SEM-扫描电子显微镜简介
扫描电子显微镜(SEM)和透射电子显微镜(TEM)
二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。
扫描电子显微镜(SEM)
ห้องสมุดไป่ตู้
扫描电镜的优点:有较高的放大倍数,20-200000倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;试样制备简单,目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织形貌的观察和微区成分分析(即SEM-EDS),因此它是当今十分重要的科学研究仪器之一。
扫描电子显微镜(SEM)工作原理
透射电子显微镜(TEM):
透射电子显微镜可以看到在光学显微镜下无法看清的小于0.2um的细微结构,这些结构称为亚显微结构或超微结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。
1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。
扫描电子显微镜下,细胞(粉色、蓝色)上培养出来的新冠病毒(黄色)
学习感悟:生命科学的发展离不开技术,显微镜的发明推动了生命科学的发展。要观察病毒就需要特殊的显微镜。
扫描电子显微镜(SEM):
扫描电子显微镜是1965年发明的主要用于细胞生物学研究电子显微镜,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子。
SEM扫描电子显微镜简介
却、拉伸等)中的试样显微结构形态的动态变化过程(动态观察)。
2019/12/26
五、SEM样品制备
样品制备特点: 1.可以观察大尺度的样品,从毫米到厘米尺寸的样品都可以观察 2.成块样品不用制成超薄切片,样品制备方法要简单得多 3.特别适合于细胞表面和组织表面特征信息的研究
样品制备准则: 1.尽可能保持样品本来的形貌和结构 2.在样品的干燥过程尽可能减少样品变形 3. 样品表面应有良好导电性能和二次电子发射率
2019/12/26
SEM样品制备技术
2019/12/26
六、SEM的应用
1 无机材料制备工程
2 材料和冶金工业
3
晶体生长
4 生物材料观察
2019/12/26
1926年,德国科学家Garbor和Busch发现用铁壳封闭的铜线圈对 电子流能折射聚焦,即可以作为电子束的透镜。
1935年,Knoll提出了扫描电镜的设计思想并制成了扫描电镜的 原始模型。
1942年,剑桥大学的马伦成功地制造世界第一台扫描电镜。
2019/12/26
SEM的发展历程(2)
1960年,Everhart 和 Thornley 发明二次电子侦测器。 1965年,第一部商用SEM出现(Cambridge)。 1958年,在长春中国科学院光学精密机械研究所生产了第一台
2、二次电子
二次电子是指在入射电子束作用下被轰 击出来并离开样品表面的样品的核外层
电子。
二次电子的能量较低,一般都不超过50 ev。大多数二次电子只带有几个电子伏
的能量。
二次电子一般都是在表层5-10 nm深度范 围内发射出来的,它对样品的表面形貌 十分敏感,因此,能非常有效地显示样
SEM扫描电子显微镜
其镜筒部分构造和SEM相同,检测部分使用X射线谱仪。
电子探针
X射线谱仪是电子探针的信号检测系统,分为: 能量分散谱仪(EDS),简称能谱仪,用来测定X射线特征能量。 波长分散谱仪(WDS),简称波谱仪,用来测定特征X射线波长。
对于纤维材料,用碳胶成束的粘接在样品台上 即可。
样品制备
粉末样品:注意粉末的量,铺开程度和喷金厚度。 粉末的量:用刮刀或牙签挑到双面导电胶(2mm宽,8mm长),均匀铺开,
略压紧,多余的轻叩到废物瓶,或用洗耳球吹,后者易污染。 铺开程度:粉末如果均匀,很少一点足矣,否则易导致粉末在观察时剥离
电子束在样品表面进行的扫描方式
主要结构
信号检测放大系统:
收集(探测)样品在入射电子束作用下产生的各种物理信号,并进行放大。 不同的物理信号,要用不同类型的收集系统(探测器)。 二次电子、背散射电子和透射电子的信号都可用闪烁计数器来进行检测。
主要结构
图像显示和记录系统:
检测样品在入射电子作用下产生的物理信号,然后经视频放大作 为显像系统的调制信号。 普遍使用的是电子检测器,它由闪烁体,光导管和光电倍增器所 组成。
2.SEM的主要结构
主要结构
SEM的构造
主要结构 电子光学系统(镜筒) 偏转系统 信号检测放大系统 图像显示和记录系统 电源系统 真空系统
主要结构
主要结构
电子光学系统:
