火电厂燃煤锅炉温度控制系统

合集下载

(完整版)我的工业燃煤锅炉DCS控制系统设计毕业论文设计

(完整版)我的工业燃煤锅炉DCS控制系统设计毕业论文设计

工业燃煤锅炉DCS控制系统设计(子课题:控制方案的组态及监控画面的制作)摘要:本文叙述了工业燃煤锅炉的工作原理,具体阐述了锅炉控制中对汽水控制系统方案和自动检测的设计,利用了Control Builder 软件、UMC800控制器和FIX软件进行35吨工业燃煤锅炉汽水系统的自动检测与控制回路的组态,并设计了友好的监控画面。

关键词:锅炉FIX UMC800 控制系统汽水系统蒸汽压力Abstract: the paper introduce the principle of the boiler which is used in burning coal industrial,it describes the scheme of the steam controlsystem in boiler control and the design of auto-detection. it use the Control Buildersoftware,UMC800 controller and FIX softwareto auto-detect 35t steam system in burningcoal industrial and configuration the controlloop, and designed the friendly supervisionappearance.Keyword: boiler, FIX, UMC800, control system, steam system, steam pressure引言锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的13,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。

提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的工作。

电厂热工保护系统介绍

电厂热工保护系统介绍

燃料与空气按一定比例混合时才能形成可燃
混合物, 混合物中所含燃料浓度过大或过小均不能
点燃, 至于具体可燃混合物的浓度范围随不同燃料
而不同, 且与温度有关。
当炉膛温度低时(如升炉点火时期)一定要有更适当的 浓度比才能点燃, 或者要有更大的点火能源(即更高的温 度)才能点燃。如果由于没有足够的点火能源或浓度比 不当, 送入炉膛的燃料不能着火。或者使正在燃烧的火 焰中断, 这时就有燃料和空气混合物进入炉膛, 这种情 况延续的时间越长, 炉膛内积存的燃料和空气混合物越 多, 如送入的可燃混合物或经扩散而达到可燃范围, 则 突然点燃可能发生爆燃。
4)连续监视运行工况.在机组运行过程中,FSSS逻辑系 统通过装在锅炉各个部位的敏感元件如压力开关、限位 开关和火焰检测器等提供的信号对炉膛燃烧工况及其它 关键的运行参数进行连续的监测,无论什么时候,只要 有异常情况出现,FSSS系统将发出声光报警,提醒运 行人员立即进行正确的操作和处理,以避免可能引起的 跳闸事故。在某了些情况下运行人员,来不及反应, FSSS系统将自动启动跳闸。
(1)在主燃料与空气混合物进口处有的足够的点火能源, 点火器的火焰要稳定, 具有一定的能量而且位置恰当能 把主燃料点燃。
(2)当有未点燃的燃料进入炉膛时, 这段时间应尽可能缩 短, 使积存的可燃物容积占炉膛容积的极小部分。
(3)对于已进入炉膛未点燃的可燃混合物, 尽快地冲淡, 使 之超出可燃范围, 并不断地把它吹扫出去。
当可然混合物点燃时即发生爆燃, 爆燃时火焰的传播 速度很快, 积存的可燃混合物等于同时点燃, 生成气容 积突然增大, 一时来不及由炉膛出口排出, 因而使炉膛 压力骤增。当爆燃后的炉膛压力P大于炉墙结构所能承 受的压力, 即发生爆炸性的破坏事故。

火电厂热控系统分类

火电厂热控系统分类

火电厂热控系统分类一般有两种:
•按功能。

锅炉负荷调节系统;燃料量调节系统;给水调节系统;
主蒸汽温度调节系统;再热蒸汽温度调节系统;空气量调节系统;炉膛负压调节系统;磨煤机出口温度调节系统;除氧器水位调节系统;高压加热器水位调节系统;低压加热器水位调节系统;凝汽器水位调节系统;吹灰蒸汽压力调节系统;轻油压力调节系统;润滑油温调节系统;汽封压力调节系统;除氧器压力调节系统;凝汽器再循环流量调节系统;给水泵再循环流量调节系统;以及电调里的压力调节系统、功率调节系统、转速调节系统等。

