基于FPGA的简易数字示波器工作原理及方框图

合集下载

简易数字存储示波器实验报告

简易数字存储示波器实验报告

目录一.数字存储示波器简介及设计思路 (3)2.实验设计原理 (5)三、系统各模块的简单说明 (5)四.最终实现功能说明 (8)五.实验设计实现功能模块具体分析 (9)六、实验硬件分配及总体仿真波形 (15)一、数字存储示波器简介及设计思路数字存储示波器是20世纪70年代初发展起来的一种新型示波器。

这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。

而我们此次要设计的便是一种简易的数字存储示波器。

数字存储示波器可实现以下功能。

通过对来自信号源的信号进行采集(可分为实时取样和等效时间取样),将获得的值存储在内置RAM内,后期操作有对波形的显示、波形的测量(如测量频率、幅值、上升下降时延等)和波形处理(如双踪两波形的相加、相减、X-Y显示等等)。

其工作示意图如下所示:而我们设计的简易数字存储示波器实现的功能有对单一信道信号进行采样存储显示(分实时显示和存储后期调用显示)、对信号进行频率测量并显示数值、对波形进行上移、下移、扩展、收缩操作、示例波形演示(包括正弦波、锯齿波、方波)。

我们所用的硬件有实验箱上的高速的模数转换器TLC5510、FPGA芯片、单片机、LCD显示屏、FPGA内置RAM、外围扩展的RAM和键盘。

以下框图为实验箱硬件使用说明图:下移、扩展、收缩和测频的处理。

二、实验设计原理设计总体逻辑思路如下:系统开始工作时,通过按键选择是否开始检测波形,若是,则首先由频率检测器检测频率,然后根据测得的频率选择适当的采样频率。

信号源产生的信号通过A/D采样,采样结果保存在FPGA内置的存储器中。

待存储完一帧数据时进行输出到LCD上显示。

待显示100ms后暂停100ms以消除视觉暂留效应,然后准备下一帧数据的存储和显示。

如若需要存储波形,则在当前显示的同时,将采样得到的数据送往片外的SDRAM存储,直至存储结束或者存储容量达到上限。

数字示波器及其简单原理图

数字示波器及其简单原理图

数字示波器及其简单原理图数字示波器可以分为数字存储示波器(DSOs)、数字荧光示波器(DPOs)、混合信号示波器(MSOs)和采样示波器。

数字式存储示波器与传统的模拟示波器相比,其利用数字电路和微处理器来增强对信号的处理能力、显示能力以及模拟示波器没有的存储能力。

数字示波器的基本工作原理如上图所示当信号通过垂直输入衰减和放大器后,到达模-数转换器(ADC)。

ADC将模拟输入信号的电平转换成数字量,并将其放到存贮器中。

存储该值得速度由触发电路和石英晶振时基信号来决定。

数字处理器可以在固定的时间间隔内进行离散信号的幅值采样。

接下来,数字示波器的微处理器将存储的信号读出并同时对其进行数字信号处理,并将处理过的信号送到数—模转换器(DAC),然后DAC的输出信号去驱动垂直偏转放大器.DAC也需要一个数字信号存储的时钟,并用此驱动水平偏转放大器。

与模拟示波器类似的,在垂直放大器和水平放大器两个信号的共同驱动下,完成待测波形的测量结果显示。

数字存储示波器显示的是上一次触发后采集的存储在示波器内存中的波形,这种示波器不能实时显示波形信息。

其他几种数字示波器的特点,请参考相关书籍。

Agilent DSO-X 2002A 型数字示波器面板介绍该示波器有两个输入通道CH1和CH2,可同时观测两路输入波形。

选择通道1时,示波器仅显示通道1的信号。

选择通道2时,示波器仅显示通道2的信号。

选择双通道时,示波器同时显示通道1信号和通道2信号。

荧光屏(液晶屏幕)是显示部分。

屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。

操作面板上的各个按钮按下后,相应参数设置会显示在荧光屏上.开机后,荧光屏显示如下:测试信号时,首先要将示波器的地(示波器探笔的黑夹子)与被测电路的地连接在一起。

根据输入通道的选择,将示波器探头接触被测点(信号端).按下Auto Scale,示波器会自动将扫描到的信号显示在荧光屏上。

基于FPGA的设计题目

基于FPGA的设计题目

1.花样彩灯控制器的设计设计要求:假设输入脉冲为3MHz,控制16只LED发光二极管每隔1s或2s显示一种花样。

要求显示的花样如下:闪烁2次从LED(0)移位点亮到LED(15)一次全部点亮一次从LED(15)开始逐个熄灭至LED(0)1次闪烁2次。

如果按下清零键时,16只LED均熄灭一次,然后再重新按规律显示。

如果没有按下快/慢选择控制键时,16只LED发光二极管是以每隔1s进行花样显示,否则按下快/慢键选择控制键时,16只LED发光二极管是以每隔2s进行花样显示。

2.利用FPGA实现一个简单的DDS正弦波发生器(DDS:数字显示示波器)可分解为三个部分来设计:时钟产生模块;地址产生模块;ROM查找表模块。

实现思路:①首先,由外部晶振引入40MHz的时钟到FPGA内部,进入时钟产生模块,对时钟进行处理并3倍频程后,得到一个稳定精确的120MHz的系统时钟;②然后,地址产生模块在系统时钟的激励下,将频率控制字与累加寄存器输出的数据进行累加,然后把累加的结果作为地址输出给ROM查找表地址;③最后,ROM查找表模块在每个系统时钟的上升沿,按照地址来读取ROM 查找表中的相应的波形采样点数据并输出,该数就是最终的DDS信号。

3.多功能信号发生器的设计设计要求:设计一个多功能信号发生器,能够以稳定的频率产生锯齿波、增减锯齿波、三角波、阶梯波、正弦波和方波等六种信号。

系统有3个波形选择开关和一个复位开关,通过波形选择开关可以选择以上各种不同种类的输出波形;按下复位开关时,系统将复位。

设计实现:由于FPGA只能直接输出数字信号,而多功能信号发生器输出的各种波形均为模拟信号,因此设计信号发生器时,需将FPGA输出的信号通过D/A转换电路将数字信号转换成模拟信号。

