集成运放在使用中的相位补偿

合集下载

运放基本应用电路

运放基本应用电路

运放基本应用电路运放基本应用电路运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。

若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。

当反馈网络为线性电路时可实现乘、除等模拟运算等功能。

运算放大器可进行直流放大,也可进行交流放大。

R f使用运算放大器时,调零和相位补偿是必须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。

U O 1.反相比例放大器 电路如图1所示。

当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。

若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。

放大器的输入电阻为:R i ≈R 1直流平衡电阻为:R P = R f // R 1 。

其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。

R 1的值应远大于信号源的 O 内阻。

2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻很低的特点,广泛用于前置放大器。

电路原理图如图2所示。

当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为:1111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。

同相放大器的输入电阻为:R i = r ic其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。

若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。

此时由于放大器几乎不从信号源吸取电流,因此 U可视作电压源,是比较理想的阻抗变换器。

集成运算放大器应用中的相位补偿及带宽匹配

集成运算放大器应用中的相位补偿及带宽匹配

25科技资讯 S CI EN CE & T EC HNO LO GY I NF OR MA TI ON 信 息 技 术放大器在模拟电路设计中占有非常重要的地位。

在实际电路设计中,电路的频率特性、稳定性往往不能满足设计者的需求,因此为了提高系统的稳定性,需要采用相位补偿技术。

本文是从应用设计的角度出发,针对I-V转换电路、放大电路进行相位补偿、带宽匹配问题进行讨论。

1 相位裕度相位裕度是分析运算放大器稳定性的一个重要参数,相位裕度是指运算放大器开环增益为0dB时的相位与180°的差值。

对于一个固定的运算放大器设计,相位裕度只有一个。

由芯片手册,可知在开环增益为0dB时,AD548的频率约为1MHz,此时的相位值约为40°,故相位裕度为140°。

2 相位补偿本文对某光强采集系统相位补偿及带宽匹配进行讨论,如图1所示。

2.1电路振荡的原因光敏二极管(PD管)是具有代表性的光电传感器,常用于光强测量系统。

当增大反馈电阻R1时,会引起振荡。

集成放大器都有输入寄生电容,使得电路的稳定性变差。

由于输入寄生电容C in 和反馈电阻R1构成了新的频率特性转折点,导致相位滞后而引起振荡。

转折点的频率f p =1C π21inR 。

由于A D 548的组合频率f T =1M H z ,则f p<<f T ,因此非常容易振荡。

通常相位裕度在45°以上时非常稳定。

2.2相位补偿来提高稳定性在I-V转换的基本电路中,由于输入寄生电容使相位滞后,电路变得容易振荡。

为了提高系统稳定性,用超前相位补偿来补偿滞后的相位。

相位补偿常采用的是在反馈电阻上并联上相位补偿电容C1(如图1所示)。

经过了相位补偿后,相位裕度m =69.9°>45°,此时系统比较稳定。

此时零点频率f z =1121R C 。

当C1=100pF时,f z =16kHz。

另外实际的传感器也含有电容成分。

集成运放的主要参数以及测试方法

集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法集成运放的性能可用一些参数来表示。

集成运放的主要参数:1.开环特性参数(1)开环电压放大倍数Ao。

在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。

Ao越高越稳定,所构成运算放大电路的运算精度也越高。

(2)差分输入电阻Ri。

差分输入电阻Ri是运算放大器的主要技术指标之一。

它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。

一般为10k~3M,高的可达1000M以上。

在大多数情况下,总希望集成运放的开环输入电阻大一些好。

(3)输出电阻Ro。

在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。

它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。

(4)共模输入电阻Ric。

开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。

(5)开环频率特性。

开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。

2.输入失调特性由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。

通常用以下参数表示。

(1)输入失调电压Vos。

在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即:Vos=Vo0/Ao失调电压的大小反映了差动输入级元件的失配程度。