•按结构。

人机接口设备;控制设备;中间设备;现场设备等。

火电厂生产特点及自动化

火电厂生产特点及自动化

火电厂生产特点及自动化一、火电厂生产特点火电厂是指以燃煤、燃油、燃气等作为燃料,通过燃烧产生热能,再经过锅炉转化为蒸汽,驱动汽轮机发电的发电厂。

火电厂具有以下几个特点:1. 大规模生产:火电厂通常是大型发电厂,具有较大的发电容量,能够满足广大地区的电力需求。

2. 燃料多样性:火电厂可以使用多种燃料,如煤炭、天然气、石油等,具有灵活性和适应性。

3. 燃烧过程:火电厂通过燃烧燃料产生高温高压的热能,将水转化为蒸汽,再通过汽轮机驱动发电机发电。

4. 环境影响:火电厂燃烧燃料会产生大量的二氧化碳、二氧化硫、氮氧化物等有害气体和颗粒物,对环境造成一定的污染。

5. 热能利用:火电厂的余热可以通过余热锅炉回收利用,提高能源利用效率。

二、火电厂自动化为了提高火电厂的生产效率和安全性,火电厂普遍采用自动化控制系统。

火电厂自动化主要包括以下几个方面:1. 燃料供给自动化:通过自动化系统控制燃料供给装置,实现燃料的输送、储存和供应,保证燃料的稳定供应。

2. 锅炉控制自动化:通过自动化系统控制锅炉的燃烧过程、温度、压力等参数,保证锅炉的安全运行和高效发电。

3. 蒸汽系统自动化:通过自动化系统控制蒸汽的流量、温度、压力等参数,保证蒸汽的稳定供应和合理利用。

4. 汽轮机控制自动化:通过自动化系统控制汽轮机的转速、负荷等参数,实现对发电机的精确控制。

5. 电气系统自动化:通过自动化系统控制发电机的电压、频率等参数,保证电力的稳定输出。

6. 安全监测自动化:通过自动化系统监测火电厂的温度、压力、振动等参数,及时发现异常情况并采取措施,保证生产安全。

7. 数据采集与处理:通过自动化系统实时采集火电厂各个环节的数据,并进行处理、分析,为生产管理提供科学依据。

火电厂自动化的优势在于提高了生产效率、降低了人为操作的风险、提升了生产安全性,同时也减少了能源的浪费和环境污染。

随着科技的不断进步,火电厂自动化水平将会不断提高,为电力行业的发展带来更多的机遇和挑战。

火电厂热控专业介绍

火电厂热控专业介绍

热控主要设备——DCS控制系统
DCS控制系统——新华XDC800系统
第二部分: 热控专业主要控制系统
1. 自动发电控制系统 automatic generation control System,AGC 机组发电指令由电网调度中心的能量管理系统 来实现遥控自动控制时,则称为自动发电控制 (AGC),实现二次调频。
2. 单元机组协调控制系统 (coordination control system,CCS) 协调控制是单元机组自动控制的核心内容。 3. 锅炉炉膛安全监控系统 (furnace safeguard supervisory system,FSSS)或 称燃烧器管理系统(burner management system,BMS) 炉膛安全监视系统包括炉膛火焰监视,炉膛压力监视, 炉膛吹扫,自动点火,燃烧器自动切换,紧急情况下的主 燃料跳闸等。
36
自动控制系统包括
序号
1 2 3 4 5 6 7 8 9 10 11 12 13
系统名称
协调控制 AGC控制 一次调频 送风量控制 炉膛负压控制 一次风压控制 给粉机控制 一级过热汽温控制 二级过热汽温控制 三级过热汽温控制 再热汽温控制(摆动火嘴) 再热汽温控制(喷水减温) 汽包水位控制
套数
4 1 1 3 2 2 5 1 2 2 1 3 4
31
4. 顺序控制系统 (sequence control system,SCS) 主要用于主机或辅机的自动启停程序控制,以及辅 助系统的程序控制。如汽轮机的自动启停程序控制、 磨煤机自动启停程序控制、定期排污和吹灰的程序 控制等。
32
5. 数据采集系统 (data acquisition system,DAS)
二、调节仪表

火力发电厂常见热控保护技术

火力发电厂常见热控保护技术

火力发电厂常见热控保护技术火力发电厂是目前比较常见的一种发电方式,其主要以燃煤、燃气等燃料为能源,通过燃烧产生高温高压的蒸汽来推动汽轮机发电。

由于高温高压环境的存在,火力发电厂的安全性无疑是一个重要的问题。

火力发电厂常采用热控保护技术来确保设备的运行安全和发电效率。

一、温度控制技术温度是火力发电厂运行过程中的一个重要参数,对锅炉、汽轮机、除尘器等设备的运行稳定性和操作寿命都有很大影响。

火力发电厂常采用温度控制技术来监测和控制各设备的温度。

1. 燃烧器温度控制燃烧器是火力发电厂燃烧燃料的关键设备之一。

过高或过低的燃烧器温度都会影响燃烧效率,甚至导致燃烧不充分或过热。

火力发电厂常采用温度传感器和反馈控制系统来监测和控制燃烧器温度,以确保燃烧过程的稳定性和高效性。

2. 锅炉水温控制锅炉是火力发电厂的核心设备,其水温控制对于保证蒸汽质量和设备安全运行至关重要。

火力发电厂常采用水位控制系统、水温传感器和反馈控制系统等技术手段,实时监测和控制锅炉的水温,以确保水温在安全范围内波动。

三、安全保护技术为了预防和应对火力发电厂可能发生的事故,保障人员和设备的安全,火力发电厂常采用一些安全保护技术。

1. 燃烧器熄火保护火力发电厂燃烧过程中,燃烧器可能由于燃料供应故障、风力不足等原因而出现熄火的情况,这时需要及时采取措施进行处理。

火力发电厂常采用燃烧器熄火保护装置,当燃烧器熄火时会自动切断燃料供应,以保护设备的安全。

2. 锅炉爆炸保护火力发电厂的锅炉是一个高温高压容器,如果由于燃烧不正常、管道堵塞等原因导致压力过大,可能会发生锅炉爆炸事故。

火力发电厂采用安全阀和压力传感器等装置,实时监测锅炉的压力,当压力超过设定值时会自动打开安全阀,以保护设备和人员安全。

火力发电厂常见的热控保护技术包括温度控制技术、压力控制技术和安全保护技术等。

这些技术的应用,可以有效地监测和控制设备的温度和压力,并采取相应的措施保护设备的安全运行,提高发电效率。

火力发电厂完整系统流程图课件

火力发电厂完整系统流程图课件

循环水泵与冷却塔
循环水泵
负责将冷却水从冷却塔送至凝汽器,吸收汽轮机排汽热 量后返回冷却塔进行降温。循环水泵通常采用轴流泵或 混流泵,具有流量大、扬程低的特点。为提高冷却效果 ,循环水泵通常采用多台并联运行。
冷却塔
通过自然通风或机械通风方式,将循环水中的热量散发 至大气中,降低循环水温度。冷却塔通常由填料、配水 系统、通风设备等组成。为提高冷却效果,冷却塔需定 期进行清洗和维护。
受体防护
对厂界和敏感点进行噪声监测,确保噪声达 标排放。
08
运行管理与维护保养制 度
运行操作规程和应急预案演练
运行操作规程
严格执行操作规程,确保机组安全稳定运行,包括启动、停机、负荷调整等操作规范。
应急预案演练
定期组织应急演练,提高员工应对突发事件的能力,包括设备故障、安全事故等紧急情况的处理方法。
锅炉
汽轮机
包括燃烧室、水冷壁、过热器、再热器等 ,负责将燃料燃烧产生的热能传递给水, 生成高温高压的蒸汽。
由高压缸、中压缸和低压缸组成,蒸汽在 汽轮机中膨胀做功,驱动汽轮机旋转。
发电机
辅助设备与系统
与汽轮机同轴连接,将汽轮机产生的机械 能转换为电能输出。
包括燃料输送系统、给水系统、冷却水系 统、烟气处理系统等,保障火力发电厂的 稳定运行。
火力发电厂完整系统 流程图课件
目录
• 火力发电厂概述 • 燃料供应系统流程图 • 锅炉系统流程图 • 汽轮机系统流程图 • 发电机及变压器系统流程图 • 辅助设备及控制系统流程图 • 安全环保设施流程图 • 运行管理与维护保养制度
01
火力发电厂概述
定义与分类
定义
火力发电厂是利用化石燃料(如 煤、石油、天然气等)燃烧产生 的热能来发电的工厂。