多功能信号发生器可由信号产生电路、波形选择电路和D/A转换电路构成。

如下图所示:时钟信号波形输出选择信号4.数字跑表的设计设计要求:设计一个数字跑表,该跑表具有复位、暂停、秒表计时等功能。

基于FPGA的数字存储示波器设计

基于FPGA的数字存储示波器设计
De s i g n o f Di g i t a l S t o r a g e Os c i l l o s c o pe Ba s e d o n FPGA
GENG Xi n l i , W ANG Z h o n g x u n
( I n s t i t u t e o fS c i e n c e a n d T e c h n o l o g y f o r O p t o - E l e c t r o n i c s I n f o r m a t i o n , Y a n t a i U n i v e r s i t y , S h a n d o n g Y a n t a i 2 6 4 0 0 5 , C h i n a )
耿新力 , 王 中训
( 烟 台大学 光 电信息科 学技术 学院 , 山东 烟 台 2 6 4 0 0 5 )
【 摘 要】提 出一个 经过优化 的数据 采集方 法 , 辅以F P G A ( F i e l d — P r o g r a m m a b l e G a t e A r r a y ) 主控 制器 和 必备 的外 围 电路 完 成 了 基于 F P G A的数 字存储 示波器 的设 计。 系统 最大 限度地利 用 了 F P G A 的高速 数 字信 号处理 能力 以及 众 多硬 核 和 软核 内嵌 的特 性, 降低 了成本和 开发难度 。将 数字存储 示波器及信 号源 的基本 原理和 经过优 化 的数据采 集方 法相 结合 , 分别在 模 拟信 号预处 理、 数据 多方位存储 、 触发 方式、 等精度测 频等环节进行创 新性优 化 , 经 测试 , 系统性能 良 好, 各项 指标均 能较好满足 要求 , 为新 型 简易数 字存储示波器 的发展提 出了新 思路 。 【 关键词】数据采集; 现场可编程门阵列; 等精度测频 【 中图分类号】T N 9 4 8 【 文献 本文献信息 】耿新 力 , 王 中训 . 基于 F P G A 的数 字存 储 示波器 设计 [ J ] . 电视技 术 , 2 0 1 3 , 3 7 ( 9 )

基于FPGA的简易数字存储示波器

基于FPGA的简易数字存储示波器
电子质量 ( 1第0 期) 22 7 0
基于F G P A的简易数字存储示渡器
R4

[—c=
_ = A GlqD '
图 2电源 模 块 电路
于输 出电流不大 , 以在外部接 口还加 了一个 N N三极 所 P 管, 具有扩流的作用 , 放大系数视具体三极管的放大系数
可少 的, 因此键盘的设计也非常重要 。如图 4 所示 , 按键 在没有按下时一直是低电平 , 当按键按下 时为高 电平 , 同 时在下拉 电阻的两端并联了一个小 电容 ,可以吸收一部 分 因按键抖动 引起 的脉冲 ,以此来 改善按 键 的输 出波 形图 程序在检测是否有按键按下时 , 。 需要判断相关的 I / O 口是否为高电平 。本系统一共使用 了四个按键 , 5用于 K 整个 系统的复位 , 4 K 用于 串口的打开 , 3用于串 口的关 K 闭, 使用 K ,3 以有效地控制数据发送顺序 , 2 可 K 以致在上 位机上可 以得到有序 的正确 的数据。K 用 于调试使用 , 2
在上位机调试时 , 最重要 的是顺序的处理数据 , 因为
不 同的数据在转化 时会乘 以不同的权 ,所 以如果数据顺
序不正确 , 将得不到预期的效果。当输入一个方波时 , 现
象如 图 7 示 。 所
[ 刘皖, 4 ] 何道君’ 谭明. G F A设计与应用[ ] P M. 北京: 清华大学
传统模拟示波器相 比 , 不仅具有体 积小 , 功耗低 , 使用方 便等优点 , 而且还具有强大的信号实时处理分析功能 。 本
系统能够对外部 的直流信号准确地显示 ,对外部的交流 信号 , 则视其 频率 的大小 , 有不同 的效果 , 常频率在 会 通 5k 0 之内的信号 , 系统可以准确显示其波形 。 本

基于单片机和FPGA的简易数字存储示波器设计

基于单片机和FPGA的简易数字存储示波器设计

3 系统 分 析 论 证
31 / 实 时 采 样 . A D
电子测 量 领域 ,数字 存储 示 波 器正 在逐 渐 取代 模 拟 示 波器 。但 目前我 国使 用高 性 能数字 存储 示 波器 主 要 依靠 国外 产 品 , 而且 价 格 昂贵 。 因此 研 究 数 字存 储 示 波器 具 有重 要 价 值 。借 于此 , 出 了一 种 简 易 提 数 字存储 示 波器 的设 计方 案 , 经测 试 , 性能 优 良。
摘 要 : 出一种基 于单 片机和 F G 的 简 易数 字存储 示波 器设计 。 提 PA 通过 高速 A D转 换 器 A 9 2 / D 2 0实 时采 样输 入信 号 . 实现 波形 的 实 时采样 、 析 、 分 存储 和 显 示 , 时给 出 了具 体 电路 设 计 实现 方法 , 同 通
a— i v . h a i , e a s c a e i u td s n i ie . h o g u n n h a a a q ii lt me wa e At e s me t t me t s o i td c r i e i s v n T r u h r n i g t e d t c u s— h c g g
过 运 行数 据采 集程 序及 处理 程序 , 明该 系 ̄ v作 稳 定可 靠 。 表 L_ -
关 键 词: 片机 ; F G 单 P A; 数 字存储 示波 器; D 2 0 A 9 2
中图分 类号: M9 53 T 3.
文献 标 识码 : A
文 章编 号 :0 6 6 7 (0 80 一 0 9 0 1 0 ~ 9 72 0 )6 O 3 — 4
De i n fa sm p e d g t lm e o y o clo c p a e n CU nd FPGA sg o i l i ia m r S il s o e b s d o M a