由电子枪、电子聚光镜 以及光阑、样品室组成 主要作用是获得扫描电 子束。 电子枪包括钨丝、LaB6 热阴极和场发射枪等。
俄歇电子
SEM的衬度像
如果在原子内层电子能级跃迁过程中释放 出来的能量不以X射线的形式发射出去,而 是把空位层内的另—个电子发射出去,这个 被电离出来的电子称为俄歇电子。 俄歇电子能量各有特征值(壳层),能量很 低,一般为50-1500eV。 俄歇电子的平均白由程很小,只有在距离 表面层1nm左右逸出的俄歇电子才具备特征 能量,它产生的几率随原子序数增加而减少, 因此,特别适合作表层轻元素成分分析。
扫描电子显微镜及能谱仪SEM
扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM是一种强大的实验仪器,它能够帮助我们开启微观世界的大门,从而深入了解物质在最基本层面的性质和结构。
本文将在以下几个方面对SEM及其应用进行介绍。
一、扫描电子显微镜SEM的原理扫描电子显微镜SEM是一种采用电子束的显微镜,通过高能电子束与样品相互作用,透过扫描线圈产生扫描信号,实现对样品表面形貌的观察和获取高清晰度的图像。
SEM和光学显微镜有很大的不同,光学显微镜是使用光来观察物质的显微镜,而SEM则是使用电子来观察物质。
扫描电子显微镜SEM的工作原理主要分为以下三个步骤:1、获得高能电子束:扫描电子显微镜SEM内部有个电子枪,电子枪发射出的电子经过加速器的加速器和聚焦极的聚焦,成为高能电子束。
2、扫描样品表面:高能电子束射向样品表面,样品表面反弹回来的电子信号被SEM仪器捕获。
3、产生扫描信号:把从样品表面反弹回来的电子信号进行放大,形成显微图像。
二、能谱仪的原理能谱仪是SEM中的重要组成部分,它可以检测电子在样品中的反应和监测样品中所含的化学元素,以及相应元素的含量。
能谱仪的工作原理是通过检测样品产生的X射线来分析样品组成,电子束与样品相互作用,产生一系列的X射线能量峰值。
每个元素都有不同能级的电子,其X射线产生的能量也分别对应不同的峰值。
因此,通过表征能谱仪所发现的不同X射线能量峰的位置和强度,可以确定样品中所含元素。
三、SEM的应用1、矿物学SEM被广泛应用于矿物学研究中,因为它能够提供很高的图像分辨率。
将样品与高能电子束相互作用可使样品表面反射的电子被收集,从而形成高分辨率的矿物学图像。
2、材料科学在材料科学中,SEM被用于表面形貌研究以及微观结构解析。
通过SEM可以获取材料的内部结构和力学特性,为材料研发和工业应用提供了有力支持。
3、医学SEM在医学领域也有极为重要的应用,例如用于人体组织医学研究。
SEM可以提供高质量且精细的人体组织图像,进一步促进了医学领域的研究和治疗。
扫描电子显微镜简介
工作原理
扫描电镜工作原理图
ChengF
工作方式
扫描电镜中,用来成像的信号主要是 二次电子,其次是背反射电子和吸收 电子,X射线和俄歇电子主要用于成 分分析,其他信号的电子也用一定的 用途。
ChengF
工作方式
电子束与固体样品表面作用 时产生的信息
ChengF
工作方式
二次电子
二次电子是从表面5-10nm层内发射出来的,能量 小于50eV,它对表面状态形貌非常敏感,能非常 有效地显示试样表面的微观形貌。由于它发自试 样表面层,入射电子还没有被多次散射,因此产 生二次电子的面积与入射电子的照射面积基本相 同,二次电子的空间分辨率较高,JSM5610二次电 子分辨率为3nm。
●显示系统一般是把信号经处理输入电脑在显
示器上显示。
ChengF
扫描电镜的结构
闪烁体计数器
ChengF
扫描电镜的结构
真空系统
真空系统在电子光学仪器中十分重要,这是 因为电子束只能在真空下产生和操纵。对 于扫描电子显微镜来说,通常要求真空度优 于10-3~10-4Pa。任何真空度的下降都会导 致电子束散射加大,电子枪灯丝寿命缩短, 产生虚假的二次电子效应,严重影响成像的 质量。因此,真空系统的质量是衡量扫描电 子显微镜质量的参考指标之一。
ChengF
试样制备
试样应有良好的导电性,或至少试样表面 导电性要好。导电性不好的试样,如高分 子材料、陶瓷、生物样等再入射电子的照 射下,表面容易积累电荷严重影响图像质 量。对不导电的试样,必须进行真空镀膜 ,在试样表面蒸镀一层厚约10nm的金属膜 或碳膜,以避免荷电现象。真空镀膜技术 还可以提高表面二次电子发射率,提高图 像衬度。
背反射电子
扫描电镜sem
扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。
相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。
SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。
SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。
工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。
这些电子被加速器加速,形成高速的电子流。
电子束的能量通常在10-30 keV之间。
2.样品照射:电子束通过一个聚焦系统照射到样品表面。
电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。
3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。
常见的SEM信号检测器包括二次电子检测器和反射电子检测器。
这些探测器可以测量电子信号的强度和性质。
4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。
这些图像可以显示出样品表面的微观结构和形貌。
应用领域SEM在许多科学领域中都有广泛的应用。
以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。
它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。
这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。
生命科学SEM可以用于观察生物样品的微观结构。
比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。
这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。
纳米科学SEM在纳米科学领域中也有广泛的应用。
通过SEM可以对纳米材料进行表面形貌和结构的观察。
它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。
化学中sem
化学中semSEM(扫描电子显微镜)是一种在化学研究中广泛应用的仪器,它通过使用电子束对样品进行扫描,然后根据样品表面反射的电子的能量、电子的发射能量以及电子的散射能量等信息来观察并分析样品的形貌、成分和结构等。
SEM的工作原理是利用高能电子束对样品表面进行扫描。
电子束与样品表面的原子和分子相互作用,产生次级电子、反射电子、散射电子、透射电子等不同种类的电子。
这些电子被收集并转换成电子束之外的其他形式,例如光信号、电流信号等。
通过控制电子束扫描的速度和方向,可以得到样品表面的形貌信息。
通过收集和分析不同种类的电子,可以获得样品的结构和成分信息。
这些信息是通过SEM形成的图像和光谱进行观察和分析的。
SEM具有许多优点,使它在化学研究中扮演重要的角色。
首先,SEM具有很高的分辨率。
由于电子具有更短的波长,因此SEM具有比光学显微镜更高的分辨率。
这使得SEM可以观察到更小的细节和结构。
其次,SEM具有较大的深度。
电子束穿透样品的能力使得SEM可以观察到样品的内部结构和深度信息。
此外,SEM还具有非常高的灵敏度和检测能力,可以检测到非常低浓度的元素和物质。
在化学研究中,SEM被广泛应用于材料科学、纳米科学、表面科学、环境科学等领域。
例如,在材料科学中,SEM可以用于研究材料的微观形貌、晶体结构、材料之间的相互作用等。
在纳米科学中,SEM可以用于观察和测量纳米材料的大小、形状、分布和聚集情况。
在环境科学中,SEM可以用于分析和检测环境污染物、微生物、化学物质等。
除了形貌观察和成分分析外,SEM还可以进行电子探针分析、样品制备和表面处理等操作。
例如,通过在SEM中加入X射线能谱仪(EDS)或电子能谱仪(EELS),可以对样品进行定性和定量分析,以确定样品的化学成分和元素分布。
此外,通过SEM可以进行样品的金属蒸发、碳膜覆盖、切割和离子注入等处理,以便更好地观察和分析样品。
综上所述,SEM是一种在化学研究中不可或缺的仪器。
扫描电子显微镜(SEM)简介
完成观察后,关闭扫描电子显微镜主机和计 算机,清理样品台,保持仪器整洁。
注意事项
样品求
确保样品无金属屑、尘埃等杂质,以 免损坏镜体或影响成像质量。
避免过载
避免长时间连续使用仪器,以免造成 仪器过载。
保持清洁
定期清洁扫描电子显微镜的镜头和样 品台,以保持成像清晰。
操作人员要求
操作人员需经过专业培训,了解仪器 原理和操作方法,避免误操作导致仪 器损坏或人员伤害。