火电厂自动控制系统

火电厂自动控制系统

火电厂自动控制系统火电厂控制系统总体分为两部分:第一部分是主控部分,第二部分是副控部分。

下面就这两部分具体内容做个介绍。

一、火电厂主控系统火电厂主控系统是保证火电厂安全、稳定生产的关键,随着控制技术、网络技术、计算机技术和Web技术的飞跃发展,火电厂主控系统的控制水平和工程方案也在不断进步,火电厂的管理信息系统和主控系统的一体化无缝连接必将成为未来火电厂管控系统的发展趋势,传统火电厂的DCS系统也必将向这一趋势靠拢。

火电厂主控系统以控制方式分类可分为:DAS、MCS、SCS、BMS及DEH等系统。

下面分别加以阐述:1.数据采集系统-DAS:火电厂的主控系统中的DAS(数据采集系统)主要是连续采集和处理机组工艺模拟量信号和设备状态的开关量信号,并实时监视,保证机组安全可靠地运行。

■ 数据采集:对现场的模拟量、开关量的实时数据采集、扫描、处理。

■ 信息显示:包括工艺系统的模拟图和设备状态显示、实时数据显示、棒图显示、历史趋势显示、报警显示等。

■ 事件记录和报表制作/ 打印:包括SOE 顺序事件记录、工艺数据信息记录、设备运行记录、报警记录与查询等。

■ 历史数据存储和检索■ 设备故障诊断2.模拟量调节系统-MCS系统:■ 机、炉协调控制系统(CCS)● 送风控制,引风控制● 主汽温度控制● 给水控制● 主蒸汽母管压力控制● 除氧器水位控制,除氧器压力控制● 磨煤机入口负压自动调节,磨煤机出口温度自动调节■ 高加水位控制,低加水位控制■ 轴封压力控制■ 凝汽器水位控制■ 消防水泵出口母管压力控制■ 快减压力调节,快减温度调节■ 汽包水位自动调节3.炉膛安全保护监控系统-BMS系统:BMS(炉膛安全保护监控系统)保证锅炉燃烧系统中各设备按规定的操作顺序和条件安全起停、切投,并能在危急情况下迅速切断进入锅炉炉膛的全部燃料,保证锅炉安全。

包括BCS(燃烧器控制系统)和FSSS(炉膛安全系统)。

■ 锅炉点火前和MFT 后的炉膛吹扫■ 油系统和油层的启停控制■ 制粉系统和煤层的启停控制■ 炉膛火焰监测■ 辅机(一次风机、密封风机、冷却风机、循环泵等)启、停和联锁保护■ 主燃料跳闸(MFT)■ 油燃料跳闸(OFT)■ 机组快速甩负荷(FCB)■ 辅机故障减负荷(RB)■ 机组运行监视和自动报警4.顺序控制系统—SCS:■ 制粉系统顺控■ 锅炉二次风门顺控■ 锅炉定排顺控■ 射水泵顺控■ 给水程控■ 励磁开关■ 整流装置开关■ 发电机灭磁开关■ 发电机感应调压器■ 备用励磁机手动调节励磁■ 发电机组断路器同期回路■ 其他设备起停顺控5.电液调节系统—DEH:该系统完成对汽机的转速调节、功率调节和机炉协调控制。

燃气锅炉燃烧控制系统

燃气锅炉燃烧控制系统

燃气锅炉燃烧控制系统李凯凯(山东建筑大学热能工程学院山东省济南市 250101)摘要:此次论文主要目的是以标准燃烧器为基本设备,结合汽包压力控制、炉膛压力控制的特点和需要,设计燃气锅炉燃烧控制系统。

主要方法是通过锅炉情况介绍、燃烧器类型选择、燃烧与汽压控制设计、节炉膛压力控制设计、仪表装置选型等步骤,逐一计算所需数据并选择设备类型,然后根据所得参数查阅有关资料按标准设计符合设备的控制系统。

由最终设计结果可知此方法可行。

关键词:燃气锅炉、燃气控制、汽包压力、炉膛压力0 引言近几年来,我国城市燃气结构有了很大变化,尤其是西气东输工程的加速实施,以及不断签署的燃气协议,为长期受限制的燃气锅炉的应用推广创造了条件。

一方面,燃气锅炉的燃料价格相对较高,因此应尽量提高燃料的利用效率;另一方面,气体燃料易燃易爆,燃气锅炉的危险性大,控制系统的生产保证和安全保障要求严格。

国外燃气锅炉的研究历史较长,燃气燃烧控制技术比较成熟,但是燃气锅炉的燃烧控制,多为单回路常规控制,远不能适应我国各地区及各部门条件多变的需要。

为了提高燃气锅炉的热效率和安全生产水平,有必要对燃所锅炉的燃烧控制技术进行研究。

1 锅炉情况本次论文采用一台卧式三回程火管式燃气蒸汽锅炉,使用天然气为燃料,额定蒸发量2T/h,额定汽压1.25MPa,额定蒸汽温度194℃;额定耗气量160Nm³/h,排烟温度230℃,热效率90%。

1.1 燃气蒸汽锅炉的组成结构组成:具体结构由主要部件和辅助设备组成。

主要部件有炉膛、省煤器、锅筒、水冷壁、燃烧设备、空气预热器、炉墙构架组成;辅助设备主要有引风设备、除尘设备、燃料供应设备、除尘除渣设备、送风设备、自动控制设备组成。

系统组成:燃气锅炉主要是由燃烧器和控制器两个大的部分组成,其中燃烧器又能分为五个小的系统,分别为送风系统,点火系统,监测系统,燃料系统和电控系统。

1.2 燃气蒸汽锅炉的工作原理燃气蒸汽锅炉是用天然气、液化气、城市煤气等气体燃料在炉内燃烧放出来的热量加热锅内的水,并使其汽化成蒸汽的热能转换设备。

燃气锅炉燃烧控制系统

燃气锅炉燃烧控制系统

燃气锅炉燃烧控制系统李凯凯(山东建筑大学热能工程学院山东省济南市 250101)摘要:此次论文主要目的是以标准燃烧器为基本设备,结合汽包压力控制、炉膛压力控制的特点和需要,设计燃气锅炉燃烧控制系统。

主要方法是通过锅炉情况介绍、燃烧器类型选择、燃烧与汽压控制设计、节炉膛压力控制设计、仪表装置选型等步骤,逐一计算所需数据并选择设备类型,然后根据所得参数查阅有关资料按标准设计符合设备的控制系统。

由最终设计结果可知此方法可行。

关键词:燃气锅炉、燃气控制、汽包压力、炉膛压力0 引言近几年来,我国城市燃气结构有了很大变化,尤其是西气东输工程的加速实施,以及不断签署的燃气协议,为长期受限制的燃气锅炉的应用推广创造了条件。

