【高中数学】高中数学平面解析几何双曲线方程
高中数学知识点总结(第九章 平面解析几何 第七节 双曲线)
第七节 双曲线一、基础知识1.双曲线的定义平面内到两个定点F 1,F 2的距离的差的绝对值等于常数2a (2a <|F 1F 2|)的点P 的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.当|PF 1|-|PF 2|=2a2a <|F 1F 2|时,点P 的轨迹为靠近F 2的双曲线的一支.当|PF 1|-|PF 2|=-2a 2a <|F 1F 2|时,点P 的轨迹为靠近F 1的双曲线的一支. 若2a =2c ,则轨迹是以F 1,F 2为端点的两条射线;若2a >2c ,则轨迹不存在;若2a =0,则轨迹是线段F 1F 2的垂直平分线.2.双曲线的标准方程(1)中心在坐标原点,焦点在x 轴上的双曲线的 标准方程为x 2a 2-y 2b2=1(a >0,b >0).(2)中心在坐标原点,焦点在y 轴上的双曲线的 标准方程为y 2a 2-x 2b 2=1(a >0,b >0).3.双曲线的几何性质标准方程 x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 范围 |x |≥a ,y ∈R|y |≥a ,x ∈R对称性 对称轴:x 轴,y 轴;对称中心:原点 焦点 F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) 顶点 A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )轴 线段A 1A 2,B 1B 2分别是双曲线的实轴和虚轴;实轴长为2a ,虚轴长为2b焦距|F 1F 2|=2c离心率e =c a= 1+b 2a2∈(1,+∞) e 是表示双曲线开口大小的 一个量,e 越大开口越大.渐近线 y =±b axy =±a bxa ,b ,c 的关系a 2=c 2-b 2二、常用结论(1)过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.(2)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(3)双曲线的焦点到其渐近线的距离为b .(4)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .考点一 双曲线的标准方程[典例] (1)(2018·石家庄摸底)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( )A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1 D.3y 223-x 223=1 (2)(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1 D.x 29-y 23=1 [解析] (1)法一:当双曲线的焦点在x 轴上时,设双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎨⎧4a 2-9b 2=1,ba =3,解得⎩⎨⎧a =1,b =3,所以该双曲线的标准方程为x 2-y 23=1;当双曲线的焦点在y 轴上时,设双曲线的标准方程是y 2a 2-x 2b2=1(a >0,b >0),由题意得⎩⎨⎧9a 2-4b 2=1,a b =3,无解.故该双曲线的标准方程为x 2-y 23=1,选C. 法二:当其中的一条渐近线方程y =3x 中的x =2时,y =23>3,又点(2,3)在第一象限,所以双曲线的焦点在x 轴上,设双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎨⎧4a 2-9b 2=1,b a =3,解得⎩⎨⎧a =1,b =3,所以该双曲线的标准方程为x 2-y 23=1,故选C.法三:因为双曲线的渐近线方程为y =±3x ,即y3=±x ,所以可设双曲线的方程是x 2-y 23=λ(λ≠0),将点(2,3)代入,得λ=1,所以该双曲线的标准方程为x 2-y 23=1,故选C. (2)法一:如图,不妨设A 在B 的上方,则A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b2a . 又双曲线的一条渐近线为bx -ay =0, 则d 1+d 2=bc -b 2+bc +b 2a 2+b 2=2bcc =2b=6,所以b =3.又由e =ca =2,知a 2+b 2=4a 2,所以a = 3.所以双曲线的方程为x 23-y 29=1.法二:由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线 x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1,故选C.[答案] (1)C (2)C [题组训练]1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=4b ,且双曲线的焦距为25,则该双曲线的标准方程为( )A.x 24-y 2=1 B.x 23-y 22=1 C .x 2-y 24=1 D.x 22-y 23=1 解析:选A 由题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a =4b ,c 2=a 2+b 2,2c =25,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,则该双曲线的标准方程为x 24-y 2=1.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为4,离心率为 5,则双曲线的标准方程为( )A.x 24-y 216=1 B .x 2-y 24=1C.x 22-y 23=1 D .x 2-y 26=1 解析:选A 因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为4,所以a =2,由离心率为5,可得c a =5,c =25,所以b =c 2-a 2=20-4=4,则双曲线的标准方程为x 24-y 216=1.3.经过点P (3,27),Q(-62,7)的双曲线的标准方程为____________. 解析:设双曲线方程为mx 2+ny 2=1(mn <0), 因为所求双曲线经过点P (3,27),Q(-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125.故所求双曲线方程为y 225-x 275=1.答案:y 225-x 275=1考点二 双曲线定义的应用考法(一) 利用双曲线的定义求双曲线方程[典例] 已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为( )A.x 22-y 214=1(x ≥ 2) B.x 22-y 214=1(x ≤-2) C.x 22+y 214=1(x ≥ 2) D.x 22+y 214=1(x ≤-2) [解析] 设动圆的半径为r ,由题意可得|MC 1|=r +2,|MC 2|=r -2,所以|MC 1|-|MC 2|=22=2a ,故由双曲线的定义可知动点M 在以C 1(-4,0),C 2(4,0)为焦点,实轴长为2a =22的双曲线的右支上,即a =2,c =4⇒b 2=16-2=14,故动圆圆心M 的轨迹方程为x 22-y 214=1(x ≥ 2). [答案] A[解题技法]利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.考法(二) 焦点三角形问题[典例] 已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )A .2B .4C .6D .8[解析] 由双曲线的方程得a =1,c =2, 由双曲线的定义得||PF 1|-|PF 2||=2. 在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即(22)2=|PF 1|2+|PF 2|2-|PF 1|·|PF 2| =(|PF 1|-|PF 2|)2+|PF 1|·|PF 2| =22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. [答案] B [解题技法]在双曲线中,有关焦点三角形的问题常用双曲线定义和解三角形的知识来解决,尤其是涉及|PF 1|,|PF 2|的问题,一般会用到双曲线定义.涉及焦点三角形的面积问题,若顶角θ已知,则用S △PF 1F 2=12|PF 1||PF 2|sin θ,|||PF 1|-|PF 2|=2a 及余弦定理等知识;若顶角θ未知,则用S △PF 1F 2=12·2c ·|y 0|来解决.[题组训练]1.已知点F 1(-3,0)和F 2(3,0),动点P 到F 1,F 2的距离之差为4,则点P 的轨迹方程为( )A.x 24-y 25=1(y >0) B.x 24-y 25=1(x >0) C.y 24-x 25=1(y >0) D.y 24-x 25=1(x >0) 解析:选B 由题设知点P 的轨迹方程是焦点在x 轴上的双曲线的右支,设其方程为x 2a 2-y 2b 2=1(x >0,a >0,b >0),由题设知c =3,a =2,b 2=9-4=5,所以点P 的轨迹方程为x 24-y 25=1(x >0). 2.已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,则△F 1PF 2的面积为( )A .48B .24C .12D .6解析:选B 由双曲线的定义可得 |PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10, 由勾股定理可知三角形PF 1F 2为直角三角形, 因此S △F 1PF 2=12|PF 1|·|PF 2|=24.考点三 双曲线的几何性质考法(一) 求双曲线的离心率(或范围)[典例] (2018·长春二测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率的取值范围是( )A.⎝⎛⎦⎤53,2B.⎝⎛⎦⎤1,53 C .(1,2]D.⎣⎡⎭⎫53,+∞ [解析] 由双曲线的定义可知|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,所以|PF 2|=2a3,由双曲线上的点到焦点的最短距离为c -a ,可得2a 3≥c -a ,解得c a ≤53, 即e ≤53,又双曲线的离心率e >1,故该双曲线离心率的取值范围为⎝⎛⎦⎤1,53,故选B. [答案] B [解题技法]1.求双曲线的离心率或其范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.2.求离心率的口诀归纳离心率,不用愁,寻找等式消b 求; 几何图形寻迹踪,等式藏在图形中. 考法(二) 求双曲线的渐近线方程[典例] (2019·武汉部分学校调研)已知双曲线C :x 2m 2-y 2n 2=1(m >0,n >0)的离心率与椭圆x 225+y 216=1的离心率互为倒数,则双曲线C 的渐近线方程为( ) A .4x ±3y =0 B .3x ±4y =0C .4x ±3y =0或3x ±4y =0D .4x ±5y =0或5x ±4y =0[解析] 由题意知,椭圆中a =5,b =4,∴椭圆的离心率e = 1-b 2a 2=35,∴双曲线的离心率为 1+n 2m 2=53,∴n m =43,∴双曲线的渐近线方程为y =±n m x =±43x ,即4x ±3y =0.故选A.[答案] A[解题技法] 求双曲线的渐近线方程的方法求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±b a x ;或令y 2a 2-x 2b 2=0,得y =±ab x .反之,已知渐近线方程为y =±b a x ,可设双曲线方程为x 2a 2-y 2b2=λ(a >0,b >0,λ≠0).[题组训练]1.(2019·潍坊统一考试)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到渐近线的距离为3,且离心率为2,则该双曲线的实轴的长为( )A .1 B.3 C .2D .23解析:选C 由题意知双曲线的焦点(c,0)到渐近线bx -ay =0的距离为bca 2+b 2=b =3,即c 2-a 2=3,又e =ca=2,所以a =1,该双曲线的实轴的长为2a =2.2.已知直线l 是双曲线C :x 22-y 24=1的一条渐近线,P 是直线l 上一点,F 1,F 2是双曲线C 的左、右焦点,若PF 1―→·PF 2―→=0,则点P 到x 轴的距离为( )A.233B.2 C .2D.263解析:选C 由题意知,双曲线的左、右焦点分别为F 1(-6,0),F 2(6,0),不妨设直线l 的方程为y =2x ,设P (x 0,2x 0).由PF 1―→·PF 2―→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0,得x 0=±2,故点P 到x 轴的距离为|2x 0|=2,故选C.3.(2019·成都一诊)如图,已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),长方形ABCD 的顶点A ,B 分别为双曲线E 的左、右焦点,且点C ,D 在双曲线E 上,若|AB |=6,|BC |=52,则双曲线E 的离心率为( )A. 2B.32C.52D.5解析:选B 根据|AB |=6可知c =3,又|BC |=52,所以b 2a =52,b 2=52a ,所以c 2=a 2+52a=9,解得a =2(舍负),所以e =c a =32.4.