基于单片机和FPGA的数字示波器的设计

基于单片机和FPGA的数字示波器的设计
a d F GA o ea h o t l o e y t m o ssso in o d t n n ,p o r mma l mp i c t n,o a e a d s a i g n P c r st e c n r r . se c n i f g a c n i o i g r g a o c S t s l i b e a l a i c mp r l d , q i ln smpig 0 d , s g fne tge ,h tge l e i ajs be a d p e . el i s l < MS s euv eta l >2 MS s ui inrr gr ter gre ls dut l, n - me a n a n no i i v a
co k g n rt n,s mp i g c n r l r q e c a u e n n ai r t n sg a e e ao d l.Me s r b e fe u n y lc e e a i o a l o to ,f u n y me s r me t d c l ai in l n r trmo u e n e a b o g a u a l q e c r
中图 分 类 号 : M9 53 T 3. 7 文献 标 识 码 : A 文 章 编 号 :1 7 — 2 6 2 1 ) 8 0 7 — 4 6 4 6 3 (0 1 1— 0 8 0
De i n o i ia s il s o e b s d o m ir c n r l r a d sg fd g t lo clo c p a e n c o o t o l n FPG A e
比较 该 图 可 知 , 要 采 集 起 始 点 和 时 间 相 同 , 出 样 值 与 只 输

数字示波器工作原理及框图

数字示波器工作原理及框图

数字示波器工作原理及框图随着电子技术的发展和变化,对电路测量的要求也变得更高,在电子制作中会发现对很多参数的测量已不是一块万用表所能胜任的了,比如单片机某I/O口的输出波形或制作放大器测其频率响应等等。

所以,示波器自然而然地与万用表一样,变成了电子工程师和爱好者的必备工具工作原理及结构介绍数字示波器系统的硬件部分为一块高速的数据采集电路板。

它能够实现双通道数据输入,每路采样频率可达到60Mbit/s。

从功能上可以将硬件系统分为:信号前端放大(FET输入放大器)及调理模块(可变增益放大器)、高速模数转换模块(ADC驱动器、ADC)、FPGA逻辑控制模块、时钟分配、高速比较器、单片机控制模块(DSP)、数据通讯模块、液晶显示、触摸屏控制、电源和电池管理和键盘控制等几部分。

输入信号经前置放大及增益可调电路转换后,成为符合A/D转换器要求的输入电压,经A/D转换后的数字信号,由FPGA内的或者采集存储器FIFO缓存,再经通讯接口传输到计算机中,供后续数据处理,或直接由单片机控制将采集到的信号显示在LCD幕上。

可参考器件如下在这几部分中,最重要的是程控放大(衰减)电路和A/D转换电路,因为这两个电路是数字示波器的咽喉,程控放大(衰减)电路决定了示波器的输入带宽和垂直分辨率,A/D转换电路决定了示波器水平分辨率,这两个分辨率直接决定着一个示波器性能的优劣。

这两部分电路将被测信号转换成后面的处理电路所需的数据信号,这部分电路都可用高性能的集成电路加少量外围器件构成,电路设计简单,调试也很简单。

整个示波器最难的应该是程序,也就是软件方面。

软件承担着数字示波器的所有数据处理和控制任务,包括A/D采样控制、水平扫速控制、垂直灵敏度控制、显示处理、峰峰值测量、频率测量等任务。

可以采用现在市面上很常见的单片机作为微处理器,使用C语言编程来实现。

程控放大(衰减)电路与电源电路信号由常见的X10X1示波器探头输入,进入放大(衰减)电路。

基于FPGA数字示波器设计

基于FPGA数字示波器设计

摘要高速数字化采样技术和FPGA技术的发展,已经开始对传统测试仪器,包括现有的数字化仪器发展产生着深刻的影响,对传统仪器体系结构,传统测量方法,传统仪器的定义和分类等都将产生深刻的变革。

近几年来,数字仪器通常采用DSP或FPGA结构,从信息处理技术的发展上看,以FPGA为基础的软件硬件化是其重要的发展方向,本文设计的基于FPGA的数字示波器,是由单片机和FPGA相结合的方式组成,即用单片机完成人机界面,系统调控,用FPGA完成数据采集,数据处理等功能。

由通道输入调整,数据采集,数据处理,波形显示和操作界面等功能模块组成,系统中的数据采集及数据处理模块,采用了FPGA 内制的RAM IP核,使系统的工作频率基本不受外围器件影响。

设计中采用了自顶向下的方法,将系统按逻辑功能划分模块,各模块使用VHDL语言进行设计,在ISE中完成软件的设计和仿真关键词:FPGA 数字示波器数字采样AbstractHigh-speed digital sampling and FPGA technology has begun to influnence the development of traditional test equipment, including existing digital instruments , the architecture of traditional instruments, traditional measurement methods, definition and classification of traditional instruments and so will produce profound changes.In recent years, independent instrument is made up of DSP or FPGA structure, from the point of information processing technology development, to FPGA based hardware of software is an important direction of development, the paper design FPGA-based digital oscilloscope, which combines a single chip and FPGA , namely, with a microcontroller for interface and system control, with the FPGA for data acquisition, data processing and other functions. It is made up of adjustable channel input, data acquisition, data processing,waveform display and user interface features such as modules, the system of data collection and data processing module, using the FPGA within the system RAM IP core, which make a great significance on the data processing speed and real-time entry requirements. Using top-down approach, the system is logical and functional modules, each module is designed using the VHDL language, completed in the ISE software .Keywords: FPGA,Digital Oscilloscope,Digital Sampling目录摘要 (1)第一章绪论 (5)1.1研究概况与意义 (5)1.2 主要工作 (6)第二章数字示波器的工作原理 (8)2.1 工作原理框图 (8)2.1.1 数字示波器系统框图 (8)2.2 采样定理 (9)2.3 频率测量 (10)2.3.1高频双计数器测量方法 (10)2.3.2大范围双计数器测量法 (11)2.3.3 等精度测量法 (11)2.4扫描速度 (12)第三章硬件电路 (13)3.1 系统组成结构 (13)3.2放大电路 (14)3.2.1程控衰减放大器电路 (15)3.2.2 ADS830的应用 (16)3.2.3 放大器AD603介绍 (17)3.3整形电路 (20)3.3.1信号整形电路设计 (20)3.4采样与保持电路 (21)3.4.1 随机采样 (21)3.4.2 采样与保持电路设计 (22)3.5 数据采集电路 (22)3.5.1 FIFO的选择 (23)3.5.2 随机采样展宽电路 (23)3.6 电路的保护及滤波处理 (24)第四章 FPGA软件设计及仿真 (25)4.1分频电路及产生A/D转换器的控制信号 (25)4.2 FIFO功能单元设计 (26)4.3双口RAM (27)4.4液晶显示及键盘模块 (27)4.5系统软件住程序设计 (28)第五章实验结果 (29)5. 1 垂直灵敏度测试 (29)5. 2 水平扫描速度的测试 (29)总结 (30)参考文献 (31)第一章绪论与传统模拟示波器相比,数字示波器不仅具有可存储波形、体积小、功耗低,使用方便等优点,而且还具有强大的信号实时处理分析功能。