当集成运放的输入端外接电阻比较小时。

失调电压及其漂移是引起运算误差的主要原因之一。

Vos一般在mV级,显然它越小越好。

(2)输入失调电流Ios。

在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。

即:Ios=Ib- — Ib+式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。

运放的反馈和补偿_intersil

运放的反馈和补偿_intersil

放大器的反馈和补偿前言:这是我翻译的第二篇文章,前面翻译过电流型运放的应用笔记,只是翻译了一遍,没做修改。

后来发现翻译的不是很好,而且还有很多的错别字。

原本觉得别人翻译的很不好,现在发现自己翻译的也不怎么样。

翻译确实不是一件容易的事情,不是说每个单词,每句话读懂就能翻译的好的。

其实翻译是整段的意译(甚至是整篇文章的),而不是逐句的翻译。

因为不同的语言表述的方法是不同的,做好翻译不仅要懂英语,而且要很深的专业知识。

说的明白一点就是,把别人的文章读懂,然后重新写一篇文章,这才是翻译的正道。

前几天读文章,很明显的能感觉到那是中国人写的英语文章。

原本想把这篇文章好好的把整片文章的思想好好翻译一下,翻译出一篇好的文章。

从现在看来是不太可能了,因为时间还有我很懒,现在离我翻译完这篇文章都好久了,一直没有时间再去管他。

我觉得以后不会在整理了,所以决定就这样发到网上吧。

这篇文章也只是翻译了一遍,只是前面大概8页,稍加整理过,后面的翻译完基本就没有再看了。

后面补偿那一部分建议再去看一下国半的AN1604——Decompensated Operational Amplifiers,毕竟不是同一家公司,里面的符号可能不同,注意一点就行。

本想也翻译一下国半的这篇文章,现在看来希望渺茫。

这些两篇文章都很好,只是有细节地方可能有错误,建议读一下原文。

By:惜荷介绍反馈的电路中有很多优良的性能[1],但是反馈电路设计复杂,而且搞不好还会振荡。

本文用作图的方法简化了计算,这样就可以更容易的设计处稳定且性能优良的电路,而不必担心反馈电路的振荡和振铃现象了。

一般反馈方程如Figure 1所示,几乎所有反馈电路都可以化简为Figure1的框图形式[2]。

假设上一级的输出阻抗远小于输入阻抗,得方程EQ.1、EQ.2、EQ.3。

一般情况下这种假设可以满足我们平时的计算。

解方程EQ.1、EQ.2、EQ.3得EQ.4、EQ.5,这两个方程就是反馈系统的方程。

电子技术基础与技能-()

电子技术基础与技能-()
二.工作原理 1.静态分析
1 ui=0时,IB=0,由于两管特性对称, A点的静态电位UA= VCC,则CL上充 2 1 1 有左正右负的静态电压 U CL VCC ,由于CL容量很大,相当于一个电压为 VCC 2 2 的直流电源。此外,在输出端耦合电容CL的隔直作用下,流过RL的静态电流为
二、功率放大电路的分类 (1)功放管的静态工作点介于甲类和乙类之间的称为甲乙类功放电路 (2) 功放管静态工作点选择在放大区内的称为甲类功放电路 功放管静态工作点设置在截止区边缘的称为乙类功放电路 (3) 在工作过程中功放管仅在输入信号的正半周导通,负半周时功放管截 在工作过程中功放管处于导通状态,输出波形无失真。由于设置的静 它的波形失真情况和效率介于上述两类之间。是实用功放电路经常采 态电流大,放大器的效率较低,最高只能达到 止,只有半波输出。由于几乎无 50%。如图所示。 用的方式。 如图所示。 静态电流,电路的功率损耗减到 最少,使效率大大提高。在实际 使用中,乙类功放电路采用两个
流过 RL 的静态电流为零。 2. 动态分析 设输入信号 u i 为正弦信号。在 u i 正半周内,VT1导通,VT2截止,VT1的 集电极电流 I c1 电极电流 Ic2 流经方向如图,在 ui 负半周内,VT2导通,VT1截止,VT2的集 整个 流经方向如图。由于VT1和VT2管型相反,特性对称,在 ui
了解集成运放的使用常识,会根据要求正确选用元器件;
会安装和使用集成运放组成的应用电路。
3.1.1放大器中的负反馈
一、反馈放大器的组成 反馈放大器的一般形式如图所示。 反馈系数
F
Xf Xo
Xo X i'
Xo A X i 1 AF
开环放大倍数
A
闭环放大倍数