操作方式
有些SEM需要手动操作,而有 些型号则具有自动扫描和调整 功能。
适用领域
不同型号的SEM适用于不同的领 域,如材料科学、生物学等,选
择时应考虑实际应用需求。
04
SEM的操作与注意事项
操作步骤
01
02
03
开机与预热
首先打开电源,启动计算 机,并打开扫描电子显微 镜主机。预热约30分钟, 确保仪器稳定。
场发射电子源利用强电场作用下的金属尖端产生电子,具有高亮度、低束流的优点, 但需要保持清洁和稳定的尖端环境。
聚光镜
聚光镜是扫描电子显微镜中的重 要组成部分,它的作用是将电子 束汇聚成细束,并传递到样品表
面。
聚光镜通常由两级组成,第一级 聚光镜将电子束汇聚成较大直径 的束流,第二级聚光镜进一步缩
小束流直径,提高成像质量。
生态研究
环境SEM技术可以应用于生态研究中, 例如观察生物膜、土壤结构等,为环 境保护和治理提供有力支持。
THANKS
感谢观看
样品放置
将样品放置在样品台上, 确保样品稳定且无遮挡物。
调整工作距离
根据样品特性,调整工作 距离(WD)至适当位置, 以确保最佳成像效果。
操作步骤
扫描电子显微镜(SEM)
2.分辨率 (resolution)
• 分辨率是扫描电子显微镜主要性能指标。对微区 成分分析而言,它辨两点之间的最小距离。 • 这两者主要取决于入射电子束直径,电子束直径 愈小,分辨率愈高。入射电子束束斑直径是扫描 电镜分辨本领的极限。热阴极电子枪的最小束斑 直径3nm,场发射电子枪可使束斑直径小于1nm。 • 但分辨率并不直接等于电子束直径,因为入射电 子束与试样相互作用会使入射电子束在试样内的 有效激发范围大大超过入射束的直径。
特征X射线发射
五、特征X射线 (characteristic X-ray)
• 若这一能量以X射线形式放出,这就是该元素的K辐射, hc 此时X射线的波长为: K E K E L2 式中,h为普朗克常数,c为光速。对于每一元素,EK、EL2 都有确定的特征值,所以发射的X射线波长也有特征值, 这种X射线称为特征X射线。 K • X射线的波长和原子序数之间服从莫塞莱定律: 2 Z
第三章 扫描电子显微镜
Light vs Electron Microscope
概述
• 扫描电子显微镜(Scanning Electron Microscope,简称SEM)是继透射电镜之后发 展起来的一种电子显微镜 • 扫描电子显微镜的成像原理和光学显微镜或透 射电子显微镜不同,它是以类似电视摄影的方 式,利用细聚焦电子束在样品表面扫描时激发 出来的各种物理信号来调制成像的。 • 扫描电镜能完成: 表(界)面形貌分析; 配置各种附件,做表面成分分析及表层晶体学 位向分析等。
3.2扫描电镜成像的物理信号
• 扫描电镜成像所用的 物理信号是电子束轰 击固体样品而激发产 生的。具有一定能量 的电子,当其入射固 体样品时,将与样品 内原子核和核外电子 发生弹性和非弹性散 射过程,激发固体样品 产生多种物理信号。
扫描电子显微镜(SEM)-介绍-原理-结构-应用
探头
扫描发生器 显像管
视频放大器
光电倍增管
试样
光导管
试样台
扫描电子显微镜主要由以下四个部分组成: 1. 电子光学系统:作用是获得扫描电子束,
作为信号的激发源。 2. 信号收集及显示系统:作用是检测样品在
入射电子作用下产生的物理信号 3. 真空系统:用来在真空柱内产生真空 4. 电源系统:作用是提供扫描电镜各部分所
3.3 背散射电子
背散射(backscattered)电子是指入射电子在样 品中受到原子核的卢瑟福散射后被大角度反射,再 从样品上表面射出来的电子,这部分电子用于成像 就叫背散射成像。 背散射分为两大类:弹性背散射和非弹性背散射。 弹性散射不损失能量,只改变方向。非弹性散射不 仅改变方向,还损失能量。从数量上看,弹性背反 射电子远比非弹性背反射电子所占的份额多。背反 射电子的产生范围在100nm-1mm深度。
d4
光电倍增管
d3:扫描系统ຫໍສະໝຸດ 试样光导管d4:试样室
试样台
2.1.1 电子枪
电子枪:钨丝成V形,灯丝中通以加热电流, 当达到足够温度时(一般操作温度为 2700K),发射电子束。在10-6Torr的真空 下,其寿命平均约40—80小时。
电子束 光阑孔
2.1.2 电磁透镜
电磁透镜:透镜系统中所用的透镜都是缩 小透镜,起缩小光斑的作用。缩小透镜 将电子枪发射的直径为30μm左右的电 子束缩小成几十埃,由两个聚光镜和一 个末透镜完成,三个透镜的总缩小率约 为2000~3000倍
03
SEM工作原理
3 扫描电镜成像的物理信号
入射电子轰击样品产生的物理信号