数字示波器的原理与使用

数字示波器的原理与使用

数字示波器的原理与使用示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。

而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

数字存储示波器是20世纪70年代初发展起来的一种新型示波器。

这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。

数字存储示波器的出现使传统示波器的功能发生了重大变革。

【实验目的】1、了解数字式示波器的基本原理;2、学习数字式示波器的基本使用方法;3、使用数字示波器观测信号波形和李萨如图形。

【实验仪器】SDS1072CNL数字示波器,SIN一2300A系列双轨道DDS信号发生器【仪器介绍】SDS1072CNL数字示波器的前面板功能介绍见图4-11-7所示。

1.电源开关2.菜单开关3.万能旋钮4.功能选择键5.默认设置6.帮助信息7.单次触发8.运行/停止控制9.波形自动设置10.触发系统11.探头元件12.水平控制系统13.外触发输入端14.垂直控制系统15.模拟通道输入端16.打印键17.菜单选项B Host图4-11-7数字示波器的前面板1、垂直控制可以使用垂直控制来显示波形(按CH1或CH2)、调整垂直刻度(V-mV)和位置(Position)。

每个通道都有单独的垂直菜单。

每个通道都能单独进行设置。

1.CH1、CH2:模拟输入通道。

两个通道标签用不同颜色标识,且屏幕中波形颜色和输入通道连接器的颜色相对应。

按下通道按键可打开相应通道及其菜单,连续按下两次可关闭该通道。

2.MATH:按下该键打开数学运算菜单,可进行加、减、乘、除、FFT运算。

示波器的原理和使用教程

示波器的原理和使用教程

示波器的原理和使用教程示波器是一种广泛应用于电子工程领域的测量仪器,它能够对电信号进行观测和分析。

本文将为您介绍示波器的原理和使用教程。

1. 示波器的原理示波器基于振动的原理,通过将电信号转化为图形显示,使人们能够直观地了解信号的特性。

示波器主要包含以下几部分:1.1 垂直放大器垂直放大器负责对信号进行放大,使其能够在显示屏上清晰可见。

通过调节放大倍数,我们可以改变显示信号的幅度。

1.2 水平放大器水平放大器用于调节示波器的时间基准,即在显示屏上横向延展信号。

通过调节水平放大倍数,我们可以改变信号在时间轴上的显示速度。

1.3 示波管示波管是示波器的核心部件,它能够将电信号转化为图像显示在屏幕上。

示波管通过电子束在荧光屏上绘制出波形图。

2. 示波器的使用教程接下来,我们将详细介绍如何正确地使用示波器来观测和分析电信号。

2.1 连接电路首先,将待测电路与示波器正确连接。

应确保电路与示波器的地线连接良好,以避免干扰。

2.2 调整垂直放大倍数根据信号的幅度范围进行调整。

如果信号幅度过大或过小,会导致波形显示不清晰或超出显示范围。

2.3 调整水平放大倍数根据信号的频率进行调整。

当频率较高时,适当增大水平放大倍数,以确保波形显示完整。

2.4 观测波形调整示波器的触发方式和触发电平,使波形能够稳定地显示在屏幕上。

观测波形时,应注意波形的形状、周期、幅值等特征。

2.5 进行信号分析利用示波器的触发、光标、测量等功能,可以对信号进行进一步分析。

通过触发功能,我们可以准确地捕捉特定事件发生的瞬间;通过光标功能,我们可以测量波形的时间间隔、幅值等参数。

通过本文的介绍,我们了解了示波器的原理和使用教程。

在实际应用中,正确地使用示波器能够帮助我们观测和分析电信号,为电子工程提供准确的数据支持。

掌握示波器的使用技巧,将有助于提高工作效率和准确性。

在使用示波器时,还应注意安全操作,防止电路短路等意外情况的发生。

希望本文对您有所帮助,谢谢阅读!。

示波器的原理及使用PPT课件

示波器的原理及使用PPT课件

10
X轴方向偏转
精选ppt课件2021
11
Y轴方向偏转
精选ppt课件2021
12
正弦波合成
精选ppt课件2021
13
同步(整步)原理
扫描时由于锯齿波周期性复原,要求光点所画的轨迹和第一
周期的完全重合,再由视觉残留,观察到一个稳定的波形 。 Tx=nTy , fy=nfx
紊乱的波形
触发同步电路,它从垂直放大电路中取出部分待测信号,
fx
ny nx
fy
调出 fy: fx nx:ny =1:1、1:2、2:3、3:4的李萨如图形,
在下表中描下李萨如图形并记下相应CH2通道信号的频率fy
fy : fx x y 0
0
4
3
2
4
1:1
1: 3
5:3
李萨如图精形选pp(t课设件初20相21位y 0)
31
fy Nx 2 fx N y 3
(3)调节示波器CH1 通道偏转因数、扫描速 率、电平等,使显示波 形稳定。
要求:熟练偏转因数、扫描速率、电平等按钮操作
精选ppt课件2021
26
2、测量正弦信号电压与周期
测量原理
Upp Y 偏转因数V/div TX 时基因数T/div
假设:“ V/div ” 档位置于
2V/div
“ TIME/div ”的档位在0.5ms/div
电子枪、偏精转选p系pt课统件2、021 荧光屏
7
电子放大系统
竖直放大器、水平放大器 作用:在偏转板上加足够的电压,使电子束获得明显偏移;
对较弱的被测信号进行放大
扫描触发系统
扫描发生器、触发电路 扫描发生器作用:产生一个与时间成正比的电压作为扫