(2018·郴州二模)已知双曲线y 2m -x 29=1(m >0)的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .y =±34xB .y =±43xC .y =±223xD .y =±324x解析:选B 由双曲线y 2m -x 29=1(m >0)的焦点在y 轴上,且在直线x +y =5上,直线x+y =5与y 轴的交点为(0,5),有c =5,则m +9=25,得m =16, 所以双曲线的方程为y 216-x 29=1,故双曲线的渐近线方程为y =±43x .故选B.[课时跟踪检测]A 级1.(2019·襄阳联考)直线l :4x -5y =20经过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点和虚轴的一个端点,则双曲线C 的离心率为( )A.53 B.35 C.54D.45解析:选A 由题意知直线l 与两坐标轴分别交于点(5,0),(0,-4),从而c =5,b =4,∴a =3,双曲线C 的离心率e =c a =53.2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且|PF 1|=6,则|PF 2|=( )A .6B .4C .8D .4或8解析:选D 由双曲线的标准方程可得a =1,则||PF 1|-|PF 2||=2a =2,即|6-|PF 2||=2,解得|PF 2|=4或8.3.(2018·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( )A. 2 B .2 C.322D .22解析:选D ∵e =ca=1+b 2a 2=2,∴b a=1. ∴双曲线的渐近线方程为x ±y =0. ∴点(4,0)到C 的渐近线的距离d =42=2 2. 4.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等解析:选D 由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等.5.(2018·陕西部分学校摸底)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1,过C 1的左顶点引C 1的一条渐近线的平行直线,则该直线与另一条渐近线及x 轴所围成的三角形的面积为( )A.24B.22C.28D.216解析:选C 设双曲线C 1的左顶点为A ,则A ⎝⎛⎭⎫-22,0,双曲线的渐近线方程为y =±2x ,不妨设题中过点A 的直线与渐近线y =2x 平行,则该直线的方程为y =2⎝⎛⎭⎫x +22,即y =2x +1.联立⎩⎨⎧y =-2x ,y =2x +1,解得⎩⎨⎧x =-24,y =12.所以该直线与另一条渐近线及x 轴所围成的三角形的面积S =12·|OA |·12=12×22×12=28,故选C.6.(2019·辽宁五校协作体模考)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b 2=1(a>0,b >0)的离心率为5,从双曲线C 的右焦点F 引渐近线的垂线,垂足为A ,若△AFO 的面积为1,则双曲线C 的方程为( )A.x 22-y 28=1 B.x 24-y 2=1 C.x 24-y 216=1 D .x 2-y 24=1 解析:选D 因为双曲线C 的右焦点F 到渐近线的距离|F A |=b ,|OA |=a ,所以ab =2,又双曲线C 的离心率为5,所以 1+b 2a2=5,即b 2=4a 2,解得a 2=1,b 2=4,所以双曲线C 的方程为x 2-y 24=1,故选D. 7.(2018·北京高考)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.解析:由e =ca =a 2+b 2a 2,得a 2+4a 2=54, ∴a 2=16. ∵a >0,∴a =4. 答案:48.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=________.解析:双曲线的右焦点为F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入x 2-y 23=0,得y 2=12,y =±23,故|AB |=4 3. 答案:43 9.(2018·海淀期末)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,由已知可得两条渐近线互相垂直,由双曲线的对称性可得b a=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.答案:210.(2018·南昌摸底调研)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过点F 作圆(x -a )2+y 2=c 216的切线,若该切线恰好与C 的一条渐近线垂直,则双曲线C 的离心率为________.解析:不妨取与切线垂直的渐近线方程为y =b a x ,由题意可知该切线方程为y =-a b(x -c ),即ax +by -ac =0.圆(x -a )2+y 2=c 216的圆心为(a,0),半径为c 4,则圆心到切线的距离d =|a 2-ac |a 2+b2=ac -a 2c =c 4,又e =c a ,则e 2-4e +4=0,解得e =2,所以双曲线C 的离心率e =2. 答案:211.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4, -10),点M (3,m )在双曲线上.(1)求双曲线的方程;(2)求证:MF 1―→·MF 2―→=0;(3)求△F 1MF 2的面积.解:(1)∵e =2,∴双曲线的实轴、虚轴相等.则可设双曲线方程为x 2-y 2=λ.∵双曲线过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 26-y 26=1. (2)证明:不妨设F 1,F 2分别为双曲线的左、右焦点, 则MF 1―→=(-23-3,-m ),MF 2―→=(23-3,-m ).∴MF 1―→·MF 2―→=(3+23)×(3-23)+m 2=-3+m 2,∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1―→·MF 2―→=0.(3)△F 1MF 2的底边长|F 1F 2|=4 3.由(2)知m =± 3.∴△F 1MF 2的高h =|m |=3,∴S △F 1MF 2=12×43×3=6. 12.中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求椭圆和双曲线的方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由题知c =13,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),双曲线方程为x 2m 2-y 2n 2=1(m >0,n >0),则⎩⎪⎨⎪⎧ a -m =4,7·13a =3·13m ,解得a =7,m =3.则b =6,n =2.故椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1. (2)不妨设F 1,F 2分别为椭圆与双曲线的左、右焦点,P 是第一象限的交点, 则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.B 级1.已知圆(x -1)2+y 2=34的一条切线y =kx 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)有两个交点,则双曲线C 的离心率的取值范围是( )A .(1,3)B .(1,2)C .(3,+∞)D .(2,+∞)解析:选D 由题意,知圆心(1,0)到直线kx -y =0的距离d =|k |k 2+1=32,∴k =±3, 由题意知b a >3,∴1+b 2a 2>4,即a 2+b 2a 2=c 2a 2>4,∴e >2. 2.(2019·吉林百校联盟联考)如图,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 过点F 1且与双曲线C 的一条渐近线垂直,与两条渐近线分别交于M ,N 两点,若|NF 1|=2|MF 1|,则双曲线C 的渐近线方程为( )A .y =±33x B .y =±3x C .y =±22x D .y =±2x解析:选B ∵|NF 1|=2|MF 1|,∴M 为NF 1的中点,又OM ⊥F 1N ,∴∠F 1OM =∠NOM ,又∠F 1OM =∠F 2ON ,∴∠F 2ON =60°,∴双曲线C 的渐近线的斜率k =±tan 60°=±3,即双曲线C 的渐近线方程为y =±3x .故选B.3.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM ―→+ON ―→=t OD ―→,求t 的值及点D 的坐标.解:(1)由题意知a =23,∵一条渐近线为y =b ax ,∴bx -ay =0.由焦点到渐近线的距离为3,得|bc |b 2+a 2= 3. 又∵c 2=a 2+b 2,∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得 x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎨⎧ x0y 0=433,x 2012-y 203=1.解得⎩⎨⎧x 0=43,y 0=3. ∴t =4,点D 的坐标为(43,3).。
18 高中解析几何-双曲线的问题
专题18高中解析几何-双曲线的问题【知识总结】 1.双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹. (2)符号表示:||MF 1|-|MF 2||=2a (常数)(0<2a <|F 1F 2|). (3)焦点:两个定点F 1,F 2.(4)焦距:两焦点间的距离,表示为|F 1F 2|. 2.双曲线的标准方程和简单几何性质F (-c ,0),F (c ,0)F (0,-c ),F (0,c )【高考真题】1.(2022·北京) 已知双曲线221x y m +=的渐近线方程为y =,则m =__________.2.(2022·全国甲理) 若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________.3.(2022·全国甲文) 记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.4.(2022·全国乙理) 双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A B .32 C D5.(2022·浙江) 已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,过F 且斜率为4b a 的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【题型突破】题型一 双曲线的标准方程1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=12.(2016·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A .x 24-y 2=1B .x 2-y 24=1C .3x 220-3y 25=1D .3x 25-3y 220=13.(2018·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=15.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .x 24-3y 24=1 B .x 24-4y 23=1 C .x 24-y 24=1 D .x 24-y 212=16.已知双曲线E 的中心为原点,(3, 0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中 点为(12, 15)N --,则E 的方程式为( )A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A .x 26-y 25=1B .x 28-y 212=1C .x 28-y 24=1D .x 24-y 26=18.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM的面积为5,其中O 为坐标原点,则双曲线的方程为( )A .x 2-4y 25=1 B .x 22-2y 25=1 C .x 24-y 25=1 D .x 216-y 220=19.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐 标为-23,则此双曲线的方程是( ).A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=110.双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( ) A .x 22-y 2=1 B .x 2-y 22=1 C .x 2-y 23=1 D .x 23-y 2=1题型二 双曲线中的求值11.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( )A .32B .3C .23D .412.(2019·全国Ⅰ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324B .322C .22D .3213.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC=θ,若Γ的离心率为2,则( )A .