教你简单区分模拟电源、开关电源、数字电源(kgdy)

合集下载

几幅草图教你区分数字地、模拟地、电源地,单点接地

几幅草图教你区分数字地、模拟地、电源地,单点接地

几幅草图教你区分数字地、模拟地、电源地,单点接地广告我们在进行pcb布线时总会面临一块板上有两种、三种地的情况,傻瓜式的做法当然是不管三七二十一,只要是地,就整块敷铜了。

这种对于低速板或者对干扰不敏感的板子来讲还是没问题的,否则可能导致板子就没法正常工作了。

当然若碰到一块板子上有多种地时,即使板子没什么要求,但从做事严谨认真的角度来讲,咱们也还是有必要采用本文即将讲到的方法去布线,以将整个系统最优化,使其性能发挥到极致!当然关于这些地的一些基础概念、为什么要将它们分开,本文就不讲了,不懂的同学自己查哈!一、对于板子上有数字地、模拟地、电源地这种情况:从这个图可以看出:模拟地和数字地是完全分开的,最后都单点接到了电源地,这样可以防止地信号的相互串扰而影响某些敏感元件,众所周知数字元件对干扰的容忍度要强于模拟元件,而数字地上的噪声一般比较大所以将它们的地分开就可以降低这种影响了。

还有单点接地的位置应该尽量靠近板子电源地的入口(起始位置),这样利用电流总是按最短路径流回的原理可将干扰降到最小。

二、对于板子上只有数字地、电源地这种情况:从此图可以看出:只在电源地和数字地之间用一个0欧电阻或磁珠之类的单点接地就行了,同样单点接地的位置应该尽量靠近板子电源地的入口(起始位置)。

三、展示一些第二种情况的pcb系统1、地线分区2、0欧电阻单点接地3、板子正面图总结:本文图解非常适合于单片机控制系统的pcb地线布局,其它系统也可参考!第二届立创商城电子制作节第二届立创商城电子制作节开始报名啦!超低门槛、自由发挥、轻松入围,更有第三方专家评委点评打分、荣誉证书和定制奖杯!一等奖1名,奖励税后10000元;二等奖2名,各奖税后6000元;三等奖3名,各奖税后3000元;入围奖若干名,入围即获500元奖励。

报名成功越早设计时间越充足,按要求简单发帖即完成报名,赶紧参加吧!官网介绍:/go/17523dej。

模拟电源、开关电源、数字电源简单区别

模拟电源、开关电源、数字电源简单区别

模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。

模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。

音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。

开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常50HZ的电流频率提升到数万HZ,在这么高的频率下,磁场变化频率也达到几万HZ,那么,就可以减少线圈匝数、铁芯体积获得同样的电压转化比,由于线圈匝数、铁芯体积的减少,损耗大大降低,一般开关电源效率达到90%,而体积可以做的非常小,并且输出稳定,所以开关电源具有模拟电源难以达到的优点。

(开关电源也有自己的不足,如输出电压有纹波及开关噪声,线性电源是没有的)音响器材-功放中开关电源的应用:开关电源的描述过程中已经表明开关电源的优势,所以即使是大功率功放,开关电源一样可以做的很精细、小巧,目前国内的数字功放以深圳崔帕斯数字音响设备公司的数字功放最为领先,他们目前已经发展到T类纯数字功放,并且下一代S类功放也在研发中了,具体请参看如下资料:数字电源在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具有优势。

