原因有二:一是题目较长, 常以科学技术的具体问题为背景,从实际问 题中获取、处理信息,把实际问题转化成物 理问题。二是涉及数学知识较多(特别是几 何知识)。
从x轴上的P(a,0)点以速度v,沿与x正方向成60º
的方向射入第一象限内的匀强磁场中,并恰好垂 直于y轴射出第一象限。求匀强磁场的磁感应强 度B和射出点的坐标。
解析 :
r
v
y
B
2a
mv 3 Bq
O′ O a
3 mv 得 B 2aq 射出点坐标为(0, 3 a )
v 60º
x
单边界磁场
练、如图,虚线上方存在磁感应强度为B的磁场, 一带正电的粒子质量m、电量q,若它以速度v沿与 虚线成300、900、1500、1800角分别射入, 1.请作出上述几种情况下粒子的轨迹 2.观察入射速度、出射速度与虚线夹角间的关系 3.求其在磁场中运动的时间。
带电粒子在有界磁场中的运动
带电粒子在有界磁场中的运动带电粒子在磁场中的运动一直是物理界研究的热门话题之一。
当带电粒子在磁场中运动时,它会受到洛伦兹力的影响,这个力的方向垂直于磁场的方向和粒子的速度方向,并且它的大小与粒子电荷的大小、粒子运动速度和磁场强度有关。
在有界磁场中,带电粒子的运动会受到限制,并且会形成某些特定的运动轨迹,这些轨迹的特征与磁场的形状和强度有关。
以下是对有界磁场中带电粒子运动的探讨。
一、磁场的基本概念磁场是指由带电粒子或磁化物质产生的物理现象。
磁场的大小与磁场中带电粒子的数量、粒子的电荷和速度、以及磁场的强度和形状有关。
磁场有两个重要的特征:方向和大小。
磁场的方向是指磁场力线的方向,如果一个带电粒子在磁场中运动,则它会沿着磁场力线运动。
磁场的大小用磁感应强度或磁场强度来描述,这些量的单位是特斯拉(T)或高斯(G)。
二、带电粒子在磁场中的运动当带电粒子进入磁场中时,它会受到洛伦兹力的作用,这个力的大小与带电粒子的电荷和速度有关,方向垂直于磁场的方向和粒子的速度方向。
由于这个力的方向与带电粒子的速度方向垂直,所以带电粒子会在垂直磁场方向上产生一定的偏移,这个偏移的大小与带电粒子的速度和磁场强度有关。
如果带电粒子的速度和磁场方向垂直,则它会产生一个圆周运动。
在圆周运动中,带电粒子的速度保持不变,而其运动方向会随着磁场方向的改变而改变。
圆周运动的半径与带电粒子的速度和磁场强度有关,可以用以下公式来计算:r =mv/qB,其中,m是带电粒子的质量,v是带电粒子的速度,q 是带电粒子的电荷,B是磁场强度。
当速度和磁场方向不垂直时,则带电粒子会既在垂直于磁场的方向上运动,也在磁场方向上运动。
在这种情况下,带电粒子的轨迹可以用螺旋线来描述。
三、有界磁场中带电粒子的运动在有界磁场中,带电粒子的运动会受到磁场的限制。
在一个有限大小的磁场中,带电粒子不可能一直进行圆周运动或螺旋线运动。
带电粒子的轨迹将会在磁场边界处进行反射,在某些情况下,带电粒子的哪些轨迹是允许的,哪些轨迹是禁止的,这与磁场的形状和强度有关。
带电粒子在有界磁场中的运动问题特例
例 4 一 带 正 电 的小 球 , 系于
二互=
带 电粒 子在 磁 场 中 的运 动 问题是 高 中 物理 中非 常 重 要 的 知识 点 , 是 高 考 的 热 点. 其 更 尤 是 带 电粒 子 在 有 界 磁 场 中 的运 动 问题 , 近 年 高 考 中 频 频 出 在 现 ,0 9年 福 建 理 综 第 2 20 2题 、
= = ;
入 射 口 八 射 口
ห้องสมุดไป่ตู้图2 ②
图 3
图 4
设 最后离 开 磁 场 的 粒子 的 发射 方 向与 Y轴 正 方
向的夹 角为 a 由△ 0 P AC , C AE可得
Rs = R一 , i a= n = Rs =a Rc s . ia - o 口 n
例 1 (0 0 2 1 年陕西卷)
+
・ ・ ・ ‘ ・
, 0 ≤ I 带电粒 在有界 中的运动问≤ ,0 y 21...... 子 磁场 如图 1在有垂直于特例 . 题 ≤.≤ J 号 范围内 I
x y平 面 D _ L_ — 二
向外 的 匀 强 磁 场 , 感 应 强 磁 度 大 小 为 B. 标 原 点 0 处 坐
轨迹 是 圆 心 为 C 的 圆弧 , 圆
接收
× × × ×
× × × × ×
接 收
X X
弧与 磁 场 的 上 边 界 相 切 , 如
图 2所 示. 粒 子 在 磁 场 中 设
运动 的 时 间 为 t依 题 意 t , = T/ , 4 得
 ̄OC A=丌 2 /.