电子束与样品原子间的相互作用是表 现样品形貌和内部结构信息的唯一途 径。入射电子与样品原子中的电子和 原子核会发生弹性碰撞和非弹性碰撞, 所产生各种电子信号和电磁辐射信号 都带有样品原子的信息,从不同角度 反映出了样品的表面形貌、内部结构、 所含元素成分、化学状态等。
简述扫描电子显微镜(SEM)
简述扫描电子显微镜(SEM)
扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。
二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。
扫描电镜的结构主要包括:
1.真空系统和光源系统;
2.电子光学系统——电子强、电磁透镜、扫描线圈、样品室;
3.信号放大系统。
扫描电镜的优点是:
1.有较高的放大倍数,20-20万倍之间连续可调;
2.有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;
3.试样制备简单。
扫描电镜的应用范围是:
1.生物——种子、花粉、细菌……
2.医学——血球、病毒……
3.动物——大肠、绒毛、细胞、纤维……
4.材料——陶瓷、高分子、粉末、金属、金属夹杂物、环氧树脂……
5.化学、物理、地质、冶金、矿物、污泥(杆菌)、机械、电机及导电性样品,如半导体(IC、线宽量测、断面、结构观察……)电子材料等。
主流厂家:
美国FEI(赛默飞)——Apreo SEM扫描电镜
德国蔡司——EVO MA 25/LS 25
日本日立——TM4000、SU8220,SU8230,SU8240日本电子——JSM-7900F 热场发射扫描电子显微镜捷克TESCAN——S8000系列
韩国COXEN——CX-200系列
中科院KYKY——KYKY-2800系列。
SEM扫描电子显微镜知识
SEM扫描电子显微镜知识扫描电子显微镜知识A—Z / SEM的构造扫描电子显微镜(Scanning Electron Microscope:SEM)是观察样品表面的装置。
用很细的电子束(称为电子探针)照射样品时,从样品表面会激发二次电子,在电子探针进行二维扫描时,通过检测二次电子形成一幅图像,就能够观察样品的表面形貌。
SEM的构造装置的结构SEM由形成电子探针的电子光学系统、装载样品用的样品台、检测二次电子的二次电子检测器、观察图像的显示系统及进行各种操作的操作系统等构成(图1),电子光学系统由用于形成电子探针的电子枪、聚光镜、物镜和控制电子探针进行扫描的扫描线圈等构成,电子光学系统(镜筒内部)以及样品周围的空间为真空状态。
图1 SEM的基本结构1图2 电子枪的构造图电子枪电子枪是电子束的产生系统,图2是热发射电子枪的构造图。
将细(0.1 mm左右)钨丝做成的灯丝(阴极)进行高温加热(2800K左右)后,会发射热电子,此时给相向设置的金属板(阳极)加以正高圧(1~30kV),热电子会汇集成电子束流向阳极,若在阳极中央开一个孔,电子束会通过这个孔流出,在阴极和阳极之间,设置电极并加以负电圧,能够调整电子束的电流量,在这个电极(被称为韦氏极)的作用下,电子束被细聚焦,最细之处被称为交叉点(Crossover),成为实际的光源(电子源),其直径为15~20μm。
以上说明的是最常用的热发射电子枪,此外还有场发射电子枪和肖特基发射电子枪等。
热发射电子枪的阴极除使用钨丝外,还使用单晶六硼化镧(LaB6),LaB6由于活性很强,所以需要在高真空中工作。
2透镜的构造电子显微镜一般采用利用磁铁作用的磁透镜。
当绕成线圈状的电线被通入直流电后,会产生旋转对称的磁场,对电子束来说起着透镜的作用。
由于制作强磁透镜(短焦距的透镜)需要增加磁力线的密度,如图3所示,线圈的周围套有铁壳(轭铁),磁力线从狭窄的开口中漏洩出来,开口处被称作磁极片(极靴),经精度极高的机械加工而成。
SEM-扫描电子显微镜
d0临界分辨本领 c电子束的入射角
(a)
(b)
图16 景深随工作参数变化的情况
(a)电子束入射半角的影响 (b)工作距离的影响
保真度好
样品通常不需要作任何处理即可以直 接进行观察,所以不会由于制样原因而产 生假象。这对断口的失效分析特别重要。
样品制备简单
扫描电镜的最大优点是样品制备方法简单 ,对金属和陶瓷等块状样品,只需将它们切割成 大小合适的尺寸,用导电胶将其粘接在电镜的样 品座上即可直接进行观察。 对于非导电样品如塑料、矿物等,在电子 束作用下会产生电荷堆积,影响入射电子束斑和 样品发射的二次电子运动轨迹,使图像质量下降 。因此这类试样在观察前要喷镀导电层进行处理 ,通常采用二次电子发射系数较高的金银或碳膜 做导电层,膜厚控制在20nm左右。 另外,现在许多SEM具有图像处理和图像分 析功能。有的SEM加入附件后,能进行加热、 冷却、拉伸及弯曲等动态过程的观察。
