八年级上册因式分解经典题型与典型例题解析,初中数学因式分解题目及答案
八年级数学上册因式分解练习题及答案
八年级数学上册因式分解练习题及答案八年级数学上册因式分解练习题及答案学习可以这样来看,它是一个潜移默化、厚积薄发的过程。
为了帮助大家在考前对知识点有更深的掌握,今天店铺为大家整理了因式分解练习题及答案,希望对大家有所帮助。
一、选择1.下列各式由左到右变形中,是因式分解的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)+4C.10x2-5x=5x(2x-1)D.x2-16+3x=(x-4)(x+4)+3x2.下列各式中,能用提公因式分解因式的是()A.x2-yB.x2+2xC.x2+y2D.x2-xy+13.多项式6x3y2-3x2y2-18x2y3分解因式时,应提取的公因式是()A.3x2yB.3xy2C.3x2y2D.3x3y34.多项式x3+x2提取公因式后剩下的因式是()A.x+1B.x2C.xD.x2+15.下列变形错误的是()A.-x-y=-(x+y)B.(a-b)(b-c)=-(b-a)(b-c)C.–x-y+z=-(x+y+z)D.(a-b)2=(b-a)26.下列各式中能用平方差公式因式分解的是()A.–x2y2B.x2+y2C.-x2+y2D.x-y7.下列分解因式错误的是()A.1-16a2=(1+4a)(1-4a)B.x3-x=x(x2-1)C.a2-b2c2=(a+bc)(a-bc)D.m2-0.01=(m+0.1)(m-0.1)8.下列多项式中,能用公式法分解因式的是()A.x2-xyB.x2+xyC.x2-y2D.x2+y2二、填空9.a2b+ab2-ab=ab(__________).10.-7ab+14a2-49ab2=-7a(________).11.3(y-x)2+2(x-y)=___________12.x(a-1)(a-2)-y(1-a)(2-a)=____________.13.-a2+b2=(a+b)(______)14.1-a4=___________15.992-1012=________16.x2+x+____=(______)217.若a+b=1,x-y=2,则a2+2ab+b2-x+y=____。
人教版八年级上册《因式分解》例题与讲解
14.3 因式分解1.因式分解(1)定义把一个多项式化为几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.(2)因式分解与整式乘法的关系因式分解与整式乘法是相反方向的变形.如:(a+b)(a-b)a2-b2.即多项式乘以多项式或单项式乘以多项式(整式乘法)是“积化和”,而因式分解则是“和化积”,故可以用整式乘法来检验因式分解的正确性.谈重点因式分解的理解(1)因式分解专指多项式的恒等变形,等式的左边必须是多项式,右边每个因式必须是整式.(2)因式分解的结果必须要以积的形式表示,否则不是因式分解.(3)因式分解中每个括号内如有同类项要合并,因式分解的结果要求必须将每个因式分解彻底.【例1】下列各式由左边到右边的变形中,是因式分解的是().A.a(x+y)=ax+ayB.y2-4y+4=y(y-4)+4C.10a2-5a=5a(2a-1)D.y2-16+y=(y+4)(y-4)+y2.公因式(1)定义多项式的各项中都含有的公共的因式叫做这个多项式各项的公因式.(2)确定多项式的公因式的方法确定一个多项式的公因式时,要对数字系数和字母分别进行考虑,确定公因式时:一看系数,二看字母,三看指数.解技巧确定公因式的方法确定公因式的方法:(1)对于系数(只考虑正数),取各项系数的最大公约数作为公因式的系数.(2)对于字母,需考虑两条,一是取各项相同的字母;二是各相同字母的指数取次数最低次,即取相同字母的最低次幂.最后还要根据情况确定符号.【例2】把多项式6a3b2-3a2b2-12a2b3分解因式时,应提取的公因式是().A.3a2b B.3ab2C.3a3b3D.3a2b23.提公因式法(1)定义一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.(2)提公因式的步骤①确定应提取的公因式;②用公因式去除这个多项式,所得的商作为另一个因式;③把多项式写成这两个因式的积的形式.警误区提公因式要彻底(1)所提的公因式必须是“最大公因式”,即提取公因式后,另一个因式中不能还有公因式;(2)如果多项式的首项系数是负数,应先提出“-”号.可按下列口诀分解因式:各项有“公”先提“公”,首项有“负”先提“负”,某项提出莫漏“1”,括号里面分到“底”.【例3】用提公因式法分解因式:(1)12x2y-18xy2-24x3y3;(2)5x2-15x+5;(3)-27a 2b +9ab 2-18ab ; (4)2x (a -2b )-3y (2b -a )-4z (a -2b ).4.用平方差公式分解因式(1)因式分解的平方差公式两个数的平方差,等于这两个数的和与这两个数的差的积.即a 2-b 2=(a +b )(a -b ). 这个公式就是把整式乘法的平方差公式等号左右两边颠倒过来.(2)平方差公式的特点左边是二项式,两项都能写成平方的形式,且符号相反;右边是两个数(或整式)的和与这两个数(或整式)的差的积.凡是符合平方差公式左边特点的多项式都可以用这个公式分解因式.【例4】 把下列多项式分解因式:(1)4x 2-9; (2)16m 2-9n 2;(3)a 3b -ab ; (4)(x +p )2-(x +q )2.5.用完全平方公式分解因式(1)因式分解的完全平方公式两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.即a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.这个公式就是把整式乘法的完全平方公式等号左右两边颠倒过来.(2)完全平方公式的特点左边是一个三项式,其中两项同号且均为一个整式的平方(平方项),另一项是平方项幂的底数的2倍(乘积项),符号可正也可负,右边是两个整式的和(或差)的平方,中间的符号同左边的乘积项的符号.【例5】 把下列多项式分解因式:(1) x 2+14x +49; (2)(m +n )2-6(m +n )+9;(3)3ax 2+6axy +3ay 2; (4)-x 2-4y 2+4xy .6. 十字相乘法如果多项式的各项既没有公因式可提,也不能运用公式分解,也不能分组分解时,可采用此法。
最新初中数学因式分解经典测试题含答案解析(2)
最新初中数学因式分解经典测试题含答案解析(2)一、选择题1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2【答案】D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D 正确;故选D .【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.3.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a ·4abB .-ab 3-2ab 2-ab=-ab (b 2+2b )C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1)【答案】D【解析】【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.5.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q , ()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.7.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.8.下列各式中从左到右的变形,是因式分解的是( )A .(a +3)(a -3)=a 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab (a +b )D .x 2+1=x (x +1x )【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积的形式,故B 错误;C 、因式分解是把一个多项式转化成几个整式积的形式,故C 正确;D 、因式中含有分式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.9.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+- 【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。
八年级上册因式分解100题及答案
八年级上册因式分解100题及答案一、提取公因式(1)(21)(43)(21)(61)(21)(73)+-+++-++--m n m n m n(2)23323+-686x y x z x y(3)(51)(41)(52)(51)+-++-+x x x x(4)24+b abc217(5)(65)(83)(65)(42)+-++-a b a b(6)(75)(34)(63)(75)+-+++m n n m(7)32-a x ax y2515(8)(94)(21)(94)(33)+--+++x x x x(9)(2)(94)(2)(93)x y x y ++++-(10)34233151525xy x z xy z --(11)323342184527x y z x y z x yz --(12)(43)(43)(43)(74)m x m x +--++(13)(81)(92)(81)(81)x y x y +-++++(14)221220xy x +(15)(31)(3)(54)(31)a b b a ------(16)(34)(65)(34)(75)m x m x --++-+(17)423721a x ax y-(18)42+xy z4518(19)(21)(1)(94)(21)+-+-++m n n m (20)342224+-x y x y z xy404016二、公式法(21)2x-2564(22)22-m n784784(23)2-+x x7291512784(24)22++m mn n121286169(25)2x-6254(26)216920864x x ++(27)2576841x -(28)2278428025x xy y ++(29)224841188729a ab b ++(30)264144x -三、分组分解法(31)22277330x z xy yz zx+-+-(32)72649080ax ay bx by+++(33)221220810a c ab bc ca-++-(34)22x z xy yz zx-+++48316610 (35)56483530-+-+xy x y(36)20100420xy x y--++(37)410820+++ab a b(38)22-+--x y xy yz zx92744 (39)22--+-4542193630a b ab bc ca(40)2149614--+xy x y(41)73146-+-ab a b(42)22++++54491054236a b ab bc ca(43)222141926a b ab bc ca++++(44)224533576a c ab bc ca----(45)22375510a c ab bc ca+--+(46)525840ax ay bx by--+(47)227522028x y xy yz zx--++(48)2292744a b ab bc ca-+--(49)224510431527x y xy yz zx+--+(50)261442ax ay bx by--+四、拆添项(51)4224496281a a b b ++(52)22364960569a b a b --++(53)42243614849m m n n -+(54)42246414425x x y y -+(55)422442149x