此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。

数字电源和模拟电源

数字电源和模拟电源
高精度的电源PID调节或者其他算法的PWM调节在目前流行的32位DSP或者ARM处理器看来并不是个问题,但是如果要加上高速两个字,很多软件工程师恐怕就要皱眉头了。以TI运动控制领域的当家花旦TMS320F2812为例,如果电源设备的开关频率达到300KHz,在150MHz的系统频率下,留给软件工程师的任务是在500个DSP指令周期内完成ADC输入数据处理、电源PID函数调节等实时性要求最为苛刻的任务。如果要想避开电力电子器件在周期开通/关断时造成的谐波,ADC在器件开通的中间时刻采样,那么计数器采用UP-DOWN方式计数在计数周期值处同步触发ADC采样,这个时候软件工程师的可利用DSP指令周期就只剩下可怜的250个了
成本控制,电源设备的性价比永远是设计者必须遵守的原则。数字电源现早在十几年前就出现了,只是因为高高在上的价格让它一直局限在一些特殊的高端应用里。感谢这些年来电子技术的快速进步,让数字控制芯片性能不断飞跃,但价格不停的下跌,数字电源开始慢慢渗透占领传统模拟电源的应用领域,而且发展越来越快。有朋友说,数字芯片的价格超过40我不会考虑,还有的朋友价格阈值要求更高,超过20都不考虑。但是提醒一下数字器件的降价方式算是有两种,一种是传统的方式,就是一个型号的器件价格慢慢下降,另一个是生产公司推出新型廉价的替代产品。这第二种变相降价方式我认为是数字器件特有,动作特别大,新产品价格出来跟同一内核的老产品价格比起来甚至能缩水到几分之一。建议作为一个设计者,对数字器件要保持相当程度的技术关注。什么时候开始评估一个器件的性能,什么时候考虑把某个方案作为技术储备,什么时候把方案作为正式的产品生产方案都要考虑到......依赖于高技术产品公司的研发部门负责人,是必须要有这样的技术眼光的。
如果说ADC问题可以外扩高速、高精度器件解决,电源PWM调节可以选用更高速度的DSP/ARM/FPGA来完成,那么最后一个高速/高精度的PWM输出问题,也就是高速数字PWM的分辨率问题,就只能靠提供DSP/ARM/FPGA的国际大厂商解决了。其实数字PWM的分辨率在开关电源的中低频范围内不成问题(这也是TI的C28X DSP能在电机驱动、变频器等领域大行其道的一个重要原因);但是到了高频开关电源,或者高精度电源领域,这个问题马上就变得很突出了。为什么高频、高精度数字开关电源国内依然是一片空白,大家用数字PWM分辨率的计算公式算一算会很清楚。

如何区分模拟产品与真正的数字产品

如何区分模拟产品与真正的数字产品

如何区分模拟产品与真正的数字产品一、市场上其它安全用电管理技术设备现状市场上的安全用电管理设备主要是用电集控管理系统和远程抄表系统,要么是产品系统复杂、体积庞大、安装使用麻烦、价格昂贵、判断不准确,很多都是被动式防护(着火后通知消防救灾)。

再就是在远程抄表系统中嵌入用电管理模块,也就是近年市场上的所谓之“限电器、节电器”等,类似产品功能单一,只具有对部分阻性负载识别、禁用功能,它是根据阻性负载没有相位差的原理来判别违规用电的,因为大部分违规电器都是阻性负载(如:电饭锅、电磁炉、热得快、电取暖器等),只是设定一个阻性负载的最大值,即阻性负载超过设定的功率就断电(通常是设定为300—400瓦),说白了,还是按功率来限制的。

这就会出现需要用的电器因为大于设定的限制功率而无法使用(如饮水机、电热水器等),需要禁用的电器因为小于设定的限制功率而无法禁止(如电热毯)。

而且产品所有的功能参数都是出厂前设定,客户无法根据自己的管理需要进行设置,更谈不上数据存储、通讯等功能,无法通过PC进行远程控制,统一管理,远远不能满足市场需求,最大的问题是容易被采取改变负载特性、加入容性负载干扰等方式破解。

二、JR系列安全用电智能控制管理产品概况JR系列数字安全用电智能控制器产品是以自动控制技术和计算机技术为核心,整合集成微电子技术、电力电子技术、信息传感技术、显示与界面技术、通讯技术、电磁兼容技术等诸多技术,采用单片机技术,通过数据采样、精密模-数转换,应用独特的算法进行程序编制,经过大量研究和试验,实现了良恶性负载判定与限制、最大功率预设与限制、危险负载状态预警、自动复位、学习、通讯、违规用电记录与查询、特别用电需求预设等功能,攻克了空调启动、大功率感性负载、容性负载干扰、采用半波、全波、移相等方式的破解等难题,具有体积小、运行稳定、识别精度高、防破解等特点,其技术处于国内同类产品的领先水平。

本公司的数字系列产品,分为遥控管理型和网络管理型,不仅克服了同类产品存在的诸多问题和不足,具备上位机及管理软件管理功能,可通过485总线对多机通讯,对上位机进行数据交换和网络化管理,可进行数据的存储、传输、调用等。

模拟地与数字地的区别是什么?在实际应用中分别接什么电源?

模拟地与数字地的区别是什么?在实际应用中分别接什么电源?