简述示波器的工作原理和使用方法

简述示波器的工作原理和使用方法

简述示波器的工作原理和使用方法示波器是一种常见的电子测试仪器,用于检测和显示电信号的波形。

它在电子工程、通信、医学等领域中发挥着重要作用。

本文将简要介绍示波器的工作原理和使用方法。

一、工作原理示波器通过接收和处理电信号,并将其转换为可视化的波形图形。

它主要由以下几个部分组成:1. 输入电路:示波器的输入电路用于接收被测信号,常见的输入方式有电压探头、电流探头等。

输入电路通常具有不同的带宽范围和灵敏度,可以适应不同频率和振幅的信号。

2. 触发电路:触发电路确定了示波器何时开始采集和显示波形。

触发通常基于信号的特定条件,如信号达到或超过某个阈值等。

触发电路的设置对于正确显示信号的波形非常重要。

3. 垂直放大器:垂直放大器用于放大输入信号的电压。

示波器通常具有多个垂直放大器,允许对不同幅度的信号进行测量和显示。

垂直放大器通常具有可调的放大倍数和直流耦合/交流耦合模式。

4. 水平放大器和扫描发生器:水平放大器和扫描发生器控制示波器屏幕上波形的时间轴。

水平放大器决定了横向显示的时间范围,而扫描发生器则控制屏幕上波形的扫描速率。

5. 显示屏:示波器的显示屏用于显示波形。

现代示波器通常采用液晶显示屏,具有高分辨率和清晰度。

二、使用方法使用示波器需要以下几个步骤:1. 连接信号:使用正确的电压探头或电流探头将被测信号连接到示波器的输入端口。

确保连接正确,并选择合适的探头放大倍数。

2. 设置触发条件:根据被测信号的特点,设置合适的触发条件。

可以选择边沿触发或脉冲触发,设置触发电平等。

3. 调整垂直和水平放大器:根据被测信号的振幅和频率调整垂直和水平放大器。

确保波形在显示屏上具有适当的大小和清晰度。

4. 调整扫描速率:根据被测信号的周期和需要显示的波形数量,调整扫描速率。

较高的扫描速率可以显示更多的细节,但可能导致波形在屏幕上移动得很快,不易观察。

5. 观察和分析波形:开始采集和显示波形后,观察并分析波形特征。

可以测量波形的振幅、频率、周期等参数,并进行进一步的信号分析。

示波器的工作原理与使用

示波器的工作原理与使用

示波器用处广泛,它的最大特点是能把看不见的电信号变换成能直接观察的电压波形,并能测定电压信号的幅度、周期和频率等参数。

双踪示波器还可测量两个信号之间的位相差,是工程技术中常用的电子仪器。

1.了解示波器的主要结构和基本工作原理。

2.学会使用示波器和信号发生器。

3.学会用示波器观察信号波形。

4 .学会用示波器观察李萨如图形并测量市电的频率。

示波器、函数信号发生器、小变压器等。

示波器的规格和型号不少,但不管哪种示波器都由图 4-6-1 所示的几个基本组成部份:示波管、竖直放大器(Y 轴放大器)、水平放大器(X 轴放大器)、扫描发生器、触发同步和直流电源等部份。

图 4-6-1 示波器结构框图一、示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。

如图 4-6-2 所示。

图4-6-2 示波管1.电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部份组成,阴极是一个表面涂有氧化层的金属圆筒,灯丝通电加热后发射电子。

控制栅极是一个顶端有小孔的圆筒,套在阴极外面,它的电位比阴极稍低,对阴极发射出来的电子起控制作用,惟独初速度较大的电子才干穿过栅极顶端的小孔,然后在阳极加速下奔向荧光屏。

示波器面板上的“亮度”调整旋钮,就是通过调节栅极电位以控制射向荧光屏的电子流密度,从而改变屏上光斑的亮度。

阳极电位比阴极电位高不少,电子被它们之间的电场加速形成射线。

当控制栅极、第一阳极与第二阳极之间电位调节合适时,电子枪内的电场对电子射线有聚焦作用,所以第一阳极也称聚焦阳极,第二阳极电位更高,又称加速阳极。

面板上的“聚焦”调节旋钮,就是调节第一阳极电位,使荧光屏上的光斑成为璀璨、清晰的小圆点。

有的示波器还有“辅助聚焦”,实际是调节第二阳极电位。

2.偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,称为Y 偏转板;一对水平偏转板,称为 X 偏转板。

在偏转板上加之适当电压,当电子束通过时运动方向将发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。

基于FPGA的虚拟简易数字存储示波器设计

基于FPGA的虚拟简易数字存储示波器设计

中图分类号 :P T
文献 标识码 : A
文 章 编 号 :6 23 9 (0 1 0 —2 30 1 7 —1 8 2 1 ) 80 5 —2
1 引 言
高 速 数 字 化 采 集 技 术 和 F GA 技 术 的 发 展 已 经 对 传 统 P 测 试 仪 器 产 生 了深 刻 的 影 响 。数 字 存 储 示 波 器 ( S ) 模 D 0是 本 文 提 出 一 种 虚 拟 数 字 存 储 示 波 器 的 设 计 方 法 , 用 采
ne xt s a e 一 s 1; tt ̄ t
在 状 态 s2中 需 要 对 AD 0 0 t C 8 9工 作 状 态 信 号 E OC 进 行 循 环 检 测 , 果 为 低 电 平 , 示 转 换 没 有 结 束 , 需 要 停 如 表 仍
W H EN t 一 > ALE< 一 S sl 1; TART< 一 L ‘ 1; 0CK< = ’
图 1 AD 8 9示 意 图 C0 0
为 4小 时 不 问 断 网 站 进 行 必 要 的 防 护 外 , 对 We 针 b应 用 攻 击 还 应 采 用 专 门 的 机 安 全 预 警 和 监 控 , 客 户 站 点 提 供 7*2 制 , 来 自 w e 用 程 序 客 户 端 的 各 类 请 求 进 行 内 容 检 测 安 全 实 时 监 控 , 助 客 户 随 时 掌 控 W e 应 用 的 安 全 状 况 , 对 b应 帮 b 在 短 和 验 证 , 供 细 粒 度 应 用 层 DD S攻 击 防 护 功 能 , 保 其 安 网 站 出 现 风 险 情 况 后 在 第 一 时 间 通 过 邮 件 、 信 方 式 通 知 提 o 确
现代 商贸工业
N O. 2Ol 8, 1