x y y -+(56)22362243m n m n -+--(57)224925615a b a b ----(58)2281491621480m n m n --++(59)224916565633a b a b -++-(60)4224x x y y++9525五、十字相乘法(61)22-++-x xy y x y4073303542 (62)222++-+-x y z xy yz xz40208572636 (63)22m mn n m n++++-14311526174 (64)222++-+-a b c ab bc ac30282591516 (65)222x y z xy yz xz+-+++42124461317 (66)22m mn n m n+++--145728251525 (67)22++++182931421x xy y x y(68)222x y z xy yz xz--+++821624522 (69)22--++251015159m mn n m n (70)228213836+-+-x xy x y(71)22+---+151********x xy y x y (72)222+-+++21128331022a b c ab bc ac(73)222--++-x y z xy yz xz46652023(74)222a b c ab bc ac+--++46225112 (75)222x y z xy yz xz--+-+ 211224364410 (76)222+++++20725334045x y z xy yz xz(77)23442-+--x xy x y(78)2++++a ab a b56782530 (79)22-+-++m mn n m n5127364836 (80)22---++x xy y x y43925六、双十字相乘法(81)2-++-a ab a b2432212 (82)22m mn n m n+--+-35271855130 (83)22x xy y x y-++-+ 12144402525 (84)22-----72525225024x xy y x y(85)2229712622533x y z xy yz xz-----(86)218366547x xy x y ++++(87)22248152544x y z xy yz xz+--+-(88)222124152163x y z xy yz xz---+-(89)22224430351433x y z xy yz xz+----(90)2220114462024m mn n m n +---+七、因式定理(91)32694x x x +--(92)32314163x x x +++(93)325243112x x x -+-(94)322361x x x +-+(95)3223318x x x ---(96)32635489x x x -++(97)323768x x x -+-(98)3210176x x x +-+(99)32322x x x --+(100)324151415x x x -+-八年级上册因式分解100题答案一、提取公因式(1)(21)(51)m n +--(2)2332(343)x y xz y +-(3)(51)(1)x x +-(4)47(3)b b ac +(5)(65)(125)a b +-(6)(75)(91)m n +-(7)25(53)ax a xy -(8)(94)(2)x x ++(9)(2)(181)x y ++(10)332335(335)x y x z y z --(11)329(253)x yz y y xz --(12)(43)(37)m x -++(13)(81)(3)x y -+-(14)24(35)x y x +(15)(31)(61)a b ---(16)(34)(10)m x -+(17)237(3)ax a xy -(18)429(52)xy z +(19)(21)(103)m n -++(20)222228(552)xy x y xz y +-二、公式法(21)(58)(58)x x +-(22)(2828)(2828)m n m n +-(23)2(2728)x -(24)2(1113)m n +(25)(252)(252)x x +-(26)2(138)x +(27)(2429)(2429)x x +-(28)2(285)x y +(29)2(2227)a b +(30)(812)(812)x x +-三、分组分解法(31)(97)(3)x y z x z ---(32)2(45)(98)a b x y ++(33)(45)(324)a c a b c ++-(34)(62)(83)x y z x z +-+(35)(85)(76)x y -+-(36)4(51)(5)x y --+(37)2(2)(25)a b ++(38)(924)()x y z x y --+(39)(976)(56)a b c a b+--(40)(72)(37)x y--(41)(2)(73)a b+-(42)(67)(976)a b a b c+++(43)(3)(742)a b a b c+++(44)(5)(973)a c ab c+--(45)()(357)a c ab c+-+(46)(58)(5)a b x y--(47)(4)(75)x y z x y-++(48)(924)()a b c a b--+(49)(523)(95)x y z x y-+-(50)2(7)(3)a b x y--四、拆添项(51)2222(789)(789)a ab b a ab b++-+(52)(679)(671)a b a b+---(53)2222(687)(687)m mn n m mn n+---(54)2222(885)(885)x xy y x xy y+---(55)2222(277)(277)x xy y x xy y++-+ (56)(63)(61)m n m n++--(57)(73)(75)a b a b++--(58)(9710)(978)m n m n+---(59)(743)(7411)a b a b+--+(60)2222(355)(355)x xy y x xy y++-+五、十字相乘法(61)(56)(857)x y x y--+(62)(542)(854)x y z x y z----(63)(234)(751)m n m n+++-(64)(672)(54)a b c a b c----(65)(64)(734)x y z x y z+-++ (66)(745)(275)m n m n+-++ (67)(97)(23)x y x y+++(68)(236)(47)x y z x y z-++-(69)(553)(53)m n m n-++(70)(436)(71)x y x+-+(71)(525)(342)x y x y--+-(72)(334)(742)a b c a b c+++-(73)(26)(43)x y z x y z+--+(74)(42)(6)a b c a b c---+(75)(726)(364)x y z x y z--++ (76)(575)(45)x y z x y z++++ (77)(342)(1)x y x--+(78)(86)(75)a b a+++(79)(6)(576)m n m n----(80)(1)(435)x y x y--+-六、双十字相乘法(81)(32)(86)a a b--+ (82)(565)(736)m n m n+--+ (83)(645)(25)x y x y-+-+ (84)(954)(856)x y x y++--(85)(93)(74)x y z x y z++--(86)(247)(91)x y x+++ (87)(63)(852)x y z x y z-+--(88)(425)(323)x y z x y z+--+ (89)(85)(346)x y z x y z-+--(90)(544)(46)m n m n+---七、因式定理(91)(1)(34)(21)x x x+-+ (92)2(3)(351)x x x+++ (93)(1)(54)(3)x x x---(94)2(1)(251)x x x-+-(95)2(3)(236)x x x-++ (96)2(3)(61)x x-+(97)2(2)(34)x x x--+ (98)(1)(52)(23)x x x--+ (99)2(1)(42)x x x+-+ (100)2(3)(435)x x x--+。
(专题精选)初中数学因式分解经典测试题及答案解析
(专题精选)初中数学因式分解经典测试题及答案解析一、选择题1.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①x 2-16=(x+4)(x-4),是因式分解;②x 2+3x-16=x (x+3)-16,不是因式分解;③(x+4)(x-4)=x 2-16,是整式乘法;④x 2+x =x (x +1)),是因式分解.故选B .2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.将3a b ab -进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab -有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;4.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.5.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.6.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。
初中数学因式分解经典测试题含答案解析
初中数学因式分解经典测试题含答案解析一、选择题1.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+ 【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.2.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.3.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.4.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.5.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x【答案】C【解析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.6.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010- ()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.7.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.8.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.9.若a b c 、、为ABC ∆三边,且满足222244a c b c a b -=-,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均有可能 【答案】D【解析】【分析】把已知等式左边分解得到()()()2220a b a b c a b ⎡⎤+--+=⎣⎦,-a b =0或()222c a b -+=0,即a=b 或222c a b =+,然后根据等腰三角形和直角三角形的判定方法【详解】因为a b c 、、为ABC ∆三边,222244a c b c a b -=-所以()()()2220a b a b c a b ⎡⎤+--+=⎣⎦ 所以-a b =0或()222c a b -+=0,即a=b 或222c a b =+所以ABC ∆的形状是等腰三角形、等腰三角形、等腰直角三角形故选:D【点睛】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.10.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.11.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0 B .3 C .6 D .9【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.13.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。
