人教A版高中数学选修21椭圆及其标准方程教案

合集下载

人教课标版高中数学选修2-1《椭圆及其标准方程(第1课时)》教学设计

人教课标版高中数学选修2-1《椭圆及其标准方程(第1课时)》教学设计

2.2.1 椭圆及其标准方程(第一课时)一、教学目标 (一)学习目标 1.掌握椭圆的定义;2.掌握椭圆标准方程的推导和标准方程. (二)学习重点椭圆的定义及椭圆标准方程. (三)学习难点椭圆标准方程的建立和推导. 二、教学设计 (一)预习任务设计 1.预习任务 写一写:(1)定义:平面内与两个定点12,F F 距离的和 等于常数 c ,大于12||F F 的点的轨迹叫做椭圆,这两个定点叫做椭圆的 焦点 ,两定点间距离叫做 椭圆的焦距 .(2)椭圆的标准方程: 焦点在x 轴上: 2221(0)y a b a b+=>> .焦点在y 轴上: 2221(0)x a b a b+=>> .2.预习自测判断分别满足下列条件的动点M 的轨迹是否为椭圆(1)到点()12,0F -和点()22,0F 的距离之和为6的点的轨迹; (2)到点()12,0F -和点2(2,0)F 的距离之和为4的点的轨迹; (3)到点()12,0F -和点2(2,0)F 的距离之和为3的点的轨迹.【解题过程】当12||||2MF MF a +=,且122||a F F >的常数时M 点的轨迹为椭圆,故(2)(3)不是.【思路点拨】注意把握椭圆的定义. 【答案】(1)是;(2)不是;(3)不是.(4)已知动圆P 过定点(3,0)A -,并且与定圆22:(3)64B x y -+=内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆 【解题过程】设动圆P 与定圆B 内切于M ,由条件知:||||||||||8PA PB PM PB BM +=+==,故P 的轨迹是以,A B 为焦点的椭圆.【思路点拨】利用椭圆的定义解题. 【答案】D (二)课堂设计 1.新知讲解探究一 创设情景,认识椭圆 ●活动① 归纳提炼概念画一画:①将一条绳子的两端固定在同一个定点上,用笔尖勾起绳子的中点使绳子绷紧,围绕定点旋转,笔尖形成的轨迹是什么?②将绳子的两端分别固定在两个定点上,笔尖勾直绳子,移动笔尖,得到的是轨迹是什么? 动画演示作图过程.提出问题:①作图过程中,哪些量没有变?哪些量变了? ②为什么要求作图过程中笔尖要绷紧?③笔尖所对应的动点M 到定点的距离有什么长度之间的关系? 总结:笔尖对应的动点M 到直线两个端点的长度之和固定不变.【设计意图】学生可通过动手实践的过程去体会“满足什么样的条件下的点的集合为椭圆”,从而对椭圆定义中的条件有直观深刻的认识.提出问题:根据刚才动手实践的过程,能否总结椭圆的定义?(同学自由发言,再由学生进一步补充完善)我们把平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.●活动② 辨析概念问题1:定义中的常数等于21F F ,则动点的轨迹是什么?问题2:定义中的常数小于21F F ,则动点的轨迹是什么?椭圆相关概念:两个定点1F ,2F 叫作椭圆的焦点.....,两个焦点1F ,2F 间的距离叫作椭圆的焦距...... 【设计意图】使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风. 探究二 推导椭圆的标准方程 ●活动① 利用定义求方程动手演算:让学生动手,求推导焦点在x 轴上的椭圆的标准方程①建系:观察椭圆的几何特征,如何建系能使方程更简洁?(利用椭圆的对称性特征)以直线21F F 为x 轴,以线段21F F 的垂直平分线为y 轴,建立平面直角坐标系.②设点:设焦距为()20c c >,则()()12,0,0F c F c -.设(),M x y 为椭圆上任意一点,点M 与点12F F 、的距离之和为()222a a c >.③列式:动点M 满足的几何约束条件: 122MF MF a += 2a =④化简:()()a y c x y c x 22222=+-+++1F 2F∴()()22222y c x a y c x +--=++∴两边同时平方、整理得:()222y c x acx a +-=-将上式两边平方、整理得:2222222222422y a c a cx a x a x c cx a a ++-=+-()()22222222c a a y a x c a-=+-122222=-+c a y a x 分析22c a -的几何含义,令222b c a =-得到焦点在x 轴上的椭圆的标准方程为()012222>>=+b a b y a x焦点在y 轴上的椭圆的标准方程是什么?(由学生动手列式,()()a c y x c y x 22222=-++++,引导学生观察焦点在x轴上与焦点在y 轴上式子的差异,从而用类比的方法得到焦点在y 轴上椭圆的标准方程)如果椭圆的焦点在y 轴上,其焦点坐标为()c F -,01,()c F ,02,用同样的方法可以推出它的标准方程()012222>>=+b a bx a y ●活动② 归纳梳理、理解提升 椭圆的标准方程及方程特点焦点在x 轴上 焦点在y 轴上标准方程: 12222=+b y a x (0>>b a ) 12222=+b x a y (0>>b a )学生思考:(1)椭圆的标准方程中三个参数b c a ,,的关系怎样?(2)如何从椭圆的标准方程判断椭圆焦点的位置?总结方程特征:(1).0,0222>>>>+=c a b a c b a , (2)哪个变量下的分母大,焦点就在哪个轴上.【设计意图】通过归纳总结让学生对两种方程进行对比分析,强化对椭圆方程的理解.有助于教学目标的实现,培养学生的总结归纳能力,而且使学生体会和学习类比的思想方法.●活动③ 互动交流、初步实践判定下列椭圆的标准方程在哪个轴上,并写出焦点的坐标(1)1162522=+y x (在x 轴上,焦点为()0,3-,()0,3)(2)116914422=+y x (在y 轴上,焦点为()5,0-,()5,0)(3)112222=++m y m x (在y 轴上,焦点为()1,0-,()1,0)●活动④ 巩固基础、检查反馈例1.已知a =c =,则椭圆的标准方程为( )A.2211312x y +=B.2211325x y +=或2212513x y += C.22113x y += D.22113x y +=或22113y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知21b =. 【思路点拨】通过焦点的位置判断方程. 【答案】D同类训练 已知椭圆的焦点为(1,0)-和(1,0),点(2,0)P 在椭圆上,则椭圆的方程为( )A.22143x y += B.2214x y += C.22143y x += D.2214y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知23b =. 【思路点拨】通过焦点的位置判断方程. 【答案】A例2 椭圆22125x y +=上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A.5B.6C.7D.8 【知识点】椭圆的定义.【解题过程】由210a =知P 到另一个焦点的距离为8. 【思路点拨】通过定义122PF PF a +=计算. 【答案】D同类训练 已知F 1、F 2是椭圆 192522=+y x 的两个焦点,过F 1的直线交椭圆于M 、N 两点,则三角形MF 2N 的周长为 . 【知识点】椭圆的定义.【解题过程】由221212101020MN MF NF MF MF NF NF ++=+++=+=.【思路点拨】通过定义122PF PF a +=计算. 【答案】20. 3.课堂总结 知识梳理(1)椭圆的定义:平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.(2)椭圆的标准方程:焦点在x 轴上:12222=+by a x (0>>b a );焦点在y 轴上:12222=+bx a y (0>>b a ).重难点归纳(1)区分焦点:哪个变量下的分母大,焦点就在哪个轴上;(2)标准方程中,,a b c 的关系:.0,0222>>>>+=c a b a c b a , (三)课后作业 基础型 自主突破1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A.椭圆B.直线C.圆D.线段 【知识点】椭圆的几何性质.【解题过程】∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2. 【思路点拨】几何性质判断图形. 【答案】D.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( ) A.5 B.3或8 C.3或5 D.20 【知识点】椭圆的标准方程.【解题过程】2c =2,c =1,故有m -4=1或4-m =1,∴m =5或m =3,故选C.【思路点拨】确定焦点位置再结合222a b c =+可得m 的值. 【答案】C3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A.(±a -b ,0)B.(±b -a ,0)C.(0,±a -b )D.(0,±b -a ) 【知识点】椭圆的标准方程.【解题过程】ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).【思路点拨】将方程整理为椭圆的标准形式. 【答案】D4.中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1B.x 281+y 29=1C.x 281+y 272=1D.x 281+y 236=1 【知识点】椭圆的标准方程.【解题过程】由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C. 【思路点拨】由几何性质即可. 【答案】C5.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________. 【知识点】椭圆的标准方程.【解题过程】由题意可得⎩⎨⎧ a +c =3,a -c =1.∴⎩⎨⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y23=1.【思路点拨】由椭圆定义及几何关系可得,,a b c 的值. 【答案】x 24+y 23=16.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________.【知识点】椭圆的标准方程.【解题过程】由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4. ∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,解得b 2=2 3. 【思路点拨】由椭圆几何性质即可. 【答案】2 3 能力型 师生共研1.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A.m <2B.1<m <2C.m <-1或1<m <2D.m <-1或1<m <32 【知识点】椭圆的标准方程.【解题过程】由题意得⎩⎨⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.【思路点拨】根据焦点的位置可确定椭圆方程形式为22221(0)y x a b a a +=>>.【答案】D2.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 【知识点】椭圆的标准方程.【解题过程】∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D. 【思路点拨】由椭圆定义即可. 【答案】D 探究型 多维突破1.求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)a c =135,且椭圆上一点到两焦点的距离的和为26. 【知识点】椭圆的标准方程.【解题过程】(1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,28a =+=, 所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1. (2)由题意知,2a =26,即a =13,又135a c =,所以c =5, 所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1. 【思路点拨】由椭圆性质求解即可. 【答案】见解析2.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【知识点】椭圆的标准方程及几何性质. 【解题过程】设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433. 【思路点拨】由定义可知焦点三角形12PF F 的面积:2tan2S b θ=,其中12F PF θ∠=.【答案】见解析自助餐1.已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1B.x 2+y 216=1C.x 220+y 25=1D.x 25+y 220=1【知识点】椭圆的标准方程及几何性质.【解题过程】由椭圆过点(2,2),排除A 、B 、D ,选C.【思路点拨】由椭圆定义即可.【答案】C2.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B.3C.977D.94【知识点】椭圆的标准方程.【解题过程】a 2=16,b 2=9⇒c 2=7⇒c =7.∵△PF 1F 2为直角三角形.且b =3>7=c .∴F 1或F 2为直角三角形的直角顶点,∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.【思路点拨】由椭圆定义即可.【答案】D3.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.射线D.直线【知识点】椭圆的几何性质.【解题过程】∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a ,∴|PQ |+|PF 1|=2a ,又∵F 1、P 、Q 三点共线,∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a .即Q 在以F 1为圆心,以2a 为半径的圆上.【思路点拨】根据椭圆定义判断.【答案】A4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B 的值是( )A. 3B.2C.2 3D.4【知识点】椭圆的定义及几何性质.【解题过程】由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A.【思路点拨】根据椭圆定义判断..【答案】A5.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.【知识点】椭圆的标准方程.【解题过程】由题设知1c =. 结合椭圆的定义得:12122||||2||4a PF PF F F =+==,故2,3a b ==,所以椭圆方程为:22143x y +=. 【思路点拨】利用椭圆的定义求,a c ,再利用222a b c =+求b .【答案】22143x y += 6.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.【知识点】椭圆的几何性质.【解题过程】设椭圆右焦点为F′,由椭圆的对称性知,|P1F|=|P7F′|,|P2F|=|P6F′|,|P3F|=|P5F′|,∴原式=(|P7F|+|P7F′|)+(|P6F|+|P6F′|)+(|P5F|+|P5F′|)+12(|P4F|+|P4F′|)=7a=35.【思路点拨】由椭圆定义,转换即可. 【答案】35。