θ∈⎝⎛⎭⎫0,π2B .θ=π2C .θ∈⎝⎛⎭⎫3π4,πD .θ=3π414.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 15.如图,双曲线的中心在坐标原点O ,A ,C 分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则∠BDF 的余弦值是________.16.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .4317.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A 、B 两点,若P 为AB 中点,则|AB |=( )A .22B .23C .33D .4318.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为()A .1B .3C .5D .1219.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( )A .215a 2B .15a 2C .30a 2D .15a 220.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使 sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-2 题型三 双曲线的离心率21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线的夹角为60°,则双曲线C 的离心率为( )A .2B .3C .3或233D .233或222.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50° D.1cos 50°23.(2019·全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.24.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A .2B .32C .3D .225.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( )A .2B .3C .5D .626.已知O 为坐标原点,点A ,B 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,且关于坐标原点O 对称.若双曲线C 上与点A ,B 横坐标不相同的任意一点P 满足k P A ·k PB =3,则双曲线C 的离心率为( ) A .2 B .4 C .10 D .1027.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2B .32C .355D .5228.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A .52 B .62 C .233D .3 29.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( ) A .3+72 B .11+332 C .3+396 D .1+17430.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且FN →=3FM →,若OM ⊥FN ,则C 的离心率为( )A .2B .7C .3D .10 题型四 双曲线的渐近线31.(2018·全国Ⅰ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 32.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO 交双曲线C 左支于点M ,直线PF 2交双曲线C 右支于点N ,若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2x D .y =±22x 33.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (1,0)作x 轴的垂线,与双曲线交于A ,B 两点,O 为坐标原点,若△AOB 的面积为83,则双曲线的渐近线方程为________.34.已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( )A .y =±xB .y =±2xC .y =±2xD .y =±3x35.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,F 为其一个焦点,若F 关于l 1的对称点在l 2上,则双曲线的渐近线方程为( )A .y =±2xB .y =±3xC .y =±3xD .y =±2x36.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( )A .y =±2xB .y =±12xC .y =±22x D .y =±2x37.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±6x D .y =±66x 38.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =0 题型五 双曲线中的最值与范围39.P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155 C .4+155D .22+1 40.双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线上在第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( )A .8B .10C .4+37D .3+317 41.过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线, 切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .19 42.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上 的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4B .5C .6D .743.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.44.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.45.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→的最小值的取值范围是________.。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面我们来详细总结一下这部分的重要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。
当倾斜角为 90°时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。
高中双曲线知识点总结
高中双曲线知识点总结引言在高中数学中,双曲线是一个非常重要的概念。
它作为解析几何的一个分支,在许多问题中都有着广泛的应用。
本文将总结高中双曲线的基本概念、性质以及相关的解题方法,帮助读者更加深入地理解和掌握这一知识点。
一、双曲线的定义双曲线是一种平面上的曲线,其定义可以通过以下方法得到:1.定义一条直线(称为准线)和一个点(称为焦点);2.焦点至准线距离与焦点至双曲线上任意点距离之差的绝对值等于一个常数。
二、双曲线的方程在解析几何中,双曲线通常用点到焦点和焦准距离的关系方程表示。
根据焦准距离的不同符号,双曲线可分为以下两种情况:1.椭圆型双曲线:焦准距离之差的绝对值为正数。
其方程通常为:x^2/ a^2 - y^2 / b^2 = 1,其中a和b为正实数。
2.双曲线型双曲线:焦准距离之差的绝对值为负数。
其方程通常为:x^2 / a^2 - y^2 / b^2 = -1,其中a和b为正实数。
三、双曲线的基本性质双曲线具有以下几个基本性质:1.焦距公式:对于椭圆型双曲线,焦距c满足c²=a²+b²。
对于双曲线型双曲线,焦距c满足c²=a²+b²。
2.离心率:对于椭圆型双曲线,离心率ε满足ε=c/a。
对于双曲线型双曲线,离心率ε满足ε=c/a。
3.对称轴:对于椭圆型双曲线,对称轴是与准线垂直且通过双曲线的中心。
对于双曲线型双曲线,对称轴是与准线垂直且通过双曲线的中心。
4.渐近线:对于椭圆型双曲线,有两条渐近线,其方程分别为y=±b/a* x。
对于双曲线型双曲线,有两条渐近线,其方程分别为y=±b/a * x。
5.顶点:对于椭圆型双曲线,顶点为与对称轴的交点。
对于双曲线型双曲线,顶点为与对称轴的交点。
四、双曲线的画法与性质绘制双曲线的一种常见方法是使用焦点和准线进行绘制。
根据准线的不同位置可以得到不同形状的双曲线,如下所示:1.当准线与焦点重合时,得到的是一条垂直于x轴的对称双曲线。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
平面解析几何 双曲线
平面解析几何双曲线1.双曲线的概念平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c>2a,其中a,c为常数且a>0,c>0.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a,线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a,b,c的关系c2=a2+b2 (c>a>0,c>b>0)拓展1.平面内与两定点F1,F2的距离之差的绝对值等于常数2a的动点的轨迹:当2a<|F1F2|时,动点的轨迹是双曲线;当2a=|F1F2|时,动点的轨迹是两条射线;当2a>|F1F2|时,动点的轨迹不存在;当2a=0时,动点的轨迹是线段F1F2的中垂线.2.与椭圆标准方程相比较,双曲线标准方程中,a,b只限制a>0,b>0,二者没有大小要求,若a>b>0,a=b>0,0<a<b,双曲线哪的离心率受到影响.∵e=ca=1+⎝⎛⎭⎫ba2,故当a>b>0时,1<e<2;当a=b>0时,e=2(亦称等轴双曲线);当0<a<b时,e> 2.思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系. 思维升华 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a ,2b 或2c ,从而求出a 2,b 2,写出双曲线方程.(2)待定系数法:先确定焦点在x 轴还是y 轴,设出标准方程,再由条件确定a 2,b 2的值,即“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n 2=λ(λ≠0),再根据条件求λ的值.注意 ①双曲线与椭圆标准方程均可记为mx 2+ny 2=1(mn ≠0),其中当m >0,n >0,且m ≠n 时表示椭圆;当mn <0时表示双曲线,合理使用这种形式可避免讨论. ②常见双曲线设法(i)已知a =b 的双曲线可设为x 2-y 2=λ(λ≠0);(ii)已知过两点的双曲线可设为Ax 2-By 2=1(AB >0);(iii)已知渐近线为x m ±y n =0的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0).思维升华 求双曲线的渐近线的方法求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±b a x ;或令y 2a 2-x 2b 2=0,得y =±abx .反之,已知渐近线方程为y =±b a x ,可设双曲线方程为x 2a 2-y2b 2=λ(a >0,b >0,λ≠0). 思维升华 求双曲线的离心率 (1)求双曲线的离心率或其范围的方法①求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .②列出含有a ,b ,c 的等式(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.(2)焦点在x 轴上的双曲线的渐近线的斜率k 与离心率e 的关系:k =ba =c 2-a 2a=c 2a 2-1=e 2-1.【题型分类】题型一 双曲线的定义例1 (1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________________. 答案x 2-y 28=1(x ≤-1) 解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B . 根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 2,C 1的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8. 故点M 的轨迹方程为x 2-y 28=1(x ≤-1). (2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为______. 答案 23解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,∴|PF 1|·|PF 2|=8, ∴12F PF S=12|PF 1|·|PF 2|·sin 60°=2 3. 本例(2)中,“∠F 1PF 2=60°”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积为_____.