模拟地与数字地的区别是什么?在实际应用中分别接什么电
源?
电路系统一般分为数字电路和模拟电路,相应的数字电路中的地就叫做数字地;模拟电路中的地就叫做模拟地。

什么是数字地
数字地,也可以称之为逻辑地,为数字量、开关量提供零参考电位;
什么是模拟地
模拟地,主要为各种模拟信号提供零参考电位;
对于低速电路板或者对干扰不敏感的电路,数字地和模拟地即使不区分,也不会对电路性能造成较大影响。

但是对于高速板、射频板或者弱信号板而言,一定要区分数字地和模拟地否则受干扰较大。

数字地和模拟地如何处理
单点接地
对于低频电路而言,线间电感相对弱一些,反而地环路造成的影响相对较大,为了避免这种情况可以考虑单点接地。

单点接地就是将所有数字地接在一点或者模拟地接在一点,然后再将该点接到电源地。

单点接地可以分为单点串联接地和单点并联接地。

多点接地
对于高频电路而言,线间电感相对严重,所以增加了地线阻抗。

适合多点接地。

所谓多点接地,就是各接地点按照就近原则,接入电源地。

采用何种方式接地
一般将接地点和电源地连接的时候,会通过如下器件实现:0欧姆电阻,电感、磁珠等。

他们各有优缺点。

我比较推荐0欧姆电阻接地。

因为0欧姆电阻和保证两端的地等电位,而且对全频段的噪声都有抑制作用。

数字电源和模拟电源

数字电源和模拟电源

数字电源和模拟电源2011-08-06 14:34:20| 分类:分享一些有用的东|字号订阅share_info.allow_share = 1讨论模拟电源与数字电源/模拟地与数字地专题!关于模拟电源与数字电源,模拟地与数字地的大家有什么高见呢?在网上看过一些关于这个问题的谈论,但是还不是太明白.就是模拟电源与数字电源,模拟地与数字地应该怎么连接的问题.首先是模拟电源与数字电源的连接,一些人说应该在电源接入处用粗线连接,这样好一些.再次是模拟地与数字地,这个更关键,做的不好就有可能造成系统不稳定或是精度不够,看了一些贴子,一般的认为应该用小磁珠把两个地连接到一起,有的人说用0欧的电阻把两个地连在一起,并且做到同一点接地. 但是实际中我接触的电路板中这样做的没见过,可能是我接触的太少了吧. 这里有高手可以说一下对这个问题你们是怎么解决的吗? 期待!一楼再次是模拟地与数字地的连接不要使用磁珠或者0欧电阻连接二楼发表我的个人看法。

这确实是老话重提,这是一个集电工学+电磁兼容性+PCB设计的综合性课题。

在每一个设计工程中都会考虑到这个必不可少问题。

对于这个话题展开讨论我还是赞成的,同时透过这次的讨论希望更多的新手们能了解到更多关于“地”认识。

从而减少在工作的误区。

关于电路中的地,以我们最常用的MSP430系统作为例子吧。

电路中地是一个电路中公共电平参考点,不管是电路还是电源都以这地作为基准。

而这次我们要讨论的是“数字地和模拟地之间的连接与关系”,我想就以这个作为重点向大家解释一下。

以下是个人的主观意见,如有不正确之处请读者能给予指正。

所谓数字地一般来说是指数字电路类型集合的公共参考地,而模拟地也是类同之意。

在一个复杂的电路系统中,往往会出现很不同类型的电路。

通常我们在以电路的工作类型或工作频率将其划分。

如数字、模拟之类划分或以速度或频率频段划分等。

在数字电路中,电路通常是处于开关状态,而在所有数字芯片接地端汇集在一起。

模拟电源、开关电源、数字电源的区别

模拟电源、开关电源、数字电源的区别

电源招聘专家模拟电源、开关电源、数字电源的区别在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。

模拟电源介绍模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。

模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。

音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。

开关电源介绍开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常50HZ的电流频率提升到数万HZ,在这么高的频率下,磁场变化频率也达到几万HZ,那么,就可以减少线圈匝数、铁芯体积获得同样的电压转化比,由于线圈匝数、铁芯体积的减少,损耗大大降低,一般开关电源效率达到90%,而体积可以做的非常小,并且输出稳定,所以开关电源具有模拟电源难以达到的优点。

(开关电源也有自己的不足,如输出电压有纹波及开关噪声,线性电源是没有的)音响器材-功放中开关电源的应用:开关电源的描述过程中已经表明开关电源的优势,所以即使是大功率功放,开关电源一样可以做的很精细、小巧,目前国内的数字功放以深圳崔帕斯数字音响设备公司的数字功放最为领先,他们目前已经发展到T类纯数字功放,并且下一代S类功放也在研发中了,具体请参看如下资料:数字电源介绍在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具有优势。

教你简单区分模拟电源、开关电源、数字电源

教你简单区分模拟电源、开关电源、数字电源

教你简单区分模拟电源、开关电源、数字电源
在电源设计中我们如何选择电源模块,那幺选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。

 模拟电源介绍
 模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。

 模拟电源的缺点:线圈、铁芯本身是导体,那幺它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。

 音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那幺,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。

