计量经济学 张晓峒 第三版 南开大学出版社

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章

一、练习题 (一)简答题

1、多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?

2、多元线性回归模型与一元线性回归模型有哪些区别?

3、某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为

fedu medu sibs edu 210.0131.0094.036.10++-=

R 2=0.214

式中,edu 为劳动力受教育年数,sibs 为该劳动力家庭中兄弟姐妹的个数,medu 与fedu 分别为母亲与父亲受到教育的年数。问

(1)若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?

(2)请对medu 的系数给予适当的解释。

(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为12年,另一个的父母受教育的年数为16年,则两人受教育的年数预期相差多少? 4、以企业研发支出(R&D )占销售额的比重为被解释变量(Y ),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:

099

.0)046.0()

22.0()

37.1(05.0)log(32.0472.022

1=++=R X X Y

其中括号中为系数估计值的标准差。

(1)解释log(X1)的系数。如果X1增加10%,估计Y 会变化多少个百分点?这在经济上是一个很大的影响吗?

(2)针对R&D 强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。分别在5%和10%的显著性水平上进行这个检验。

(3)利润占销售额的比重X2对R&D 强度Y 是否在统计上有显著的影响? 5、什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型:

i ki k i i i u x x x y +++++=ββββ 22110,n i ,,2,1 =的正规方程组,及其推导过程。

6、假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个学年收集数据,得到两个可能的解释性方程:

方程A :3215.10.10.150.125ˆX X X Y

+--= 75.02

=R 方程B :4217.35.50.140.123ˆX X X Y

-+-= 73.02

=R 其中:Y ——某天慢跑者的人数

1X ——该天降雨的英寸数 2X ——该天日照的小时数

3X ——该天的最高温度(按华氏温度) 4X ——第二天需交学期论文的班级数

请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么?

(2)为什么用相同的数据去估计相同变量的系数得到不同的符号?

7、设货币需求方程式的总体模型为

t t t t

t

RGDP r P M εβββ+++=)ln()ln()ln(

210 其中M 为广义货币需求量,P 为物价水平,r 为利率,RGDP 为实际国内生产总值。假定根据

容量为n =19的样本,用最小二乘法估计出如下样本回归模型;

1

.09

.0)

3()

13()ln(54.0)ln(26.003.0)ln(

2==++-=DW R e RGDP r P M t t t t

t

其中括号内的数值为系数估计的t 统计值,t e 为残差。 (1)从经济意义上考察估计模型的合理性;

(2)在5%显著性水平上.分别检验参数21,ββ的显著性; (3)在5%显著性水平上,检验模型的整体显著性。

(二)计算题

1、下面给出依据15个观察值计算得到的数据:

693.367=Y , 760.4022=X ,0.83=X ,269.660422

=∑i y

096.848552

2=∑i

x

,0.2802

3=∑i x , 346.747782=∑i

i

x

y

9.42503=∑i

i

x

y ,

0.479632=∑i

i x x

其中小写字母代表了各值与其样本均值的离差。 要求:(1)估计三个多元回归系数;

(2)估计它们的标准差;并求出2

R 与2

R ?

(3)估计2β、3β95%的置信区间;

(4)在%5=α下,检验估计的每个回归系数的统计显著性(双边检验); (5)检验在%5=α下所有的部分系数都为零,并给出方差分析表。

2、表3—1是以进出车站的乘客为主要服务对象的10家便利店的数据。y 是日均销售额,1x 是店铺面积,2x 是作为选址条件的店铺距车站的距离。

(1)对多元回归模型εβββ+++=22110x x y 进行OLS 估计; (2)求决定系数2

R 和自由度调整后的决定系数2

R ;

(3)假设其他条件不变,店铺面积增加1平方米,日均销售额能增加多少元?

(4)假设其他条件不变,店铺距车站的距离比现在远100米,日均销售额会减少多少元? (5)假设有人想新建一个店铺K 店,计划店铺面积为80平方米,距车站300米,试预测其日均销售额K y

3、已知线性回归模型U X Y +=B 式中~U (0,I 2

σ),13=n 且3=k (n 为样本容

量,k 为参数的个数),由二次型)()'(B B X Y X Y --的最小化得到如下线性方程组:

3ˆˆ2ˆ321=++βββ 9ˆˆ5ˆ2321=++βββ 8ˆ6ˆˆ3

21-=++βββ

相关文档
最新文档