扫描电镜结构和原理
1. 扫描电镜的工作原理及特点
扫描电镜的工作原理与闭路电视系统 相似。
图1 扫描电镜成像示意图
图2 扫描电镜成像示意图
图3 JSM-6700F场发射扫描电镜
2. 扫描电镜的主要结构
主要包括有电子光学系统、扫描系统、 信号检测放大系统、图象显示和记录系统、 电源和真空系统等。
粉体形貌观察
图13 钛酸铋钠粉体的六面体形貌
纳米材料形貌分析
(a) (b)
图14 多孔氧化铝模板制备的金纳米线的形貌 (a)低倍像(b)高倍像
图15 ZnO纳米线的二次电子图像
扫描电镜的主要性能与特点
• • • • • 放大倍率高 分辨率高 景深大 保真度好 样品制备简单
Hale Waihona Puke 放大倍率高从几十倍到几十万倍,连续可调。放 大倍率不是越大越好,要根据有效放大倍 率和分析样品的需要进行选择。放大倍率 是由分辨率制约,不能盲目看仪器放大倍 率指标。 扫描电镜图像的放大倍数定义为: M=AC/AS 式中AC是荧光屏上图像的边长,AS是电子 束在样品上的扫描振幅。因此,放大倍率 的变化是通过改变电子束在试样表面的扫 描幅度AS来实现的。
电子显微镜与扫描电子显微镜
电子显微镜与扫描电子显微镜电子显微镜(Transmission Electron Microscope,简称TEM)是利用电子束来对样品进行成像的一种显微镜。
它可以突破光学显微镜的分辨率限制,使得观察到的细微结构更加清晰和精细。
而扫描电子显微镜(Scanning Electron Microscope,简称SEM)则是一种利用电子束来扫描样品表面并获取高分辨率图像的显微镜。
电子显微镜是通过将电子束通过透镜系统聚焦到极小的焦点,然后穿过样品并被投影到接收器上,从而观察样品内部的结构。
因为电子的波长比可见光短得多,所以电子显微镜的分辨率比光学显微镜高出数千倍,能够观察到更小尺度的细节。
在电子显微镜中,样品需要被切成极薄的薄片以使电子能够穿透,这也是电子显微镜的一个局限性,不能观察到完整的三维结构。
相比之下,扫描电子显微镜则是通过将电子束在样品表面上进行扫描来获取图像。
SEM能够提供高分辨率的表面拓扑图像,可以观察到样品表面的形貌、结构和成分。
SEM的分辨率通常在纳米级别,适用于对表面形貌和微观结构的观察。
与TEM不同的是,SEM不需要对样品进行薄片处理,对样品的准备要求相对简单,因此更为广泛应用。
除了可以观察样品的表面结构,扫描电子显微镜还可以通过不同的探测器来获取样品的化学成分信息。
例如,通过能谱仪(EDS)可以对样品进行化学成分分析,从而了解样品中各种元素的含量及分布。
而透射电子显微镜通常通过选区电子衍射技术(SAED)来对晶体结构进行分析。
总的来说,电子显微镜与扫描电子显微镜都是现代科学研究中不可或缺的工具,它们的高分辨率、高清晰度和高增强率为科学家们提供了研究微观世界的有效手段。
无论是在材料科学、生命科学、纳米技术还是其他领域,电子显微镜和扫描电子显微镜都扮演着重要的角色,推动着科学研究的进步和发展。
扫描电子显微镜
基本结构
结构示意图
1-镜筒;2-样品室;3-EDS探测器;4-监控器;5-EBSD探测器;6-计算机主机;7-开机/待机/关机按钮;8底座;9-WDS探测器。
基本原理
扫描电子显微镜电子枪发射出的电子束经过聚焦后汇聚成点光源;点光源在加速电压下形成高能电子束;高 能电子束经由两个电磁透镜被聚焦成直径微小的光点,在透过最后一级带有扫描线圈的电磁透镜后,电子束以光 栅状扫描的方式逐点轰击到样品表面,同时激发出不同深度的电子信号。此时,电子信号会被样品上方不同信号 接收器的探头接收,通过放大器同步传送到电脑显示屏,形成实时成像记录(图a)。由入射电子轰击样品表面激 发出来的电子信号有:俄歇电子(Au E)、二次电子(SE)、背散射电子(BSE)、X射线(特征X射线、连续X射 线)、阴极荧光(CL)、吸收电子(AE)和透射电子(图b)。每种电子信号的用途因作用深度而异。
2021年,全数字化扫描电子显微镜新品在无锡惠山发布。
类型
扫描电子显微镜类型多样,不同类型的扫描电子显微镜存在性能上的差异。根据电子枪种类可分为三种:场 发射电子枪、钨丝枪和六硼化镧 。其中,场发射扫描电子显微镜根据光源性能可分为冷场发射扫描电子显微镜 和热场发射扫描电子显微镜。冷场发射扫描电子显微镜对真空条件要求高,束流不稳定,发射体使用寿命短,需 要定时对针尖进行清洗,仅局限于单一的图像观察,应用范围有限;而热场发射扫描电子显微镜不仅连续工作时 间长,还能与多种附件搭配实现综合分析。在地质领域中,我们不仅需要对样品进行初步形貌观察,还需要结合 分析仪对样品的其它性质进行分析,所以热场发射扫描电子显微镜的应用更为广泛。