 开关电源介绍
 开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常。

模拟地、数字地与功率地

模拟地、数字地与功率地

模拟地、数字地与功率地(2016-06-21 22:21:26)转载▼标签:应用总结分类:硬件电路一、地的分类1.功率地功率地是负载电路或功率驱动电路的零电位的公共基准地线。

由于负载电路或功率驱动电路的电流较强、电压较高,所以功率地线上的干扰较大,因此功率地必须与其他弱电地分别设置、分别布线,以保证整个系统稳定可靠地工作。

2.逻辑地/数字地数字地是系统中数字电路零电位的公共基准地线。

由于数字电路工作在脉冲状态,特别是脉冲的前后沿较陡或频率较高时,会在电源系统中产生比较大的毛刺,易对模拟电路产生干扰。

所以对数字地的接地点选择和接地线的敷设也要充分考虑。

尽量将电路中的模拟和数字部分分开,最后通过磁珠/电容/电感或0欧姆电阻汇接到一起.3.模拟地模拟地是系统中模拟电路零电位的公共基准地线。

由于模拟电路既承担小信号的处理,又承担大信号的功率处理;既有低频的处理,又有高频处理;模拟量从能量、频率、时间等都很大的差别,因此模拟电路既易接受干扰,又可能产生干扰。

所以对模拟地的接地点选择和接地线的敷设更要充分考虑。

理论上一样,地电位都是0,但是实际上,由于电流的存在,PCB上同样网络名的点的电位是不同的,由电流的路径决定。

起不同的名字是为了布线时可以保证各个地独立,不会互相干扰,一般只在供电电源出口处将各个地用0Ω电阻或小电感相连。

不同的电路接地要求是不同的,数字地与模拟地之间不能混用,同时由于电子线路存在分布参数,所以他们的电位也不是完全相同。

二、关于数字地与模拟地的隔离问题1.数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等),数字地与模拟地有一点短接,请注意,只有一个连接点。