部编数学八年级上册专题09因式分解之八大题型(解析版)含答案
专题09因式分解之八大题型判断是否是因式分解【变式训练】1.(2023下·浙江温州·七年级校考期末)下列变形是因式分解的是( )已知因式分解的结果求参数【变式训练】已知二次三项式22x x k +-有一个因式是6x -,求另一个因式以及k 的值.【答案】8x +,48k =【分析】设另一根因式为x n +,可得()()()222666x x k x x n x n x n +-=-+=+--,再建立方程组626n n k-=ìí-=-î,再解方程组即可得到答案.【详解】解:∵二次三项式22x x k +-有一个因式是6x -,∴设另一根因式为x n +,∴()()()222666x x k x x n x n x n +-=-+=+--,∴626n n k -=ìí-=-î,解得:848n k =ìí=î,∴另一根因式为:8x +.【点睛】本题考查的是因式分解的含义,二元一次方程组的解法,熟练的利用待定系数法建立方程组是解本题的关键.公因式例题:(2023上·福建厦门·八年级校考期末)单项式33a b 与239a b 的公因式是( )A .23a bB .333a bC .abD .339a b 【答案】A【分析】根据公因式的概念分别求得系数的最大公因数,相同字母的次数的最低次数即可.【详解】解:单项式33a b 与单项式239a b 的公因式是23a b .故选:A .【点睛】此题考查公因式,掌握由几个单项式的各系数最大公约数与各相同字母最小次幂的乘积,组成的式子叫这几个单项式的公因式是解决此题的关键.【变式训练】【变式训练】综合提公因式法和公式法分解因式(2)()()22a x y b y x -+-()()22x y a b =--()()()x y a b a b =-+-.【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式,掌握平方差公式()()22a b a b a b +-=-和完全平方公式()2222a b a ab b ±=±+.【变式训练】1.(2023下·江苏扬州·七年级统考期末)分解因式:(1)228m -;(2)()()244x y x y +-++.【答案】(1)()()222m m +-(2)()22x y +-【分析】(1)先提取公因式2,再用平方差公式进行因式分解即可;(2)将x y +看做一个整体,利用完全平方公式进行因式分解即可.【详解】(1)解:原式()()()224222m m m =-=+-;(2)解:原式()()22222x y x y =+-´++()22x y =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式()()22a b a b a b +-=-和完全平方公式()222a b a ab b ±=±+.2.(2023下·江苏盐城·七年级统考期中)分解因式:(1)2273x -+;(2)22344xy x y y --;(3)()()2221619y y ---+.【答案】(1)()()333x x +-(2)()22y x y --(3)()()2222+-y y【分析】(1)利用提公因式法及平方差公式,即可分解因式;(2)利用提公因式法及完全平方公式,即可分解因式;(3)利用完全平方公式及平方差公式,即可分解因式.【详解】(1)解:2273x -+2327x =-()239x =-()()333x x =+-(2)解:22344xy x y y --()2244y x xy y =--+()22y x y =--(3)解:()()2221619y y ---+()()2221619y y =---+()2213y éù=--ëû()224y =-()()222y y =+-éùëû()()2222y y =+-【点睛】本题考查了分解因式的方法,熟练掌握和运用分解因式的方法是解决本题的关键.十字相乘法分解因式例题:(2023下·四川达州·八年级校考期末)将多项式234--x x 分解因式后正确的是( )A .()()223x x x+--B .()34x x --C .()()14x x -+D .()()14x x +-【答案】D【分析】利用十字相乘法进行因式分解即可.【详解】解:()()23414.x x x x --=+-故选:D .【点睛】本题考查了十字相乘法分解因式,运用十字相乘法分解因式,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.【变式训练】【点睛】本题考查了因式分解,熟练掌握十字相乘法进行因式分解是解题的关键.分组分解法分解因式例题:(2023下·山东青岛·八年级统考期末)【问题提出】:分解因式:(1)23355x xy x y +-- (2)2244a b a b-+-【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)23355x xy x y+--分析:甲发现该多项式前两项有公因式3x ,后两项有公因式5-,分别把它们提出来,剩下的是相同因式()x y +,可以继续用提公因式法分解.解:()22335533(55)3()5()()(35)x xy x y x xy x y x x y x y x y x +--=+-+=+-+=+-另:乙发现该多项式的第二项和第四项含有公因式y ,第一项和第三项含有公因式x ,把y ,x 提出来,剩下的是相同因式(35)x -,可以继续用提公因式法分解.解:()22335535(35)(35)(35)(35)()x xy x y x x xy y x x y x x x y +--=-+-=-+-=-+探究2:分解因式:(2)2266a b a b-+-分析:甲发现先将22a b -看作一组应用平方差公式,其余两项看作一组,提出公因式6,则可继续再提出因式,从而达到分解因式的目的.解:()222266(66)()()6()()(6)a b a b a b a b a b a b a b a b a b -+-=-+-=+-+-=-++【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和公式法进行分解,然后,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法:【学以致用】:尝试运用分组分解法解答下列问题;(1)分解因式:3244x x x +--;(2)分解因式:22229y yz z x ++-;【拓展提升】:(3)分解因式:2815m m -+.【答案】(1)()()()122x x x ++-;(2)()()33y z x y z x +++-;(3)()()53m m --.【分析】(1)把前面两个和后面两个分别组成两组,提公因式()1x +后再利用平方差公式继续分解;(2)把前面三个和后面一个组成两组,利用公式分解即可;(3)把15分解成161-,再把前面三个和后面一个组成两组,利用公式分解即可.【详解】解:(1)3244x x x +--()()3241x x x =+-+()()2141x x x =+-+()()214x x =+-()()()122x x x =++-;(2)22229y yz z x ++-()22229y yz z x =++-()()223y z x =+-()()33y z x y z x =+++-;(3)2815m m -+()28161m m =-+-()241m =--()()4141m m =-+--()()53m m =--.【点睛】解答本题的关键是注意用分组分解法时,一定要考虑分组后能否提取公因式,运用公式.【变式训练】1.(2023上·河南南阳·八年级统考期末)常用的分解因式的方法有提取公因式法、公式法等,但有的多项式则不能直接用上述两种方法进行分解,比如多项式22424x y x y -++.这样我们就需要结合式子特点,探究新的分解方法.仔细观察这个四项式,会发现:若把它的前两项结合为一组符合平方差公式特点,把它的后两项结合为一组可提取公因式,而且对前后两组分别进行因式分解后会出现新的公因式,提取新的公因式就可以完成对整个式子的因式分解.具体过程如下:例1:22424x y x y-++()()22424x y x y =--- 分成两组()()()2222x y x y x y =+--- 分别分解()()222x y x y =-+- 提取公因式完成分解像这种将一个多项式适当分组后,再分解因式的方法叫做分组分解法.分组分解法一般是针对四项或四项以上的多项式,关键在恰当分组,分组须有“预见性”,预见下一步能继续分解,直到完成分解.(1)关于以上方法中“分组”目的的以下说法中所有正确的序号是______.①分组后组内能出现公因式;②分组后组内能运用公式;③分组后组间能继续分解.(2)若要将以下多项式进行因式分解,怎样分组比较合适?①22x y x y -++=______.②22222a a b ab b +--+=______.(3)利用分组分解法进行因式分解:22441x x y +-+.【答案】(1)①②③(2)①()()22x y x y -++,②()()22222a b a ab b -+-+;(3)()()2121x y x y ++-+【分析】(1)根据阅读材料解答即可;(2)运用分组分解法直接作答即可;(3)运用分组分解法直接作答即可.【详解】(1)解:从材料可知:“分组”的目的是:①分组后组内能出现公因式;②分组后组内能运用公式;③分组后组间能继续分解;故正确的序号是①②③,故答案为:①②③;(2)解:①()()2222x y x y x y x y -++=-++,②()()2222222222a a b ab b a b a ab b +--+=-+-+,故答案为:①()()22x y x y -++,②()()22222a b a ab b -+-+;(3)解:22441x x y +-+()22441x x y =++-()2221x y =+-()()2121x y x y =++-+【点睛】本题考查了因式分解,能够灵活运用分组分解法进行因式分解是解答本题的关键.因式分解的应用例题:(2023下·辽宁丹东·八年级统考期末)已知a ,b ,c 是三角形的三边,且满足()2222333a b c a b c ++=++则ABC V 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】C【分析】将()2222333a b c a b c ++=++进行变形得2222222220a b c ab ac bc ++---=,根据完全平方公式得222()()()0a b b c a c -+-+-=,即可得a b c ==,即可得.【详解】解:()2222333a b c a b c ++=++,222222222333a b c ab ac bc a b c +++++=++,2222222220a b c ab ac bc ++---=,222()()()0a b b c a c -+-+-=,0a b -=,0b c -=,0a c -=,a b =,b c =,a c =,∴a b c ==,∴三角形ABC 为等边三角形,故选:C .【点睛】本题考查了因式分解,完全平方公式,等边三角形的判定,解题的关键是掌握因式分解,完全平方公式,等边三角形的判定.