图 a.扫描电子显微镜原理图;b.扫描电子显微镜电子信号示意
图 a.扫描电子显微镜原理图;b.扫描电子显微镜电子信号示意图。
4.3-扫描电镜(SEM)
(3)样品室
扫描电子显微镜的样品室空间较大,一般可放置 20×10 mm的块状样品。
为适应断口实物等大零件的需要,近年来还开发 了可放置尺寸在125mm以上的大样品台。观察时, 样品台可根据需要沿X、Y及Z三个方向平移,在水 平面内旋转或沿水平轴倾斜。
新型扫描电子显微镜的样品室内还配有多种附件, 可使样品在样品台上能进行加热、冷却、拉伸等 试验,以便研究材料的动态组织及性能。
入射电子束束斑直径是扫描电镜分辨本领的极 限。热阴极电子枪的最小束斑直径6nm,场发射电 子枪可使束斑直径小于3nm。 2) 用于成像的物理信号不同,分辨率不同。
二次电子像的分辨率最高,X射线像最低。
(3)景深
景深是指电镜对高低不平的试样各部位能 同时聚焦成像的一个能力范围。
扫描电镜的末级透镜采用小孔径角,长焦 距,所以可以获得很大的景深,它比一般光学 显微镜景深大100-500倍,比透射电镜的景深大 10 倍。
在最近20多年的时间内,扫描电子显 微镜发展迅速,又综合了X射线分光谱仪、 电子探针以及其它许多技术而发展成为分 析型的扫描电子显微镜,仪器结构不断改 进,分析精度不断提高,应用功能不断扩 大,越来越成为众多研究领域不可缺少的 工具,目前已广泛应用于冶金矿产、生物 医学、材料科学、物理和化学等领域。
2、仪器分辨本领较高。二次电子像分辨本领可达 1.0nm(场发射),3.0nm(钨灯丝);
3、仪器放大倍数变化范围大(从几倍到几十万倍), 且连续可调;
4、图像景深大,富有立体感。可直接观察起伏较大 的粗糙表面(如金属和陶瓷的断口等);
5、可做综合分析。SEM装上波长色散X射线谱仪 (WDX)(简称波谱仪)或能量色散X射线谱仪 (EDX)(简称能谱仪)后,在观察扫描形貌图像 的同时,可对试样微区进行元素分析。
SEM-扫描电子显微镜简介
却、拉伸等)中的试样显微结构形态的动态变化过程(动态观察)。
2019/4/27
五、SEM样品制备
样品制备特点: 1.可以观察大尺度的样品,从毫米到厘米尺寸的样品都可以观察 2.成块样品不用制成超薄切片,样品制备方法要简单得多 3.特别适合于细胞表面和组织表面特征信息的研究
中型电镜。 1975年,中国科学院北京科学仪器厂成功试制了第一台DX-3型
扫描电镜,分辨率为10nm,填补了我国扫描电镜的空白。
2019/4/27
二、SEM结构与工作原理
JSM-6700F场发射扫描电组成: (1)电子光学系统(镜筒) (2)扫描系统 (3)信号收集和图像显示系统 (4)真空系统 (5)电源系统
0.88PMN-0.12PT透明陶瓷的断面SEM照片
2019/4/27
SEM在材料和冶金工业的应用
• 应用范围很广,包括断裂失效分析、产品缺陷原因分析、镀层结构和厚 度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的 结构与蚀损分析等等。
材料拉伸测试
2019/4/27
SEM观察生物样本
独居蜂幼虫
撒克逊黄蜂的颚齿
哥布林蜘蛛
2019/4/27
谢谢观看
2019/4/27
扫描电镜 SEM
(Scanning Electron Microscope)
2019/4/27
目录:
1.SEM的发展历程 2.SEM的结构与工作原理 3.SEM的特点 4.SEM的样品制备
5.SEM的应用
2019/4/27
一、SEM的发展历程(1)
1924年,法国科学家De.Broglie证明任何粒子在高速运动时都会 发射一定波长的电磁辐射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Scanning Electron Microscope)
2020/6/20
目录:
1.SEM的发展历程 2.SEM的结构与工作原理 3.SEM的特点 4.SEM的样品制备
5.SEM的应用
2020/6/20
一、SEM的发展历程(1)
➢1924年,法国科学家De.Broglie证明任何粒子在高速运动时都会 发射一定波长的电磁辐射。
• 不能进行微区成分分析
2020/6/20
电子的收集和成像原理
电子枪发射的电子束 经过2-3个电磁透镜聚焦
在样品表面按顺序逐行 扫描,激发样品产生各种物理信 号:二次电子、背散射电子、吸 收电子等。