人教A版高中数学高二选修1-1教案 椭圆及其标准方程

人教A版高中数学高二选修1-1教案 椭圆及其标准方程

2.1椭圆2.1.1 椭圆及其标准方程(教师用书独具)●三维目标1.知识与技能(1)了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程;(2)使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.2.过程与方法(1)让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想;(2)学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.3.情感、态度与价值观(1)通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神;(2)通过椭圆知识的学习,进一步体会到数学知识的和谐美、几何图形的对称美,提高学生的审美情趣.●重点、难点重点:椭圆定义及其标准方程.难点:椭圆标准方程的推导过程.椭圆定义是通过它的形成过程进行定义的,揭示了椭圆的本质属性,也是椭圆方程建立的基石.这给学生提供动手操作、合作学习的机会,通过实例使学生去探究椭圆的形成过程,进而顺理成章的可以推导出椭圆标准方程,以实现重、难点的化解与突破.(教师用书独具)●教学建议本节课宜采取的教学方法是“问题诱导—启发讨论—探索结果”以及“直观观察—归纳抽象—总结规律”的一种探究式教学方法,注重“引、思、探、练”的结合.引导学生学习方式发生转变,采用“激发兴趣、主动参与、积极体验、自主探究”的学习方式,形成师生互动的教学氛围.学法方面,通过利用圆的定义及圆的方程的推导过程,从而启发椭圆的定义及椭圆的标准方程的推导,让学生体会到类比思想的应用;通过利用椭圆定义探索椭圆方程的过程,指导学生进一步理解数形结合思想,产生主动运用的意识;通过揭示因椭圆位置的不确定性所引起的分类讨论,进行分类讨论思想运用的指导.●教学流程创设问题情境,引出问题:按问题要求画出什么样的图形?⇒引导学生共同画图,观察、分析画出的图形的特点与满足的要求,引出椭圆定义.⇒通过观察椭圆的形状,结合定义,引导学生求出椭圆的标准方程,理解参数a,b,c的意义.⇒通过例1及其变式训练,使学生理解椭圆的定义,学会使用定义解决问题.⇒通过例2及其互动探究,使学生掌握用待定系数法求椭圆方程.⇒(对应学生用书第19页)课标解读1.掌握椭圆的定义会用待定系数法求椭圆的标准方程.(重点)2.了解椭圆标准方程的推导、坐标法的应用.(难点)椭圆的定义1.取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时能在图板上画出一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两点处(如图)套上铅笔,拉紧绳子,移动笔尖,画出什么样的一个图形?【提示】椭圆.2.在上述画出椭圆的过程中,你能说出笔尖(动点)满足的几何条件吗?【提示】笔尖(动点)到两定点(绳端点的固定点)的距离之和始终等于绳长.把平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.椭圆的标准方程【问题导思】观察椭圆的形状,你认为怎样建立坐标系才能使椭圆的方程简单?【提示】以椭圆两焦点F1、F2的直线为x(y)轴,线段F1F2的垂直平分线为y(x)轴建系.焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)焦点(-c,0)与(c,0)(0,-c)与(0,c) a,b,c的关系c2=a2-b2(对应学生用书第20页)椭圆定义的理解及简单应用(1)已知F1(-4,0),F2(4,0),则到F1、F2两点的距离之和等于8的点的轨迹是________;(2)椭圆x 216+y 225=1的两焦点分别为F 1、F 2,过F 2的直线交椭圆于A 、B 两点,则△ABF 1的周长为________.【思路探究】 (1)动点的轨迹是椭圆吗?(2)怎样用椭圆的定义求△ABF 1的周长? 【自主解答】 (1)由于动点到F 1、F 2的距离之和恰巧等于F 1F 2的长度,故此动点的轨迹是线段F 1F 2.(2)由椭圆的定义,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 1|=2a , ∴|AF 1|+|BF 1|+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AB |=4a =20, ∴△ABF 1的周长为20.【答案】 (1)线段F 1F 2 (2)201.定义是判断点的轨迹是否为椭圆的重要依据,根据椭圆的定义可知,集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,a >0,c >0,且a 、c 为常数.当a >c 时,集合P 为椭圆上点的集合; 当a =c 时,集合P 为线段上点的集合; 当a <c 时,集合P 为空集.因此,只有|F 1F 2|<2a 时,动点M 的轨迹才是椭圆.2.注意定义的双向运用,即若|PF 1|+|PF 2|=2a (a >|F 1F 2|),则点P 的轨迹为椭圆;反之,椭圆上任意点到两焦点的距离之和必为2a .椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8D.32【解析】 如图,F 2为椭圆右焦点,连MF 2,则ON 是△F 1MF 2的中位线,∴|ON |=12|MF 2|,又|MF 1|=2,|MF 1|+|MF 2|=2a =10, ∴|MF 2|=8,∴|ON |=4. 【答案】 B求椭圆的标准方程求适合下列条件的椭圆的标准方程.(1)两焦点坐标分别为(-4,0)和(4,0)且过点(5,0);(2)中心在原点,焦点在坐标轴上,且经过(2,0)和(0,1)两点.【思路探究】 (1)焦点的位置确定了吗?怎样求出标准方程?(2)焦点位置不确定时该怎么办?有没有简便的求解方法?【自主解答】 (1)∵椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∴2a =(5+4)2+(5-4)2=10,∴a =5.又c =4,∴b 2=a 2-c 2=25-16=9, 故所求椭圆的标准方程为x 225+y 29=1.(2)法一 当椭圆的焦点在x 轴上时, 设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1.则⎩⎪⎨⎪⎧a =2,b =1. ∴所求椭圆的方程为:x 24+y 2=1;当椭圆的焦点在y 轴上时, 设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧0a 2+4b 2=1,1a 2+0b 2=1.则⎩⎪⎨⎪⎧a =1,b =2.与a >b 矛盾,故舍去. 综上可知,所求椭圆的标准方程为x 24+y 2=1.法二 设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵椭圆过(2,0)和(0,1)两点, ∴⎩⎪⎨⎪⎧4m =1,n =1,∴⎩⎪⎨⎪⎧m =14,n =1,综上可知,所求椭圆方程为x 24+y 2=1.1.