【变式训练】(2)14【分析】(1)①仿照例题的方法,根据分组分解法分解因式;②仿照例题的方法,根据拆项法分解因式;(2)仿照例题的方法,根据分组分解法分解因式,根据非负数的性质,求得,,a b c 的值,即可求解.【详解】(1)①()()()222222961961313131x x y x x y x y x y x y +-+=++-=+-=+++-;②()()()()()2226869131313124x x x x x x x x x -+=-+-=--=-+--=--(2)a ,b ,c 为ABC V 的三条边,22254610340a b c ab b c --++-=+,∴2222446910250a b ab b b c c +-+-++-+=,∴()()()2222350a b b c -++-=-,∴20a b -=,30b -=,50c -=,∴6a =,3b =,5c =,∴ABC V 的周长为63514++=.【点睛】本题考查了因式分解以及因式分解的应用,仿照例题的方法因式分解是解题的关键.一、单选题1.(2023下·云南昭通·八年级校联考期末)在多项式323124a b a bc -中,各项的公因式是( )A .34a bcB .34a bC .24abD .224a b 【答案】B【分析】根据多项式的公因式来进行求解即可.【详解】解: ()323312443a b a bc a b b c =--Q ,34a b \是多项式323124a b a bc -中各项的公因式.故选:B .【点睛】本题主要考查了多项式的公因式,理解多项式的公因式是解答关键.2.(2023下·陕西渭南·八年级统考期末)下列因式分解正确的是( )A .()1ax ay a x y +=++B .()ma mb m a b -=-C .()22444x x x ++=+D .()2211x x -=-【答案】B【分析】根据因式分解的定义和方法逐项判断即可.【详解】A 、()ax ay a x y +=+,因式分解错误,该选项不符合题意;B 、因式分解正确,该选项符合题意;C 、()22442x x x ++=+,因式分解错误,该选项不符合题意;D 、()()2111x x x -=-+,因式分解错误,该选项不符合题意.故选:B .【点睛】本题主要考查因式分解,牢记因式分解的定义(把一个多项式化成几个整式的积的形式叫做因式分解)和方法(提公因式法和公式法)是解题的关键.3.(2023上·河南许昌·八年级统考期末)如果()()21052x kx x x ++=--,则k 应为( )A .3-B .3C .7D .7-【答案】D 【分析】先利用整式乘法化简等式的左边代数式,再根据对应系数相等求解k 值即可.【详解】解:∵()()22525210710x x x x x x x --=--+=-+,∴2210710x kx x x ++=-+,∴7k =-,故选:D .【点睛】本题考查因式分解,熟知因式分解和整式乘法是互为逆运算是解答的关键.4.(2023上·福建厦门·八年级统考期末)要使多项式22x M x ++能运用平方差公式进行分解因式,整式M 可以是( )A .1B .1-C .24x -+D .24x --【答案】D【分析】利用平方差公式的结构特征判断即可.【详解】解:A .()22211x x x ++=+是完全平方公式因式分解,不合题意;B .221x x +-不能用平方差公式因式分解,故该选项不正确,不符合题意;C .222424x x x x x -++=+,不能用平方差公式因式分解,故该选项不正确,不符合题意;D . ()()22242422x x x x x x --+=-=+-,能用平方差公式因式分解,故该选项正确,符合题意;故选:D .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.5.(2023下·安徽宿州·八年级校考期末)已知ABC V 的三边长分别为a ,b ,c ,且满足22a ac b bc -=-,则ABC V 一定是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形【答案】D 【分析】依据题意,由22a ac b bc -=-得220a b ac bc --+=,从而()()0a b a b c -+-=,由两边之和大于第三边可得a b c +>,即0a b c +->,进而0a b -=,故可得解.【详解】解:由题意,∵22a ac b bc -=-,∴220a b ac bc --+=.∴()()0a b a b c -+-=.又∵a b c +>,即0a b c +->,∴0a b -=,即a b =.∴ABC V 是等腰三角形.故选:D .【点睛】本题主要考查了因式分解的应用,解题时需要熟练掌握并能理解.二、填空题【点睛】本题主要考查了因式分解的应用,正确理解题意是解题的关键.三、解答题11.(2023下·四川达州·八年级校考期末)分解因式:(1)32231212a a b ab -+-;(2)229()()m n m n +--.【答案】(1)23(2)a a b --(2)()()422m n m n ++【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.【详解】(1)原式()22344a a ab b =--+23(2)a a b =--;(2)()2原式()()()()33m n m n m n m n =++-+--éùéùëûëû()()422m n m n =++.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(2023下·四川达州·八年级校考期末)因式分解:(1)()()42a x y b y x ---;(2)22168x xy y -+;【答案】(1)()()22x y a b -+(2)2(4)x y -【分析】(1)利用提公因式法进行分解,即可解答;(2)利用完全平方公式进行分解,即可解答.【详解】(1)解:()()42a x y b y x ---【答案】(1)(3)(3)+++-a b a b (2)ABC V 是等腰三角形,理由见解析【分析】(1)运用完全平方公式分解222a ab b ++,再运用平方差公式进行分解即可;(2)运用乘法公式进行分组分解法分解因式即可.【详解】(1)解:2229a ab b ++-2()9a b =+-(3)(3)a b a b =+++-.(2)解:20a ab ac bc -+-=,因式分解为:()2()0a ab ac bc -+-=,()()0a a b c a b -+-=,()()0a b a c -+=,0a b \-=,即a b =,∴ABC V 是等腰三角形.【点睛】本题主要考查因式分解的知识,掌握乘法公式的运用,因式分解的方法是解题的关键.15.(2023下·甘肃陇南·八年级统考期末)阅读与思考请仔细阅读并完成相应任务.生活中我们经常用到密码,例如用支付宝或微信支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:3222x x x +--可以因式分解为()()()112x x x -++,当29x =时,128x -=,130x +=,231x +=,此时可以得到数字密码283031.任务:(1)根据上述方法,当15x =,5y =时,对于多项式32x xy -分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x ,y ,求出一个由多项式33x y xy +分解因式后得到的密码(只需一个即可).【答案】(1)可得数字密码是151020;也可以是152010;101520;102015,201510,201015(2)24121(或12124)【分析】(1)先将32x xy -进行因式分解,再根据题意代入15x =,5y =计算,即可求解;(2)根据勾股定理和三角形周长公式得2213121x y x y +=ìí+=î,解得24xy =,再将多项式33x y xy +分解因式后,代入24xy =,22121x y +=进行计算即可求解.【详解】(1)解:()()32x xy x x y x y -=-+,当15x =,5y =时,10x y -=,20x y +=,可得数字密码是151020;也可以是152010;101520;102015,201510,201015.(2)由题意得:2213121x y x y +=ìí+=î,解得24xy =,而()3322x y xy xy x y +=+,所以可得数字密码为24121(或12124).【点睛】本题考查因式分解和因式分解的应用,解题的关键是掌握因式分解的方法以及题目中数字密码的计算方法.16.(2023下·辽宁锦州·八年级统考期末)数形结合是解决数学问题的重要思想方法,借助图形可以对很多数学问题进行直观推导和解释.如图1,有足够多的A ,B ,C 三种纸片:A 种是边长为m 的正方形,B 种是边长为n 的正方形,C 种是宽为m ,长为n 的长方形.用A 种纸片1张,B 种纸片1张,C 种纸片2张可以拼出(不重不漏)如图2所示的正方形.根据正方形的面积,可以用来解释整式乘法()()222m n m n m mn n ++=++,反过来也可以解释多项式222m mn n ++,因式分解的结果为2222()m mn n m n ++=+,依据上述积累的数与形对应关系的经验,解答下列问题:(1)若多项式2223m n mn ++表示分别由1,2,3张A ,B ,C 三种纸片拼出如图3所示的大长方形的面积,请根据图形求出这个长方形的长和宽,并对多项式2232m mn n ++进行因式分解;(2)我们可以借助图3再拼出一个更长方形,使该长方形刚好由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,那么这个长方形的面积可以表示为多项式______,据此可得到该多项式因式分解的结果为______.【答案】(1)长是2m n +,宽是m n +,因式分解结果是()()2m n m n ++(2)22372m mn n ++,()()23m n m n ++【分析】(1)根据A ,B ,C 三种纸片的边长即可求出图2中长方形的长和宽,根据长方形的面积等于长乘宽即可进行因式分解;(2)根据长方形由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,即可求出这个长方形的面积,然后进行因式分解即可.【详解】(1)解:根据图形可知这个长方形的长是2m n +,宽是m n +,2232(2)()m mn n m n m n \++=++;(2)根据长方形刚好由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,则这个长方形的面积可以表示为多项式22372m mn n ++,22372(2)(3)m mn n m n m n \++=++,故答案为:22372m mn n ++,(2)(3)m n m n ++.【点睛】本题主要考查了因式分解的应用,多项式乘多项式,利用数形结合思想与长方形的面积解答是解题的关键.。
初二因式分解经典题35题
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
完整版八年级因式分解难题附答案及解析