答案 2解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22,∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4, ∴12F PF S=12|PF 1|·|PF 2|=2. 跟踪训练1 (1)过双曲线x 2-y 24=1的左焦点F 1作一条直线l 交双曲线左支于P ,Q 两点,若|PQ |=4,F 2是双曲线的右焦点,则△PF 2Q 的周长是________. 答案 12解析 由题意,得|PF 2|-|PF 1|=2,|QF 2|-|QF 1|=2. ∵|PF 1|+|QF 1|=|PQ |=4, ∴|PF 2|+|QF 2|-4=4, ∴|PF 2|+|QF 2|=8.∴△PF 2Q 的周长是|PF 2|+|QF 2|+|PQ |=8+4=12.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义得 |PF 1|-|PF 2|=|PF 2|=2a =22, ∴|PF 1|=2|PF 2|=42,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.题型二 双曲线的标准方程 1.已知双曲线的渐近线为y =±22x ,实轴长为4,则该双曲线的方程为( ) A.x 24-y 22=1 B.x 24-y 28=1或y 24-x 28=1 C.x 24-y 28=1 D.x 24-y 22=1或y 24-x 28=1 答案 D解析 设双曲线方程为x 22m -y 2m =1(m ≠0),又2a =4,∴a 2=4, 当m >0时,2m =4,m =2; 当m <0时,-m =4,m =-4.故所求双曲线方程为x 24-y 22=1或y 24-x 28=1.2.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.3.经过点P (-3,27)和点Q (-62,-7)的双曲线方程为________. 答案 y 225-x 275=1解析 设双曲线方程为mx 2-ny 2=1(mn >0),∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎨⎧m =-175,n =-125,∴双曲线方程为y 225-x 275=1.4.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 答案 A解析 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1.题型三 双曲线的几何性质 命题点1 渐近线例2 (1)(2020·云南省昆明一中模拟)已知双曲线y 2a -x 24=1的渐近线方程为y =±32x ,则a 的值为( )A .9 B. 3 C .3 D.2 答案 A解析 由题意可知,双曲线的焦点在y 轴上, 故双曲线的渐近线方程为y =±a 2x , 则a 2=32,解得a =9. (2)(2019·江苏)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是____________. 答案 y =±2x 解析 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1,得b =2,所以该双曲线的渐近线方程是y =±2x . 命题点2 离心率例3 (1)(2019·浙江)渐近线方程为x ±y =0的双曲线的离心率是( ) A.22B .1 C. 2 D .2 答案 C解析 因为双曲线的渐近线方程为x ±y =0,所以无论双曲线的焦点在x 轴上还是在y 轴上,都满足a =b ,所以c =2a ,所以双曲线的离心率e =ca= 2.(2)设双曲线C :x 2a 2-y 2b 2=1(a >b >0)的两条渐近线的夹角为α,且cos α=13,则C 的离心率为( ) A.52 B.62 C.72D .2 答案 B解析 ∵a >b >0,∴渐近线y =ba x 的斜率小于1,∵两条渐近线的夹角为α,cos α=13.∴cos 2α2=23,sin 2α2=13,tan 2α2=12,∴b 2a 2=12,∴c 2-a 2a 2=12, ∴e 2=32,∴e =62.(3)(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50° D.1cos 50°答案 D解析 由题意可得-ba =tan 130°,所以e = 1+b 2a2=1+tan 2130°= 1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.(4)(2019·全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A. 2 B. 3 C .2 D.5 答案 A解析 如图,由题意知,以OF 为直径的圆的方程为⎝⎛⎭⎫x -c 22+y 2=c24,① 将x 2+y 2=a 2,② ①-②得x =a 2c ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =a 2c,所以|PQ |=2a 2-⎝⎛⎭⎫a 2c 2. 由|PQ |=|OF |,得2a 2-⎝⎛⎭⎫a 2c 2=c , 整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0, 解得e =2,故选A. 跟踪训练2 (1)若双曲线x 2-y 2m 2=1(m >0)的焦点到渐近线的距离是4,则m 的值是( ) A .2 B. 2 C .1 D .4答案 D 解析 双曲线x 2-y 2m 2=1(m >0)的焦点设为(c,0), 当双曲线方程为x 2a 2-y 2b2=1时,渐近线方程设为bx -ay =0,可得焦点到渐近线的距离 d =|bc |b 2+a 2=b , 故由题意可得b =m =4.(2)已知点(1,2)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,则其离心率的取值范围是( )A.()1,5B.⎝⎛⎭⎫1,52 C.()5,+∞ D.⎝⎛⎭⎫52,+∞ 答案 C解析 已知点(1,2)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,得1a 2-4b 2=1,即b 2a 2=b 2+4, 所以e =ca=1+b 2a2=b 2+5>5,所以e > 5. (3)(2020·云南省昆明一中模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线右支上的一点,满足|PF 2|=|F 1F 2|,直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.233B. 3C.53D.2答案 C解析 过点F 2作F 2N ⊥PF 1,N 为垂足, 过O 作OM ⊥PF 1,M 为垂足,如图, ∵|PF 2|=|F 1F 2|=2c , ∴△PF 1F 2为等腰三角形, 故N 为PF 1的中点,又∵MO ∥NF 2,且O 为F 1F 2的中点, ∴M 为F 1N 的中点,∴4|MF 1|=|PF 1|, 又由PF 1与圆x 2+y 2=a 2相切,∴|OM |=a ,∴|F 1M |=|OF 1|2-|OM |2=b ,∴|PF 1|=4b ,∵P 是双曲线右支上一点, ∴|PF 1|-|PF 2|=2a , 即4b -2c =2a , 又a 2+b 2=c 2, ∴a 2+⎝⎛⎭⎫a +c 22=c 2,5a 2+2ac -3c 2=0,3e 2-2e -5=0,又e >1,解得e =53.。
高中数学第二章平面解析几何2.6双曲线及其方程2.6.2双曲线的几何性质课件新人教B版选择性必修第一
e=
=
从而
−
2
5
,
3
5
b=4,c=3a,代入 c2=a2+b2,得 a2=9,
2
故双曲线的标准方程为
9
2
− =1.
16
2 =1(a>0,b>0),由题意知
2b=8,
(2)由题意知,所求双曲线的焦点在 x 轴上,
2
2
故可设其方程为64 − 16=λ(λ>0),
将点(2,0)的坐标代入方程得
且实用的是把双曲线标准方程中等号右边的“1”改成“0”,就得到了此双曲
线的渐近线方程.
2
2
2
2.与双曲线 2 − 2 =1(a>0,b>0)有共同渐近线的双曲线方程可设为 2 −
2
2 =λ(λ≠0);若已知双曲线的渐近线方程 ± =0 或 y=±x,则双曲线方程可设为
2
k2x2-y2=λ(λ≠0)
渐近线为 ax±by=0 的双曲线
a2x2-b2y2=λ(λ≠0)
变式训练2
求适合下列条件的双曲线的标准方程.
(1)焦点在 x 轴上,虚轴长为
5
8,离心率为3;
2
2
(2)过点(2,0),与双曲线64 − 16=1
的离心率相等.
2
解(1)设所求双曲线的标准方程为2
2
A(x1,y1),B(x2,y2),则|AB|= 1 + 2 |x1-x2|= 1 + 2 · (1 + 2 ) -41 2 或
|AB|= 1 +
1
1
2
高中数学备课教案平面解析几何中的曲线与双曲线
高中数学备课教案平面解析几何中的曲线与双曲线高中数学备课教案平面解析几何中的曲线与双曲线一、引言在高中数学教学中,平面解析几何是一个重要的内容,其中曲线与双曲线是学生们比较难以理解的部分。
本教案将重点介绍曲线与双曲线的基本概念、性质以及解题方法,帮助学生掌握相关知识,提高解析几何的应用能力。
二、曲线的基本概念1. 定义曲线是平面上的点按照一定规律运动形成的图形。
曲线可由函数方程表示,也可由参数方程表示。
2. 曲线的分类根据曲线在平面上的性质,可以将曲线分为封闭曲线和非封闭曲线两类。
封闭曲线包括椭圆、圆和抛物线等;非封闭曲线包括双曲线和直线等。
三、双曲线的概念1. 定义双曲线是平面上的点,到两个给定点的距离之差等于常数的轨迹。
双曲线可由参数方程表示。
2. 双曲线的性质双曲线有以下几个重要性质:- 双曲线的离心率大于1;- 双曲线的两支无交点,且与其渐近线存在交点;- 双曲线的渐近线为其两支的公共渐近线。
四、双曲线的方程双曲线的一般方程为:$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$,其中ABCDEF为常数。
1. 标准方程双曲线的标准方程为:$\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1$,其中a为横轴的半轴长,b为纵轴的半轴长。
2. 参数方程双曲线的参数方程为:$x = a\sec t$,$y = b\tan t$。
五、求解双曲线的问题1. 求双曲线的焦点和离心率根据双曲线的方程,可以通过方程中的系数求解双曲线的焦点坐标和离心率。
2. 求双曲线的渐近线双曲线的渐近线是双曲线的一种特殊直线,可通过方程中的系数求解。
3. 判断点的位置关系给定平面上的一点,可以通过其到双曲线的距离与离心率的关系判断点与双曲线的位置关系。
六、案例分析以具体的例题,对曲线与双曲线的相关知识进行案例分析和解答,帮助学生更好地理解和运用所学内容。
七、课堂练习出示一些真实生活中的问题,让学生运用所学的曲线与双曲线的知识进行解答,培养学生的应用能力和解决问题的能力。
高中数学平面解析几何的椭球与双曲面方程推导与应用
高中数学平面解析几何的椭球与双曲面方程推导与应用椭球与双曲面是平面解析几何中的重要内容,它们在数学和物理学中有着广泛的应用。
本文将介绍椭球与双曲面的方程推导与应用,帮助高中学生更好地理解和应用这些知识。
一、椭球的方程推导与应用1. 方程推导椭球是一个离心率小于1的二次曲面,其方程可以通过焦点和准线的位置关系来推导。
假设焦点为F,准线为L,椭球上一点P到焦点的距离为PF,到准线的距离为PL,根据定义,有PF+PL=常数。
设焦点F的坐标为(Fx, Fy, Fz),准线L的方程为Ax+By+Cz+D=0,点P的坐标为(x, y, z),则有:√[(x-Fx)²+(y-Fy)²+(z-Fz)²] + |Ax+By+Cz+D| = 常数化简上式,即可得到椭球的方程。
2. 应用举例椭球的方程推导虽然有一定的复杂性,但在实际应用中却非常广泛。
例如,在天文学中,椭球可以用来描述行星、卫星和彗星的轨道;在建筑学中,椭球可以用来设计拱顶和穹顶的形状;在工程学中,椭球可以用来描述电磁波的传播路径等等。
因此,掌握椭球的方程推导和应用对于高中学生来说是非常重要的。
二、双曲面的方程推导与应用1. 方程推导双曲面是一个离心率大于1的二次曲面,其方程可以通过焦点和准线的位置关系来推导。
与椭球类似,假设焦点为F,准线为L,双曲面上一点P到焦点的距离为PF,到准线的距离为PL,根据定义,有PF-PL=常数。
设焦点F的坐标为(Fx, Fy, Fz),准线L的方程为Ax+By+Cz+D=0,点P的坐标为(x, y, z),则有:√[(x-Fx)²+(y-Fy)²+(z-Fz)²] - |Ax+By+Cz+D| = 常数化简上式,即可得到双曲面的方程。
2. 应用举例双曲面的方程推导和应用同样具有广泛的应用价值。
例如,在物理学中,双曲面可以用来描述电场和磁场的分布;在天文学中,双曲面可以用来描述彗星的轨道;在工程学中,双曲面可以用来设计抛物面天线等等。
高考数学复习第7章解析几何第6讲双曲线
3.通过圆锥曲线的学习,进一步 比椭圆要低.以选择题、填空题
体会数形结合的思想
为主
1.双曲线的概念 平面内与两个定点 F1,F2(|F1F2|=2c>0)的距离之差的绝对 值为常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线.这两 个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.
集合 P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中 a,c 为 常数且 a>0,c>0.