集成运算放大器基础知识概论

集成运算放大器基础知识概论

集成运算放大器基础知识目前广泛应用的电压型集成运算放大器是一种高放大倍数的直接耦合放大器。

在该集成电路的输入与输出之间接入不同的反馈网络,可实现不同用途的电路,例如利用集成运算放大器可非常方便的完成信号放大、信号运算(加、减、乘、除、对数、反对数、平方、开方等)、信号的处理(滤波、调制)以及波形的产生和变换。

集成运算放大器的种类非常多,可适用于不同的场合。

3.2.1 集成运算放大器的分类按照集成运算放大器的参数来分,集成运算放大器可分为如下几类。

1.通用型运算放大器通用型运算放大器就是以通用为目的而设计的。

这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。

例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。

它们是目前应用最为广泛的集成运算放大器。

2.高阻型运算放大器这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般r id>(109~1012)Ω,I IB为几皮安到几十皮安。

实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。

用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。

常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。

3.低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。

低温漂型运算放大器就是为此而设计的。

目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。

4.高速型运算放大器在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率S R一定要高,单位增益带宽BW G一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。

集成运放的选用

集成运放的选用

集成运放的选用问题集成运放组成放大电路根据输入组态的不同,分为反相输入放大器、同相输入放大器和差动输入放大器。

由于运放组成放大电路应用在不同的场合,对运放的各个参数的选择有很大的区别。

除通用运放外,有多种特殊运放可供选择。

在设计时应根据设计任务的不同,合理选用芯片,然后设计外接元器件,使之达到设计要求。

我们在分析运放电路,研究输出输入关系时将运放视为理想运放,使运放的选用和外接元器件设计计算变得简单。

但在设计和应用时应注意以下五个问题。

1.集成运放外接电阻选取(1)平衡电阻的选取平衡电阻的选取是为了保证运放“零输入—零输出”,使之两输入端对地等效电阻相等。

具体选择方法在设计中加以说明。

如在图1电路中RRP=Rf//R1。

(2)外接电阻选取一般集成运放最大输出电流Iom为3~10mA,在组成放大电路时,应使运放处于负反馈组态。

反馈电阻跨接在输出端和输入端之间。

输出电压一般为伏级,在空载的情况下,应使运放输出电流不超过Iom。

以图3.1.1所示反相输入组态的反相比例放大器为例,if 应满足下式图1所以RF至少要取千欧数量级,若置Rf和R1取值太小,会增加信号源负载。

外接电阻亦不能取得过大,如选用MΩ级亦不合适。

其原因有二:①电阻值是有误差的,阻值越大,绝对误差值越大。

如2MΩ的电阻E1:系列电阻误差值为:10%,其阻值(2.2~1.8)MΩ范围均是允许的,即使选E4s系列的电阻(误差为:2%)阻值范围在(2.04~1.96)MΩ之内;且电阻值会随温度和时间的变化而产生时效误差,使阻值不稳定,影响运算精度;②运放的微小失调电流会在外接高阻值电阻上引起较大的误差信号。