2017年05月21日数学(因式分解难题)2一•填空题(共10小题)1 .已知x+y=10, xy=16,则x2y+xy2的值为_____ .2•两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2 (x- 1) (x-9);另一位同学因看错了常数项分解成 2 (x-2) (x- 4), 请你将原多项式因式分解正确的结果写出来:_ .3 .若多项式x2+mx+4能用完全平方公式分解因式,则m的值是_____ .4 .分解因式:4貳-4x- 3= ___ .5. _______________________________________ 利用因式分解计算:2022+202X 196+982= _______________________ .6. __________________________________________________________A ABC三边a, b, c满足a2+b2+c?=ab+bc+ca,则△ ABC的形状是_____ .7 .计算:12- 22+32- 42+52- 62+…-1002+1012= __ .8. 定义运算b= (1-a) b,下面给出了关于这种运算的四个结论:①2★ (- 2) =3②a^ b=b^ a③若a+b=0,则(a^ a) + (b^ b) =2ab④若a^ b=0,则a=1 或b=0.其中正确结论的序号是____ (填上你认为正确的所有结论的序号).9. _______________________________________________ 如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8= _________ .10. 若多项式x2-6x- b可化为(x+a) 2- 1,则b的值是________ .二.解答题(共20小题)11 .已知n为整数,试说明(n+7) 2-(n -3) 2的值一定能被20整除.12 .因式分解:4x2y - 4xy+y .13 .因式分解(1)a3- ab2(2)(x-y) 2+4xy.14 •先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2- 6n+9=0,求m 和n 的值.解:T m2+2mn+2n2- 6n+9=0••• m2+2mn +n2+n2- 6n+9=0/•( m+ n) 2+ (n - 3) 2=0•m+n=0, n —3=0•m= —3, n=3问题:(1 )若X2+2『-2xy+4y+4=0,求X y的值.(2)已知△ ABC的三边长a, b, c都是正整数,且满足a2+b2- 6a- 6b+18+|3 -c| =0,请问△ ABC是怎样形状的三角形?15. 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为和谐数”如4=22- 02, 12=42- 22, 20=62- 42,因此4, 12, 20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k (其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)______________________________________ 介于1到200之间的所有和谐数”之和为_________________________________ .16. 如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.:<②1° b®1 1 1 1 ■ ■ 1 ■ 1 1 1 1 1 1 1 1 1 1 11 i 1 i iiaHI郅(1) 如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们 拼成一个大长方形 (在图2虚线框中画出图形),并运用面积之间的关系,将 多项式a 2+3ab+2b 2分解因式.(2) 已知小正方形①与大正方形③的面积之和为 169,长方形②的周长为34, 求长方形②的面积.(3) 现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张, 把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接) ,求可以拼成多少种边长不同的正方形.17. (1)有若干块长方形和正方形硬纸片如图 1所示,用若干块这样的硬纸片 拼成一个新的长方形,如图2.① 用两种不同的方法,计算图2中长方形的面积; ② 由此,你可以得出的一个等式为: __________ (2)有若干块长方形和正方形硬纸片如图 3所示.① 请你用拼图等方法推出一个完全平方公式,画出你的拼图;② 请你用拼图等方法推出2a 2+5ab+2b 2因式分解的结果,画出你的拼图.□•口" Mi□■oHl18 .已知a+b=1,ab=- 1,设S1 =a+b,S2=a2+b2,S3=a3+b3,…,S n=a n+b n(1) 计算s ;(2) 请阅读下面计算S3的过程:a i-b'二乍"十F +(站g-hp 十&召一盘为=(护+扩<0+(扩+a③-府白+应为=(白’ +盼"+(/ 4扌0-4地+曲二S+如+巧一□糾»因为a+b=1, ab=- 1,所以S3=a3+b3= (a+b) (a2+b2)—ab (a+b) =1 x S2 -( - 1) =S2+1= __你读懂了吗?请你先填空完成(2)中S3的计算结果,再用你学到的方法计算S4.(3 )试写出S n-2, S n-1, S n三者之间的关系式;(4)根据(3)得出的结论,计算S6.19. (1)利用因式分解简算:9.82+0.4X 9.8+0.04(2)分解因式:4a (a- 1) 2-( 1 - a)20. 阅读材料:若m2-2mn+2n2- 8n+16=0,求m、n 的值.解:T m2- 2mn+2n2- 8n +16=0,二(m2- 2mn+n2) + (n2- 8n+16) =0■'■( m - n) 2+ (n- 4) 2=0,A( m - n) 2=0, (n- 4) 2=0,二n=4, m=4. 根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0, 求x-y 的值.(2)已知△ ABC的三边长a、b、c都是正整数,且满足石+b2-6a- 8b+25=0, 求厶ABC的最大边c的值.(3)已知 a - b=4, ab+c2- 6c+13=0,则 a - b+c= __ .21. 仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m 的值. 解:设另一个因式为(x+n),得x2- 4x+m= (x+3) (x+n),则x2- 4x+m=W+(n+3) x+3nn+3= —4m=3n 解得:n= - 7, m= —21•另一个因式为(x—7), m的值为-21 .问题:(1)若二次三项式x2- 5x+6可分解为(x- 2) (x+a),贝U a= ______ ;(2)若二次三项式2x2+bx - 5可分解为(2x- 1) (x+5),则b= ______ ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x- k有一个因式是(2x-3),求另一个因式以及k的值.22 •分解因式:(1)2x2- x;(2)16x2- 1;(3)6xy2- 9x2y - y3;(4)4+12 (x- y) +9 (x-y) 2.23. 已知a, b, c是三角形的三边,且满足(a+b+c) 2=3 (a2+b2+c2),试确定三角形的形状.24. 分解因式(1)2(- 4x2y2+2y4(2)2a3- 4a2b+2ab2.25. 图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为—;(2)观察图②请你写出三个代数式(m+n) 2、(m - n) 2、mn之间的等量关系是___ .(3)______________________________ 若x+y=7, xy=10,则(x —y) 2= .(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了___ .(5)试画出一个几何图形,使它的面积能表示(m+ n) (m+3n) =m2+4mn+3n2.w②26. 已知a、b、c满足a—b=8, ab+c2+16=0,求2a+b+c 的值.27 .已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.28. (x2—4x) 2— 2 (x2—4x)—15.29. 阅读下列因式分解的过程,再回答所提出的问题:1+x+x (x+1) +x (x+1) 2 =(1+x) [ 1 +x+x (x+1)]=(1+x) 2(1+x)=(1+x) 3(1 )上述分解因式的方法是—,共应用了—次.(2)_________________________________________________________ 若分解1+x+x (x+1 ) +x (x+1 ) 2+-+x (x+1 ) 2004,则需应用上述方法________ 次,结果是___ .(3)分解因式:1+x+x (x+1) +x (x+1) 2+-+x (x+1) n(n 为正整数).30. 对于多项式x3—5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3—5x2+x+10=0,这时可以断定多项式中有因式(x- 2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(X- a)),于是我们可以把多项式写成:x3- 5X2+X+10=(x- 2)(x2+mx+n),(1 )求式子中m、n 的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3- 2x2- 13x - 10 的因式.2017年05月21日数学(因式分解难题)2参考答案与试题解析一•填空题(共10小题)1. ( 2016秋?望谟县期末)已知x+y=10, xy=16,则x2y+xy2的值为160 .【分析】首先提取公因式xy,进而将已知代入求出即可.【解答】解:••• x+y=10, xy=16,••• x2y+xy2=xy (x+y) =10X 16=160.故答案为:160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2. (2016秋?新宾县期末)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2 (x- 1) (x-9);另一位同学因看错了常数项分解成2 (x-2) (x-4),请你将原多项式因式分解正确的结果写出来: 2 (x -3)2.【分析】根据多项式的乘法将 2 (x- 1) (x-9)展开得到二次项、常数项;将2 (x-2) (x-4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式2后利用完全平方公式分解因式.【解答】解::2 (x- 1) (x-9) =2乂 - 20x+18;2 (x- 2) (x-4) =2^- 12x+16;•原多项式为2x2- 12x+18 .2/- 12x+18=2 (x2- 6x+9) =2 (x-3) 2.【点评】根据错误解法得到原多项式是解答本题的关键. 二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次项正确.3. (2015春?昌邑市期末)若多项式x2+mx+4能用完全平方公式分解因式,则m 的值是土 4 .【分析】利用完全平方公式(a+b) 2= (a- b) 2+4ab、(a- b) 2= (a+b) 2- 4ab 计算即可.【解答】解:••• x2+mx+4= (x± 2) 2,即x2+mx+4=W 土4x+4,••• m= ± 4.故答案为:土4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.4. (2015 秋?利川市期末)分解因式:4/- 4x- 3= (2x- 3) (2x+1).【分析】ax2+bx+c (a^0)型的式子的因式分解,这种方法的关键是把二次项系数a分解成两个因数a i, a2的积a i?a2,把常数项c分解成两个因数c i, C2 的积c i?C2,并使a i C2+a2C i正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a i x+c i) (a2x+c2),进而得出答案.【解答】解:4x2- 4x- 3= (2x- 3) (2x+i).故答案为:(2x- 3) (2x+i).