一方面,燃气锅炉的燃料价格相对较高,因此应尽量提高燃料的利用效率;另一方面,气体燃料易燃易爆,燃气锅炉的危险性大,控制系统的生产保证和安全保障要求严格。

国外燃气锅炉的研究历史较长,燃气燃烧控制技术比较成熟,但是燃气锅炉的燃烧控制,多为单回路常规控制,远不能适应我国各地区及各部门条件多变的需要。

为了提高燃气锅炉的热效率和安全生产水平,有必要对燃所锅炉的燃烧控制技术进行研究。

1 锅炉情况本次论文采用一台卧式三回程火管式燃气蒸汽锅炉,使用天然气为燃料,额定蒸发量2T/h,额定汽压1.25MPa,额定蒸汽温度194℃;额定耗气量160Nm³/h,排烟温度230℃,热效率90%。

1.1 燃气蒸汽锅炉的组成结构组成:具体结构由主要部件和辅助设备组成。

主要部件有炉膛、省煤器、锅筒、水冷壁、燃烧设备、空气预热器、炉墙构架组成;辅助设备主要有引风设备、除尘设备、燃料供应设备、除尘除渣设备、送风设备、自动控制设备组成。

系统组成:燃气锅炉主要是由燃烧器和控制器两个大的部分组成,其中燃烧器又能分为五个小的系统,分别为送风系统,点火系统,监测系统,燃料系统和电控系统。

1.2 燃气蒸汽锅炉的工作原理燃气蒸汽锅炉是用天然气、液化气、城市煤气等气体燃料在炉内燃烧放出来的热量加热锅内的水,并使其汽化成蒸汽的热能转换设备。

过热汽温串级控制系统的设计

过热汽温串级控制系统的设计

引言火电厂锅炉汽温控制系统具有大迟延、大惯性的特点,且影响汽温变化的扰动因素很多,如蒸汽负荷、烟气温度和流速、火焰中心位置、减温水量、给水温度等等,这些扰动会极大影响机组的平安、经济运行。

本设计的工作意义是:大型火电厂锅炉过热汽温对电厂平安经济运行有着重要影响, 过热蒸汽温度是锅炉汽水系统中温度最高点,如果蒸汽温度过高就会使过热器和汽轮机高压缸承受过高的热应力而损坏,威胁机组的平安运行。

如果过热蒸汽温度偏低,那么蒸汽含水量增加,会降低电厂的工作效率,甚至会使汽轮机带水,从而缩短汽轮机叶片的使用寿命。

所以控制好过热器出口温度非常重要。

通常要求它的温度保持在额定值5范围内。

常规的蒸汽温度控制方案大致可分为两种: 一种是串级控制, 另一种是导前微分控制。

目前该领域的控制方法有:过热汽温FPID(模糊PID)控制系统, 基于控制历史的过热汽温模糊串级控制系统,过热汽温鲁棒PID控制系统,但以上方法都只是理论研究,应用于实际生产之中的控制方式以传统方法为主。

继续提高主汽温、再热汽温的控制品质,仍具有较高的理论与实用价值。

本文以过热汽温串级控制系统的思路对被控对象进行研究与分析,针对被控对象的大延迟,不确定等特点,选择串级控制系统能够获得较好的抗干扰性能和动态特性。

第一章单元机组燃烧系统本课题研究对象为200MW单元机组过热汽温串级控制系统,锅炉为高温、亚临界压力、中间再热、自然循环、单炉膛前后对冲燃烧、燃煤粉汽包炉,下面将先介绍锅炉的燃烧系统。

1.1 燃烧室(炉膛)炉膛断面尺寸为深12500mm、宽13260mm的矩形炉膛其深宽比为。

这样近似正方形的矩形截面为四角布置切圆燃烧方式创造了良好的条件。

从而使燃烧室四周的水冷壁吸热比拟均匀,热偏差较小。

燃烧室上部布置四大片分隔屏过热器,便于消除燃烧室上方出口烟气流的剩余旋转,减少进入水平烟道的烟气温度偏差。

汽包,壁厚145mm,筒身长20500mm,汽包横向布置在锅炉前上方,汽包内径为1743筒身两端各与半球形封头相接,筒身与封头均用BHW-35钢材制成。

锅炉温度控制系统设计设计

锅炉温度控制系统设计设计

锅炉温度控制系统设计设计安徽建筑大学毕业设计(论文)专业:测控技术与仪器班级 : 二班**** : **学号 : ***********课题 : 锅炉温度控制系统设计****:***2013 年 06 月 14 日摘要在调查对当前采暖需求情况的基础上,根据小型家用燃气锅炉的工作特点,再结合工程实际需要,研究了基于MCS-51单片机的家用燃气锅炉温度控制系统,旨在解决使用燃煤锅炉集中采暖时所遇到的锅炉温度不易控制的问题,改进家庭采暖的控制方式,提高采暖的经济性。

利用Protel99se软件设计电路,对智能控制器的电源电路、报警电路、时钟电路、复位电路、LCD液晶显示电路以及控制器的核心—温度采集电路进行了设计。

电源采用三端集成稳压器W7800 (W7900)系列元件7805,交流220 v电压转换为单片机所需要的5V电压;利用AT89S51作为控制器的核心器件;利用集成电路温度传感器DS18B20测量锅炉水温;并将测量的水温与设定值比较,另外系统使用LCD液晶显示器显示当前水位、水位的上下限值、当前采集的温度值和预先设定的温度报警值。