所以运放外接电阻值尽可能选用几千欧至几百千欧之间。

2.正确选用集成运放的型号集成运放种类和型号繁多,依据其性能参数的不同分为通用型和专用型两大类。

专用型运放有:①高输入阻抗型;②低漂移型;③高速型;④低功耗型;⑤高压型;⑥大功率型;⑦电压比较器等。

实验七集成运算放大器指标测试

实验七集成运算放大器指标测试

实验七集成运算放大器指标测试一、实验目的1、掌握运算放大器主要指标的测试方法。

2、通过对运算放大器μA741指标的测试,了解集成运算放大器组件的主要参数的定义和表示方法。

二、实验原理集成运算放大器是一种线性集成电路,和其它半导体器件一样,它是用一些性能指标来衡量其质量的优劣。

为了正确使用集成运放,就必须了解它的主要参数指标。

集成运放组件的各项指标通常是由专用仪器进行测试的,这里介绍的是一种简易测试方法。

本实验采用的集成运放型号为μA741(或F007),引脚排列如图7-1所示,它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正、负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十KΩ的电位器并将滑动触头接到负电源端。

⑧脚为空脚。

1、μA741主要指标测试图7-1 μA741管脚图图7-2 U0S、I0S测试电路1)输入失调电压U 0S理想运放组件,当输入信号为零时,其输出也为零。

但是即使是最优质的集成组件,由于运放内部差动输入级参数的不完全对称,输出电压往往不为零。

这种零输入时输出不为零的现象称为集成运放的失调。

输入失调电压U 0S 是指输入信号为零时,输出端出现的电压折算到同相输入端的数值。

失调电压测试电路如图7-2所示。

闭合开关K 1及K 2,使电阻R B 短接,测量此时的输出电压U 01 即为输出失调电压,则输入失调电压O1F11OS U R R R U +=实际测出的U 01可能为正,也可能为负,一般在1~5mV ,对于高质量的运放U 0S 在1mV 以下。

测试中应注意:a 、将运放调零端开路。

b 、要求电阻R 1和R 2,R 3和R F 的参数严格对称。

2)输入失调电流I 0S输入失调电流I 0S 是指当输入信号为零时,运放的两个输入端的基极偏置电流之差,B2B1OS I I I -=输入失调电流的大小反映了运放内部差动输入级两个晶体管β的失配度,由于I B1 ,I B2 本身的数值已很小(微安级),因此它们的差值通常不是直接测量的,测试电路如图7-2所示,测试分两步进行a 、 闭合开关K 1及K 2,在低输入电阻下,测出输出电压U 01 , 如前所述,这是由输入失调电压U 0S 所引起的输出电压。

使用运算放大器时需要注意的几个重要问题

使用运算放大器时需要注意的几个重要问题

使用运算放大器时需要注意的几个重要问题
 引言
 运算放大器最初诞生时是用来作为各种模拟信号的运算,这个名字后来一直沿用至今,但是现在已经不仅仅是所谓的“运算”了,如今它充当的角色更多的是“信号调理兼放大”。

信号放大可以说是对模拟信号最基本的处理了,放大的本质是能量的控制和转换,它在输入信号的作用下,通过放大电路将直流电源的能量转化成负载所获得的能量,使得负载从电源获得的能量大于信号源所提供的能量,这也就说明,负载上总是获得比输入信号大得多的电压或者电流,有时这两种情况都发生。

 以下是我们在使用运算放大器时需要注意的几个重要问题,我争取用最简单的原理图以“看图说话”的方式来说清楚我要表达的意思,以免给工程师朋友带来不必要的视觉疲劳.
 1、首先应该好好理解运放的最简模型
 从运放的原理来说,我们可以将运放看成是一个压控电压源,其中,运放。

相位补偿——精选推荐

相位补偿——精选推荐

相位补偿董晓勇一.为什么要相位补偿?当一个电路系统处于稳态后,其拉普拉斯变换因子s 就等于jω,那么电路的传输方程就可以用以s 为自变量的函数来表示。

一个稳定的电路系统往往是带有负反馈的,那么这样的电路其增益为(1)()()()()s A s k s A s A O O +=1上式中为放大器在低频下的开环增益,k (s )是反馈系数,由于反馈网络往往不()s A O 是纯电阻网络,因此它也是一个复数。