作过 A,B 的椭圆,则另一焦点 F 的轨迹方程为________. 解析:(利用定义求方程)设 F(x,y)为轨迹上的任意一点, ∵A,B 两点在以 C,F 为焦点的椭圆上, ∴|FA |+|CA|=2a,|FB|+|CB|=2a(其中 a 表示椭圆的长半
轴长). ∴|FA |+|CA|=|FB|+|CB|. ∴|FA|-|FB|=|CB|-|CA|= 122+92- 122+-52=2. ∴|FA|-|FB|=2<14. 由双曲线的定义知,F 点在以 A,B 为焦点,2 为实轴长的
等边三角形(O 为原点),则双曲线的方程为( )
A.x42-1y22 =1
B.1x22 -y42=1
C.x32-y2=1
D.x2-y32=1
解析:|OF|=c=2,点 A 的坐标为(-1, 3),则渐近线为
y=- 3x=-bax.∴ba= 3.又由 a2+b2=c2,可得 a=1,b= 3. 则双曲线的方程为 x2-y32=1.故选 D.
双曲∴ 答线案 点的:下F y支的2-上轨4x,迹82 =方1程(y≤是-y21-) 4x82 =1(y≤-1).
考点 2 求双曲线的标准方程 例 2:(1)(2017 年天津)已知双曲线ax22-by22=1(a>0,b>0)的
(完整版)(完整word)高中数学解析几何专题之双曲线(汇总解析版),推荐文档
0 , b 0 ),过其焦点 F ( ,0) 且垂 2c
2
A(c, b )
A 在 x 轴的上方) ,则
a
,
WORD 文档
2
B( c, b ) a ,于是该双曲线的通径长为
b2
b2
b2
AB
( )2
a
a
a
.
四、关于双曲线的标准方程,需要注意的几个问题
(1)关于双曲线的标准方程, 最基本的两个问题是: 其一, 当题目已指明曲线的位置特征,
高中数学讲义之解析几何
WORD 文档
圆锥曲线第 2 讲 双曲线
【知识要点】
一、双曲线的定义
1. 双曲线的第一定义:
平面内到两个定点 F1 、
F 的距离之差的绝对值等于定长
2
2a( 0 2a
FF
1 2 )的点的轨迹
叫双曲线,这两个定点叫做双曲线的焦点,两个焦点之间的距离叫做焦距。
注 1:在双曲线的定义中,必须强调:到两个定点的距离之差的绝对值(记作
a 、 b 的值。特别
需要注意的是:若题目中已经指明双曲线的焦点在
x 轴或 y 轴上,则以 a 、 b 为未知参数的
方程组只有一个解, 即 a 、b 只有一个值; 若题目未指明双曲线的焦点在哪个轴上, 则以 a 、
b 为未知参数的方程组应有两个解,即 a 、 b 应有两个值。
(4)有时为方便解题,中心在坐标原点的双曲线的方程也可设为
2
b
(8)焦准距: c
;
e
(9)离心率:
c 且 e 1 . e 越小,双曲线的开口越小; a
பைடு நூலகம்
e 越大,双曲线的开口越大;
y
高中数学第2章平面解析几何2.6双曲线及其方程2.6.2双曲线的几何性质课件新人教B版选择性必修第一
知识点三 对双曲线的几何性质的五点认识
ห้องสมุดไป่ตู้
(1)双曲线的焦点决定双曲线的位置.
(2)双曲线的范围决定了双曲线的开放性和无限延展性,由双曲线的方 程ax22-by22=1(a>0,b>0),得ax22=1+by22≥1,所以 x2≥a2,所以|x|≥a,即 x≤
-a 或 x≥a.
(3)双曲线的离心率和渐近线刻画了双曲线的开口大小,因为 c>a>0,
[跟踪训练 1] 求双曲线 9y2-16x2=144 的半实轴长和半虚轴长、焦点 坐标、离心率、渐近线方程.
解 把方程 9y2-16x2=144 化为标准方程为4y22-3x22=1.由此可知,半实 轴长 a=4,半虚轴长 b=3,c= a2+b2= 42+32=5,所以焦点坐标为(0, -5),(0,5),离心率 e=ac=45,渐近线方程为 y=±43x.
13 ______e_=__ac_(_e_>_1_)_______
知识点二 等轴双曲线 01 ____实__轴__长__与__虚__轴__长__相__等_______的双曲线称为等轴双曲线.等轴双曲 线具有以下性质: (1)方程形式为 02 __x_2_-__y_2=__λ____________ (λ≠0); (2)渐近线方程为 03 ____y_=__±_x__________,它们互相垂直,并且平分双 曲线实轴和虚轴所成的角; (3)实轴长和虚轴长都等于 04 ___2_a____,离心率 e= 05 ___2___.
图 形
标准方程
ax22-by22=1(a>0,b>0)
焦点在 y 轴上 ay22-bx22=1(a>0,b>0)
焦点位置 焦点 焦距
平面解析几何双曲线与双曲线的方程与性质
平面解析几何双曲线与双曲线的方程与性质在平面解析几何中,双曲线是一类重要的曲线形状。
它们在数学、物理和工程等领域有着广泛的应用。
本文将重点讨论双曲线的方程和性质。
一、双曲线的定义和基本性质双曲线是一个点集,满足到两个给定点F1和F2的距离之差的绝对值等于常数2a的所有点的轨迹。
该常数a称为双曲线的半长轴。
双曲线的两个焦点F1和F2与半长轴之间的距离称为焦距,记为2c。
双曲线的方程可以表示为:(x - h)²/a² - (y - k)²/b² = 1其中,(h, k)是双曲线的中心点。
根据双曲线的方程,可以推导出双曲线的一些基本性质。
1. 双曲线的对称轴与中心点相交,且垂直于对称轴的直线称为双曲线的主轴。
主轴的长度等于2a。
2. 双曲线的焦点与中心点之间的连线称为焦半径,焦半径的长度等于c。
3. 双曲线的两个分支关于对称轴对称,且与圆的不同是它们的离心率大于1。
4. 双曲线的离心率定义为e = c/a,用来描述双曲线的形状。
离心率大于1,表示双曲线趋近无穷远。
二、双曲线的分类根据双曲线的方程和性质,可以将双曲线分为以下几类:1. 横轴双曲线:a²大于b²,焦点位于横轴上。
2. 竖轴双曲线:a²小于b²,焦点位于竖轴上。
3. 倾斜双曲线:双曲线的对称轴不与坐标轴重合。
不同类型的双曲线在平面上呈现出不同的形态和特点,对于双曲线的分类与性质的理解对于解析几何的研究和实际应用非常重要。
三、双曲线的应用双曲线在数学、物理和工程等多个领域都有着广泛的应用。
1. 数学应用:双曲线是解析几何中的重要概念,在微积分、代数等数学学科中都有着深入研究和应用。
2. 物理应用:双曲线在物理学中的应用非常广泛,例如光学中的折射、电磁学中的电场分布等都可以用双曲线进行描述和计算。
3. 工程应用:双曲线在工程领域中也有着重要的应用,例如在建筑设计中可以利用双曲线形状来构建特殊的建筑结构。
高一数学平面解析几何中的椭圆与双曲线的方程
高一数学平面解析几何中的椭圆与双曲线的方程椭圆和双曲线是平面解析几何中的两个重要的曲线形状。
它们在数学和物理学中都有广泛的应用。
本文将详细介绍椭圆和双曲线的基本概念,以及它们的方程及性质。
一、椭圆椭圆是平面上一条封闭曲线,所有到两个固定点距离之和相等的点的轨迹。
椭圆的方程可以通过平面解析几何中的焦点和准线来表示。
假设椭圆的焦点为F1和F2,准线长度为2a,离心率为e,则椭圆的方程为:(x - x1)^2/a^2 + (y - y1)^2/b^2 = 1其中,(x1, y1)为椭圆中心的坐标,a为长轴的长度,b为短轴的长度,b^2 = a^2(1 - e^2)。
椭圆的性质包括:1. 焦半径定理:椭圆上任意一点到两个焦点的距离之和等于长轴的长度。
2. 切线定理:椭圆上任意一点处的切线与准线之间的夹角等于与椭圆焦点的连线的夹角的一半。
3. 两焦点和椭圆中心共线。
二、双曲线双曲线是平面上一条开口的曲线,所有点的到两个固定点距离之差的绝对值相等的点的轨迹。
双曲线的方程可以通过平面解析几何中的焦点和准线来表示。
假设双曲线的焦点为F1和F2,准线长度为2a,离心率为e,则双曲线的方程为:(x - x1)^2/a^2 - (y - y1)^2/b^2 = 1其中,(x1, y1)为双曲线中心的坐标,a为实轴的长度,b为虚轴的长度,b^2 = a^2(e^2 - 1)。
双曲线的性质包括:1. 焦半径定理:双曲线上任意一点到两个焦点的距离之差的绝对值等于长轴的长度。
2. 切线定理:双曲线上任意一点处的切线与准线之间的夹角等于与双曲线焦点的连线的夹角的一半。
3. 两焦点和双曲线中心共线。
三、椭圆与双曲线的区别与联系椭圆和双曲线在形状上有一定的相似之处,但也存在一些明显的区别。
首先,椭圆是一条封闭的曲线,而双曲线是一条开口的曲线。
其次,椭圆的离心率范围是0到1,而双曲线的离心率大于1。
此外,椭圆的焦点和准线之间的距离小于等于长轴的长度,而双曲线的焦点和准线之间的距离大于长轴的长度。
高三双曲线的基本知识点
高三双曲线的基本知识点高中数学是一个相对抽象而又具有一定难度的学科,对于许多同学来说,数学中的各种曲线方程是难点之一。
而双曲线则是其中一种常见的曲线类型。
在高三阶段,学习双曲线的基本知识点对于数学学习的深入和成功备考非常重要。
本文将结合几个方面,介绍高三双曲线的基本知识点。
1. 双曲线的定义和特点双曲线是平面解析几何中的一种曲线类型,其定义是指平面上到两个给定点F1和F2的距离之差为常数的点的轨迹。
根据这个定义,我们可以知道,双曲线是对称于直线l的图形。
在双曲线上,各点到两个焦点的距离之差不断增大,而且双曲线有两条渐近线,渐近线与双曲线的距离越来越近且不断接近于0。
2. 双曲线的标准方程和性质双曲线的标准方程可以表示为:x^2/a^2 - y^2/b^2 = 1,其中a和b是正实数。
根据a和b的取值范围,双曲线可以分为四种情况:a>b,a=b,a<b以及a=0或b=0。
根据这些情况,双曲线的形状和性质也有所不同。
例如,当a>b时,双曲线的焦点在x轴上,且对称轴为y=0。
当a=b时,双曲线为特殊的双曲线x^2 - y^2 = 1,图形均为两支直线。
当a<b时,双曲线的焦点在y轴上,且对称轴为x=0。
3. 双曲线的参数方程除了标准方程外,双曲线还可以通过参数方程来表示。
双曲线的参数方程是由两个参数函数x(t)和y(t)组成。
通过适当选择参数函数,可以得到各种形态的双曲线。
例如,当选择参数函数x(t) = a·sec(t)和y(t) = b·tan(t)时,就可以得到标准方程x^2/a^2 - y^2/b^2 = 1对应的双曲线。
4. 双曲线的经典问题在学习双曲线过程中,常常会遇到一些经典问题,例如焦点、顶点、渐近线等的求解问题。
焦点是指双曲线上离两个焦点F1和F2距离之差为常数的点,可以通过利用标准方程或参数方程来求解。
顶点是指双曲线的中点,可以通过求解双曲线的对称轴交点来得到。
(完整)高中数学解析几何双曲线性质与定义
双曲线双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。
双曲线在一定的仿射变换下,也可以看成反比例函数。
双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。
一、双曲线的定义 ①双曲线的第一定义一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。
取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。
设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。
将这个方程移项,两边平方得:两边再平方,整理得:()()22222222a c a y a x a c -=--由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得:双曲线的标准方程:12222=-by a x两个定点F 1,F 2叫做双曲线的左,右焦点。
两焦点的距离叫焦距,长度为2c 。
坐标轴上的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。
实轴长、虚轴长、焦距间的关系:222b a c +=,②双曲线的第二定义与椭圆的方法类似:对于双曲线的标准方程:12222=-by a x ,我们将222b a c +=代入,可得:()ac ca x c x y =±±+22 所以有:双曲线的第二定义可描述为:平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (ca x 2±=)的距离之比为常数()0ce c a a=>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双曲线的准线,常数e 是双曲线的离心率。
2024年高考数学总复习第九章《平面解析几何》双曲线