当温度超过所设定的报警温度值,系统将发出报警声音,同时关闭锅炉燃烧器。

等待温度降到下限值,这时就可以重新锅炉燃烧器通电,继续加温,如此反复监控温度。

这样就可以提高能源的使用率,节约能源。

针对系统的特点和要求,在上述硬件电路及实现方法的基础上,利用汇编语言,设计了基于单片机的锅炉温度控制系统。

控制软件主要包括温度和温度采集子程序、水位控制程序、LCD液晶显示子程序等。

关键词:单片机;温度控制;DS18B20;燃气锅炉;LCD;ABSTRACTAccording to the market demand and the characteristics of domestic heating, this paper develops MCU intelligence controller for the minor gas-fired boiler which is domestic heating equipment on the basis of investigation of heating demand widely. The research purpose is to change the inconvenience of temperature control bring by using coal fired boiler for centralized heating, to increase economics of heating.The software called Protel99se for circuit designed is used to develop the hardware of the controller. The hardware includes the power supply circuit, the reset circuit,the clock circuit, the alarm circuit, the LCD display circuit, and the temperature collection which is the core of this controller. The three-pin integrated-circuit voltage regulator W7800 (7900) series component 7805 is used for the power supply. The Atmel AT89S51 chip is the core chip of the controller. The integrated temperature sensor DS18B20 is used to measure water temperature in boiler. The key circuit is used to set the alerm temperature and analog water in or out. In addition, LCD is used to display water level bound, current water level, temperature alerm value by presupposition and current temperature. When water level beyond its bound or when current temperature beyond its alerm value, the system gives an alerm and makes boiler burner off. When water temperature is down, the system releases alerm and makes boiler burener on. The system does it again and again.So the system can save energy and improve energy utilization rate. Aim at the demand and characteristic of the system, on the basis of these hardware and implement method, using assemble language, system designs boiler temperature control system design based on singlechip. This software includes temperature and water level monitor main program, temperature collection subprogram, analoy water in and out subprogram, keyboard scan subprogram, LCD display subprogram etc.Keywords:MCU; Temperature control; DS18B20;Gasboiler;Liquid CrystalDisplay;目录1 绪论 01.1 课题背景 01.2课题研究的目的及意义 (1)1.3系统的总体设计思想 (1)2 系统方案选择及工作原理 (3)2.1 系统设计方案 (3)2.2 系统结构框图 (4)2.2.1主要器件的选择 (6)2.2.2 辅助器件选择 (6)3 硬件电路设计 (7)3.1 主控单片机AT89S51芯片介绍 (7)3.1.1 主要性能特点 (8)3.1.2 AT89S51管脚说明 (8)3.2 单片机最小系统 (10)图3.2 最小单片机系统 (11)3.2.1时钟电路 (11)3.2.2 复位电路 (11)3.3 温度控制电路设计 (12)3.4按键电路设计 (12)3.5 水位检测电路设计 (13)3.6 稳压电源电路设计 (14)3.7温度传感器选择及温度采集电路 (16)3.7.1 DS18B20简介 (16)3.7.2温度采集电路 (17)3.8输出模块 (18)3.8.1 固态继电器SSR (18)3.8.2报警电路设计 (19)3.8.3液晶显示电路设计 (20)4 系统软件的设计 (23)4.1 系统主程序 (23)4.2 子模块软件设计 ... 错误!未定义书签。

火电厂锅炉管理措施及制度

火电厂锅炉管理措施及制度

火电厂锅炉管理措施及制度火电厂锅炉管理措施及制度1. 引言火电厂是利用燃煤、燃气等能源进行发电的重要设备之一。

而锅炉作为火电厂发电的核心设备之一,其管理措施和制度的严格执行对于火电厂的运行稳定性和安全性具有重要意义。

本文将从锅炉管理措施和制度两个方面进行详细介绍。

2. 锅炉管理措施2.1 锅炉设备维护在火电厂中,锅炉设备的维护工作是确保锅炉稳定运行的基础。

以下是常见的锅炉设备维护措施:- 定期检查锅炉的各项指标,包括水位、压力、温度等,确保锅炉运行状态正常;- 定期清除锅炉的积灰和结垢,保持锅炉管道畅通;- 定期检查锅炉的燃烧状态,确保燃烧效率高,减少污染物排放;- 定期维护锅炉的控制系统,确保各项控制参数的准确性。

2.2 锅炉运行监测锅炉的运行监测是对锅炉运行状态进行实时监控和数据分析,以便及时发现和解决问题,确保锅炉的安全稳定运行。

以下是常见的锅炉运行监测措施:- 安装各种传感器,如压力传感器、温度传感器等,对锅炉运行参数进行实时监测;- 配备先进的数据采集系统,将采集到的数据进行存储和分析;- 根据监测结果制定相应的运行调整方案,以提高锅炉的效率和安全性。

2.3 锅炉安全管理锅炉安全管理是火电厂重要的管理工作之一,其目的是预防和控制事故的发生,保障人员和设备的安全。

以下是常见的锅炉安全管理措施:- 制定火电厂安全生产规章制度,并进行普及和培训;- 完善锅炉运行事故应急预案,确保能够迅速有效地应对突发事件;- 定期组织锅炉安全检查和评估工作,发现隐患并及时处理;- 加强对锅炉操作人员的培训和考核,提升其安全意识和技能水平。

3. 锅炉管理制度3.1 人员管理制度火电厂锅炉管理制度中的人员管理制度是确保锅炉运行安全的关键。

以下是常见的人员管理制度:- 确定锅炉操作人员的资质和考核标准,严格按照要求进行选拔和培训;- 实行岗前培训制度,确保锅炉操作人员熟悉操作流程和注意事项;- 设立专门的监督检查机构,对锅炉操作人员的操作行为进行监督和检查;- 不定期组织锅炉操作人员进行安全知识学习和培训,提升其安全意识。