这里假设了电路开环增益为正,假如电路是反相放大器,开环增益为,那么式1()s A 0−中不能简单地把用代替。

实际的增益应为,原因在于这()s A O ()s A O −()()()()s A s k s A s A O O +−=1时负反馈系数是一个负数,体现在电路上最典型可见课本上利用运算放大器实现的同相和反相放大器,前者是串联负反馈,后者是并联负反馈,一下的讨论全部基于同相放大器。

可见当在某个角频率s0处时,放大器的闭环增益将为无穷大。

虽然()()100−=s A s k O 这个角频率s0往往会远离于工作频段,如在音频放大器里s0>>20KHz ,但是在放大器开机瞬间,输入是一个阶跃信号,其频谱含量十分丰富,微小的角频率为s0的信号也会在电路中不断放大,从而产生自激振荡,放大器再无法正常工作。

那么当什么情况下会导致上述情况呢?我在之前的一篇文章里讲到:某个节点与其他的节点之间的关系呈纯电阻或纯电抗(如果是阻抗元件,则经过阻抗换算后,仍旧符合下面的说法),那么提供给整个电路的一个极点,且角频率为该点处时间常数的倒数。

而该点的时间常数则等于从该点看到交流地的等效电容与从该点看到交流地的等效电阻的乘积。

这样看来每个等效电容引入一个极点,那么当电路中三个电容形成闭合环路时是否引入了三个极点呢?答案是否定的。

其中的道理就在于密勒效应。

如图1所示,连接任意两个端口之间的一个阻抗元件可以看作是两个分别接地的阻抗元件。

运放补偿

运放补偿

运放补偿虽然很常见,但有时候也极具挑战性,尤其是在要求和约束条件超过设计师控制的情况下,设计师必须选择一种最优补偿技术之时。

也许极具挑战性的原因之一是一般文献资料更多地专注于不同补偿技术之间的区别而不是相似性。

除了关注概念上的不同点外,还要关注相似点,这是非常明智的,只有这样才能更好地理解明显不同的技术和概念之间的紧密关系。

为了达到这个目标,本文首先讨论了运放的少量几个确定因素,最终逐步过渡到电路中经常使用但少有人理解的补偿技术。

本文还简要介绍了补偿网络的严格定义,并集中讨论了文献中出现的可能冲突。

前馈增益:相对于哪个节点?在讨论运放补偿之前,首先搞清楚运放的两种最基本配置很重要,即同相(图1A)和反相(图1B)。

已有大量文献资料介绍过这两种配置的闭环增益,并强调了闭环传输函数间的区别。

图1A:典型的同相配置。

图1B:典型的反相配置。

图1C:反相配置的等效同相版本。

为了方便理解两种配置的前馈增益之间的区别,这里给出了分别对应同相和反相配置的公式1.a和1.b。

有人可能会问,为什么反相配置(A INV)的前馈增益不同于同相配置(A NINV),而事实上两种配置使用的是相同的运放。

让我们首先看看两种配置实际上有多相似,然后说明前馈增益的纯数学表达式为何不同。

图1B中所示的反相配置可以转化为图1C所示的等效同相配置。

这种转换是确定同相配置要求的输入后会产生与反相配置相同输出的结果。

图2A和图2B分别对应图1A和图1C的框图表示法。

注意图2A和图2B之间的相似性。

这两张图表明,当从减法模块向输出观察时,两种配置是完全相同的。

减法模块建模的是运放两个输入端的相减。

在反相配置框图(图2B)中,输入信号(-X INV)先乘以Z F/(Z F+Z G)因子,然后到达减法模块输入端,命名为X INV,i。

在图2A和图2B的两个框图之间,当严格相对于减法模块输入或运放输入观察时,前馈增益和反馈因子完全相同,两种配置的区别仅是相对输入信号观察时输入信号的数学转换。