—
◇
析, 确定 轨 迹 圆和 边 界 的关 系 , 陕 工 艳
小球运动到最低点 的瞬间, 直方 向速度突变 为零 , 竖
带电粒子在有界磁场中运动的临界问题
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图→动态分析→找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。
)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。
已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m 的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。
【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
专题 带电粒子在有界匀强磁场中运动的多解问题
量为m,电量为q的带正电粒子(不计重力),
从左边极板间中点处垂直磁场以速度v平行极板
Lv
射入磁场,欲使粒子不打在极板上,则入射速
+q , m
B
度v应满足什么条件?
L 原因3.临界状态不唯一形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
原因1.磁场方向不确定形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
例2. 如图,在第I象限范围内有垂直xOy平面的匀强磁场B。质量为
m、电量大小为q的带电粒子(不计重力),在xOy平面里经原点O射
入磁场中,初速度为v0,且与x轴成60º角,
y
试分析计算:
B
带电粒子在磁场中运动时间多长?
60º v
原因2.带电粒子电性不确定形成多解
60º
O 120º
x
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题
的原因?
O
例3.如图,长为L的水平不带电极板间有垂直纸
面向内的匀强磁场B,板间距离也为L,现有质
例4.如图所示,边长为l的等边三角形ACD内、外分布着方向相反
的匀强磁场,磁感应强度大小均为B。顶点A处有一粒子源,能沿
∠CAD的平分线方向发射不同速度的粒子,粒子质量均为m,电
荷量均为+q,不计粒子重力。则粒子以下列
哪一速度发射时不能通过D点
qBl A. 4m
qBl B. 2m
√3qBl Cபைடு நூலகம் 4m
例1.如图所示,A点的粒子源在纸面内沿垂直OQ方向向上射出一束带负 电荷的粒子,粒子重力忽略不计.为把这束粒子约束在OP之下的区域, 可在∠POQ之间加垂直纸面的匀强磁场.已知OA间的距离为s,粒子比荷 为 q/m ,粒子运动的速率为v,OP与OQ间夹角为30°.则所加磁场的磁感 应强度B满足条件?
(完整版)带电粒子在有界磁场中运动的临界问题
带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
专题57 带电粒子在磁场中的运动(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题57 带电粒子在磁场中的运动导练目标 导练内容目标1 洛伦兹力的大小方向 目标2 带电粒子在有界磁场中的运动 目标3带电粒子在磁场中运动的多解问题一、洛伦兹力的大小方向 1.洛伦兹力的大小和周期(1)大小:qvB F =(v B ⊥);(2)向心力公式:rmv qvB 2=;(3)周期:22r m T v qB ππ== 2.洛伦兹力的特点(1)利用左手定则判断洛伦兹力的方向,注意区分正、负电荷。
(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化。
(3)运动电荷在磁场中不一定受洛伦兹力作用。
(4)洛伦兹力永不做功。
3.洛伦兹力的方向 (1)判断方法:左手定则(2)方向特点:洛伦兹力的方向一定与粒子速度方向和磁感应强度方向所决定的平面垂直(B 与v 可以有任意夹角)。
注意:由左手定则判断洛伦兹力方向时,四指指向正电荷运动的方向或负电荷运动的反方向。
【例1】如图所示,光滑的水平桌面处于匀强磁场中,磁场方向竖直向下,磁感应强度大小为B ;在桌面上放有内壁光滑、长为L 的试管,底部有质量为m 、带电量为q 的小球,试管在水平向右的拉力作用下以速度v 向右做匀速直线运动(拉力与试管壁始终垂直),带电小球能从试管口处飞出,关于带电小球及其在离开试管前的运动,下列说法中正确的是( )A .小球带负电,且轨迹为抛物线B .小球运动到试管中点时,水平拉力的大小应增大至qvBLqBmC .洛伦兹力对小球做正功D .对小球在管中运动全过程,拉力对试管做正功,大小为qvBL 【答案】BD【详解】A .小球能从试管口处飞出,说明小球受到指向试管口的洛伦兹力,根据左手定则判断,小球带正电;小球沿试管方向受到洛伦兹力的分力y F qvB =恒定,小球运动的轨迹是一条抛物线,故A 错误;B .由于小球相对试管做匀加速直线运动,会受到与试管垂直且向左的洛,则拉力应增大伦兹力的分力x y F qv B =小球运动到中点时沿管速度为22y qvB L v m =⨯qvBL F m=持匀速运动,故B 正确;C .沿管与垂直于管洛伦兹力的分力合成得到的实际洛伦兹力总是与速度方向垂直,不做功,故C 错误;D .对试管、小球组成的系统,拉力做功的效果就是增加小球的动能,由功能关系F k W E qvBL =∆=故D 正确;故选BD 。
专题:带电粒子在有界磁场中的运动
mm
qU 1 mv2 2
U 2qB2R2 m
600
r
O2
磁场,入射方向与CD夹角θ,为了使电子能从磁场
的另一侧边界EF射出,v应满足的条件是:
A.v>eBd/m(1+sinθ) B.v>eBd/m(1+cosθ) C.v> eBd/msinθ D.v< eBd/mcosθ
d r(1 cos )
C
EB
. v θO
B
D
F
qvB m v2 r
思考:求电子在磁场中运动的 最长时间是多长?