基于FPGA简易逻辑分析仪的设计与实现

基于FPGA简易逻辑分析仪的设计与实现

x信 号 由 1 0位 串行 输 入 的 D A 转 换 芯 片 /
T C 6 5产 生 。通过控 制模 块控 制 T C 6 5产 生 L51 L5 1 锯齿 波 , 以提供 波形 显 示 所 需要 的周 期 性 扫 描 信
号, 同时 利用 F G P A的并 行能力 , 输 出扫描 信 号 在
频 率设 计为 12 88 z .2 MH 。
在 实 际应 用 中 , 需要 采样 不 同频率 的信 号 , 因 此 设计 了 1 不 同 的采 样 频 率 ( 2 。采 样 频 6种 表 )
率 可 以通 过按 键进 行选 择 。 表2 1 6种采 集频 率表
3 2 合 成 Y信 号 .
显示 出对 应 的逻辑 值 。时钟频 率扫 描速 度足 够快 时, 由于 人 眼的视 觉暂 留现象 , 在示 波器 上可 显示
参 考 文 献
[ ] 王建 国 , 新新 . 于 F G 的简 易逻辑 分析 仪 的 1 汪 基 PA
设计 [ ] 微 计 算 机 信 息 ,0 8 2 (8 :1 2 6 J. 20 ,4 2 )2 4— 1. [ ] 王 景 存 , 炳 生 , 国法 . F G 实 现 数 字 逻 辑 分 2 李 赫 用 PA 析 仪 设 计 [ ] 武 汉 科 技 大 学 学 报 ,0 0 2 3 , J。 20 ,4( )
题, 以便 实验 室 应 用 , 时采 用 纯 硬 件设 计 , 而 同 因
逻辑分 析仪 硬 件 系统 ( 2 由 5部 分 构 成 : 图 )
电平 输入 接 I 、 键 、 / =按 1 D A转 换 器 、 码显 示 电路 数 和 FG P A最小 系 统 。其 中 D A转换 器 为两 路 , / 用

示波器的原理和使用--精品PPT课件

示波器的原理和使用--精品PPT课件

2.观察记录和三角波。
3.观察李萨如图形 将“CH1”和“CH2”同时按下,并选择“X-Y”方式,将信 号源选择正弦波输出,接CH1通道,改变其频率,观察教 材上给出的6个李萨如图形,记录下来,计算各个图形下 信号源正弦波的频率,已知CH2通道正弦信号频率为 50Hz.
偏转电压U与偏转位移Y(或X)成正比关系:
Y Uy
U Y
3.只在竖直偏转板(Y轴)上加一正弦电压的情形
3.要能够显示波形,必须在水平偏转板(X轴)上 加一扫描电压
为什么是锯齿波?
5.示波器显示波形实质:沿Y轴方向的简谐运动与沿X
轴方向的匀速运动合成的一种合运动
6. 同步扫描(其目的是保证扫描周期是信号周期的整数倍) 若没有“扫描”(横向的扫描电压),被测信号随时间规
律变化规律就显示不出来;如果没有“整步”,就得不到 稳定的波形图像。 5.1内整步 :将待测信号一部分加到扫描发生器,当待测信 号频率fy有微小变化,它将迫使扫描频率fx追踪其变化,保 证波形的完整稳定
5.2外整步 :从外部电路中取出信号加到扫描发生器,迫使
扫描频率fx变化,保证波形的完整稳定
若为同步显示的波形出现走动状态,此时应调节: 扫描步长,整步方式(一定打在“内”),“电平”位置。
一、实验目的
1.了解示波器的主要组成部分,扫描和整步的作用 原理,加深对振动合成的理解;
2.熟练掌握示波器的使用(1)观察信号特征(正弦 波、三角波、方波);(2)利用李萨如图形测量 信号频率。
二、实验仪器
双踪示波器
函数信号发生器
三、实验原理
1.示波器的结构
2.偏转电场控制电子束在视屏上的轨迹
7.利萨如图形
利萨如图形形成实质:沿Y轴方向的简谐运动与沿X 轴方向的简谐振动合成的一种合运动。

基于FPGA的示波器显示系统微程序控制器

基于FPGA的示波器显示系统微程序控制器
方法。 2显 示 系统工 作原 理 .
方对 波形R M的访 问;显存 V M是 一组 动态存 储器 , A A R 显 示处 理器 中还 有 对 显存 进 行 初始 化和 刷 新 的单 元 。 显 示 处理器总共要处理 l项任务,这些任务在微程序控制器 7 的调 度及 直接 控制 下有 序执 行。
波形R M A 总线
… ; …
… …
. vH ss
接 口 l 控制器 I
微程序 控 制器
波 形
RM ^