信号强度随样品表面特征而变。 它们分别被相应的收集器接受, 经放大器按顺序、成比例地放 大后,送到显像管。
五、SEM样品制备
样品制备特点: 1.可以观察大尺度的样品,从毫米到厘米尺寸的样品都可以观察 2.成块样品不用制成超薄切片,样品制备方法要简单得多 3.特别适合于细胞表面和组织表面特征信息的研究
样品制备准则: 1.尽可能保持样品本来的形貌和结构 2.在样品的干燥过程尽可能减少样品变形 3. 样品表面应有良好导电性能和二次电子发射率
2020/6/20
电子的收集和成像原理
2020/6/20
三、SEM的特点
➢高分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及, 现代先进的扫描电镜的分辨率已经达到1纳米左右;
➢放大倍数变化范围大(从几倍到几十万倍),且连续可调; ➢有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不
➢1926年,德国科学家Garbor和Busch发现用铁壳封闭的铜线圈对 电子流能折射聚焦,即可以作为电子束的透镜。
➢1935年,Knoll提出了扫描电镜的设计思想并制成了扫描电镜的 原始模型。
➢1942年,剑桥大学的马伦成功地制造世界第一台扫描电镜。
2020/6/20
SEM的发展历程(2)
➢1960年,Everhart 和 Thornley 发明二次电子侦测器。 ➢1965年,第一部商用SEM出现(Cambridge)。 ➢1958年,在长春中国科学院光学精密机械研究所生产了第一台
中型电镜。 ➢1975年,中国科学院北京科学仪器厂成功试制了第一台DX-3型
扫描电镜,分辨率为10nm,填补了我国扫描电镜的空白。
2020/6/20
二、SEM结构与工作原理
JSM-6700F场发射扫描电镜
2020/6/20
SEM结构
由五个系统组成: (1)电子光学系统(镜筒) (2)扫描系统 (3)信号收集和图像显示系统 (4)真空系统 (5)电源系统
2、二次电子
• 二次电子是指在入射电子束作用下被 轰击出来并离开样品表面的样品的核 外层电子。
• 二次电子的能量较低,一般都不超过 50 ev。大多数二次电子只带有几个电 子伏的能量。
• 二次电子一般都是在表层5-10 nm深度 范围内发射出来的,它对样品的表面 形貌十分敏感,因此,能非常有效地 显示样品的表面形貌。
2020/6/20
SEM的工作原理概述
♦ SEM是以细聚焦的电子束轰击样品表面,通过电子与样品 相互作用产生的二次电子、背散射电子等对样品表面或断口 形貌进行观察和分析。现在SEM都与能谱EDS(Energy Dispersive Spectrdmeter)组合,可以进行成分分析。 ♦ SEM是显微结构分析的主要仪器,已广泛用于材料、冶金 、矿物、生物学等领域。
材料拉伸测试
2020/6/20
SEM观察生物样本
独居蜂幼虫
撒克逊黄蜂的颚齿
哥布林蜘蛛
2020/6/20
谢谢观看
2020/6/20
2020/6/20
SEM样品制备技术
2020/6/20
六、SEM的应用
1 无机材料制备工程
2 材料和冶金工业
3
晶体生长
4 生物材料观察
2020/6/20
SEM在无机材料制备上的应用
0.88PMN-0.12PT透明陶瓷的断面SEM照片
2020/6/20
SEM在材料和冶金工业的应用
•应用范围很广,包括断裂失效分析、产品缺陷原因分析、镀层结构和厚 度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的 结构与蚀损分析等等。
平表面的细微结构; ➢试样制备简单,且可使图像更近于试样的真实状态; ➢配有X射线能谱仪(EDS)装置,这样可以同时进行显微组织形貌的观
察和微区元素成分分析。 ➢装上不同类型的试样台和检测器可以直接观察处于不同环境(加热、冷
却、拉伸等)中的试样显微结构形态的动态变化过程(动态观察)。
2020/6/20
2020/6/20
入射电子束与样品的作用
背散射电子 (形貌·成份)
特征X线 (元0kV)
二次电子(试样的表面形貌) 俄歇电子(元素)
吸收电子
试样
透射电子
2020/6/20
1、背散射电子
•背散射电子是被固体样品中的原子反弹 回来的一部分入射电子。 •弹性背散射电于是指被样品中原子核反 弹回来的,散射角大于90度的那些入射 电子,其能量没有损失。 •非弹性背散射电子是入射电子和样品核 外电子撞击后产生的非弹性散射,不仅 方向改变,能量也不同程度的损失。如 果逸出样品表面,就形成非弹性背散射 电子。 •可进行微区成分定性分析