火力发电厂常见热控保护技术

火力发电厂常见热控保护技术

火力发电厂常见热控保护技术火力发电厂是利用燃煤、燃油、天然气等燃料燃烧产生高压高温蒸汽,驱动汽轮发电机发电的设施。

在火力发电厂运行过程中,由于工作环境的恶劣和设备的大负荷运行,燃烧系统和热力系统容易发生故障,因此在火力发电厂中,热控保护技术显得尤为重要。

本文将介绍火力发电厂常见的热控保护技术,以帮助读者更好地了解火力发电厂的运行机理和安全保护措施。

一、过热保护技术过热是指在火力发电厂中,燃料燃烧产生高温的烟气在过热器中向水管传热时,蒸汽温度超过设计值,达到致命程度的现象。

当蒸汽温度超出设计值时,不仅会降低锅炉的效率,还会对设备造成严重损坏,甚至引发爆炸事故。

过热保护技术在火力发电厂中至关重要。

1. 温度控制系统温度控制系统是过热保护的核心技术之一。

通过安装在过热器出口处的传感器,实时监测蒸汽温度,并将监测到的温度信号送回控制室。

一旦蒸汽温度超出设定值,控制系统会立即采取措施,如调节燃烧系统的供气量、开启辅助冷却设备等,以避免过热现象发生。

2. 过热保护装置在火力发电厂的过热器上安装过热保护装置,是防止过热现象发生的另一种常见方式。

过热保护装置通常由可调压力阀、温度传感器、控制阀等组成,一旦监测到超温情况,保护装置会自动启动,迅速降低过热器的工作压力和温度。

3. 冷却系统冷却系统是火力发电厂中过热保护的重要辅助手段。

当过热现象发生时,冷却系统可以迅速将过热器的温度降低至安全范围内,从而避免设备的受损。

低温是指在火力发电厂运行过程中,冷却水或介质蒸汽温度过低的现象。

低温会导致设备在运行时温度过低,影响设备的正常运行,甚至损坏设备。

低温保护技术也是火力发电厂中需要重点关注的问题。

加热系统是火力发电厂中常见的低温保护技术。

在设备的冷却水循环系统中安装加热器或加热元件,当冷却水温度过低时,加热系统会自动启动,迅速升高冷却水温度,以维持设备的正常运行温度。

温度监测系统是低温保护的重要组成部分。

通过在关键部位安装温度传感器进行实时监测,一旦监测到低温现象,监测系统会发送警报信号,并采取措施加热或调节设备运行参数,以防止设备受损。

发电厂锅炉和汽轮机组协调控制系统分析

发电厂锅炉和汽轮机组协调控制系统分析

发电厂锅炉和汽轮机组协调控制系统分析随着工业的发展,发电厂的需求量也在不断增加。

为了满足这一需求,发电厂必须提高发电效率和稳定性。

而发电厂的锅炉和汽轮机组作为核心设备,其协调控制系统的设计和优化显得尤为重要。

本文将重点分析发电厂锅炉和汽轮机组协调控制系统的设计原理和优化方法。

一、锅炉和汽轮机组的基本原理1.锅炉锅炉是发电厂的重要设备之一,其主要功能是将水加热成蒸汽,然后供给汽轮机组进行发电。

常见的锅炉有燃煤锅炉、燃气锅炉和燃油锅炉等。

锅炉的工作原理是利用燃料燃烧产生高温烟气,通过烟气与水的热交换,将水加热成蒸汽。

2.汽轮机组汽轮机组是将热能转换为机械能的设备,它将锅炉产生的高温高压蒸汽转化为旋转功,驱动发电机发电。

汽轮机组的工作原理是利用高温高压蒸汽推动叶片进行旋转,从而带动转子转动,最终带动发电机转动发电。

二、协调控制系统的设计原理锅炉和汽轮机组的协调控制系统是为了保证锅炉和汽轮机组的运行状态稳定,发电效率高。

其主要原理是实现锅炉和汽轮机组之间的蒸汽供应平衡,确保蒸汽的流量、温度和压力达到设计要求。

在运行过程中,锅炉和汽轮机组需要根据负荷需求进行调节,而协调控制系统则需要根据实际工况不断优化控制参数,实现锅炉和汽轮机组的协调工作。

协调控制系统的实现主要包括传感器采集、信号处理、控制算法设计和执行器控制等步骤。

传感器采集系统用于实时监测锅炉和汽轮机组的运行状态,信号处理系统用于对传感器采集的信息进行处理,控制算法设计用于根据实时监测信息设计合理的控制策略,执行器控制系统用于根据控制策略实现锅炉和汽轮机组的调节。

协调控制系统的设计需要考虑到锅炉和汽轮机组之间的协调性,确保二者在不同负荷下的运行状态稳定和发电效率高。

三、优化方法1.参数优化协调控制系统的参数优化是确保锅炉和汽轮机组协调运行的重要手段。

通过对锅炉和汽轮机组的传感器采集、控制算法设计和执行器控制等方面的参数进行优化,可以实现锅炉和汽轮机组的运行状态更加稳定和效率更高。

火力发电厂常见热控保护技术

火力发电厂常见热控保护技术

火力发电厂常见热控保护技术
火力发电厂常见的热控保护技术,主要包括供气温度保护、煤量保护、煤气出口温度保护、过热保护、过热蒸汽保护、过冷保护、炉膛内壁温度保护、炉膛压力保护等。

1. 供气温度保护:为了确保燃烧室内的气体温度不会过高,一般会设置供气温度保护装置。

该装置通过监测燃烧室入口处的气体温度,当温度超过设定值时会触发报警或关闭供气系统。

2. 煤量保护:火力发电厂会使用燃煤作为燃料,在燃料进入燃烧室的过程中,通过测量煤量来控制燃烧效率。

如果煤量异常或者超过一定限制,会触发煤量保护装置,停止煤料的供给,以防止燃烧产生的热量超过承受范围。

3. 煤气出口温度保护:火力发电厂燃烧后产生的废气会通过烟囱排放,为了保护烟囱和附近设备的安全,需要对煤气出口温度进行监测和保护。

一般会设置煤气出口温度控制装置,当温度超过设定值时会自动调整燃烧炉火力或其他措施,以维持煤气温度在安全范围内。

4. 过热保护:火力发电厂内的锅炉系统会产生大量的热量,为了确保锅炉内部的温度不会过高,会设置过热保护装置。

当锅炉内部温度超过设定值时,装置会通过降低燃料供给、增加水量等方式,来控制锅炉的温度。

5. 过热蒸汽保护:在火力发电厂中,锅炉会产生蒸汽,用于驱动汽轮机发电。

为了保护汽轮机和其他设备的安全运行,需要对蒸汽进行过热保护。

一般会设置过热蒸汽温度保护装置,当蒸汽温度超过设定值时会触发报警或采取控制措施,以防止高温对设备造成损坏。

8. 炉膛压力保护:火力发电厂中的锅炉燃烧过程会由于燃烧物的释放而产生一定的气压,为了保护炉膛的结构不被损坏,一般会设置炉膛压力保护装置。

当炉膛压力超过设定值时,会触发报警或关闭燃烧系统,以防止炉膛爆破。

火力发电厂燃煤电站锅炉的热工检测控制技术导则

火力发电厂燃煤电站锅炉的热工检测控制技术导则

火力发电厂燃煤电站锅炉的热工检测控制技术导则DirectivesofthermalinstrumentationandcontrolforcoalfiredboilerinpowerplantDL/T589—1996前言本标准是新编的电力行业标准。

本标准的附录A是标准的附录。

本标准由中华人民共和国电力工业部提出。

本标准由电力工业部热工自动化标准化技术委员会归口。

本标准起草单位:电力工业部华北电力设计院。

本标准主要起草人成良彩本标准于1996年3月4日首次发布。

本标准委托电力工业部热工自动化标准化技术委员会负责解释。

中华人民共和国电力行业标准火力发电厂燃煤电站锅炉的热工检测控制技术导则DUT589-1996Directivesofthennalinstrumentationandcontrolforcoalfiredboilerinpowerplant中华人民共和国电力工业部1996-03-04批准1996-06-01实施1范围本标准规定了燃煤电站锅炉本体范用内的热工检测控制技术要求,实验和验收以及标志、包装、运输和保管的要求。