求椭圆的标准方程的常用方法是待定系数法,即先由条件确定焦点位置,设出方程,再设法求出a 2、b 2代入所设方程,也可以简记为:先定位,再定量.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )和焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而达到了简化运算的目的.本例(2)若改为“经过(-23,1)和(3,-2)两点”,其他条件不变,试求椭圆的标准方程.【解】 设椭圆的标准方程为mx 2+ny 2=1 (m >0,n >0,m ≠n ),将点(-23,1),(3,-2)代入上述方程得⎩⎪⎨⎪⎧12m +n =1,3m +4n =1,解得⎩⎨⎧m =115,n =15,故所求椭圆的标准方程为x 215+y 25=1.求与椭圆有关的轨迹方程已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,垂足为P ′,点M 在PP ′上,并且PM →=2MP →,求点M 的轨迹.【思路探究】设动点M (x ,y ),P (x 0,y 0)→找M ,P 的关系→用点M 坐标表示点P 坐标→代入圆方程→得点M 轨迹【自主解答】 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x 0=x ,y 0=3y . ∵P (x 0,y 0)在圆x 2+y 2=9上,∴x 20+y 20=9.将x 0=x ,y 0=3y 代入得x 2+9y 2=9,即x 29+y 2=1. ∴点M 的轨迹是焦点在x 轴上的椭圆x 29+y 2=1.1.转代法(即相关点法)求轨迹方程:有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称作“转代法”.2.用转代法求轨迹方程大致步骤是:(1)设所求轨迹上的动点P (x ,y ),再设具有某种运动规律f (x ,y )=0上的动点Q (x ′,y ′);(2)找出P 、Q 之间坐标的关系,并表示为⎩⎪⎨⎪⎧x ′=φ1(x ,y ),y ′=φ2(x ,y );(3)将x ′,y ′代入f (x ,y )=0,即得所求轨迹方程.设A 、B 是椭圆x 225+y 216=1与x 轴的左、右两个交点,P 是椭圆上一个动点,试求AP中点M 的轨迹方程.【解】 设P (x 0,y 0),AP 的中点M (x ,y ),则⎩⎪⎨⎪⎧x =x 0-52,y =y 02,即⎩⎪⎨⎪⎧x 0=2x +5,y 0=2y ,代入椭圆方程x 225+y 216=1,得(2x +5)225+y 24=1,所以AP 中点M 的轨迹方程是(2x +5)225+y 24=1.已知B 、C 是两个定点,|BC |=8,且△ABC 的周长为18,求这个三角形顶点A 的轨迹方程.【思路探究】 (1)解答本题时如何建系更简单?(2)由△ABC 的周长为18能否得到A 到B 、C 的距离之和为定值?这满足椭圆的定义吗?【自主解答】 以过B ,C 两点的直线为x 轴,线段BC 的中点为原点,建立平面直角坐标系.由|BC |=8,可知点B (-4,0),C (4,0). 由|AB |+|BC |+|AC |=18, 得|AB |+|AC |=10>|BC |=8.因此,点A 的轨迹是以B ,C 为焦点的椭圆,这个椭圆上的点与两个焦点的距离之和为2a =10,即a =5,且点A 不能在x 轴上.由a =5,c =4,得b 2=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).1.本题紧扣椭圆的定义求得了顶点A 的轨迹方程,解答时不要漏掉y ≠0这一条件. 2.用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义,若符合椭圆的定义,则用待定系数法求解即可.已知A (-12,0),B 是圆F :(x -12)2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P 点,则动点P 的轨迹方程为________.【解析】 如图,依题意知|PA |=|PB |,所以|PA |+|PF |=|PB |+|PF |=|BF |=2,所以点P 的轨迹为以A (-12,0),F (12,0)为焦点的椭圆,其方程可设为x 2+y 2b 2=1,又因为c =12,a=1,所以b 2=a 2-c 2=34,从而所求的动点P 的轨迹方程为x 2+43y 2=1.【答案】 x 2+43y 2=1(对应学生用书第21页)忽略椭圆标准方程中a >b >0的条件致误方程x 2m 2+y 2(m -1)2=1表示焦点在y 轴上的椭圆,求实数m 的取值范围.【错解】 方程x 2m 2+y 2(m -1)2=1表示焦点在y 轴上的椭圆,则m 2<(m -1)2,解得m <12,所以实数m 的取值范围是(-∞,12).【错因分析】 错解只注意了焦点在y 轴上,而没有考虑m 2>0且(m -1)2>0,这是经常出现的一种错误,解题时要注意.【防范措施】 椭圆的焦点在x 轴上时,其方程为x 2a 2+y 2b 2=1(a >b >0),焦点在y 轴上时,其方程为y 2a 2+x 2b 2=1(a >b >0),应用时一定要注意条件a >b >0,否则极易将焦点位置弄错.【正解】方程x 2m 2+y2(m -1)2=1表示焦点在y 轴上的椭圆,则⎩⎪⎨⎪⎧m 2>0,(m -1)2>0,(m -1)2>m 2,解得⎩⎪⎨⎪⎧m ≠0,m ≠1,m <12.故实数m 的取值范围是(-∞,0)∪(0,12).1.熟悉椭圆定义、标准方程,熟练掌握常用基本方法的同时,要注意揣摩解题过程所运用的数学思想方法,以达到优化解题思路、简化解题过程的目的,但切忌只想不算,形成解题思路后,一定要动手计算,没有形成结论就不应该停手.2.在运用椭圆的定义解题时,一定要注意隐含条件a>c.3.注意焦点分别在x轴和y轴上对应的椭圆方程的区别和联系.4.求椭圆的标准方程常用的方法是定义法和待定系数法.(对应学生用书第22页)1.设P是椭圆x225+y216=1上的一点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于() A.10B.8C.5D.4【解析】由椭圆的定义知|PF1|+|PF2|=2a=2×5=10.【答案】 A2.椭圆x216+y225=1的焦点坐标是()A.(±4,0) B.(0,±4)C.(±3,0) D.(0,±3)【解析】∵a2=25,b2=16且焦点在y轴上,∴c=3,焦点坐标为F1(0,-3),F2(0,3).【答案】 D3.一椭圆的两个焦点坐标分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为( )A.x 2100+y 236=1 B.y 2400+x 2336=1 C.y 2100+x 236=1 D.y 220+x 212=1 【解析】 由题意c =8,a =10且焦点在y 轴上,∴b 2=a 2-c 2=100-64=36,∴方程为y 2100+x 236=1. 【答案】 C4.已知一椭圆标准方程中b =3,c =4,求此椭圆的标准方程.【解】 ∵b 2=9,c 2=16,∴a 2=b 2+c 2=25.∵此椭圆的焦点不确定,∴标准方程为x 225+y 29=1或y 225+x 29=1.。