图1 示 波器 显 示系统 原理框 图。显示系 统 的核心是 是 显示处 理器 及 其微 程序 控制器 。 是 显示处理 器 原理框 图2 图 。D P 来 自采 集 系 统 的波 形 数 据 重 组 后 写 入 波 形 S将 A R M;显示处理器中的波形处理器从波形R M中读 出波 A 形数据, 经处 理 后 写入 显存V A 显 示处理 器 中 的显 示 R M; 器屏幕管理单元负责控制显示缓存进行屏幕刷新、 自动 清屏 、 频 点 回存 ( 视 实现 波 形 的无 限长 余 辉 ) 等功 能 ;P CU 经波形总线和 显示缓存并 口总线可以访 问波形R M和显 A
维普资讯
团口国豳
戚 — 基 FG 的 波 显 系 微 序 制 瑞民 — 于 PA 示 器 示 统 程 控 器
表 1 任 务查 找表 中的数 据
第3 期
新 及D P 作 ; 组 : S操 第8 显存 初 始化 。 这8 组任务 的执行需求是 :第8 组任务在开机上电时 执 行 ; 13 任务 、 组 任 务 , 第 组 第4 以及 第7 组任 务是 常 规任 务 , 显示缓存初始化后就一直循环执行; 中第1 3 在 其 ~ 组 任务要根据C U P 设定的波形显示方式选择一组执行 , 第4 组任 务 的C U 作 是 突发 任务 ,P 进 行 操作 时将 通 过地 P操 CU 址译码禁止D P s 的操作 ;第5 组任务在显示器有效显示行 的每行消隐期执行一次 ; 组任务在显示器每扫描场的 第6 消 隐期 执行 一 次 ; 第5 在 组任 务 中也 出现D P 作 , S操 因为 它 与同组的其它任务不存在总线冲突,可 以同时执行 以提 高 系统 的波形 更新 率 。 然 后 要确 定任 务 调度 机 制 , 控制 8 将 组任 务 执行 的控 制 逻 辑编 制数 据存 储 到控 制存储 器 中。图3 微程 序控 制 是 器 的 结构 框 图, 是 任 务调 度器 的原理 示意 图 , 1 各 图4 表 是 种情况下任务查 找表 ( 是一个8 字长3 位宽的可读写存储 器) 中的数据( 任务编号)设计 占用F G 的3 0 6i 的 。 P A  ̄49b s t B O K A 块R M) L C R M( A 作为控制存储器。 存储器平均分为8 段 , 段6 字 , 宽 为2b s用 于 存 储 以上8 每 4 位 4i, t 组任 务 的微 程序 ( 控制逻辑 的数据, 下同)每组微程序都从本 段的0 , 地址 ( 制存 储 器 的低5 地址 为0开 始存 放 。由于8 控 位 ) 组任 务不 是 同时执 行 的 ,在控 制存 储 器 中将 不 同组任 务 的控 制信 号 占用 相 同 的存 储器 位 ( tS l2 ) 由任 务查 找表 Cr i ~ 3 , lg 中的任务编 号选择调用。同时, 任务编号译码后产生8 个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于FPGA的简易数字示波器工作原理及方框图摘要:本文介绍了一种基于FPGA的采样速度60Mbit/s的双通道简易数字示波器设计,能够实现量程和采样频率的自动调整、数据缓存、显示以及与计算机之间的数据传输。

关键词:数据采集;数字示波器;FPGA引言传统的示波器虽然功能齐全,但是体积大、重量重、成本高、等一系列问题使应用受到了限制。

有鉴于此,便携式数字存储采集器就应运而生,它采用了LCD显示、高速A/D采集与转换、ASIC芯片等新技术,具有很强的实用性和巨大的市场潜力,也代表了当代电子测量仪器的一种发展趋势,即向功能多、体积小、重量轻、使用方便的掌上型仪器发展。

系统组成结构及工作原理系统的硬件部分为一块高速的数据采集电路板.html' &111nmouseover="javascript:showpos(event,this)"&111nmouseout="javascript:ClearTimer()" target="_blank" style="color:#00A2CA">电路板。

它能够实现双通道数据输入,每路采样频率可达到60Mbit/s。

从功能上可以将硬件系统分为:信号前端放大及调理模块、高速模数转换模块、FPGA逻辑控制模块、单片机控制模块、USB数据传输模块、液晶显示和键盘控制等几部分,其结构形式如图1所示。

图1 系统原理结构图输入信号经前置放大及增益可调电路转换后,成为符合A/D转换器要求的输入电压,经A/D转换后的数字信号,由FPGA内的FIFO缓存,再经USB接口传输到计算机中,供后续数据处理,或直接由单片机控制将采集到的信号显示在液晶屏幕上。

高速数据采集模块本系统可实现双通道同步数据采集,而且每通道的采集速度要达到60Mbit/s,考虑到两路数据采集应保持同步并行,因此在设计中采用每通道都有独自的采样保持器和A/D转换器。

选用MAXIM公司MAX1197型A/D转换器,它是一款双通道、3.3V供电、每通道60Mbit/s采样频率的模数转换器芯片。

它内部集成双路差分宽带采样保持器和A/D转换器,可以输出锁存,具有低功耗、小尺寸、高动态性能的特点。

本系统的测量电压的范围可达到±300V,采用示波器探头和电路板上分压的方法将输入信号先进行1:1或10:1或100:1衰减,然后再通过后续电路处理以满足A/D转换器的输入电压范围要求。

被测信号通过通用探头和分压器得到的输出信号,由于输出阻抗较高,需要经过阻抗变换成为低的输出阻抗,以保持信号的完整性。

同时,对于一个系统来讲,过载是不可避免的,在过载情况下,如果没有保护,器件很容易损坏。

因此,系统中设计了由二极管和电阻构成的过载保护电路,将输入信号限制在±4.8V的范围之间。

对于阻抗变换,选择ADI公司的高性能FET输入单电压反馈放大器AD8065芯片,构成跟随器来实现阻抗变换。

经过阻抗变换的信号,还要通过增益调节,在能使输入到A/D转换器的电压满足A/D 的输入电压要求,采用模拟开关和宽带精密放大器配合,由模拟开关选通不同的接入电阻值,从而实现不同的放大倍数,达到程控放大的目的。

增益调节电路如图2所示,输入保护及阻抗变换电路如图3所示。

图2 增益调节电路图3 输入保护及阻抗变换电路FPGA控制单元可编程逻辑器件FPGA是一种半定制的ASIC,它允许电路设计者自行编程实现特定应用的功能。

本设计采用了原理图输入和VHDL语言输入两种不同的方法,控制单元承载了大部分控制任务,为各个功能模块提供相应的控制信号以确保整个系统工作的正确性。

具体实现如下几个方面的功能:分频电路及产生A/D转换器的控制信号本数据采集系统,具有比较宽的测量范围,在FPGA内部设计了一个分频电路,用来实现针对不同频率的被测信号选择不同的采样频率,确保采集数据更加精确。

分频单元采用图形输入方法实现其内部结构图如图4所示。

在图4中,利用T触发器在输入为1时,每个时钟沿到来时输出会发生跳变来实现分频的。

同时我们可以看出,T触发器的输入是有一些逻辑组合构成的,这就构成了门控时钟。

对于门控时钟,仔细分析时钟函数,以避免毛刺的影响。

而门控时钟在满足以下两个条件时,则可保证时钟信号不出现危险的毛刺,门控时钟可以像全局时钟一样可靠的工作。

?驱动时钟的逻辑必须只包含一个“与”门或一个“或”门。

如果采用任何附加逻在某些工作状态下,会出现竞争产生的毛刺。

?逻辑门的一个输入作为实际的时钟,而该逻辑门的所有其它输入必须当成地址或控制线,它们遵守相对于时钟的建立和保持时间的约束。

对于本设计中的A/D转换器,其控制信号只有两个:时钟输入信号CLK和使能输出信号OE。

CLK信号直接通过有源晶振输入60M的信号,而OE信号则通过FPGA内部将和CLK同频同相的时钟信号反相后得到,这样刚好可以满足A/D转换器的转换时序关系。

点击查看大图图4 分频电路内部结构图点击查看大图图5 分频电路和频率选择电路符号图上述分频电路和频率选择电路及A/D转换器的控制信号产生电路在顶层生成了相对应的逻辑符号如图5所示。