【点评】此题主要考查了十字相乘法分解因式,正确分解各项系数是解题关键.5 . (20i5春?东阳市期末)利用因式分解计算:2022+202X i96+982= 90000 .【分析】通过观察,显然符合完全平方公式.第9页(共3i页)【解答】解:原式=2022+2x202x98+982=(202+98) 2=300 =90000.【点评】运用公式法可以简便计算一些式子的值.6. (2015秋?浮梁县校级期末)△ ABC三边a, b, c满足a2+b2+c2=ab+bc+ca, 则厶ABC的形状是等边三角形 .【分析】分析题目所给的式子,将等号两边均乘以2,再化简得(a- b) 2+ (a -c) 2+ (b - c) 2=0,得出:a=b=c,即选出答案.【解答】解:等式a2+b2+c2=ab+bc+ac等号两边均乘以2得:2a2+2b2+2c2=2ab+2bc+2ac,即a2- 2ab+b2+a2- 2ac+c2+b2- 2bc+c2=0,即(a - b) 2+ (a- c) 2+ (b - c) 2=0,解得:a=b=c,所以,△ ABC是等边三角形.故答案为:等边三角形.【点评】此题考查了因式分解的应用;利用等边三角形的判定,化简式子得a=b=c,由三边相等判定厶ABC是等边三角形.7. (2015 秋?鄂托克旗校级期末)计算:12- 22+32- 42+52- 62+…-1002+1012= 5151 .【分析】通过观察,原式变为1+ (32- 22) + (52- 42) + (1012- 1002),进一步运用高斯求和公式即可解决.【解答】解:12- 22+32- 42+52- 62+…-1002+1012=1+ (32- 22) + (52- 42) + ( 1012- 1002)=1+ (3+2) + (5+4) + (7+6) +••+ (101+100)=(1+101)X 101-2=5151.故答案为:5151.【点评】此题考查因式分解的实际运用,分组分解,利用平方差公式解决问题.8. (2015秋?乐至县期末)定义运算a^b= (1 - a) b,下面给出了关于这种运算的四个结论:①2★ (- 2) =3②a^ b=b^ a③若a+b=0,则(a^ a) + (b^ b) =2ab④若a^ b=0,则a=1 或b=0.其中正确结论的序号是③④(填上你认为正确的所有结论的序号).【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:①2 ★ (-2) = (1 - 2)X(- 2) =2,本选项错误;②a^b= (1 - a) b, b^a= (1 - b) a,故a^b不一定等于b^a,本选项错误;③若a+b=0,贝U( a^a) + (b★ b) = (1 - a) a+ (1 - b) b=a- a2+b- b2=- a2 -b2= - 2a2=2ab,本选项正确;④若a^ b=0,即(1 - a) b=0,则a=1或b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.9. (2015 春?张掖校级期末)如果1 +a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8=0 .【分析】4项为一组,分成2组,再进一步分解因式求得答案即可.【解答】解:I 1+a+a2+a3=0,二a+a2+a3+a4+a5+a6+a7 +a8,=a (1 +a+a2+a3) +a5(1 +a+a2+a3),=0+0,=0.故答案是:0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.10. (2015春?昆山市期末)若多项式X2-6x-b可化为(x+a) 2- 1,贝U b的值是 -8 .【分析】利用配方法进而将原式变形得出即可.【解答】解:T x2- 6x- b= (x- 3) 2- 9- b= (x+a) 2- 1,二a=- 3,- 9- b= - 1,解得:a=- 3, b= - 8.故答案为:-8.【点评】此题主要考查了配方法的应用,根据题意正确配方是解题关键.二.解答题(共20小题)11. 已知n为整数,试说明(n+7) 2-(n -3) 2的值一定能被20整除.【分析】用平方差公式展开(n+7) 2-(n -3) 2,看因式中有没有20即可.【解答】解:(n +7) 2-(n-3) 2= (n +7+n-3) (n +7- n+3) =20 (n+2), •••(n +7) 2-(n- 3) 2的值一定能被20整除.【点评】主要考查利用平方差公式分解因式.公式:a2- b2= (a+b) (a- b).12. (2016秋?农安县校级期末)因式分解:4x2y- 4xy+y.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:4x2y- 4xy+y=y( 4x2- 4x+1 )=y(2x- 1) 2.【点评】本题考查了用提公因式法和公式法进行因式分解, 一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底, 直到不能分解为止.13. (2015秋?成都校级期末)因式分解( 1 ) a3- ab2(2)(x- y) 2+4xy.【分析】(1)原式提取a,再利用平方差公式分解即可;( 2)原式利用完全平方公式分解即可.【解答】解:(1)原式=a (a2- b2) =a (a+b) (a- b);( 2)原式=x2- 2xy+y2+4xy=x2+2xy+y2=( x+y) 2.【点评】此题考查了提公因式法与公式法的综合运用, 熟练掌握因式分解的方法是解本题的关键.14. (2015 春?甘肃校级期末)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2- 6n+9=0,求m 和n 的值.解:T m2+2mn+2n2- 6n+9=0••• m2+2mn +n2+n2- 6n+9=0/•( m+ n) 2+ (n - 3) 2=0m+n=0, n —3=0m= —3, n=3问题:(1)若x2+2y2—2xy+4y+4=0,求X 的值.(2)已知△ ABC的三边长a, b, c都是正整数,且满足孑+b2-6a—6b+18+|3 —c| =0,请问△ ABC是怎样形状的三角形?【分析】(1)首先把x2+2y2—2xy+4y+4=0,配方得到(x —y) 2+ (y+2) 2=0, 再根据非负数的性质得到x=y= —2,代入求得数值即可;(2)先把a^b2- 6a—6b+18+|3 —c| =0,配方得到(a—3) 2+ (b —3) 2+| 3 —c| =0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1 )••• x2+2y2 —2xy+4y+4=0•x2+y2—2xy+y2+4y+4=0,•( x —y) 2+ (y+2) 2=0•x=y=- 2(2a2+b2—6a —6b+18+| 3 —c| =0,•a2- 6a+9+b2—6b+9+| 3 —c| =0,••( a —3) 2+ (b —3) 2+| 3 —c| =0•a=b=c=3•三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.15. (2015秋?太和县期末)如果一个正整数能表示为两个连续偶数的平方差, 那么称这个正整数为和谐数”如4=22- 02, 12=军-22, 20=62- 42,因此4, 12, 20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k (其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有和谐数”之和为2500 .【分析】(1)利用36=1俨-82; 2016=5052 - 5032说明36是和谐数” 2016 不是和谐数”(2)设两个连续偶数为2n, 2n+2(n为自然数),则和谐数”(2n +2) 2- (2n)2,利用平方差公式展开得到(2n+2+2n) (2n+2-2n) =4(2n+1),然后利用整除性可说明和谐数”一定是4的倍数;(3)介于1到200之间的所有和谐数”中,最小的为:22- 02=4,最大的为:502- 482=196,将它们全部列出不难求出他们的和.【解答】解:(1) 36是和谐数” 2016不是和谐数”理由如下:36=10^- 82; 2016=5052- 5032;(2)设两个连续偶数为2k+2和2k (n为自然数),•••(2k+2) 2-(2k) 2= (2k+2+2k) (2k+2- 2k)=(4k+2)x 2=4 (2k+1),••• 4 (2k+1)能被4整除,•••和谐数”一定是4的倍数;(3)介于1到200之间的所有和谐数”之和,S= (22- 02) + (42- 22) + (62- 42) +••+ (502- 482) =50^=2500.第16页(共31页) 故答案是:2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形, 从而达到使计算简化.16. (2015春?兴化市校级期末)如图1,有若干张边长为a 的小正方形①、长 为b 宽为a 的长方形②以及边长为b 的大正方形③的纸片.圍1 圉2(1) 如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们 拼成一个大长方形 (在图2虚线框中画出图形),并运用面积之间的关系,将 多项式a 2+3ab+2b 2分解因式.(2) 已知小正方形①与大正方形③的面积之和为 169,长方形②的周长为34, 求长方形②的面积.(3) 现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张, 把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接) ,求可以拼成多少种边长不同的正方形.【分析】(1)根据小正方形①1张,大正方形③2张,长方形②3张,直接画 出图形,利用图形分解因式即可;(2) 由长方形②的周长为34,得出a+b=17,由题意可知:小正方形①与大正 方形③的面积之和为a 2+b 2=169,将a+b=17两边同时平方,可求得ab 的值,从 而可求得长方形②的面积;(3) 设正方形的边长为(na+mb ),其中(n 、m为正整数)由完全平方公式可知:(na+mb)2=n2a2+2nmab+m2b2.因为现有三种纸片各8张,n2<8, m2<8, 2mn w 8 (n、m为正整数)从而可知n W2, m<2,从而可得出答案.••• a2+3ab+2b2= (a+2b)(a+b);(2 长方形②的周长为34,•a+b=17.•••小正方形①与大正方形③的面积之和为169,•a2+b2=169.将a+b=17两边同时平方得:(a+b)2=172,整理得:a2+2ab+b2=289,•2ab=289 - 169,•ab=60.•长方形②的面积为60.(3)设正方形的边长为(na+mb),其中(n、m为正整数)•正方形的面积=(na+mb)2=n2a2+2nmab+m2b2.•••现有三种纸片各8张,•n2<8, m2<8, 2mn<8 (n、m 为正整数)•n<2, m<2.•共有以下四种情况;① n=1, m=1,正方形的边长为a+b;第17页(共31页)②n=1, m=2,正方形的边长为a+2b;③n=2, m=1,正方形的边长为2a+b;④n=2, m=2,正方形的边长为2a+2b.【点评】此题考查因式分解的运用,要注意结合图形解决问题,解题的关键是灵活运用完全平方公式.17. (2014秋?莱城区校级期中)(1)有若干块长方形和正方形硬纸片如图所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:a2+2a+1 = (a+1) 2(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.