椭圆及其标准方程一优秀教学设计精选全文完整版

 椭圆及其标准方程一优秀教学设计精选全文完整版

可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。

2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。

教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。

人教版高中选修2-1《椭圆及其标准方程》教学设计

人教版高中选修2-1《椭圆及其标准方程》教学设计

人教版高中选修2-1《椭圆及其标准方程》教学设计《人教版高中选修2-1《椭圆及其标准方程》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标知识与技能:(1)初步掌握椭圆的定义及其标准方程。

(2)能对两个根号的代数式化简。

过程与方法:(1)能动手从圆中做出椭圆和用绳子画出椭圆,能将它转化成数学语言。

(2)能在分组讨论及引导下化简两个根号的代数式。

(3)类比圆的学习过程学习椭圆。

情感与价值观:体会数形结合的思想,方程思想,类比的思想在本节课中的应用。

感悟椭圆及椭圆方程的对称美。

教学重点:掌握椭圆的定义及其标准方程,理解坐标法的基本思想。

教学难点:椭圆标准方程的推导与化简。

教学过程:(一)椭圆概念的形成画一画,椭圆初步印象师:前面我们学习了圆,现在我们在圆中进行一个作图游戏,如图,圆的圆心为,在圆内取异于一定点,在圆上取一点,连接,做出线段的垂直平分线交于,然后在圆上依次取,依次得。

最后用一条光滑的曲线连接,。

为了方便大家画图,我给每个小组设计了一个画板。

请各小组合作完成作图。

(PPT演示一个作图例子)师:大家得到了什么图形呢?学生:椭圆师:为了图形更加的准确,我们用计算机验证一下。

(PPT几何画板演示)师:的确是一个椭圆,生活中还有哪些物品是椭圆形的呢?学生:师:我也准备了几个,请大家看看。

(PPT演示图片)师:椭圆就是我们这节课要研究的对象。

(PPT演示标题)。

通过本节课的学习,将达到以下目标。

(PPT演示三维目标)师:我们对椭圆已经有了一个初步印象,请分析刚才做出椭圆的过程中,哪些内容是确定的,哪些内容是变化的呢?(PPT演示作图例子) 学生:师:在平面内确定两个定点,动点到两个定点的距离之和为定值。

所以我们可以取一条定长的细绳,把它的两端都固定在图板上,套上铅笔,拉紧绳子,移动笔尖,就可以画出椭圆。

请各小组试一试。

议一议,椭圆定义的条件师:大家注意到,板上有3根绳子,大家选的那一根?学生:师:如果用另外两根,能画出什么图形呢?学生:一根画出线段,另外一根画不出任何图形。

人教A版高中数学选修2-1教案椭圆及其标准方程

人教A版高中数学选修2-1教案椭圆及其标准方程
例3设点 的坐标分别为 ,.直线 相交于点 ,且它们的斜率之积是 ,求点 的轨迹方程.
变式:它们的斜率之积是m(m<0),点 的轨迹是什么?
求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.
(教师引导——示范书写)
例4在直角坐标系中,设椭圆C: ( )的左右两个焦点分别为 ,过右焦点 且与 轴垂直的直线 与椭圆C相交,其中一个交点的坐标为( ,1)。
情感态度与价值观
通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神,同时培养学生运动、变化和对立统一的观点。
教学用具
教学重点
椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程.
教学难点
椭圆标准方程的建立和推导
教学步骤及要点:
4.举例求与椭圆有关的点的轨迹方程
例1在圆 上任取一点 ,过点 作 轴的垂线段 , 为垂足.当点 在圆上运动时,线段 的中点 的轨迹是什么?
相关点法:寻求点 的坐标 与中间 的关系,然后消去 ,得到点 的轨迹方程.
(教师引导——示范书写)
例2已知动圆M过定点A(-3,0),并且在定圆 的内部与其相切,求动圆圆心M的轨迹方程。
(2)设 是椭圆上任意一点,椭圆的焦距为 ,焦点 的坐标分别为 , ,
(3)又设 与 的距离之和等于 ,根据椭圆的定义,则有 ,
(4)用两点间的距离公式代入,画简后的 ,此时引入 要讲清楚.
即椭圆的标准方程是 .根据对称性,若焦点在 轴上,则椭圆的标准方程是 .两个焦点坐标 .
通过椭圆的定义及推导,给学生强调两个基本的等式: 和
(1)求椭圆的方程;(2)设椭圆C的一个顶点为B(0,-b),直线交椭圆C于另一点N,求 的面积