2024年高考数学总复习第九章《平面解析几何》§9.6双曲线最新考纲了解双曲线的定义、几何图形和标准方程,知道其简单几何性质.1.双曲线定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.(1)当2a <|F 1F 2|时,P 点的轨迹是双曲线;(2)当2a =|F 1F 2|时,P 点的轨迹是两条射线;(3)当2a >|F 1F 2|时,P 点不存在.2.双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a 对称性对称轴:坐标轴对称中心:原点顶点A 1(-a ,0),A 2(a ,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞),其中c =a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ,线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)概念方法微思考1.平面内与两定点F 1,F 2的距离之差的绝对值等于常数2a 的动点的轨迹一定为双曲线吗?为什么?提示不一定.当2a =|F 1F 2|时,动点的轨迹是两条射线;当2a >|F 1F 2|时,动点的轨迹不存在;当2a =0时,动点的轨迹是线段F 1F 2的中垂线.2.方程Ax 2+By 2=1表示双曲线的充要条件是什么?提示若A >0,B <0,表示焦点在x 轴上的双曲线;若A <0,B >0,表示焦点在y 轴上的双曲线.所以Ax 2+By 2=1表示双曲线的充要条件是AB <0.3.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0<a <b ,双曲线哪些性质受影响?提示离心率受到影响.∵e =c a=a >b >0时,1<e <2,当a =b >0时,e =2(亦称等轴双曲线),当0<a <b 时,e > 2.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.(×)(2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.(×)(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n=0.(√)(4)等轴双曲线的渐近线互相垂直,离心率等于2.(√)(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).(√)题组二教材改编2.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()A.5B .5C.2D .2答案A解析由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±yb =0,即bx ±ay =0,∴2a =bc a 2+b2=b .又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.3.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为()A .x ±2y =0 B.2x ±y =0C .x ±2y =0D .2x ±y =0答案A解析椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a=32,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0.4.经过点A (4,1),且对称轴都在坐标轴上的等轴双曲线方程为________.答案x 215-y 215=1解析设双曲线的方程为x 2a 2-y 2a2=±1(a >0),把点A (4,1)代入,得a 2=15(舍负),故所求方程为x 215-y 215=1.题组三易错自纠5.(2016·全国Ⅰ)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)答案A解析∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A.6.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为()A.73B.54C.43D.53答案D解析由条件知y =-b a x 过点(3,-4),∴3ba=4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2,∴25a 2=9c 2,∴e =53.故选D.7.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________________.答案x 24-y 2=1解析由双曲线的渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1.题型一双曲线的定义例1(1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆答案B解析如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,∴|MF 2|=2.∵点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,由垂直平分线的性质可得|PM |=|PF 1|,∴||PF 2|-|PF 1||=||PF 2|-|PM ||=|MF 2|=2<|F 1F 2|,∴由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.答案34解析∵由双曲线的定义有|PF 1|-|PF 2|=|PF 2|=2a =22,∴|PF 1|=2|PF 2|=42,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.引申探究1.本例(2)中,若将条件“|PF 1|=2|PF 2|”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少?解不妨设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2a =22,在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,∴|PF 1|·|PF 2|=8,∴12F PF S =12|PF 1|·|PF 2|·sin 60°=23.2.本例(2)中,若将条件“|PF 1|=2|PF 2|”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少?解不妨设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2a =22,∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2,即|PF 1|2+|PF 2|2=16,∴|PF 1|·|PF 2|=4,∴12F PF S =12|PF 1|·|PF 2|=2.思维升华(1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.答案(27,8)解析如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2,由于△PF 1F 2为锐角三角形,结合实际意义需满足m +2)2<m 2+42,2<(m +2)2+m 2,解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2,∴27<2m +2<8.题型二双曲线的标准方程例2(1)(2018·大连调研)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________________.答案x 2-y 28=1(x ≤-1)解析如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件,得|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |,因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|,即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 2,C 1的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).(2)根据下列条件,求双曲线的标准方程:①虚轴长为12,离心率为54;②焦距为26,且经过点M (0,12);③经过两点P (-3,27)和Q (-62,-7).解①设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0).由题意知,2b =12,e =c a =54,∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.②∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12.又2c =26,∴c =13,∴b 2=c 2-a 2=25.∴双曲线的标准方程为y 2144-x 225=1.③设双曲线方程为mx 2-ny 2=1(mn >0).9m -28n =1,72m -49n =1,m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.思维升华求双曲线标准方程的方法(1)定义法(2)待定系数法①焦点位置不确定时,设Ax 2+By 2=1(AB <0);②与x 2a 2-y 2b 2=1共渐近线的设为x 2a 2-y 2b2=λ(λ≠0);③与x 2a 2-y 2b 2=1共焦点的设为x 2a 2-k -y 2b 2+k =1(-b 2<k <a 2).跟踪训练2(1)(2018·天津河西区模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为8,右顶点(a ,0)到双曲线的一条渐近线的距离为125,则双曲线C 的方程为()A.x 29-y 216=1 B.x 216-y 29=1C.x 225-y 216=1 D.x 216-y 225=1答案A解析由虚轴长为8,可得b =4,∵右顶点A (a,0)到双曲线C 的一条渐近线bx -ay =0的距离为125,∴ab a 2+b 2=125,解得a =3,∴则双曲线C 的方程为x 29-y 216=1,故选A.(2)(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为()A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1答案B 解析由y =52x ,可得b a =52.①由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.②由①②可得a 2=4,b 2=5.所以C 的方程为x 24-y 25=1.故选B.题型三双曲线的几何性质命题点1与渐近线有关的问题例3已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是()A.2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =0答案A解析由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±bax =±2x ,即2x ±y =0.命题点2求离心率的值(或范围)例4(2018·天津河东区模拟)双曲线方程为x 2a 2-y 2=1,其中a >0,双曲线的渐近线与圆(x -2)2+y 2=1相切,则双曲线的离心率为()A.233B.3C.2D.32答案A解析根据题意,可以求得双曲线的渐近线的方程为x ±ay =0,而圆(x -2)2+y 2=1的圆心为(2,0),半径为1,结合题意有|2±0|1+a2=1,结合a >0的条件,求得a =3,所以c =3+1=2,所以有e =23=233,故选A.思维升华1.求双曲线的渐近线的方法求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±b a x ;或令y 2a 2-x 2b 2=0,得y =±a b x .反之,已知渐近线方程为y =±ba x ,可设双曲线方程为x 2a 2-y 2b2=λ(a >0,b >0,λ≠0).2.求双曲线的离心率(1)求双曲线的离心率或其范围的方法①求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.②列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.(2)双曲线的渐近线的斜率k与离心率e的关系:k=ba=c2-a2a=c2a2-1=e2-1.跟踪训练3(2018·茂名模拟)已知F1,F2是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点B,A,若△ABF2为等边三角形,则双曲线的离心率为()A.7B.4 C.233D.3答案A解析因为△ABF2为等边三角形,所以不妨设|AB|=|BF2|=|AF2|=m,因为A为双曲线右支上一点,所以|F1A|-|F2A|=|F1A|-|AB|=|F1B|=2a,因为B为双曲线左支上一点,所以|BF2|-|BF1|=2a,|BF2|=4a,由∠ABF2=60°,得∠F1BF2=120°,在△F1BF2中,由余弦定理得4c2=4a2+16a2-2·2a·4a·cos120°,得c2=7a2,则e2=7,又e>1,所以e=7.故选A.高考中离心率问题离心率是椭圆与双曲线的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a,b,c的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆与双曲线的离心率问题难点的根本方法.