运放的相位补偿

运放的相位补偿

运放的相位补偿为了让运放能够正常工作,电路中常在输入与输出之间加一相位补偿电容。

1,关于补偿电容理论计算有是有的,但是到了设计成熟阶段好象大部分人都是凭借以前的调试经验了,一般对于电容大小的取值要考虑到系统的频响(简单点说加的电容越大,带宽越窄),然后就是振荡问题;如果你非要计算,可以看看运放的输入端的分布电容是多大,举个例子,负反馈放大电路就是要保证输入端的那个电阻阻值和分布电容的乘积=反馈电阻的阻值和你要加的电容的乘积......2,两个作用1. 改变反馈网络相移,补偿运放相位滞后2. 补偿运放输入端电容的影响(其实最终还是补偿相位……)因为我们所用的运放都不是理想的。

一般实际使用的运算放大器对一定频率的信号都有相应的相移作用,这样的信号反馈到输入端将使放大电路工作不稳定甚至发生振荡,为此必须加相应的电容予以一定的相位补偿。

在运放内部一般内置有补偿电容,当然如果需要的话也可在电路中外加,至于其值取决于信号频率和电路特性运放输入补偿电容一般线性工作的放大器(即引入负反馈的放大电路)的输入寄生电容Cs会影响电路的稳定性,其补偿措施见图。

放大器的输入端一般存在约几皮法的寄生电容Cs,这个电容包括运放的输入电容和布线分布电容,它与反馈电阻Rf组成一个滞后网络,引起输出电压相位滞后,当输入信号的频率很高时,Cs的旁路作用使放大器的高频响应变差,其频带的上限频率约为:ωh=1/(2πRfCs)若Rf的阻值较大,放大器的上限频率就将严重下降,同时Cs、Rf引入的附加滞后相位可能引起寄生振荡,因而会引起严重的稳定性问题。

对此,一个简单的解决方法是减小Rf的阻值,使ωh高出实际应用的频率范围,但这种方法将使运算放大器的电压放大倍数下降(因Av=-Rf/Rin)。

为了保持放大电路的电压放大倍数较高,更通用的方法是在Rf上并接一个补偿电容Cf,使RinCf网络与RfCs网络构成相位补偿。

RinCf将引起输出电压相位超前,由于不能准确知道Cs的值,所以相位超前量与滞后量不可能得到完全补偿,一般是采用可变电容Cf,用实验和调整Cf的方法使附加相移最小。

相位补偿原理

相位补偿原理

相位补偿原理导言相位补偿是信号处理中的一个重要概念,它在许多领域中都有广泛的应用,包括通信系统、音频处理、图像处理等。

相位补偿的基本原理是通过对信号的相位进行调整,使得信号在传输或处理过程中能够保持其原始特性和完整性。

本文将详细解释相位补偿的基本原理,并提供具体的例子和应用。

1. 相位的定义在讨论相位补偿之前,首先需要了解相位的概念。

相位是指信号在一个周期内所处位置的属性。

以正弦波为例,正弦波可以表示为:x(t)=Asin(ωt+ϕ)其中,A是幅值,ω是角频率,t是时间,ϕ是相位。

相位可以用角度(单位:度)或弧度(单位:rad)来表示。

当使用角度时,一个周期对应360度;当使用弧度时,一个周期对应2π弧度。

2. 相位补偿的目标相位补偿的目标是确保信号在传输或处理过程中不发生失真或变形。

这是因为信号经过传输或处理可能会受到各种因素的影响,例如传输介质的衰减、延迟、非线性失真等。

这些因素会引起信号的相位发生变化,导致信号失真。

相位补偿的目标是通过逆向调整信号的相位,使得信号在传输或处理过程中能够保持其原始特性和完整性。

具体而言,相位补偿需要满足以下要求:•保持信号的频率内容不变•保持信号的幅值不变•保持信号的相对时间关系不变3. 相位补偿的原理相位补偿可以通过多种方式实现,具体取决于应用场景和需求。