人教版数学选修2-1《椭圆及其标准方程》教学设计

人教版数学选修2-1《椭圆及其标准方程》教学设计

人教版数学选修2-1《椭圆及其标准方程》教学设计
教材:普通高中课程标准实验教科书选修2-1
章节:第二章 2.2.1 椭圆及其标准方程(第一课时)
面向学生:高二年级
普通高中课程标准实验教科书选修2-1
椭圆及其标准方程(第一课时)
一、教学目标:
1.了解椭圆的实际背景,感受椭圆在刻画现实世界和解决实际问题中的作用. 2.掌握椭圆的定义,会求椭圆的标准方程.
3.培养探索数学的兴趣,培养探索数学的兴趣,提升数学抽象、数学建模、数学运算的数学素养。

二、二、教学重点、难点:
1.重点:椭圆定义的归纳及其标准方程的推导。

2.难点:椭圆标准方程的推导。

三、三、教学过程设计。

椭圆及其标准方程教案

椭圆及其标准方程教案

椭圆及其标准方程教案•相关推荐椭圆及其标准方程教案(精选5篇)作为一位杰出的教职工,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

那么应当如何写教案呢?以下是小编为大家整理的椭圆及其标准方程教案(精选5篇),仅供参考,希望能够帮助到大家。

椭圆及其标准方程教案1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程。

(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力。

(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。

教学重点:椭圆的定义和椭圆的标准方程。

教学难点:椭圆标准方程的推导。

教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。

教具准备:多媒体课件和自制教具:绘图板、图钉、细绳。

教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片。

(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程。

提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆。

人教A版高中数学选修2-1教案:椭圆方程及几何性质

人教A版高中数学选修2-1教案:椭圆方程及几何性质

第1讲 椭圆的标准方程及其性质一.教学目标:1.掌握椭圆的定义、几何图形、标准方程及简单性质;2.了解椭圆的简单应用;3.理解数形结合的思想.二.教学重点,难点:1.重点:利用定义法、待定系数法求椭圆的标准方程.(重点)2.难点:会求简单的与椭圆有关的轨迹方程.(难点)三.教学方法:一学、二记、三应用. 四.知识梳理1.椭圆的定义:把平面内与两个定点12,F F 的(大于12||F F )的点的轨迹叫做椭圆,叫做椭圆的焦点, 叫做椭圆的焦距. 2、椭圆的定义应注意以下几点:当|F 1F 2|=2a 时,其轨迹为线段F 1F 2; 当|F 1F 2|>2a 时,其轨迹不存在.只有当|F 1F 2|<2a 时,其轨迹才是椭圆。

椭圆的定义表达式为:|PF 1|+|PF 2|=2a 〔其中|F 1F 2|<2a 〕 3.椭圆的标准方程x 2y2y 2x2〔1〕一类是与坐标系无关的椭圆本身故有的性质:长轴长、短轴长、焦距、离心率等. 〔2〕一类是与坐标系有关的性质:顶点坐标、焦点坐标等.在解题时要特别注意第二类性质,应根据椭圆方程的形式,首先判断椭圆的焦点在哪条坐标轴上,然后再进行求解.5.椭圆的几何性质与椭圆的位置、大小和形状的关系〔1〕椭圆的焦点决定椭圆的位置. 〔2〕椭圆的范围决定椭圆的大小. 〔3〕椭圆的离心率决定椭圆的形状.离心率越大,椭圆越“扁〞;离心率越小,椭圆越“圆〞。

〔4〕焦点三角形:椭圆上的点P 与焦点F 1,F 2假设构成三角形,则称△PF 1F 2为焦点三角形.焦点三角形问题注意与椭圆定义、正弦定理、余弦定理的联系.〔5〕对称性是椭圆的重要性质,椭圆的顶点是椭圆与对称轴的交点,是椭圆的上重要的特殊点,在作图时应先确定这些点.五.课前测试:1.椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .92.假设F 1(3,0),F 2(-3,0),点P 到F 1,F 2距离之和为10,则P 点的轨迹方程是( )A .x 225+y 216=1B .x 2100+y 29=1C .y 225+x 216=1D .x 225+y 216=1或y 225+x 216=13.设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,假设△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A .22B .2-12C .2-2D .2-14.假设方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是__________.六.典例剖析:题型一 椭圆定义的运用例1〔1〕判断以下结论的正误.(正确的打“√〞,错误的打“×〞)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( )(3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( )(4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同.( )〔2〕动点P (x ,y )的坐标满足x 2+(y +7)2+x 2+(y -7)2=16,则动点P 的轨迹方程为(3)(20xx·河北保定一模)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为____________________.(4)(20xx·广东中山月考)椭圆C :x 216+y 28=1,F 1,F 2为椭圆的左、右焦点,点P 在C 上且∠F 1PF 2=π3,则△F 1PF 2的面积为________.(5)〔选讲提升〕(20xx·河南郑州三模)椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是________.课堂小结:(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题. (2)焦点三角形的应用:椭圆上一点P 与椭圆的两焦点组成的三角形通常称为“焦点三角形〞,利用定义可求其周长;利用定义和余弦定理可求|PF 1||PF 2|;通过整体代入可求其面积等. 课堂练习1:〔1〕.(1)△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12(2)F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.74C.72D.752题型二 求椭圆的标准方程例2求适合以下条件的椭圆的标准方程:(1)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点;〔2〕椭圆经过点⎝ ⎛⎭⎪⎫63,3和点⎝ ⎛⎭⎪⎫223,1课堂小结: 求椭圆标准方程的2种常用方法是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1〔2〕.(20xx·长沙高三一模)椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( )A .x 22+y 22=1 B .x 22+y 2=1C .x 24+y 22=1D .y 24+x 22=1题型三求椭圆的几何性质例3 (1)(20xx·全国卷Ⅱ)F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B.12C.13 D.14(2) (20xx·贵州质检)椭圆x 2m -2+y 210-m=1的长轴在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5〔3〕椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,上顶点为A ,右顶点为B ,假设△F AB 外接圆的圆心P (m ,n )在直线y =-x 的左下方,则该椭圆离心率的取值范围为( )A.⎝⎛⎭⎫22,1B.⎝⎛⎭⎫12,1C.⎝⎛⎭⎫0,22 D.⎝⎛⎭⎫0,12(4)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为( )A .1B .23C .4D .43课堂小结:(1)求椭圆离心率的3种方法①直接求出a ,c 的值,利用离心率公式直接求解.②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.③数形结合,根据图形观察,通过取特殊值或特殊位置求出离心率.(2)椭圆中有关范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等式关系.课堂练习3:(1)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .P 是椭圆上一点,位于第一象限,满足PF 2⊥F 1F 2,点Q 在线段PF 1上,且F 1Q →=2QP →.假设F 1P →·F 2Q →=0,则e 2=( )A.2-1 B .2-2C .2-3D.5-2(2)中心为原点O 的椭圆的焦点在x 轴上,A 为该椭圆右顶点,P 为椭圆上一点,假设∠OP A =90°,则该椭圆的离心率e 的取值范围是( )A.⎣⎡⎭⎫12,1B.⎝⎛⎭⎫22,1C.⎣⎡⎭⎫12,63D.⎝⎛⎭⎫0,22七.家庭作业:1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .52.(20xx·开封模拟)曲线C 1:x 225+y 29=1与曲线C 2:x 225-k +y 29-k=1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等3.实数4,m,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为( )A.306B.7C.306或7D.56或74.(20xx·贵州六盘水模拟)点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,假设点P在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .4B .6C .8D .125.焦点在x 轴上的椭圆方程为x 2a 2+y 2b2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A.14B.13C.12D.236.正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b2=1(a >b >0)上,假设椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫5-12,1 B.⎝ ⎛⎭⎪⎫0,5-12 C.⎝⎛⎭⎪⎫3-12,1 D.⎝⎛⎭⎪⎫0,3-127.(20xx·安徽黄山一模)圆(x -2)2+y 2=1经过椭圆x 2a 2+y 2b2=1(a >b >0)的一个顶点和一个焦点,则此椭圆的离心率e =________.8.(20xx·南充模拟)椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l交椭圆于A ,B 两点,假设|BF 2|+|AF 2|的最大值为5,则b 的值是9.(20xx·云南昆明质检)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m取最大值时,点P 的坐标是.10.(20xx·湖南长沙望城第三次调研)P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径P A 相交于点M ,记点M 的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标.。