DiyT589—1996本标准适用于670t/h等级及以上容疑的煤粉锅炉。

对670t/i)以下容虽:的锅炉,也可参照使用。

2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB191—90包装储运图示标志GB4208外壳防护等级的分类GB5048-85防潮包装规泄GB6388-86运输包装收货标志GB7350-87防水包装技术条件GBJ93-86工业自动化仪表工程施工及验收规范DLGJ116-93锅炉炉膛安全监控系统设计技术规泄JJG001-91常用计量名词术语及定义SD268-88燃煤电站锅炉技术条件3定义、符号和缩略语本标准采用下列宦义。

3.1锅炉炉膛安全监控系统 furnacesafeguardsupervisorysystem(FSSS)防止锅炉炉膛姻烧熄火时爆炸和自动切投燃烧器的控制系统,它包括燃料安全系统和燃烧器控制系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

火电厂锅炉温度控制系统锅炉温度的控制效果直接影响着产品的质量,温度低于或高于要求时要么不能达到生产质量指标有时甚至会发生生产事故。

采用双交叉燃烧控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变量设计火电厂锅炉温度控制系统,以达到精度在-5 C范围内。

工程控制是工业自动化的重要分支。

几十年来,工业过程控制获得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及能源的节约都起着重要的作用。

生产过程是指物料经过若干加工步骤而成为产品的过程。

该过程中通常会发生物理化学反应、生化反应、物质能量的转换与传递等等,或者说生产过程表现为物流过变化的过程,伴随物流变化的信息包括物流性质的信息和操作条件的信息。

生产过程的总目标,应该是在可能获得的原料和能源条件下,以最经济的途径,将原物料加工成预期的合格产品。

为了打到目标,必须对生产过程进行监视和控制。

因此,过程控制的任务是在了解生产过程的工艺流程和动静态特性的基础上,应用理论对系统进行分析与综合,以生产过程中物流变化信息量作为被控量,选用适宜的技术手段。

实现生产过程的控制目标。

生产过程总目标具体表现为生产过程的安全性、稳定性和经济性。

(1)安全性在整个生产过程中,确保人身和设备的安全是最重要和最基本的要求。

在过程控制系统中采用越限报警、事故报警和连锁保护等措施来保证生产过程的安全性。

另外,在线故障预测与诊断、容错控制等可以进一步提高生产过程的安全性。

(2)稳定性指系统抑制外部干扰、保持生产过程运行稳定的能力。

变化的工业运行环境、原料成分的变化、能源系统的波动等均有可能影响生产过程的稳定运行。

在外部干扰下,过程控制系统应该使生产过程参数与状态产生的变化尽可能小,以消除或者减少外部干扰可能造成的不良影响。

(3)经济性在满足以上两个基本要求的基础上,低成本高效益是过程控制的另外一个重要目标。

为了打到这个目标,不进需要对过程控制系统进行优化设计,还需要管控一体化,即一经济效益为目标的整体优化。

工业过程控制可以分为连续过程工业、离散过程工业和间隙过程工业。

其中,连续过程工业占的比重最大,涉及石油、化工、冶金、电力、轻工、纺织、医药、建材、食品等工业部门,连续过程工业的发展对我国国民经济意义最大。

过程控制主要指的就是连续过程工业的过程控制。

锅炉是工业生产中不可缺少的动力设备,它多产生的蒸汽不仅能够为蒸馏、化学反应、干燥、蒸发等过程提供热源,而且,还可以作为风机,压缩机、泵类驱动透平的动力源。

随着石油化学工业规模的不断扩大,生产过程不断强化,生产设备不断革新,作为全厂动力和热源的锅炉,亦向着大容量、高参数、高效率的方向发展。

为确保安全,稳定生产,对过路设备的自动控制就显得尤为重要。

1锅炉的工艺流程由于锅炉设备使用的燃料、燃烧设备、炉体形式、锅炉功用和运行要求的不同,锅炉有各种各样的流程。

常见流程如图2.1所示。

由图可知,蒸汽发生系统由给水泵、给水调节阀、省煤器、汽包及循环管组成。

燃料和热空气按照一定的比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,产生饱和蒸汽D s,然后经过热器,形成一定汽温的过热蒸汽D,汇集至蒸汽母管。

压力为P M的过热蒸汽,经负荷设备调节阀供给生产负荷使用。

与此同时,燃烧过程中产生的烟气,将饱和蒸汽变成过热蒸汽后,经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。

2锅炉的控制要求根据生产负荷的不同需要,锅炉需要提供不同规格(压力和温度)的蒸汽,同时,根据安全性和经济性的要求,是锅炉安全运行和完全燃烧,锅炉设备的主要控制要求如下。

1、供给蒸汽量适应负荷变化需要或者保持给定负荷;2、锅炉供给用汽设备的蒸汽压力应当保持在一定的范围内;3、过热蒸汽温度保持在一定范围;4、汽包水位保持在一定范围;5、保持锅炉燃烧的经济性和安全性;6、炉膛负压保持在一定的范围内。

根据上述要求,锅炉设备的主要控制系统见表 2.1.表2.1锅炉设备的主要控制系统3锅炉炉膛温度的动态特性分析火电厂的锅炉炉膛由于采用的燃料为煤粉,在燃烧过程中,炉膛和汽包之间的传热过程是一个相当复杂的过程,炉膛的温度的动态特性具有一般的大滞后、时变、非线性和不对称性等特点。

在过程控制中,为了方便设计,同时又在一定的要求范围内,我们通常把锅炉炉膛的温度的动态特性看作是一个线性的系统。

可以用以下传递函数描述。

K具有时滞的一阶环节G(s)二------- e* - (0.1)Ts +1K具有时滞的二阶环节G(s) —e^ (0.2)仃甘1)仃2$+1)在现场环境中,炉膛内的温度变化是时时刻刻的,很难用一个固定的数学公式将炉温的变化规律总结出来。