专题:带电粒子在有界 磁场的运动
双边界磁场(一定宽度的无限长磁场)
例、一正离子,电量为q ,质量为m, 垂直射入磁感应强度为B、宽度为d
的匀强磁场中,穿出磁场时速度方向 与其原来入射方向的夹角是30°,
d
v
30°
v
(1)离子的运动半径是多少?
θ
(2)离子射入磁场时速度是多少? O
(3)穿越磁场的时间又是多少?
2
O’
PB
qB
Bq
⑵ 2 vt vt Bq t
r mv m
S
qB
或 t 2 2m 2m 2 qB qB
qB t
2m
3.如图直线MN上方有磁感应强度为B的匀强磁场。正、 负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射 出时相距多远?射出的时间差是多少?
①速度较小时粒子作部分圆周运动
后从原边界飞出;②速度在某一范
围内从侧面边界飞;③速度较大时
粒子作部分圆周运动从另一侧面边
界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题
(1)若要粒子从ab边上射出,则 入射速度v0的范围是多少?
(2)粒子在磁场中运动的最长
时间为多少?
第19页,共42页。
第八章 第4节
高考调研
高三物理(新课标版)
【解析】 ①带电粒子在 O 点所受洛伦兹力方向垂 直于 v0,即图中 OO1 方向,所有粒子的轨道圆心均应在 直线 OO1 上.
第20页,共42页。
借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分
析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,
常用结论如下:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边
界相切.
(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在
有界磁场中运动的时间越长.
第八章 第4节
高考调研
高三物理(新课标版)
例 2 如图所示,在 x<0 与 x>0 的区域中,存在磁感 应强度大小分别为 B1 与 B2 的匀强磁场,磁场方向均垂直 于纸面向里,且 B1>B2.一个带负电荷的粒子从坐标原点 O 以速度 v 沿 x 轴负方向射出,要使该粒子经过一段时间 后又经过 O 点,B1 与 B2 的比值应满足什么条件?