【分析】(1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.【解答】解:(1 [①长方形的面积=a2+2a+1;长方形的面积=(a+1) 2;②a2+2a+ 仁(a+1) 2;(2)①如图,可推导出(a+b) 2=a2+2ab+b2;②2a2+5ab+2b2= (2a+b) (a+2b).* ■■ +一b【点评】本题考查运用正方形或长方形的面积计算推导相关的一些等式;运用图形的面积计算的不同方法得到多项式的因式分解.18. (2013秋?海淀区校级期末)已知a+b=1, ab=- 1,设s i=a+b, S2=a2+b2,S3=a3+b3,…,S n=aT l+b n(1 )计算S2 ;(2 )请阅读下面计算S3的过程:a i-b'二才十扩 +(扩占-盘:®=(用+ 沖+& +涉-吨+Q因为a+b=1, ab=- 1,所以S3=a3+b3= (a+b) (a2+b2)- ab (a+b) =1 x S2-( - 1) =s?+1= 4你读懂了吗?请你先填空完成(2)中S3的计算结果,再用你学到的方法计算S4.(3)试写出S n-2 , S n-1 , S n三者之间的关系式;(4)根据(3)得出的结论,计算S6.【分析】(1) (2)利用完全平方公式进行化简,然后代入a+b, ab的值,即可推出结论;(3)根据(1)所推出的结论,即可推出S h-2+s n-1=Si;(4)根据(3)的结论,即可推出a6+b6=S6=S4+S5=2S4+S3.【解答】解:(1) S2=a2+b2= (a+b) 2- 2ab=3;(2) '■'( a?+b2) (a+b) =a3+ab2+a2b+b3=a3+b3+ab (a+b),••• 3x 仁a3+b3- 1,a3+b3=4,即卩S3=4;T S4= (a2+b2) 2- 2 (ab) 2=7,. S4=7;( 3)T S2=3,S3=4,S4=7,. S2+S3=S4,. S n-2+S n-1=S n;( 3)T S n-2+S n-1=S n,S2=3,S3=4,S4=7,. S5=4+7=11,. S6=7+11=18.【点评】本题主要考查整式的混合运算、完全平方公式的运用,关键在于根据题意推出S2=3, S3=4, S4=7,分析归纳出规律:S-2+S-i=S n.19.( 2013 春?重庆校级期末) ( 1 )利用因式分解简算:9.82 +0.4 x 9.8+0.04 ( 2 )分解因式:4a( a- 1 )2-( 1 - a)【分析】( 1 )利用完全平方公式因式分解计算即可;( 2 )先利用提取公因式法,再利用完全平方公式因式分解即可.【解答】解:(1 )原式=9.82+2x 0.2x 9.8+0.22=( 9.8+0.2)2=100;(2) 4a (a- 1) 2-(1 - a)=(a - 1) (4a2- 4a+1)=(a- 1) (2a- 1) 2.【点评】此题考查因式分解的实际运用,掌握平方差公式和完全平方公式是解决问题的关键.20.(2013春?惠山区校级期末)阅读材料:若m2-2mn+2n2- 8n+16=0,求仆n的值.解:T m2- 2mn+2n2- 8n +16=0,二(m2- 2mn+n2) + (n2- 8n+16) =0 •••(m - n) 2+ (n- 4) 2=0,A( m - n) 2=0, (n- 4) 2=0,二n=4, m=4. 根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0, 求x-y 的值.(2)已知△ ABC的三边长a、b、c都是正整数,且满足£+b2-6a- 8b+25=0, 求厶ABC的最大边c的值.(3)已知a- b=4, ab+c2- 6c+13=0,则a-b+c= 7 .【分析】(1 )将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x与y的值,即可求出x-y的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a与b的值,根据边长为正整数且三角形三边关系即可求出c的长;(3)由a- b=4,得到a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b与c的值,进而求出a 的值,即可求出a- b+c的值.【解答】解:(1 )••• x2+2xy+2y2+2y+ 仁0• ( x2+2xy+y2) + (y2+2y+1) =0第24页(共31页)•••( x+y) 2+ (y+1) 2=0••• x+y=0 y+1=0解得x=1, y=- 1•x-y=2;(2 a2+b2- 6a- 8b+25=0•( a2- 6a+9) +( b2- 8b+16) =0•( a- 3) 2+( b- 4) 2=0•a- 3=0,b- 4=0解得a=3,b=4•••三角形两边之和〉第三边•c v a+b, c v 3+4•c v 7,又c是正整数,• c 最大为6;(3a- b=4, 即卩a=b+4,代入得:(b+4) b+c2- 6c+13=0,整理得:( b2+4b+4) +( c2- 6c+9) =( b+2) 2+( c- 3) 2=0,•b+2=0,且c-3=0,即b=- 2, c=3, a=2,则a- b+c=2-(- 2) +3=7.故答案为:7.【点评】此题考查了因式分解的应用, 以及非负数的性质, 熟练掌握完全平方公式是解本题的关键.21 .( 2012 秋?温岭市校级期末)仔细阅读下面例题,解答问题:例题:已知二次三项式x2- 4x+m有一个因式是(x+3),求另一个因式以及m 的值.解:设另一个因式为(x+n),得x2- 4x+m= (x+3) (x+n),则x2- 4x+m=W+ (n+3)x+3nn+3= —4m=3n 解得:n= - 7, m= - 21•另一个因式为(x-7), m的值为-21.问题:(1)若二次三项式x2- 5x+6可分解为(x- 2) (x+a),贝U a= - 3 ;(2)若二次三项式2x2+bx - 5可分解为(2x- 1) (x+5),贝U b= 9 ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x- k有一个因式是(2x-3),求另一个因式以及k的值.【分析】(1)将(x-2) (x+a)展开,根据所给出的二次三项式即可求出a的值;(2) (2x- 1) (x+5)展开,可得出一次项的系数,继而即可求出b的值;(3)设另一个因式为(x+n),得2x2+5x- k= (2x- 3) (x+n) =2x2+ (2n-3)x- 3n,可知2n-3=5,k=3n,继而求出n和k的值及另一个因式.【解答】解:(1 )•••( x- 2) (x+a) =x2+ (a - 2) x- 2a=«- 5x+6,• a - 2=- 5,解得:a=- 3;(2)v( 2x- 1) (x+5) =2«+9x-5=2x2+bx- 5,•b=9;(3)设另一个因式为(x+n),得2x2+5x- k= (2x- 3) (x+n) =2x2+ (2n-3)x- 3n,则2n - 3=5,k=3n,第26页(共31页)解得:n=4,k=12,故另一个因式为( x+4),k 的值为12.故答案为:(1)- 3; (2分)(2) 9; (2分)(3)另一个因式是x+4, k=12 (6 分).【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解, 同时要掌握因式分解与整式乘法是相反方向的变形, 即互逆运算, 二者是一个式子的不同表现形式.22.(2012 春?郯城县期末)分解因式:( 1 ) 2x2- x;(2) 16x2- 1;( 3) 6xy2- 9x2y- y3;( 4) 4+12( x- y) +9( x- y) 2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式-y,再对余下的多项式利用完全平方公式继续分解;(4)把( x- y )看作整体,利用完全平方公式分解因式即可.【解答】解:( 1 ) 2x2- x=x( 2x- 1 );(2) 16x2- 1= (4x+1) (4x- 1);( 3) 6xy2- 9x2y- y3,=- y( 9x2- 6xy+y2),=- y( 3x- y) 2;( 4) 4+12( x- y) +9( x- y) 2,=[2+3 (x-y) ]2,=(3x- 3y+2) 2.【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式-y后,需要继续利用完全平方公式进行二次因式分解.23. ( 2012 春?碑林区校级期末) 已知a,b,c 是三角形的三边,且满足( a+b+c)2=3( a2+b2+c2),试确定三角形的形状.【分析】将已知等式利用配方法变形,利用非负数的性质解题.【解答】解:•••( a+b+c) 2=3 (a2+b2+c2),a2+b2+c2+2ab+2bc+2ac, =3a2+3b2+3c2,a2+b2- 2ab+b2+c2- 2bc+a2+c2- 2ac=0,即( a- b) 2+( b- c) 2+( c- a) 2=0,••• a - b=0, b - c=0, c- a=0,二a=b=c,故厶ABC为等边三角形.【点评】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.24. (2011秋?北辰区校级期末)分解因式( 1) 2x4- 4x2y2+2y4( 2) 2a3- 4a2b+2ab2.【分析】( 1)原式提取公因式后,利用平方差公式分解即可;(2)原式提取公因式,利用完全平方公式分解即可.第28页(共31页)【解答】解:( 1) 2x4- 4x2y2+2y4=2 (x4- 2x2y2+y4)=2 (x2- y2) 2=2 (x+y) 2(x- y) 2;(2) 2a3- 4a F b+2ab2=2a (a2- 2ab+b2)=2a (a - b) 2.【点评】此题考查了提公因式法与公式法的综合运用,提取公因式后利用公式进行二次分解,注意分解要彻底.25. (2011秋?苏州期末)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m-n) 2;(2)观察图②请你写出三个代数式(m+n) 2、(m - n) 2、mn之间的等量关系是(m+n) 2-( m- n) 2=4mn .(3)若x+y=7,xy=10,则(x- y) 2= 9 .(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了 (m+n) (2m+ n) =2m2+3mn+n2.(5)试画出一个几何图形,使它的面积能表示(m+n) (m+3n) =m2+4mn+3n2.(2) 掌握完全平方公式,并掌握和与差的区别.(3) 此题可参照第(2)题.(4) 可利用各部分面积和=长方形面积列出恒等式.(5) 可参照第(4)题画图.【解答】解:(1)阴影部分的边长为(m - n ),阴影部分的面积为(m - n ) 2;(2) (m+n ) 2-(m - n ) 2=4mn ;(3) (x-y ) 2= (x+y ) 2 - 4xy=72 - 40=9;(4) (m+n ) (2m+n ) =2m 2+3mn+n 2;(5) 答案不唯一:例如:【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示, 用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.冊【分析】(1)可直接用正方形的面积公式得到.②26. (2009秋?海淀区期末)已知a b、c满足a- b=8, ab+c2+16=0,求2a+b+c 的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口 .由a-b=8可得a=b+8;将其代入ab+c2+16=0得:b2+8b+c2+16=0;此时可发现圧+8匕+16正好符合完全平方公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.