人教A版高中数学选修21椭圆及其标准方程教案

人教A版高中数学选修21椭圆及其标准方程教案

课题:椭圆及其标准方程教材:普通高中课程标准试验教科书——《数学》选修2-1 一、教材分析:《椭圆及其标准方程》是高中数学新教材选修2—1第二章第二节的第一课时。

从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础;所以说,无论从教材内容,还是从教学方法上都是起着承上启下的作用,它是学好本章内容的关键。

因此搞好这一节的教学,具有非常重要的意义。

二、教学目标分析:(一)知识与技能目标: 准确理解椭圆的定义,掌握椭圆的标准方程及其推导.(二)过程与方法目标: 通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力.(三)情感态度与价值观目标:(1)通过椭圆定义的获得培养学生探索数学的兴趣.(2)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、教学重点、难点:(一).重点:椭圆定义及其标准方程(二).难点:椭圆标准方程的推导四、教学方法与教学手段采用启发和探究式教学相结合的教学模式,即在教师的引导下,创设情境,学生利用课前准备的工具亲自动手画出椭圆,并讨论椭圆上的点满足的条件,以此来充分调动学生学习的主动性和积极性,发展学生数形结合,等价转换等思想,培养学生综合运用知识解决问题的能力。

教学手段:计算机课件辅助教学。

五、教学过程:(一)认识椭圆,探求规律:1.对椭圆的感性认识.通过演示课前老师准备的有关椭圆的图片,让学生从感性上认识椭圆.2.通过演示动画,展示椭圆的形成过程,使学生认识到椭圆是点按一定“规律”运动的轨迹.(二)动手实验,亲身体会用上面所总结的规律,指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备细绳),并以此了解椭圆上的点的特征.请两名同学上黑板画(三)归纳定义,完善定义我们通过动画演示,实践操作,对椭圆有了一定的认识,下面由同学们归纳椭圆的定义.椭圆定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F =2c )的点的轨迹叫做椭圆。

人教A版高中数学选修2-1第二章第二节《椭圆及其标准方程》教学设计

人教A版高中数学选修2-1第二章第二节《椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计第一课时一、内容和内容解析(一)内容椭圆及其标准方程(二)内容解析解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。

本节课是《普通高中课程标准实验教科书·数学》(人民教育出版社,课程教材研究所和中学数学课程教材研究开发中心编著)A版选修2-1第二章第二节《椭圆及其标准方程》第一课时。

在选修2-1第二章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。

由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用。

本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等。

因此,教学时应重视体现数学的思想方法及价值。

基于以上分析,确定本节课的教学重点是:椭圆的定义、椭圆的标准方程、坐标化的基本思想。

二、学生学情分析这节内容是继学生学习了直线和圆的方程,对曲线和方程的概念以及用坐标法研究几何问题的方法有了一些了解和认识,基本能运用求曲线方程的一般方法求曲线方程的基础上,进一步学习用坐标法研究曲线的第一课,具有巩固旧知、熟练方法、拓展新知的承上启下作用,可为研究双曲线、抛物线提供基本模式和理论基础,是发展学生自主学习能力,培养创新能力的好素材。

三、目标和目标解析(一)目标1.理解椭圆的定义;2.理解椭圆的标准方程的推导,在化简椭圆方程的过程中提高学生的运算能力;3.掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。

(二)目标解析1.经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力;通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风;充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识;2.巩固用坐标化的方法求动点轨迹方程;重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣;通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美;3.对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识。

《椭圆及其标准方程》教案

《椭圆及其标准方程》教案

《椭圆及其标准方程》教案一、教学内容解析本节课是人教A版选修2-1中的第二章第二节第一课时的内容,其主要内容是研究椭圆的定义及其标准方程,属于概念性知识。

解析几何是在直角坐标系的基础上,利用代数方法解决几何问题的一门学科。

从知识上讲,本节是在直线和圆的基础上,对解析法的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上讲,为进一步研究双曲线、抛物线提供了基本模式和理论基础;从教材编排上讲,三种圆锥曲线独编为一章,体现椭圆的重要地位。

解析几何的意义主要表现在数形结合的思想上,在研究椭圆定义和方程的过程中,几何直观观察和代数严格推导相互结合,同时要借助圆作类比,用类比的思想为学生的思维搭桥铺路。

因此本节课内容起到了承上启下的重要作用,是本章和本节的重点。

本节课的教学重点是:椭圆的定义及其标准方程。

二、学生学情分析(1)学生已初步掌握用坐标法研究直线和圆的方程;(2)学生已初步熟悉求曲线方程的基本步骤;(3)学生对于利用数形结合思想解决问题的意识还不够强;(4)对含有两个根式方程的化简能力薄弱。

三、教学目标知识目标:(1)理解椭圆的定义。

(2)掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。

过程与方法:经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质。

情感目标:培养学生勇于探索,善于发现的创新思想,形成实事求是的科学态度并体会数学的简洁美、对称美。

教学难点及突破策略:1.本节课的教学难点:椭圆的标准方程的推导与化简。

2.突破策略:引导学生类比建立圆的方程的方法,经过学生独立思考与交流讨论,在椭圆上建立恰当的直角坐标系;化简动点满足的代数方程时,引导学生注意观察方程的特点,对其进行移项变形后再通过平方运算进行化简,配合多媒体演示。

四、教学策略分析1.为了充分调动学生学习数学的积极性,促进学生主动思考,采用问题串引导探究活动,以问题作为引领,诱导学生积极思考;2.利用手工制作的教具和现代教育手段,把教学内容与教具及现代教育手段合理整合。