第18页,共42页。
第八章 第4节
高考调研
高三物理(新课标版)
跟踪训练 1 如图所示,一足够长的矩形区域 abcd 内有磁感应强度为 B,方向垂直纸面向里的匀强磁场,现 从 ad 边的中点 O 处,以垂直磁场且跟 ad 边成 30°角的速 度方向射入一带电粒子.已知粒子质量为 m,带电荷量 为 q,ad 边长为 l,不计粒子重力.求:
第22页,共42页。
第八章 第4节
高考调研
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
、解题方法画图T 动态分析T 找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。
)、常见题型 (B 为磁场的磁感应强度,V 。
为粒子进入磁场的初速度)r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。
犬小一亦方向不确定——第二类■③旳大小、方向都不确定一第三类分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。
一电子从 CD 边界外侧以速率 V 。
垂直匀强磁场射入,入射方向与CD 边界夹角为0。
已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大?2.行不确宦-①巾确定——第四类 {——五类例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最远距离 OO 。
分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。
【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。
P 为屏上的一小孔,PC 与MN 垂直。
一群质量为 m 带电荷量为一q 的粒子(不计重力),分析:如图2,通过作图可以看到:随着界EF 相切,然后就不难解答了。
第二类问题:V o 的增大,圆半径增大,临界状态就是圆与边以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域。
粒子入射方向在与磁场B 垂直的平面内,且散开在与 PC 夹角为0的范围内,则在屏 MN 上被粒子打中的区域的长度为( ) 2mv2ffsvcos5 2wv(l - sin ff) cosff)A. -1 - B .扛 C . L-D .分析:如图6所示,打在屏上距 P 最远的点是以 0为圆心的圆与屏的交点,打在屏上最 近的点是以02或O 为圆心的圆与屏的交点 (与例2相似,可先作出一系列动态圆)。
故答案选 “D'。
第三类问题: 例3 (2009年山东卷)如图甲所示,建立 Oxy 坐标系,两平行极板 P 、Q 垂直于y 轴且关 于x 轴对称,极板长度和板间距均为 I ,第一、四象限有磁场,方向垂直于 Oxy 平面向里。
位于极板左侧的粒子源沿 x 轴向右连续发射质量为 m 电量为+q 、速度相同、重力不计的带 电粒子。
在0〜3t o 时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响)。
■■rII t Q -------图甲 y X X X X X XXXXXXXXXX X B X X XXX J w 1 1 1 1 .1 1 ■-U. to % 3/o f t 图乙已知t=0时刻进入两板间的带电粒子恰好在t o时刻经极板边缘射入磁场。
上述m q、I、t。
、B为已知量。
(不考虑粒子间相互影响及返回极板间的情况)(1)求电压U0的大小。
1(2)求2 t o时刻进入两板间的带电粒子在磁场中做圆周运动的半径。
(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。
图丙分析:粒子进入电场做类平抛运动,由平抛运动规律即可求得偏转电压U0;t=2t o时刻进入1的粒子先做类平抛运动,[t 0后沿末速度方向做匀速直线运动,利用相应规律可求得射出电场的速度大小,进入磁场后做匀速圆周运动,洛仑兹力提供向心力,可求提半径R; 2t o时刻进入的带电粒子加速时间最长(如图丙所示),加上此时粒子进入磁场是向上偏转,故运动时间最短,同样应用类平抛运动规律和圆周运动规律,即可求得此最短时间。
第四类问题:例4如图7所示,磁感应强度大小B=0. 15T、方向垂直纸面向里的匀强磁场分布在半径F=0. 10m的圆形区域内,圆的左端跟y轴相切于直角坐标系原点0,右端跟荧光屏MN相切于x 轴上的A点。
置于原点的粒子源可沿x轴正方向射出速度V o=3. 0X 106m/s的带正电的粒子流,粒子的重力不计,荷质比q/m=1. o x lO8C/kg。
现以过O点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上离A的最远距离。
分析:本题可先设想磁场是无界的,那么粒子在磁场中运动的一段圆弧如图8中的弧0E (半径r=2R=0. 20m,圆心为O),现在圆形磁场以O为轴在旋转相当于直径OA也在旋转,当直径OA旋转至OD位置时,粒子从圆形磁场中离开射向荧光屏MN时离A有最远距离(落g OC= r tan —点为F)。