下面将介绍几种常见的相位补偿方法。

3.1 前向预测法(Feedforward Compensation)前向预测法是一种基于模型的相位补偿方法。

它通过建立数学模型来预测信号在传输或处理过程中可能发生的相位变化,并根据预测结果对信号进行调整。

以音频处理为例,前向预测法可以通过分析音频信号在传输路径上可能遇到的滤波器或延迟等因素来建立模型。

然后,根据模型预测的相位变化,对音频信号进行相应的调整,以补偿传输路径上引起的相位变化。

3.2 反馈环路法(Feedback Compensation)反馈环路法是一种基于反馈控制原理的相位补偿方法。

带你了解反馈电路中的相位补偿

带你了解反馈电路中的相位补偿

带你了解反馈电路中的相位补偿2004年,帮朋友做镍氢充电器,利用镍氢电池充满电时电压有一个微小的下降这个特点来识别是否已经充满,比如1.2V的镍氢电池,快充满的时候,电压在1.35V,之后逐步下降,电压可以低于1.30V。

所以需要单片机间歇检测电池两端电压,大概充3秒钟电再停止,之后检测电池两端电压。

因为需要识别下降的微小电压,所以需要加一级运放,放大这个下降的幅度,如下图:那个时候刚进入社会,实践经验不足,为了更好的提升放大性能提高稳定性,想当然的在运放的反相输入端并了一颗小电容,我记得大概是10nF,如下图:调试程序的时候发现,电池降压的信号很难检测到,往往电池充满发热很久才能检测到,这个问题困扰了一段时间没有解决,朋友带回香港,跟一个硬件人员一起调试,用示波器一个个脚的看信号,最终发现运放输出存在短时间的振荡,而这个振荡导致了信号采样问题,于是我很快想到是自己加了这颗电容的问题,并且在脑子中想象了整个振荡过程,给朋友做了分析。

这个画蛇添足行为,最终导致了这个项目失败。

上几年做红外温度测试仪,温度范围是400~1200度,采用PID红外传感器,电流转电压放大部分电路如下图:测试中发现,在700度附近温度测量不准,最后用示波器看输出,发现在这个温度点上,输出出现了振荡,这个时候马上想到,因为PID传感器,内阻高,寄生电容大,等价于在反相输入上并联了一颗电容,类似镍氢电池的放大了,所以马上按如下电路改进:在做手机期间,测试发现一些劣质手机充电器,用示波器测量发现,其输出电压的纹波,除了100KHz附近的开关纹波外,还有一个5K附近的正弦波基于5V附近波动,比如输出电压5V,实际则是在4.8~5.2V之间按5KHz的频率波动,当时很奇怪怎么产生这个波动的?以上三个案例是我碰到的,虽然前两个问题解决了,但是还留有困惑,随着自己对运放理解的深入,认识到这些问题的出现,都是跟相位有关,但是看很多运放方面的书,。