《椭圆及其标准方程》(第一课时)教学设计

《椭圆及其标准方程》(第一课时)教学设计

《椭圆及其标准方程》(第一课时)教学设计一、教学内容分析教材选自人教A版《普通高中课程标准实验教科书》数学选修2-1.《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例。

椭圆的标准方程是圆锥曲线方程研究的基础,它的学习方法对整个这一章具有导向和引领作用.一方面,它是对前面所学的运用“代数方法研究几何问题”的又一次实际演练,同时它也是进一步研究椭圆几何性质和双曲线、抛物线的基础;另一方面,教科书以椭圆作为学习圆锥曲线的开始和重点,并依此来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,为我们后面研究双曲线、抛物线这两种圆锥曲线提供了基本模式和方法。

因此本节课有承前启后的作用,是本章和本节的重点内容。

椭圆是通过描述椭圆形成过程进行定义的,作为椭圆本质属性的揭示和椭圆方程建立的基石,这是本节课的一个教学重点;而坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例,让学生亲身经历椭圆概念形成的数学化过程,并通过探究得到椭圆的标准方程,有利于培养学生观察分析、抽象概括的能力。

学生对“曲线与方程"的内在联系仅在“圆的方程"一节中有过一次感性认识,并未真正有所感受。

通过本节学习,学生一方面认识到椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础。

根据以上分析,确定本课时的教学难点和教学重点分别是:教学重点:掌握椭圆的定义及标准方程,体会坐标法的应用。

教学难点:椭圆概念的深入理解及选择不同的坐标系推导椭圆的标准方程.二、学生学情分析在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识。

因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力。

而本节课要求学生通过自己动手亲自作出椭圆并且还要利用曲线方程的知识推导出方程,与前面学生熟悉的圆相比,对学生的抽象、分析、实践的能力要求比较高,可能困难要大一点,导致学生在学习中可能出现的困难是:学生动手作图慢;用尺规作图的思路可能出现障碍;受教材的影响,学生选择坐标系的思维可能受到限制;方程的化简也是一个难点.三、教学目标与目标解析根据新课程标准对本节课的要求以及对教材和学生情况的分析,本节课教学目标确定为:1、感受建立曲线方程的基本过程,使学生理解椭圆的定义。

新人教A版(选修2-1)《椭圆及其标准方程》word教案

新人教A版(选修2-1)《椭圆及其标准方程》word教案

学校:临清一中学科:数学编写人:周晨昌审稿人:张林椭圆及其标准方程【教学目标】1使学生理解并掌握椭圆的定义、标准方程及其推导过程,并能进行简单应用.2•通过数形结合,教学生猜想,培养学生的探索发现能力.3•帮助学生树立运动变化的观点,培养学生的探索能力和进取精神.【教学重难点】教学重点:对椭圆的定义的理解及其标准方程记忆,教学难点:椭圆标准方程的推导.【教学过程】一、复习并引入新课师:在解析几何中,我们通常把动点按照某种规律运动形成的轨迹叫做曲线•曲线和方程的关系是什么?生:如果曲线上任意一点的坐标都是方程f(x , y)=0的解,同时以方程f(x , y)=0的解为坐标的点又都在曲线上,那么方程就是曲线的方程,曲线就是方程的曲线.师:圆的定义是:在平面上,至U定点的距离等于定长的点的轨迹;那么当动点满足哪些条件时轨迹仍然是圆?生:①平面上到两个定点 (距离为2d)距离的平方和等于定值 a(a >2d2)的点的轨迹是圆;②平面上,与两个定点连线的斜率乘积为-1的点的轨迹是圆.(以上结论在本节课之前书上习题中,请学生自己总结. )师:由此可见,平面上到两个定点距离或与两个定点连线满足某种条件的点的轨迹比较特殊,下面就从这点出发研究.二、讲授新课1 •请学生观察计算机演示如图2-23,并思考两个问题.图 2-24(1) 动点是在怎样的条件下运动的? (2) 动点运动出的轨迹是什么? 观察后请学生回答.生:动点是在“到两个定点距离之和等于定值”这一条件下 运动的,轨迹是椭圆.师:椭圆这种曲线你在哪些地方见过? 生:立体几何中圆的直观图是椭圆. 生:人造卫星的运行轨道.师:好,这种曲线在实际生活中是很常见的,很多物体的横截面的轮廓线也是椭圆, 可见学习这种曲线的有关知识是十分必要的.(联系实际生活进行教学可以使教学内容亲切,激发学生的学习热情. )师:是否到两个定点距离之和等于定值的点的轨迹就一定是椭圆呢? (学生可能一时答不出,教师可请学生观察计算机演示如图2-24并思考.)师:当两个定点位置变化时,轨迹发生了怎样的变化?生:当两个定点重合时,轨迹变化为圆;当定值等于两个定点间的距离时,轨迹是一条线段.师:可见圆是椭圆的特例•据此你能得到什么结论?生:平面上不存在到两个定点距离之和小于定值的点.说明:观察计算机演示“通过两焦点位置的改变而引起椭圆形状变化的课件”,首先从一个点分裂为两个点,曲线从圆变成椭圆;随着两点间距离的增大,椭圆越来越扁,直到动点到此两点距离之和恰好等于两点间距离时,动点的运动曲线变成了线段,然后随着两点间距离的缩小,曲线再变成椭圆;当两点重合时,曲线又变成了圆,如此反复”如图2-24 .从而启发学生发现椭圆定义中的条件,然后师生共同小结完成下表,教师可用投影进行完整的总结.在平面上到两个定点 F i, F2距离之和等于定值 2a的点的轨迹为椭圆(加〉厲巧|);弋线段(為=|F]Fj)1不存在(2枝<|耳兔).最后由学生口述教师板书:把平面内与两个定点F i, F2距离之和等于定值 2a的点的轨迹叫做椭圆,其中2a> IF1F2I .顺便可以指出两个定点叫做焦点,两个焦点之间的距离叫做焦距,用2c(c > 0)表示.2.推导椭圆的标准方程.师:下面我们一起来推导椭圆的方程.教师提出问题:求到两个定点F i, F2距离之和等于定值 2a(2a >|F1F2|)的点的轨迹.师:求曲线方程的步骤是什么?生:求曲线方程的步骤是:①建立坐标系设动点坐标:②寻找动点满足的几何条件;③把几何条件坐标化;④化简得方程;⑤检验其完备性.师:那么此题应如何建立坐标系呢?建立直角坐标系一般应符合简单和谐化的原则,如使关键点的坐标、关键几何量(距离、直线的斜率等)的表达式简单化,注意要充分利用图形的特殊性.(让学生思考后回答)教师归纳大体上有如下三个方案:①取一个定点为原点,以 F i , F 2所在直线为x 轴建立直角坐标系,如图 2-25 ;②,如图2-27,推导出方程.解析:i)建系:以F i , 并设椭圆上任意一点的坐标为F 2所在直线为x 轴,线段F i F 2的中点为原点建立直角坐标系, M(x, y),设两定点坐标为:F i (-c , 0) , F 2(C , 0), 2) 则 M 满足:|MF i |+|MF 2|=2a ,3) 坐标化即:J (x 二)行戸+J (x-5仃沪二2乳4) 化简.师:我们要化简方程就是要化去方程中的根式,你学过什么办法?②以F i ,F 2所在直线为 ③以F i ,F 2所在直线为 y 轴,线段F 1F 2的中点为原点建立直角坐标系,如图 2-26 ;x 轴,线段F i F 2的中点为原点建立直角坐标系,最后选定方案團 2-25生:化去方程中的根式应该用移项平方、再移项再平方的办法.师:好,下面我们就一起来完成这部分计算. (师生共同完成)十 C)? =2a- +y ;两边平方得:(x + c)2 + y 2 - 4a 2 -4a^(x - c)a + y 2 + (K - c)2 +『, 即f w J(n)2 + J ・两边再平方得:422 2 2 2 2 2 2 2 2a -2a cx+c x =a x -2a cx+a c +a y ,整理得:22 222 22 2(a -c )x +a y =a (a -c ).师:还有其它化简的方法吗? 一般遇到化简根式的问题你应该想到什么?生:共轭根式.师:好,下面我们就通过构造共轭根式、解方程组的办法化方程中的根式.(师生共同完成•此部分内容可根据学生情况选讲)2 2 2 2(x+c) +y -[(x-c) +y ]=4cx』(注+沪+寸=—+ a ©两边平方得 1 x 3 + 2cac + c 3 + y 3 = a a + 2cx + ——化简得: / 2 2、 2 2 2 2/ 2 2、 (a -c )x+a y =a (a -c ).师:到此我们已经推导出了椭圆的方程,但此形式还不够简洁,且x, y 的系数形式不一致,为了使方程形式和谐且便于记忆和使用,我们应该如何将方程进行变形呢? (这里,数学审美成为研究发现的动力. )学生此时可能还不理解,教师可启发学生观察图形如图 2-28,看看a 与c 的关系如何?②,由②十①得:③.①+③得:师:请结合图形找出方程中 a、c的关系.生:根据椭圆定义知道 a2> c2,且如图所示,a与c可以看成Rt△ MOF的斜边和直角边.师:很好!那我们不妨令 b2=a2-c2,则方程就变形为 b2x2+a2y2=a2b2,如果再化简,你会得到什么形式的方程呢?生方程变册扌+春1・⑴师:其中a与b的关系如何?为什么?生:a> b>0,因为a与b分别是Rt△ MOF的斜边、直角边.教师指出(*)式就是焦点在x轴上的椭圆的标准方程,最后说明:1)方程中条件a>b>0不可缺少(结合图形),当a=b>0时,就化成圆心在原点的圆的方程,从而进一步说明圆是椭圆的特例;(这实际上是一种极限情况.)2)b的选取虽然是为了方程形式简洁与和谐,但也有实际的几何意义,即:b2=a2-c2;3)请学生猜想:若用方案③ (即焦点在y轴上),得到的方程形式又如何呢?(启发学生根据对称性进行猜想)生t方程形式为^ + ― = 1- a y师:请同学们课后进行推导验证.师:此时方程中a与b的关系又如何?(结合图形请学生将条件 a>b>0补上.)三、例题例1. 平面内两个定点间的距离为 8,写出到这两个定点距离之和为 10的点的轨迹方程.解析:所求轨迹是椭圆,两个定点为焦点,用R, F2表示,不妨以R, F2所在直线为x轴,线段F1F2的中垂线为y轴,建立直角坐标系,则 2a=10, 2c = 8,因为b2=a2-c2=9, 故所求轨迹方程为寻+ ¥“•(另一种情况壬+ ^T也可以,但只有一解)点评:很多学生不建立坐标系就写出了方程•强调建立不同的坐标系会得到不同的方程,因此当题目中没有给定坐标系时,首先应选择合适的坐标系.变式训练1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:椭圆及其标准方程
教材:普通高中课程标准试验教科书——《数学》选修2-1 一、教材分析:
《椭圆及其标准方程》是高中数学新教材选修2—1第二章第二节的第一课时。