也有在PCB上不共地的,这由系统设计来决定。

电源地 信号地 模拟地 数字地

电源地 信号地 模拟地 数字地

从参考电平的角度看,都是同一个地,最终都要接到一起获得相同的参考电位。

对于地的分开,主要是从布线的角度看的。

减少不同电路之间地的干扰。

电源的地不能看成模拟地,信号地也不能看成数字地。

因为电源有给模拟电路供电的,有给数字电路供电的。

信号有数字信号和模拟信号。

主要是根据电路的性能来分割地,对于数字信号3.3v电路,2。

5V电路和5V电路的地也可能有分开的需要。

即使是同一个供电的数字电路,有时候也有布线的要求,例如大电流的IO部分的地,可能需要单独处理。

大地一般指机壳,这个部分有ESD和屏蔽的需要的。

有些时候电路地通过一个1M电阻同外壳相连,有时候直接连接。

要根据应用和ESD的要求来处理。

总之,地的逻辑连接特性和PCB上的物理特性是要区分来看的。

理论上讲地是0电压的,但是在实际PCBA 上地是有很多噪声和反弹的。

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

以上这些地线处理是系统设计、安装、调试中的一个重要问题。

下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。

一般情况下,高频电路应就近多点接地,低频电路应一点接地。

在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。

一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

数字电源和模拟电源

数字电源和模拟电源

数字电源和模拟电源 电源管理和电源控制的区别 电源控制和电源管理之间的区别,是关于数字电源讨论中的关键概念。

爱⽴信使⽤“电源控制”术语来强调电源供应系统内部的控制功能,尤其是个体内部能量流的循环管理。

这⼀定义包含了反馈回路和内部管理维持功能。

功率控制功能在与电源供应的开关频率实时监控中起到作⽤。

这种类型的控制功能可以由模拟或者数字技术实现,电源供应系统⽆论采⽤哪种⽅式,呈现给最终⽤户的表现是基本⼀致的。

这就是说,数字电源的使⽤不要求最终⽤户做任何改变和新的设计。

相应的,“电源管理”是关于⼀个或多个电源供应系统之外的通讯和控制。

包括电源系统配置,单个电源供应系统的监控,以及故障监测信息传送等。

电源管理功能不是实时的,它们在⼀定的时间范围内起作⽤,要慢于电源供应系统的开关频率。

⽬前,这些功能都趋于将模拟和数字技术结合。

例如,电阻器通常⽤于调整输出电压,⽽给每个电源供应系统的电源排序则需要专线控制。

按照爱⽴信的定义,数字电源管理意味着这些功能全部使⽤数字技术。

此外,简化互连⽅式应⽤在某些类型的数据通信母线结构,优于在每个电源供应系统之间使⽤多种定制的互连⼿段进⾏排序和侦错。

电源控制的实现技术 电源的另外两个主要部分就是输⼊输出的滤波⽹络。

它们通常由电感、电容和电阻组成并提供多种功能。

输⼊滤波部分保护电源不受输⼊电压跳变的影响,在负载跳变时提供储能,同时和外部滤波电路⼀起使电源满⾜输⼊传导电磁兼容的要求。

输出滤波部分使输出电压更平滑以满⾜纹波噪声的指标,同时也帮助电源储能以满⾜负载的动态电流要求。

重要的是,⽆论是模拟或数字控制架构,输⼊和输出滤波电路以及功率器件在本质上会保留⼀致。

典型的数字电源控制系统的结构参见图1右⾯。

输出电压的遥测与模拟系统相似。

但是数字控制系统中使⽤模数转换器替代了模拟控制系统中的误差放⼤器,将采样得到的电压信号转换为⼀个⼆进制数。

除了输出电压,知道其它模拟参数也很重要,例如输出电流和电源的温度。

如何从电路图区别数字电路和模拟电路

如何从电路图区别数字电路和模拟电路

如何从电路图区别数字电路和模拟电路
数字电路就是开关电路;器件工作状态:不是导通就是截止,一般信号电平只管高、低。

高为“1”,低电平为“0”;工作状态是脉冲电量。

而模拟电路是放大电路,丝毫变化都要计较、考虑;是连续变化的电量。

仅从电路图不好说,要依据电路和元器件参数计算,才能知道它的工作状态是饱和导通还是截止?当然对于专业人员来说,这都不是难事。

从器件型号、电路结构、端子名称、电源电压三方面推断,一般状况下:
1、模拟电路的放大器图形是三角形,正、负双电源供电,电源电压大于5V,输入、输出之间有反馈电阻连接。

2、数字电路是单电源供电,电源电压多数是5V 或3.3V,规律图型是长方形,不同的规律门有标准的图标,很简单识别。

真实的电路图,而不是纸上谈兵的作业,都有标明器件型号,一目了然。

分立元件的电路识别可以看偏置电路,数字电路没有偏置电路。

如何从电路图区分数字电路和模拟电路
在同一原理图中,既然有模拟电路又有数字电路,那么,就有接口电路,如比较器、模数转换器、数模转换器,接口电路就是模拟与数
字的分界线。

如何从电路图区分数字电路和模拟电路。

(完整版)开关量、数字量、模拟量

(完整版)开关量、数字量、模拟量

开关量:开关量只有两种状态,0、1,包括开入量和开出量,反映的是状态。

数字量:数字量由多个开关量组成。

如三个开关量可以组成表示八个状态的数字量。

模拟量:模拟量是连续的量,数字量是不连续的。

反映的是电量测量数值(如电流、电压)。

1、开关量:为通断信号,无源信号,电阻测试法为电阻0或无穷大;也可以是有源信号,专业叫法是阶跃信号,就是0或1,可以理解成脉冲量版主说的好,多个开关量可以组成数字量2、数字量:有0和1组成的信号类型,通常是经过编码后的有规律的信号。

和模拟量的关系是量化后的模拟量。

3、模拟量:连续的电压,电流等信号量,模拟信号是幅度随时间连续变化的信号,其经过抽样和量化后就是数字量。

4、脉冲量:在瞬间电压或电流由某一值跃变到另一值的信号量。

在量化后,其连续规律的变化就是数字量,如果其由0变成某一固定值并保持不变,其就是开关量开关量主要指开入量和开出量,是指一个装置所带的辅助点,譬如变压器的温控器所带的继电器的辅助点(变压器超温后变位)、阀门凸轮开关所带的辅助点(阀门开关后变位),接触器所带的辅助点(接触器动作后变位)、热继电器(热继电器动作后变位),这些点一般都传给PLC或综保装置,电源一般是由PLC或综保装置提供的,自己本身不带电源,所以叫无源接点,也叫PLC或综保装置的开入量。

数字量定义为:在时间和数值上都是断续变化的离散信号。

模拟量定义为:在时间和数值上都是连续变化的信号。

最基本的数字量就是0和1,最基本来说即指反映到开关上就是指一个开关的打开(0)或闭合(1)状态,开关量是无源的,即它需要装置输出电源对它进行检测(这也就是装置的开入量,如综保装置的非电量输入即是一个外部提供的开入量);也可以用0和1进行编码,编成各种通讯码。

模拟量即指经PT、CT等传送过来的电压、电流、频率等电量信号;压力传感器经压力变送器、液位传感器经液位变送器、流量传感器经流量变送器、热电偶或热电偶经温度变送器等传送过来的4-20mA(电Ⅲ型仪表)信号等就是模拟量。