例1已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是(),32,34C.32,D.34,答案A解析设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4,∴|AF |+|AF 0|=4,∴a =2.设M (0,b ),则M 到直线l 的距离d =4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a2=4-b 24∈,32,故选A.例2已知F 1,F 2为双曲线的焦点,过F 2作垂直于实轴的直线交双曲线于A ,B 两点,BF 1交y 轴于点C ,若AC ⊥BF 1,则双曲线的离心率为()A.2B.3C .22D .23答案B解析不妨设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知,取A 取B 则C F 1(-c ,0).由AC ⊥BF 1知AC →·BF 1→=0,又AC →c BF 1→2c 2c 2-3b 42a2=0,又b2=c2-a2,可得3c4-10c2a2+3a4=0,则有3e4-10e2+3=0,可得e2=3或13,又e>1,所以e= 3.故选B.1.(2018·云南民族中学月考)已知双曲线y 2a 2-x 2b 2=1(a >0,b >0),点(4,-2)在它的一条渐近线上,则离心率等于()A.6 B.5 C.62D.52答案B解析渐近线方程为y =-a b x ,故(4,-2)满足方程-2=-a b ×4,所以a b =12,所以e =ca=a 2+b 2a2=1+b 2a2=5,故选B.2.(2018·海淀模拟)设曲线C 是双曲线,则“C 的方程为x 2-y 24=1”是“C 的渐近线方程为y =±2x ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析若C 的方程为x 2-y 24=1,则a =1,b =2,渐近线方程为y =±bax ,即为y =±2x ,充分性成立;若渐近线方程为y =±2x ,则双曲线方程为x 2-y 24=λ(λ≠0),∴“C 的方程为x 2-y 24=1”是“C 的渐近线方程为y =±2x ”的充分不必要条件,故选A.3.(2018·辽宁省五校联考)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,从双曲线C 的右焦点F 引渐近线的垂线,垂足为A ,若△AFO 的面积为1,则双曲线C 的方程为()A.x 22-y 28=1 B.x 24-y 2=1C.x 24-y 216=1D .x 2-y 24=1答案D解析因为双曲线C 的右焦点F 到渐近线的距离|FA |=b ,|OA |=a ,所以ab =2,又双曲线C的离心率为5,所以1+b 2a2=5,即b 2=4a 2,解得a 2=1,b 2=4,所以双曲线C 的方程为x 2-y 24=1,故选D.4.(2018·金华模拟)已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于()A .2B .4C .6D .8答案B解析由双曲线的方程,得a =1,c =2,由双曲线的定义得||PF 1|-|PF 2||=2.在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|=22+|PF 1|·|PF 2|=(22)2,解得|PF 1|·|PF 2|=4.故选B.5.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为()A .3B .2C .-3D .-2答案B解析由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|·cos ∠PF 2F 1=2×4×14=2.故选B.6.(2018·安徽淮南三校联考)已知双曲线x 24-y 22=1的右焦点为F ,P 为双曲线左支上一点,点A (0,2),则△APF 周长的最小值为()A .4+2B .4(1+2)C .2(2+6) D.6+32答案B解析由题意知F (6,0),设左焦点为F 0,则F 0(-6,0),由题意可知△APF 的周长l 为|PA |+|PF |+|AF |,而|PF |=2a +|PF 0|,∴l =|PA |+|PF 0|+2a +|AF |≥|AF 0|+|AF |+2a =(0+6)2+(2-0)2+(6-0)2+(0-2)2+2×2=42+4=4(2+1),当且仅当A ,F 0,P 三点共线时取得“=”,故选B.7.已知离心率为52的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若2OMF S =16,则双曲线的实轴长是()A .32B .16C .84D .4答案B解析由题意知F 2(c,0),不妨令点M 在渐近线y =ba x 上,由题意可知|F 2M |=bc a 2+b 2=b ,所以|OM |=c 2-b 2=a .由2OMF S =16,可得12ab =16,即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45,所以双曲线C 的实轴长为16.故选B.8.(2018·泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是()C .(1,2)D .(2,+∞)答案A解析由双曲线方程可得其渐近线方程为y =±b a x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b 2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1A.9.(2016·北京)已知双曲线x 2a 2-y 2b 21(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________.答案12解析由2x +y =0,得y =-2x ,所以ba=2.又c =5,a 2+b 2=c 2,解得a =1,b =2.10.已知F 1,F 2分别是双曲线x 2-y 2b2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于________.答案4解析由题意知a =1,由双曲线定义知|AF 1|-|AF 2|=2a =2,|BF 1|-|BF 2|=2a =2,∴|AF 1|=2+|AF 2|=4,|BF 1|=2+|BF 2|.由题意知|AB |=|AF 2|+|BF 2|=2+|BF 2|,∴|BA |=|BF 1|,∵△BAF 1为等腰三角形,∵∠F 1AF 2=45°,∴∠ABF 1=90°,∴△BAF 1为等腰直角三角形.∴|BA |=|BF 1|=22|AF 1|=22×4=22,∴1F AB S =12|BA |·|BF 1|=12×22×22=4.11.(2018·安阳模拟)已知焦点在x 轴上的双曲线x 28-m +y 24-m =1,它的焦点到渐近线的距离的取值范围是__________.答案(0,2)解析对于焦点在x 轴上的双曲线x 2a 2-y 2b2=1(a >0,b >0),它的焦点(c,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .双曲线x 28-m +y 24-m =1,即x 28-m -y 2m -4=1,其焦点在x 轴上,则-m >0,-4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2).12.若点P 在双曲线x 2-y 29=1上,则点P 到双曲线渐近线的距离的取值范围是________.答案,31010解析双曲线的一条渐近线方程是3x -y =0,由渐近线的性质,知当点P 是双曲线的一个顶点时,点P 到渐近线的距离最大,双曲线的顶点坐标是(±1,0),所以点P 到渐近线的最大距离为|±3-0|10=31010.又双曲线与渐近线没有交点,所以点P 到双曲线渐近线的距离的取值范围,31010.13.(2018·南昌调研)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为()A.2B.3C.5D.6答案C 解析如图,直线PF 2的方程为y =-a b (x -c ),设直线PF 2与直线y =ba x 的交点为N ,易知又线段PF 2的中点为N ,所以因为点P 在双曲线C 上,所以(2a 2-c 2)2a 2c 2-4a 2b 2c 2b 2=1,即5a 2=c 2,所以e =ca= 5.故选C.14.(2018·福建六校联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,左顶点为A ,以F 为圆心,FA 为半径的圆交C 的右支于P ,Q 两点,△APQ 的一个内角为60°,则双曲线C 的离心率为________.答案43解析设左焦点为F 1,由于双曲线和圆都关于x 轴对称,又△APQ 的一个内角为60°,∴∠PAF =30°,∠PFA =120°,|AF |=|PF |=c +a ,∴|PF 1|=3a +c ,在△PFF 1中,由余弦定理得,|PF 1|2=|PF |2+|F 1F |2-2|PF ||F 1F |cos ∠F 1FP ,即3c 2-ac -4a 2=0,即3e 2-e -4=0,∴e =43(舍负).15.已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=8,P 是E 右支上的一点,PF 1与y 轴交于点A ,△PAF 2的内切圆与边AF 2的切点为Q .若|AQ |=3,求E 的离心率.解如图所示,设PF 1,PF 2分别与△PAF 2的内切圆切于M ,N ,依题意,有|MA |=|AQ |,|NP |=|MP |,|NF 2|=|QF 2|,|AF 1|=|AF 2|=|QA |+|QF 2|,2a =|PF 1|-|PF 2|=(|AF 1|+|MA |+|MP |)-(|NP |+|NF 2|)=2|QA |=23,故a =3,从而e =c a =43=433.16.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=6|PF 2|,求此双曲线的离心率e 的最大值.解析由定义,知|PF 1|-|PF 2|=2a .又|PF 1|=6|PF 2|,∴|PF 1|=125a ,|PF 2|=25a .当P ,F 1,F 2三点不共线时,在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=14425a 2+425a 2-4c 22·125a ·25a =3712-25122,即e 2=3725-1225cos ∠F 1PF 2.∵cos ∠F 1PF 2∈(-1,1),∴e 当P ,F 1,F 2三点共线时,∵|PF 1|=6|PF 2|,∴e =c a =75,综上,e 的最大值为75.。
高三数学知识点双曲线
高三数学知识点双曲线双曲线是高中数学中重要的数学知识点之一,它在数学中有广泛的应用和重要的作用。
在本文中,将详细介绍双曲线的定义、性质和相关的数学知识。
一、双曲线的定义双曲线是平面解析几何中的曲线之一,它的定义可以通过平面上一动点与两个不相交固定点的距离之差的绝对值等于常数来描述。
以坐标平面为例,双曲线的定义可表示为:在平面直角坐标系中,两个不相交的点F1(c, 0)和F2(-c, 0)为焦点,直线L:x = -a为准线,且常数e(e>1)为离心率时,平面上动点P(x, y)到F1和F2的距离之差的绝对值等于常数e(e>1)与动点到直线L的距离的积,即|PF1 - PF2| = e|PL|。
二、双曲线的性质1. 双曲线的离心率双曲线的离心率e定义为焦点到准线的距离与焦点到准线的垂线段的比值,即e = PF1 / PL,其中PF1为焦点到动点的距离,PL为动点到准线的垂线段。
双曲线的离心率大于1,离心率越大,双曲线的形状越扁平。
2. 双曲线的对称轴以焦点连线为轴,双曲线与对称轴关于对称轴对称。
3. 双曲线的渐近线双曲线的渐近线是与双曲线趋于无穷远处(焦点以外)的直线。
双曲线有两条渐近线,分别与双曲线的两支无限延伸,且互相对称。
4. 双曲线的焦点双曲线的焦点F1和F2是双曲线的两个特殊点,焦点到双曲线上任意一点的距离之差的绝对值等于常数e与该点到准线的距离的积。
焦点与双曲线的形状和位置密切相关。
三、双曲线的方程双曲线的一般方程可以表示为x^2/a^2 - y^2/b^2 = 1(双曲线的主轴平行于x轴)或y^2/a^2 - x^2/b^2 = 1(双曲线的主轴平行于y 轴)。
其中,a为椭圆的轴长,b为双曲线的离心距离。
四、双曲线的应用双曲线广泛应用于数学和物理等领域。
在数学中,双曲线是对数函数、双曲函数和双曲积分等的基础;在物理中,双曲线是电磁场、光学和天体力学等的重要工具。
在高中数学中,我们需要熟练掌握双曲线的定义、性质和方程,能够准确地绘制双曲线图形,并能运用双曲线解决相关的问题。
高考数学 双曲线及其性质 讲解
16 9
例2 (2022广东茂名调研三,14)若双曲线经过点(1, 3 ),其渐近线方程为y
=±2x,则双曲线的方程是
.