图中△ O O[为等边三角形,FD与O 02延长交于C点,图中0 =60° 1 ,练习:如图9所示,一个质量为m带电荷量为+ q的粒子以速度V o从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从x轴上的b点穿过,其速度方向与x轴正方向的夹角为30°,粒子的重力可忽略不计,试求:(1)圆形匀强磁场区域的最小面积;(2)粒子在磁场中运动的时间;(3)b到O的距离。
分析:如图10,过b 点作速度的反向延长线交 y 轴于C 点,作/ OCb 的角平分线交x 轴 于O,再以O 为圆心、以OO 为半径画弧,与直线Cb 相切于点A,粒子运动的轨迹即为 O-gb , 圆形磁场即为以OA 为直径的圆,利用相关物理公式及几何知识不难计算出本题的结果。
第五类问题:例5电子质量为 m 电荷量为e ,从坐标原点 O 处沿xOy 平面射入第一象限, 射入时速 度方向不同,速度大小均为v o ,如图11所示。
现在某一区域加一方向向外且垂直于 xOy 平面 的匀强磁场,磁感应强度为 B,若这些电子穿过磁场后都能垂直射到荧光屏 MN 上,荧光屏 与y 轴平行,求:(1)荧光屏上光斑的长度;(2)所加磁场范围的最小面积。
分析:本题可先作出这些射入第一象限的电子做圆周运动的轨道圆心的集合,必在弧OQ 上(如图12),然后设想以该弧上的各点 (如图12中的O 等四点)为圆心作出粒子运动的 轨迹,最终垂直射到 MN 上的PQ 间,所以荧光屏上光斑的长度即为 PQ=R=mv /eB;所加磁场 范围即为图中由弧 OOOO 所围的区域,其中弧 OO 可看成是由弧OO 向上平移R 得到的。
练习:例5若改为"磁场方向垂直于 xOy 平面向里,荧光屏MN 移至y 轴右侧,”其他条 件不变,情况又怎样呢?读者可试作分析。
(所加磁场的最小范围为一“树叶”形状)o $~~X综合以上题型,我们可以看到,这些问题的解答很能体现学生的分析思维能力以及想象能力,要求学生能够由一条确定的轨迹想到多条动态轨迹,并最终判定临界状态,这需要在平时的复习中让学生能有代表性地涉猎一些习题,才能在高考应试中得心就手,应对自如。
例析用圆心轨迹确定带电粒子在磁场中运动区域问题同种带电粒子从同一点以相同速率、沿不同方向进入同一匀强磁场中,粒子可能达到的区域的确定是教学中常遇,学生感到棘手,高考又考查的问题。
现就此类问题举例分析。
题目1 (2005年全国高考)如图1,在一水平放置的平板MN的上方有一匀强磁场,磁感应强度的大小为 B ,磁场方向垂直纸面向里,许多质量为m、带电荷量为+ q 的粒子,以相同的速率V0沿位于纸面内的各个方向,由小孔O射入磁场区域。
不计重力,不计粒子间的相互影响。
图2中阴影部分表示带电粒子可能经过的区域,其中r =m v o /B q,哪个图是正确的()X X 共* 共V V v Vjn()析与解依据题意,所有带电粒子在磁场中做圆周运动的半径相同r = m V o/B q所以,在纸面内由O点沿不同方向入射的带电粒子作圆周运动的圆心轨迹是以O为圆心,r为半径的圆周(A图中虚线圆示)。
又因为带电粒子带正电、进磁场时只分布在以ON 和0M为边界的上方空间,而向心力由洛仑兹力提供,它既指向圆心又始终垂直速度,可确定:圆心轨迹只能是A图中虚线圆直径分隔的左半边虚线圆周;再以A图中左半虚线圆上各点为圆心、以r为半径作圆,圆周在磁场中所能达到的区域应为A图阴影区。
所以A图正确。
题目2如图3所示,有许多电子(每个电子的质量为m ,电量为e)在xOy平面内从坐标原点O不断地以相同大小的速度V。
沿不同方向射入第一象限。
现加上一个方向向里垂直于xOy平面、磁感应强度为B的匀强磁场,要求这些电子穿过该磁场后都能平行于x轴并向x轴的正方向运动。
试求符合该条件的磁场的最小面积。
析与解因为所有电子都在匀强磁场中作半径为r = m v o/B e的匀速圆周运动。
而沿y轴的正方向射入的边缘电子需转过1 /4圆周才能沿x轴的正方向运动,它的轨迹应为所求最小面积磁场区域的上边界------------ 如图中弧线a,其圆心在垂直入射速度的x轴上( r ,0)。
现设沿与x轴成任意角a (0 < a < 90° )射入的电子在动点P离开磁场。
这些从O 点沿不同方向入射的电子做圆周运动的圆心O'到入射点O的距离又都为半径r。
所以,O'形成一个以入射点O (即坐标原点)为圆心、r为半径的1 /4圆弧轨迹------- 如图3中弧线c。
根据题目要求,各电子射出磁场时速度v要为平行x轴的正方向。
故由做圆周运动的物体的圆心又应在垂直出射速度的直线上可知,从不同点p射出的电子的圆心O'又必在对应出射点p的正下方,即曲线c上各点到对应正上方出射点p的距离也都等于r;因此将1 /4圆弧轨迹c沿y轴正向平移距离后------- 如图中弧线b,弧线b就是各出射点p的轨迹,它实际是以。
2(0 , r)为圆心,半径为r的1 /4圆弧;既然点p分析:①粒子受洛仑兹力后必将向下偏转,过0点作速度V。
的垂线必过粒子运动轨迹的圆心O ;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为B ,故点P作速度的垂线与点0处速度垂线的交点即为圆心0 (也可以用垂径定理作弦0P的垂直平分线与点0处速度的垂线的交点也为圆心)L q2v0sin5磁场中的运动半径为故有 2 sin 5,解之m BL \故粒子在磁场中的运动时间为【例2】如图以ab为边界的二匀强磁场的磁感应强度为B i = 2B2,现有一质量为m带电+q的粒子从0 点以初速度V。