教你简单区分模拟电源、开关电源、数字电源(kgdy)

教你简单区分模拟电源、开关电源、数字电源(kgdy)

教你简单区分模拟电源、开关电源、数字电源(kgdy)教你简单区分模拟电源、开关电源、数字电源在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。

模拟电源介绍模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。

模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。

音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。

开关电源介绍开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常50HZ的电流频率提升到数万HZ,在这么高的频率下,磁场变化频率也达到几万HZ,那么,就可以减少线圈匝数、铁芯体积获得同样的电压转化比,由于线圈匝数、铁芯体积的减少,损耗大大降低,一般开关电源效率达到90%,而体积可以做的非常小,并且输出稳定,所以开关电源具有模拟电源难以达到的优点。

(开关电源也有自己的不足,如输出电压有纹波及开关噪声,线性电源是没有的)音响器材-功放中开关电源的应用:开关电源的描述过程中已经表明开关电源的优势,所以即使是大功率功放,开关电源一样可以做的很精细、小巧,目前国内的数字功放以深圳崔帕斯数字音响设备公司的数字功放最为领先,他们目前已经发展到T类纯数字功放,并且下一代S类功放也在研发中了,具体请参看如下资料:数字电源介绍在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具有优势。

数字电源与模拟电源

数字电源与模拟电源

数字电源与模拟电源最本质的区别所谓数字化电源的本质在于电源对输出电流/电压的PWM调节是由数字芯片按照一定的数字控制方式和算法产生,这是数字电源的最本质特征。

那些扩充了8位、16位单片机来提供数字输入输出操作界面、远程通讯接口但是电源的PWM调节还是依赖模拟电源调制芯片的电源,只能说它们长了个数字电源的脸,但是没有数字电源的“芯”。

2 数字电源实现的技术瓶颈目前数字电源依然存在高速/高精度的ADC技术问题(数字电源反馈输入);高速/高精度的电源PID调节或者其他算法的PWM调节;高速/高精度的PWM输出问题(数字电源DAC输出)。

很多的32位DSP/ARM片内的高速10位、12位ADC,作为高速ADC采集可用于高频开关电源,但是其信号输入范围一般是0~3.0/3.3V,工业现场通常的模拟输入范围正负10V却没有任何一款DSP或者ARM片内ADC能解决,只能在外端加入信号调理电路。

ADI等少数几家着名的模拟器件厂商的产品目录中虽然有完全符合高速、高精度(16bit~18bit)、输入信号范围正负5V到正负10V的ADC产品,但是在中国大陆却极少见到成功的产品应用纪录,这其中的问题恐怕只有正在调试这些器件的工程师们心里面清楚。

高精度的电源PID调节或者其他算法的PWM调节在目前流行的32位DSP或者ARM处理器看来并不是个问题,但是如果要加上高速两个字,很多软件工程师恐怕就要皱眉头了。

以TI运动控制领域的当家花旦TMS320F2812为例,如果电源设备的开关频率达到300KHz,在150MHz的系统频率下,留给软件工程师的任务是在500个DSP指令周期内完成ADC输入数据处理、电源PID函数调节等实时性要求最为苛刻的任务。

如果要想避开电力电子器件在周期开通/关断时造成的谐波,ADC在器件开通的中间时刻采样,那么计数器采用UP-DOWN方式计数在计数周期值处同步触发ADC采样,这个时候软件工程师的可利用DSP指令周期就只剩下可怜的250个了,电源PWM调节任务相当艰巨!如果说ADC问题可以外扩高速、高精度器件解决,电源PWM调节可以选用更高速度的DSP/ARM/FPGA来完成,那么最后一个高速/高精度的PWM输出问题,也就是高速数字PWM的分辨率问题,就只能靠提供DSP/ARM/FPGA的国际大厂商解决了。