x2 y2
13
解析 ①若双曲线的焦点在x轴上,则设 a2 - b2 =1(a>0,b>0),则 a2 - b2 =1且
b
1
a =2,联立解得a= 2 ,b=1,则双曲线的方程为4x2-y2=1;
③若Δ<0,则l与C相离.
综合篇
考法一 求双曲线的标准方程 1.定义法:由已知条件,若所求轨迹满足双曲线的定义,则利用双曲线的定 义求出参数a,b的值,从而得到所求的轨迹方程,求轨迹方程时,满足条件 “|PF1|-|PF2|=2a(0<2a<|F1F2|)”的轨迹为双曲线的一支,应注意合理取舍; 2.待定系数法:根据题目条件确定焦点的位置,从而设出所求双曲线的标 准方程,利用题目条件构造关于a,b的方程(组),解得a,b的值,即可求得方 程. 方程的常见设法:
高考 数学
专题九 平面解析几何
9.3 双曲线及其性质
基础篇
考点一 双曲线的定义及标准方程
1.定义
把平面内与两个定点F1,F2的距离之差的绝对值等于常数2a(0<2a<|F1F2|) 的点的轨迹叫做双曲线.
2.标准方程
焦点在x轴上: x2 - y2 =1(a>0,b>0);
a2 b2
焦点在y轴上: y2 - x2 =1(a>0,b>0).
双曲线C的渐近线方程为y=±
bx.∵
a
F1B·F2 B=0,∴F1B⊥F2B,
∴点B在☉O:x2+y2=c2上,如图所示,不妨设点B在第一象限,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础诊断
考点突破
课堂总结
最新考纲
了解双曲线的定义、几何图形和标准方程,知道
其简单的几何性质(范围、对称性、顶点、离心率、渐近线).
基础诊断
考点突破
课堂总结
知识梳理 1.双曲线的定义 平面内动点P与两个定点F1,F2(|F1F2|=2c>0)的距离之差
的绝对值为常数 2a (2a<2c),则点P的轨迹叫双曲线.这
基础诊断 考点突破
(√ ) (√ )
课堂总结
x2 y2 2.(2014· 新课标全国Ⅰ卷)已知双曲线 2- =1(a>0)的离心率 a 3 为 2,则 a= ( A.2 6 B. 2 5 C. 2 D.1 )
解析 由双曲线方程知 b2=3,从而 c2=a2+3,又 e=2,
2 c2 a +3 因此 2= 2 =4,又 a>0,所以 a=1,故选 D. a a
2 y (1)x2- 8 =1(x≤-1) (2)2 3
基础诊断
考点突破
课堂总结
规律方法
双曲线定义的应用主要有两个方面:一是判定平
c e= a ,e∈(1,+∞)
基础诊断
考点突破
课堂总结
线段A1A2叫做双曲线的实轴,它的 长|A1A2|=2a;线段B1B2叫做双曲线
性质
实虚轴
的虚轴,它的长|B1B2|=2b;a叫做
双曲线的半实轴长,b叫做双曲线的 半虚轴长
a,b,c的关系
c2 =
a2+b2 (c>a>0,c>b>0)
基础诊断
1 ∴1<1+ <2,∴ 2<e< 5. a 答案 B
基础诊断 考点突破 课堂总结
x2 y2 4.(2014· 广东卷)若实数 k 满足 0<k<5,则曲线 - =1 16 5-k x2 y2 与曲线 - =1 的 16-k 5 ( A.实半轴长相等 C.离心率相等 B.虚半轴长相等 D.焦距相等 )
考点突破
课堂总结
诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)平面内到点 F1(0,4),F2(0,-4)距离之差的绝对值等于 8 的点的轨迹是双曲线. x2 y2 (2)方程m- n =1(mn>0)表示焦点在 x 轴上的双曲线. (× ) (× )
x2 y2 (3)双曲线方程m2-n2=λ(m>0,n>0,λ≠0)的渐近线方程是 x2 y2 x y - =0,即 ± =0. m2 n2 m n (4)等轴双曲线的渐近线互相垂直,离心率等于 2 .
两个 定点 叫双曲线的焦点,两焦点间的距离叫焦距.集 合 P = {M|||MF1| - |MF2|| = 2a} , |F1F2| = 2c ,其中 a , c 为常 数且a>0,c>0: (1)当 a<c 时,P点的轨迹是双曲线; (2)当a=c时,P点的轨迹是 两条射线 ; (3)当 a>c 时,P点不存在.
根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与
C2的距离大,与C1的距离小), 其中a=1,c=3,则b2=8.
基础诊断 考点突破 课堂总结
2 y 故点 M 的轨迹方程为 x2- 8 =1(x≤-1).
(2)设 P 在双曲线的右支上,|PF2|=x(x>0),|PF1|=2+x,因为 PF1⊥PF2,所以(x+2)2+x2=(2c)2=8, 所以 x= 3-1,x+2= 3+1, 所以|PF2|+|PF1|=2 3. 答案
答案 D
基础诊断 考点突破 课堂总结
5.经过点 A(3,-1),且对称轴都在坐标轴上的等轴双曲线方 程为________. 解析 x2 y2 设双曲线的方程为:a2-a2=± 1(a>0)把点 A(3,-1)
2 2 x y 代入,得 a2=8,故所求方程为 8 - 8 =1.
答案
x2 y2 - =1 8 8
基础诊断
考点突破
课堂总结
解析
(1)如图所示,设动圆M与圆C1及圆C2分别外切于A和B.
根据两圆外切的条件,
得|MC1|-|AC1|=|MA|, |MC2|-|BC2|=|MB|, 因为|MA|=|MB|, 所以|MC1|-|AC1|=|MC2|-|BC2|, 即|MC2|-|MC1|=|BC2|-|AC1|=2, 所以点M到两定点C1,C2的距离的差是常数且小于|C1C2|.
基础诊断
考点突破
课堂总结
x2 y2 解析 若 0<k<5,则 5-k>0,16-k>0,故方程 - =1 16 5-k 表示焦点在 x 轴上的双曲线,且实半轴的长为 4,虚半轴的长 21-k 为 5-k,焦距 2c=2 21-k,离心率 e= 4 ;同理方程 x2 y2 - =1 也表示焦点在 x 轴上的双曲线,实半轴的长为 16-k 5 16-k,虚半轴的长为 5,焦距 2c=2 21-k,离心率 e = 21-k .可知两曲线的焦距相等.故选 D. 16-k
基础诊断 考点突破 课堂总结
2.双曲线的标准方程和几何性质
标准方程
x2 y2 a2-b2=1 (a>0,b>0)
y2 x2 a2-b2=1 (a>0,b>0)
图 形
基础诊断
考点突破
课堂总结
范围 对称性 性 质 渐近线 离心率 顶点
x≥a 或 x≤-a, y∈R
x∈R,
y≤-a或y≥a
对称轴: 坐标轴 ;对称中心:原点 A1(-a,0), A2(a,0) b y=± ax A1(0,-a),A2(0, a) a y=± bx
答案 D
基础诊断
考点突破
课堂总结
x2 y2 3.设 a>1,则双曲线 2- =1 的离心率 e 的取值范围是 a a+12 ( A.( 2,2) C.(2,5) c 解析 e=a= = b2+a2 a2 = B.( 2, 5) D.(2, 5)
a+1 2 1+ a
)
ቤተ መጻሕፍቲ ባይዱ
12 1 1+1+a ,∵a>1,∴0< <1, a
基础诊断
考点突破
课堂总结
考点一
双曲线的定义及应用
【例1】 (1)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,
动圆 M 同时与圆 C1 及圆 C2 相外切,则动圆圆心 M 的轨迹
方程为________. (2) 已知双曲线 x2 - y2 = 1 ,点 F1 , F2 为其两个焦点,点 P 为双曲线上一点 ,若 PF1⊥PF2 ,则 |PF1| + |PF2| 的值为 ________.