FIFO功能单元设计本系统的A/D采样速率比较高,采样周期达到16.7ns,而选用的华邦公司单片机77E58,在晶振40MHz 的读写周期是100ns,而且总线的传输速率又比较低,因此两者在速度上无法匹配。

在这种情况下,必须要在高速采集和低速处理之间建立相应的缓冲途径才能保证系统的正常工作。

为此在A/D转换器和单片机处理器中间加入一个先入先出式缓冲器(FIFO),以缓解高速信号和低速设备之间的接口矛盾。

本设计中利用EP1K50QC208中自带的EAB(嵌入式逻辑块),通过Quartus II中的LPM工具直接生成两个512*8位的FIFO,作为两路A/D转换器的数据缓冲。

Quartus II中产生的图形符号和其时序波形图形如图6所示。

FIFO的输入信号有数据输入信号,直接和A/D转换器的输入相连下;写信号和写使能信号,写信号和上述频率选择信号相连,可以以合适的速率将数据写入FIFO,写使能设置为永远有效;读信号和读使能信号,这都有单片机发出的控制信号给出;异步清零信号则在每次写FIFO前将其清空。

输出信号有数据信号,和单片机的数据线相连,传送数据;满标志信号,当有效时停止对FIFO的写操作;空标志信号,当有效时停止对FIFO的读操作。

图6 FIFO图形符号和其时序波形图频率测量模块设计频率测量模块在本系统中起着非常重要的作用,它不仅决定着采样频率,还决定液晶显示屏幕的基本时间基准。

测量频率其实就是单位时间内的计数。

在本设计中,测频模块的具体设计思路为:首先将A/D转换器转换后的数据通过一个比较器得到测频脉冲,由于本设计中的A/D将0V电压转换为0x80,为避免在0V 附近的小信号振荡造成测频误差,将比较器的固定比较值设定为0x88。

然后将测频脉冲通过一个D触发器同步后便开始计数,在计数过程中为避免尖脉冲或毛刺信号造成对计数的影响,根据上次测频的结果选择合适的过滤脉宽,即比给定脉冲宽度小的信号脉冲将不会被计数,提高了整个测量的精度。

整个测频模块的符号图如图7所示。

在图7中,compare为比较模块,然后经过触发器同步后,通过脉宽过滤模块(FreLatch1)后到计数测频模块(MeasureFrequency),测量得到的数据通过八位寄存器counter_out1、counter_out2和counter_out3输出。

OneSecondPulse模块为产生1s脉冲的模块,为计数提供基准参考脉冲。

点击查看大图图7 测频模块的符号图液晶显示及键盘模块在本次设计中,我们选用内置SED1335控制器的液晶显示模块MS320240B,分辨率为320*240。

不仅可以单独的进行文本显示或图形显示,还可以进行图形文本合成方式显示。

在本系统中能够把被测信号的波形、两个游标与波形相交点的电压值及时间值显示在液晶屏上。

在液晶屏的显示如图8所示。

图8 双通道波形显示在实现人机通信功能的单片机通信输入设备中,最简单的是由按键组成的开关矩阵构成的键盘,它随时可以发出各种控制命令和进行数据输入。

通常按键所用为机械开关,有很多缺点,主要是按键被按下或弹起时都会有轻微的抖动,抖动时间和开关的机械特性有关,一般为5ms~10ms。

为了避免在抖动期间扫描键盘得到错误的行值和列值,一般在检测到有键按下后延时10ms再进行扫描。

在本设计中,采用一个3*8的行列式键盘,发出各种命令来对采集器进行类似于示波器按钮的操作。

图9 简易示波器的上位机控制面板USB通信单元本次设计采用Cypress公司的CY7C68013芯片实现USB传输模块的设计,CY7C68013是符合USB2.0标准的芯片。

通过USB总线把采集的数据实时的传递给计算机,便于上位机也可以实时的显示波形,还可以很方便的存储数据。

上位机应用程序设计在上位机中利用计算机强大的计算能力和图形环境,建立图形化的软面板来替代常规的仪器控制面板。

软面板上具有与实际仪器相似的开关、指示灯及其它控制部件。

用户通过鼠标或键盘操作软面板,检验仪器的性能和可操作性。

同时,用户不用编写测试程序,就可以可进行测试、测量,实现了测试的自动化、智能化。

在本设计中采用LabVIEW编写上位机图应用程序。

简易示波器的上位机控制面板如图9所示,它主要实现双通道波形显示功能。

显示面板采用游标来进行电压和时间的测量,可以减小人为的读数误差提高测量准确度。

当两个通道同时显示时,可以通过前面板上的“当前通道选择”按钮来选择要显示的通道的参数。

RUN/STOP按键能够启动和停止数据采集显示模块,便于操作和读数。

前面板还带有拖拉和缩放按钮,方便查看图形。

结语本文是基于FPGA的简易数字示波器系统的硬件/软件的设计思路和设计方案。

此系统设计完成后,测试表明系统可以将采集到的数据通过软件程序控制转换成相应的波形显示出来,显示的波形和输入信号的波形基本一致,能够实现数据采集、缓存、传输及波形显示等便携式采集系统的基本功能,具有非常广阔的应用前景。

参考文献1.沈兰荪,高速数据采集系统的原理与应用,北京:人民邮电出版社,19952.赵新民,智能仪器设计基础,哈尔滨工业大学出版社,19993.刘全等,便携式20M数字存储示波器,电子制作,2005年第4期4.王成儒,李英伟,USB2.0原理与工程开发,北京:国防工业出版社,2004。

相关文档
最新文档