模拟电路与数字电路识读上的区别

模拟电路与数字电路识读上的区别

模拟电路与数字电路识读上的区别
同为信号变化载体的模拟电路与数字电路,它们杜宇信号处理具有不同的操作。

在模拟电路中,信号的放大与削减主要是通过元器件的特性(放大)来处理的;而数字电路中的信号放大与削减则是通过开关特性来实现。

ICL7106及07模拟电路
模拟电路中的电压、电流及频率和周期的变化之间存在相互制约效果;数字电路中却不存在,它们的变化是离散状态的。

在工作环境中,模拟电路具有在高电流及大电压的环境下工作的能力,而数字电路则只能够在小电压及小电流的低功耗状态下工作,来完成稳定的控制信号。

数字电路实现交通灯控制电路
模拟电路的应用覆盖着几乎所有电子领域,也就是说任何的电子线路实现几乎都会涉及到模拟电路。

而数字电路跟数字电子技术的应用领域主要集中在电视、雷达、通信、计算机、航天及自动化控制等科学领域。

从难易程度上看,数字电路设计要比模拟电路相对简单多,且对于设计人员的经验水平也稍低,而模拟电路这要求会相对高很多。

所以数字电路系统要比模拟电路系统更加的普及。

另外,模拟电
路经常是需要我们去手工运算,在设计过程上,自动化程度没有数字电路高。

数字电源和模拟电源的区别

数字电源和模拟电源的区别

数字电源和模拟电源的区别数字电路工作在开关状态,对电源电压干扰严重,在复杂的电路中,数字电路与模拟电路采用不同的稳压电源,数字电路与模拟电路分开布线,最终一点共地。

题图是采用USB 接口供电的小功率电路,就不一定分开供电,左图只有一个电源标示,判断不出来电路是否包含数字与模拟两部分电路。

右图是公用电源,通过LC 滤波器,隔离不同功能的电源,显然电路有数字电源与模拟电源之分,但是没有独立供电,抗干扰能力较差。

设计电路要注意在源头抑制干扰,在每片数字芯片的电源与地之间,用最短的路径焊接高频滤波电容,如:CC1 高频瓷介电容。

耗电大的、干扰大的芯片,安装位置要靠近电源,并且选用钽电解电容滤波。

模拟开关式电源已经使用了几十年。

其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。

还有众多厂商提供的大量低成本集成电路,其封装了许多功能,从集成栅极驱动器及开关到电流感应和保护。

数字控制拥有一些模拟世界不具有的特性,其使开关式电源设计拥有迄今还不可能实现的功能。

想想一家电源厂商有许多不同功率级的情况吧。

采用数字控制解决方案,可让一个单处理器与单独自定义软件一起工作以满足每个功率级的需求。

大规模生产时,产生的经济规模会十分巨大。

模拟技术+DSP/MCU成为主要趋势,应用方案向消费领域渗透更高集成度、更快瞬时响应以及更大灵活性是数字电源的主要优势。

通常情况下,模拟PWM架构能够提供较高分辨率,但无法实现数字控制架构所具备的输出电压监视、通信及其它复杂控制功能;而对于数字PWM,为了达到与模拟控制架构同等的性能指标必须具备高分辨率、高速和线性ADC,以及高分辨率、高速PWM电路,因而与模拟控制架构相比,数字控制架构的成本将大幅增加。

综合考虑两者优势,Maxim公司的Ashrafzadeh 认为,最佳方案是将模拟PWM与数字电路相结合,在不牺牲模拟控制所具备的精度和无限分辨率的情况下,提供数字控制所具有的全部性能。

工业自动化中开关量,数字量,模拟量,离散量,脉冲量等各种概念

工业自动化中开关量,数字量,模拟量,离散量,脉冲量等各种概念

工业自动化中开关量,数字量,模拟量,离散量,脉冲量等各种概念在工业自动化控制中,经常会遇到开关量,数字量,模拟量,离散量,脉冲量等各种概念,而人们在实际应用中,对于这些概念又很容易混淆。

现将各种概念罗列如下:1.开关量:一般指的是触点的“开”与“关”的状态,一般在计算机设备中也会用“0”或“1”来表示开关量的状态。

开关量分为有源开关量信号和无源开关量信号,有源开关量信号指的是“开”与“关”的状态是带电源的信号,专业叫法为跃阶信号,可以理解为脉冲量,一般的都有220VAC, 110VAC,24VDC,12VDC等信号,无源开关量信号指的是“开”和“关”的状态时不带电源的信号,一般又称之为干接点。

电阻测试法为电阻0或无穷大。

2.数字量:很多人会将数字量与开关量混淆,也将其与模拟量混淆。

数字量在时间和数量上都是离散的物理量,其表示的信号则为数字信号。

数字量是由0和1组成的信号,经过编码形成有规律的信号,量化后的模拟量就是数字量。

3.模拟量:模拟量的概念与数字量相对应,但是经过量化之后又可以转化为数字量。

模拟量是在时间和数量上都是连续的物理量,其表示的信号则为模拟信号。

模拟量在连续的变化过程中任何一个取值都是一个具体有意义的物理量,如温度,电压,电流等。

4.离散量:离散量是将模拟量离散化之后得到的物理量。

即任何仪器设备对于模拟量都不可能有个完全精确的表示,因为他们都有一个采样周期,在该采样周期内,其物理量的数值都是不变的,而实际上的模拟量则是变化的。

这样就将模拟量离散化,成为了离散量。

5.脉冲量:脉冲量就是瞬间电压或电流由某一值跃变到另一值的信号量。

在量化后,其变化持续有规律就是数字量,如果其由0变成某一固定值并保持不变,其就是开关量。

综上所述,模拟量就是在某个过程中时间和数量连续变化的物理量,由于在实际的应用中,所有的仪器设备对于外界数据的采集都有一个采样周期,其采集的数据只有在下一个采样周期开始时才有变动,采样周期内其数值并不随模拟量的变化而变动。

开关电源和普通电源到底有什么区别?