集成电路原理及应用第一章

集成电路原理及应用第一章
缺点:在输出信号uo的 波形中带有交越失真。
2. 克服交越失真的互补推挽输出电路
VT4、R1、R2组成固定恒压偏置电路(称VBE 扩大电路),为VT2、VT3基极提供固定偏压, 克服了交越失真。
图1-1-19 克服交越失真的互补推挽输出电路
3. 具有过载保护的互补推挽输出电路
ห้องสมุดไป่ตู้
由Re2、Re3、 VD1、VD2 组成限流型
目前,集成运放还在向低漂移、低功耗、高速度、高输入阻抗、高放大倍数和高输出功率等高指标 的方向发展。
§1.1 集成运放的基本组成电路
1.1.1 差动输入电路 1.1.2 恒流源电路 1.1.3 有源负载电路 1.1.4 双端变单端电路 1.1.5 直流电平位移电路 1.1.6 互补推挽输出电路
1.1.1 差动输入电路
集成运放的发展从技术性能角度,大致可分为几个阶段: ⑴上世纪60年代初出现原始型 “单片集成”运放μA702。 ⑵1965年出现了第一代集成运放,如μA709。 ⑶1966年出现了第二代集成运放,如μA741。 ⑷1972年出现了第三代集成运放,如AD508。 ⑸1973年出现了第四代集成运放,如HA2900。
返回
3.集成运放的输入级
集成运放的许多性能指标主要取决于差动输入级。输入级的改进便成为各代集成运放的重要标 志。
(1)普通差动放大电路
普通差放电路作为集成运放的输入级时,其优点是电路结构简单,容易匹配,因此输 入失调电压小。它广泛用于早期产品和第一代集成运放中。
如国产的F001(5G922)、F004(5G23)以及国外的A709等。
缺点: 输入阻抗低,约为50k到300k; 失调电流,约为100nA; 最大差模输入电压低,不超过7V; 差模输入电压范围也较小,常为10V; 电压增益不高,约为30到100倍。

如何使用米勒电容对运算放大器补偿?

如何使用米勒电容对运算放大器补偿?

如何使用米勒电容对运算放大器补偿?目录1 .什么是米勒补偿(MiI1erComPenSation)? .......................................................................................................................................... I 2 .利用米勒补偿 ........................................................................................ 1 3 .米勒效应(Mi11erEffeCI) ................................................................................................................................................................... 3 4 .米勒电容 ............................................................................................ 4 5 .嵌套mi∏er 补偿:传输函数及其性质 ..................................................................... 5 6 . 一点历史 .. (7)米勒电容(Mi11erCaPaCitanCe)通常用于运算放大器频率补偿的方法中。

在我之前的文章中,我们讨论了运算放大器频率补偿和一种通过并联电容的补偿方法。

目前最广泛使用的频率补偿技术称为米勒频率补偿(MiHerfreqUenCycompensation),我们将在本文中探讨它。

3.集成放大器的基本应用

3.集成放大器的基本应用

(5)验证输出信号与输入信号的幅度是否相等。 (6)逐渐提高输入信号 V 的幅度,记录相应输出电 压 V 值。注意观测放大器饱和时的输出电压幅度, 此时增益将偏离1。 (7)将输入电压恢复为1.0V,用实验三的方法测量 跟随器的传递函数(增益和相移随频率的变化), 并画成Bode图。测量频率范围:10Hz~2MHz, 频率较低时每10倍为一个测量点,当幅度和相位 变化明显时、每逢1-2-5为一个测量点。
管脚④ 负电源端 VEE 管脚⑤ 失调调零端 管脚⑥ 输出端 管脚⑦ 正电源端 管脚⑧ 空脚 VCC 图4-1(b)给出的是开环增益的频率响应图,图 4-1(c)是μA741运算放大器失调电压调零接线图。
(a)
(b)
图4-1
(c)
2、集成运放基本应用电路 集成运放的开环差模电压增益Avd很大,但受温度 影响明显、很不稳定,而且开环运用时运算放大器的 频带很窄,如μA741只有7Hz左右,显然难以满足交 流信号的放大要求。要使集成运放实现信号的稳定放 大,加反馈网络构成深度负反馈电路是必要条件。采 用负反馈构成闭环电路虽然会降低电压增益,但可以 提高电压增益的稳定性,可将频带扩展到 (1 A )倍,这 里 是反馈网络的反馈系数。另外深度负反馈还可以 改善输入电阻、输出电阻等,使它们接近理想。
技术指标 开环差模电压增益 Avd 输入电阻 Ri
理想值
实际值范围
5103 ~5106 106Ω~1015Ω∞源自∞输出电阻共模抑制比
Ro
CMRR
0

5Ω~500Ω
90dB ~140dB
摆率
SR
fT


0.2V/μs~50V/μs
0.1MHz~60MHz
单位增益带宽
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档