从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础;所以说,无论从教材内容,还是从教学方法上都是起着承上启下的作用,它是学好本章内容的关键。

因此搞好这一节的教学,具有非常重要的意义。

二、教学目标分析:
(一)知识与技能目标: 准确理解椭圆的定义,掌握椭圆的标准方程及其推导.
(二)过程与方法目标: 通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力.
(三)情感态度与价值观目标:
(1)通过椭圆定义的获得培养学生探索数学的兴趣.
(2)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.
三、教学重点、难点:
(一).重点:椭圆定义及其标准方程
(二).难点:椭圆标准方程的推导
四、教学方法与教学手段
采用启发和探究式教学相结合的教学模式,即在教师的引导下,创设情境,学生利用课前准备的工具亲自动手画出椭圆,并讨论椭圆上的点满足的条件,以此来充分调动学生学习的主动性和积极性,发展学生数形结合,等价转换等思想,培养学生综合运用知识解决问题的能力。

教学手段:计算机课件辅助教学。

五、教学过程:
(一)认识椭圆,探求规律:
1.对椭圆的感性认识.通过演示课前老师准备的有关椭圆的图
片,让学生从感性上认识椭圆.
2.通过演示动画,展示椭圆的形成过程,使学生认识到椭圆是
点按一定“规律”运动的轨迹.
(二)动手实验,亲身体会
用上面所总结的规律,指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备细绳),并以此了解椭圆上的点的特征.
请两名同学上黑板画
(三)归纳定义,完善定义
我们通过动画演示,实践操作,对椭圆有了一定的认识,下面由同学们归纳椭圆的定义.
椭圆定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F =2c )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.
在归纳椭圆定义的过程中,教师根据学生回答的情况,不断引导他们逐步加深理解并完善椭圆的定义,在引导中突出体现“和”,“常数”及“常数”的范围等关键词与相应的特征.
提问:改变两定点之间的距离,使其与绳长相等,画出的图形还是椭圆吗?(动画演示)当绳长小于两定点之间的距离时,还能画出图形吗?(动画演示)
通过动画得出当两定点间距离等于线段||21F F 长度时的轨迹(为一条线段)和当两定点距离大于线段||21F F 长度时的轨迹(不存在),由学生完善椭圆定义中常数的范围.
例.用定义判断下列动点M 的轨迹是否为椭圆.
(1)平面内,到)0,2(),0,2(21F F -的距离之和为6的点的轨迹.(是)
(2)平面内,到)2,0(),2,0(21F F -的距离之和为4的点的轨迹.(不是)
(3)平面内,到)0,2(),0,2(21F F -的距离之和为3的点的轨迹.(不是)
(四)椭圆标准方程的推导:
1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.
2.提问:如何建系,使求出的方程最简?
由学生讨论,请学生代表汇报研讨结果.
(以下过程按照焦点在x 轴上的方案)
①建系:以21,F F 所在直线为x 轴,以线段21F F 的垂直平分线为y 轴,建立直角坐标系。

②设点:设),(1y x M 是椭圆上任意一点,为了使21,F F 的坐标简单及化简过程不那么繁杂,设12||2(0)F F c c =>,则12(,0),(,0)F c F c -
设M 与两定点21,F F 的距离的和等于a 2。

相关文档
最新文档