但是我们要对炉膛内的温度进行控制就必须要对炉膛内的温度变化进行一个规律的总结,所以在规定的要求范围内,对一些情况进行近似处理是很合理和必要的。

在通常情况下,我们给定炉膛一个温度值,作为系统的给定,使锅炉炉膛在这个给定的温度状态下工作。

这个温度的变化又是和炉内的燃料燃烧量和炉体的总散热量相关的。

一个单一的问题,是一个系统问题(容积滞后时间就是级联的各个惯性环节的时间常数之和)。

纯滞后产生的根源也要从整个测量系统来考虑,并且与温度的高低有关。

热量从热源传到温度传感器要经过多个热阻与热容相串联的热惯性环节,而串联的多容对象会产生等效纯时滞后。

随着温度的升高,辐射传热的比例增大,辐射具有穿透性,使传热路径缩短,传热速度加快。

所以纯滞后的时间会随温度升高而减小。

由于火电厂锅炉使用的燃料是煤粉,即锅炉能量的来源方式是通过化学燃料的燃烧获得能量的,同时,炉膛内能量的散发形式又是以炉膛的炉体热量散失,对汽包进行热量传导进行散失等多种途径进行的,所以炉膛内的温度的变化是一个相当复杂的过程,是一个非线性变化的过程。

从模型参数上看,在锅炉炉膛的整个温度调节范围内,对象的增益、容积滞后时间和纯滞后时间通常是与工作温度与负载变化有关的变参数,而且参数变化量与温度变化量之间是非线性关系。

由于锅炉炉膛内的温度是高温段的,在高温段,温度变化的纯滞后时间和过程增益将比低温段有显著减少,而时间常数则显著增大。

锅炉作为一种高负荷运转的设备,特别是火电厂内的锅炉,长期处于高负荷运转下,随着运行时间的变化,其各项性能都会逐渐发生变化,特别是随着使用时间的增长,炉子的保温隔热材料会逐渐老化,炉膛内部由于长期处于高温环境中,炉体的保温、密封性能变差,通过炉体向外散失的热量增大。

此外,锅炉初次使用和久停后再用时,由于绝热保温材料中的水分大,炉膛温度的特性差别也是很大的。

另外,随着季节的变换,锅炉运行的外部环境温度也是经常变化的,冬天外部环境相对较冷,炉体的散热较快;夏天气温炎热,炉体的散热相对会较慢。

如此种种因素都会引起炉膛温度特性的变化,但变化的速度十分缓慢而不明显。

火电厂锅炉炉膛温度具有大惯性、大滞后特性。

在炉膛的整个温度范围内,对象的增益、容积滞后时间、纯滞后时间都是与工作温度有关的变参数。

从传热原理可知,这些参数也与负荷变化有关。

在锅炉设计的工作温区,在工作点附近的小范围内其动特性接近于线性,较容易控制,用常规的PID 调节器也能控制得很好,但不能经受太大的扰动,也不能够大范围地跟踪变化较快的给定信号。

对于常规仪表,大范围地改变温度要靠手动,仅当温度接近给定值时方可投入自动。

根据以上分析,可以认为火电厂锅炉炉膛温度是一种具有大容积滞后和大纯滞后的对象。

在整个炉膛的温区内,其动态参数随锅炉的工作温度变化,在工作点附近的小温度范围内,炉膛的动态特性近似线性的。

4 炉膛温度控制的理论数学模型1)根据以上分析可知,炉膛温度问题是比较复杂的。

对炉膛温度动态特性进行分段线性化,则在每个较小的温度区间,锅炉炉膛的燃料流量一炉膛温度系统的动态特性可近似地用一个惯性环节和一个纯滞后环节串联的简化模型来表征,即其中K。

为过程的增益,•为过程的纯滞后时间,To为过程的等效容积滞后时间。

在锅炉炉膛的整个温度范围内,对象的增益、容积滞后时间和纯滞后时间都是炉膛温度和负载的非线性函数。

K。

随锅炉炉膛内温度升高而减小,To随锅炉炉膛内的温度升高而增大。

机理建模和计算机仿真分析以及实验辨识等也证明了这一模型的可行性。

2炉膛温度控制方法的选择双交叉燃烧控制是以锅炉炉膛温度为主被控量、燃料和空气并列为副被控变量的串级控制系统。

其中,两个并列的副环具有逻辑比值功能。

使该控制系统在稳定工作的情况下保证空气和燃料的最佳比值,也能在动态过程中尽量维持空气、燃料在最佳比值附近,因此,具有良好的经济效益和社会效益。

在煤粉流量调节回路中,炉温PID的输出A1与根据实测空气流量折算成需要的煤粉流量之后,分别乘以一个偏置系数K3,得到信号A2,乘以一个偏置系数K4得到信号A3, A1、A2、A3三者经过高低选择器比较,选中者作为煤粉流量PID的设定值。

空气流量调节回路中,炉温PID的输出B1,与根据实测煤粉流量折算成所须空气流量之后,分别乘上一个偏置系数K1得到信号B2,乘上偏置系数K2得到信号B3, B1、B2、B3三者经高低选择器比较,选中者乘上流量补偿系数,送到空气PID作为设定值。

其系统组成原理图如图 1所示。

图4.1双交叉限幅燃烧控制原理3系统单元元件的选择温度检测变送器的选择在本次设计中,选用热电阻温度变送器,它的量程单元的原理图如图B1 A1煤粉 热值< E卢> FA2XK3~le —B5A6流量变送器4.2。

温度PID 调节器B2设定 空燃 比A3B4限制器B3T空气PID煤粉PID图2热电偶温度变送器量程单元原理图热电偶温度变送器与各种测温热电偶配合使用,可将温度信号线性地转换成为4〜20mADC电流信号或1〜5VDC电压信号输出,它是由量程单元和放大单元两部分组成的。

热电偶温度变送器的主要特点是采用非线性负反馈回路来实现线性变化。

这个特殊的性质反馈回路能按照热电偶温度一毫伏信号间的非线性关系调整反馈电压,以保证输入温度t与整机输出I。

或V。

间的线性关系。

由图可见,热电偶温度变送器的量程单元由信号输入回路A,零点调整及冷端补偿回路B,以及非线性反馈回路C等部分组成。

输入信号E t为热电偶产生的热电势,输入回路中限流电阻R i1、R i2和限压稳压管为安全火花防爆元件;电阻R i、R2还与电容C i组成低通滤波器。

零点调整、量程调整电路的工作原理与直流毫伏变送器大致相仿。

所不同的是:在热电偶温度变送器的输入回路中增加了由铜电阻R cu等元件组成的热电偶冷端温度补偿电路;同时把调零电位器W i移动到了反馈回路的支路上;在反馈回路中增加了运算放大器IC1等组成的线性化电路起线性化作用。

由于锅炉炉膛内的温度值较高,所以选用的热电偶变送器的温度测量值必须达到要求,这里,我选用的是DBW-1150型热电偶温度变送器。

相关文档
最新文档