开关电源和普通电源到底有什么区别?

开关电源和普通电源到底有什么区别?什么叫开关电源?随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。

目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。

开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。

开关电源是相对线性电源说的,其输入端直接将交流电整流变成直流电,再在高频震荡电路的作用下,用开关管控制电流的通断,形成高频脉冲电流。

在电感(高频变压器)的帮助下,输出稳定的低压直流电。

由于变压器的磁芯大小与开关电源工作频率的平方成反比,频率越高铁心越小。

这样就可以大大减小变压器,使电源减轻重量和体积。

而且由于它直接控制直流,使这种电源的效率比线性电源高很多。

这样就节省了能源,因此它受到人们的青睐。

但它也有缺点,就是电路复杂,维修困难,对电路的污染严重。

电源噪声大,不适合用于某些低噪声电路。

开关电源的特点开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。

随着随着电力电子技术的发展和创新,目前开关电源主要以小型、轻量和高效率的特点被广泛应用到几乎所有的电子设备,其重要性可见一般。

开关电源的分类根据开关器件在电路中连接的方式,开关电源总的来说可分为串联式开关电源、并联式开关电源、变压器式开关电源等三大类。

其中,变压器式开关电源还可以进一步分成:推挽式、半桥式、全桥式等多种。

根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种。

开关电源和普通电源的区别普通的电源一般是线性电源,线性电源,是指调整管工作在线性状态下的电源。

而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小,关——电阻很大。

开关电源是一种比较新型的电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教你简单区分模拟电源、开关电源、数字电源
在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。

模拟电源介绍
模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。

模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。

音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。

开关电源介绍
开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常
50HZ的电流频率提升到数万HZ,在这么高的频率下,磁场变化频率也达到几万HZ,那么,就可以减少线圈匝数、铁芯体积获得同样的电压转化比,由于线圈匝数、铁芯体积的减少,损耗大大降低,一般开关电源效率达到90%,而体积可以做的非常小,并且输出稳定,所以开关电源具有模拟电源难以达到的优点。

(开关电源也有自己的不足,如输出电压有纹波及开关噪声,线性电源是没有的)
音响器材-功放中开关电源的应用:开关电源的描述过程中已经表明开关电源的优势,所以即使是大功率功放,开关电源一样可以做的很精细、小巧,目前国内的数字功放以深圳崔帕斯数字音响设备公司的数字功放最为领先,他们目前已经发展到T类纯数字功放,并且下一代S类功放也在研发中了,具体请参看如下资料:
数字电源介绍
在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具
有优势。

此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。

通过实时过电流保护与管理,它还可以减少外围器件的数量。

在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。

通过实时过电流保护与管理,它还可以减少外围器件的数量。

数字电源有用DSP控制的,还有用MCU控制的。

相对来讲,DSP控制的电源采用数字滤波方式,较MCU控制的电源更能满足复杂的电源需求、实时反应速度更快、电源稳压性能更好。

数字电源有什麽好处它首先是可编程的,比如通讯、检测、遥测等所有功能都可用软件编程实现。

另外,数字电源具有高性能和高可靠性,非常灵活。

干扰:单片机中数字和模拟之间,因为数字信号是频谱很宽的脉冲信号,因此主要是数字部分对模拟部分的干扰很强;不仅一般都采用数字电源和模拟电源分开、二者之间用滤波器连接,在一些要求较高的场合,例如某些单片机内部的AD转换器进行AD转换时,常常要让数字部分进入休眠状态,绝大部分数字逻辑停止工作,以防止它们对模拟部分形成干扰。

如果干扰严重,甚至可以分别用两个电源,一般用电感和电容隔离就行了。

也可以将整个板子上数字和模拟部分的电源分别联在一起,用分别的通路直接接到电源滤波电容的焊点上。

如果对抗干扰要求不高,也可以随便接在一起。

温馨提示
(1)如果不使用芯片的A/D或者D/A功能,可以不区分数字电源和模拟电源。

(2)如果使用了A/D或者D/A,还需考虑参考电源设计。

以上只是一些简单的介绍模拟电源,数字电源,开关电源的区别,想成为工程师,当然要学习更多的东西。

相关文档
最新文档