【解答】解:因为a-b=8,所以a=b+8.(1 分)又ab+c2+16=0,所以(b+8)b+c2+16=0. (2 分)即(b+4)2+c2=0.又(b+4)2>0, c2> 0,则b=- 4,c=0.( 4 分)所以a=4,( 5 分)所以2a+b+c=4.( 6 分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.27.(2010 春?北京期末)已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.【分析】我们可先将a+b+c+ab+bc+ac+abc分解因式可变为(a+1)(b+1)(c+1)-1,就得(1+b)(c+1)(a+1)=2007,由于a、b、c均为正整数,所以(a+1)、(b+1)、(c+1)也为正整数,而2007只可分解为3X 3X 223,可得(a+1)、(b+1)、(c+1)的值分别为3、3、223,所以a、b、c值为2、2、222.就可求出长方体体积abc 了.【解答】解:原式可化为:a+ab+c+ac+ab+abc+b+1 - 1=2006,第28页(共31页)a(1+b)+c(1+b)+ac(1+b)+(1+b)- 1=2006,(1+b)(a+c+ac)+(1+b)=2007,(1+b)(c+1+a+ac)=2007,(1+b)(c+1)(a+1)=2007,2007只能分解为3X 3X 223•••( a+1)、(b+1)、(c+1)也只能分别为3、3、223•••a、b、c也只能分别为2、2、222•••长方体的体积abc=888.【点评】本题考查了三次的分解因式,做题当中用加减项的方法,使式子满足分解因式.28. (2007 秋?普陀区校级期末)(x2-4x) 2- 2 (x2- 4x)- 15.【分析】把(x2- 4x)看作一个整体,先把-15写成3X( -5),利用十字相乘法分解因式,再把3写成(-1)X( - 3), - 5写成1X( -5),分别利用十字相乘法分解因式即可.【解答】解:(x2- 4x) 2- 2 (x2-4x)- 15,=(x2- 4x+3) (x2- 4x- 5),=(x- 1) (x- 3) (x+1) (x- 5).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.29. (2007春?镇海区期末)阅读下列因式分解的过程,再回答所提出的问题:1+x+x (x+1) +x (x+1) 2=(1+x) [ 1 +x+x (x+1)]=(1+x) 2(1+x)=(1+x) 3(1 )上述分解因式的方法是提公因式法,共应用了2次.(2)若分解 1 +x+x(x+1 ) +x(x+1 ) 2+- +x (x+1) 2004,则需应用上述方法2004 次,结果是(1 +x) 2005.(3)分解因式:1+x+x (x+1) +x (x+1) 2+-+x (x+1) n(n 为正整数).【分析】此题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系. 【解答】解:(1)上述分解因式的方法是提公因式法,共应用了2次.(2)需应用上述方法2004次,结果是(1+x) 2005.(3 )解:原式=(1+x) [ 1 +x+x (x+1) ]+x ( x+1) 3+^+x ( x+1) n,=(1+x) 2(1+x) +x (x+1) 3+-+x (x+1) n,=(1+x) 3+x (x+1 ) 3+・・+x (x+1) n,=(x+1) n+x (x+1) n,=(x+1) n+1.【点评】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.30. (2007春?射洪县校级期末)对于多项式x3-5x2+x+10,如果我们把x=2 代入此多项式,发现多项式x3- 5X2+X+10=0,这时可以断定多项式中有因式(x -2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x-a)), 于是我们可以把多项式写成:x3- 5X2+X+10= (x- 2) (x2+mx+n),(1 )求式子中m、n的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3- 2x2- 13x -10的因式.【分析】(1)根据(x- 2) (x2+mx+ n) =x3+ (m - 2) x2+ (n- 2m) x- 2n,得出有关m, n的方程组求出即可;(2)由把x=- 1代入x3-2x2- 13x- 10,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【解答】解:(1)方法一:因(x- 2)(x2+mx+n)=x3+(m - 2)x2+ (n-2m)x- 2n,=x3- 5/+X+10, (2 分)[-2n=10解得:m=- 3, n=-5 (5 分),方法二:在等式x3- 5x2+x+10= (x- 2)(x2+mx+ n)中,分别令x=0, x=1,即可求出:m=-3, n=- 5 (注:不同方法可根据上面标准酌情给分)(2)把x=- 1 代入x3- 2x2- 13x- 10,得其值为0, 则多项式可分解为(x+1)(x2+ax+b)的形式,(7分)用上述方法可求得:a=- 3, b=- 10, (8分)所以x3- 2x2- 13x- 10= (x+1)(x2- 3x- 10), (9 分)=(x+1)(x+2)(x- 5) . (10 分)【点评】此题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.第31页(共31页)。
数学八年级上:因式分解练习题和答案解析
一、单项选择题1、正整数a,b,c是等腰三角形三边的长,而且a+bc+b+ca=24,那么如此的三角形有()A.1个B.2个C.3个D.4个2、任何一个正整数n都能够进行如此的分解:n=s×t(s,t是正整数,且s≤t),若是p×q在n的所有这种分解中两因数之差的绝对值最小,咱们就称p×q是n的最正确分解,并规定:F(n)=.例如18能够分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出以下关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)假设n是一个完全平方数,那么F(n)=1.其中正确说法的个数是()A.1 B.2 C.3 D.43、△ABC的内角A和B都是锐角,CD是高,假设=,那么△ABC是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形4、关于任意整数n,多项式(n+11)2-(n+2)2都能被()整除.A.9 B.2 C.11 D.n+95、已知a-b=1,那么a2-b2-2b的值为()A.4 B.3 C.1 D.06、若是x2+x-1=0,那么代数式x3+2x2-7的值为()A.6 B.8 C.-6 D.-87、若是x2+3x-3=0,那么代数式x3+3x2-3x+3的值为()A.0 B.-3 C.3 D.8、设x2-x+7=0,那么x4+7x2+49=()A.7 B.C.-D.0二、填空题9、设,那么代数式3a3+12a2-6a-12的值为10、已知关于x的方程x2-nx+m=0有一个根是m(m≠0),那么m-n= .11、若ab=3,a+b=4,那么a2b+ab2= .12、设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,那么= .13、已知a+b=3,ab=-1,那么a2b+ab2= .14、已知m2+m-1=0,那么代数式m3+2m2-2020的值是.15、甲、乙两农户各有两块地,如下图,今年,这两个农户决定一起投资弄饲养业,为此,他们预备将这4块土地换成一块地,那块地的宽为(a+b)米,为了使所换土地的面积与原先4块地的总面积相等,互换以后的土地应该是米.三、解答题16、咱们学过因式分解的概念,在计算多项式的进程中,若是能适本地分解因式进行化简,会使得计算更为简单.咱们为此引入质因数分解定理:每一个大于1的整数都能分解为质因数的乘积的形式,若是把质因数依照从小到大的顺序排在一路,相同因数的积写成幂的形式,那么这种分解方式是唯一的.请你学习例题的解法,完成问题的研究.例:试求19乘以125的值.解:∵125=1000÷8∴19×125=19000÷8=7答:由上知,19×125=7.请依照例题,求一实数,使得它被10除余9,被9除余8,被8除余7,…,被2除余117、按下面规那么扩充新数:已有a和b两个数,可按规那么c=ab+a+b扩充一个新数,而a,b,c三个数中任取两数,按规那么又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.①求按上述规那么操作三次取得扩充的最大新数;②可否通过上述规那么扩充取得新数5183并说明理由1、正整数a,b,c是等腰三角形三边的长,而且a+bc+b+ca=24,那么如此的三角形有()A.1个B.2个C.3个D.4个C【解答】分析:先将a+bc+b+ca=24 能够化为(a+b)(c+1)=24,然后依照24分解为大于等于2的两个正整数的乘积有几种组合讨论是不是符合题意即可得出答案.解答:解:a+bc+b+ca=24 能够化为(a+b)(c+1)=24,其中a,b,c都是正整数,而且其中两个数相等,令a+b=A,c+1=C 则A,C为大于2的正整数,那么24分解为大于等于2的两个正整数的乘积有几种组合2×12,3×8,4×6,6×4,3×8,2×12,①、A=2,C=12时,c=11,a+b=2,无法取得知足等腰三角形的整数解;②、A=3,C=8时,c=7,a+b=3,无法取得知足等腰三角形的整数解;③、A=4,C=6时,c=5,a+b=4,无法取得知足等腰三角形的整数解;④、A=6,C=4时,c=3,a+b=6,能够取得a=b=c=3,能够组成等腰三角形;⑤、A=8,C=3时,c=2,a+b=8,可得a=b=4,c=2,能够组成等腰三角形,a=b=4是两个腰;⑥、A=12,C=2时,可得a=b=6,c=1,能够组成等腰三角形,a=b=6是两个腰.∴一共有3个如此的三角形.应选C.题考查数的整除性及等腰三角形的知识,难度一样,在解答此题时将原式化为因式相乘的形式及将24分解为大于等于2的两个正整数的乘积有几种组合是关键2、2×9,3×6这三种,这时就有F(18)==.给出以下关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)假设n是一个完全平方数,那么F(n)=1.其中正确说法的个数是()A.1 B.2 C.3 D.4B【解答】分析:把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是不是与所给结果相同.解答:解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,那么F(n)=1,故(4)是正确的.∴正确的有(1),(4).应选B.点评:此题考查题目信息获取能力,解决此题的关键是明白得此题的概念:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).3、△ABC的内角A和B都是锐角,CD是高,假设=,那么△ABC是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形D【解答】分析:别离从当AD=BD时,可得△ABC是等腰三角形;当AC2=AD•AB,BC2=BD•AB时,△ABC 是直角三角形.解答:解:①若AD=BD,∵=,∴AC=BC,现在CD是高,符合题意,即△ABC是等腰三角形;②∵=,∴==,∴当AC2=AD•AB,BC2=BD•AB时成立,即,∵∠A是公共角,∴△ABC∽△ACD,∴∠ACB=∠ADC=90°,∴△ABC是直角三角形;∴△ABC是等腰三角形或直角三角形.应选D.点评:此题考查了相似三角形的判定与性质、等腰三角形的判定与性质和直角三角形的判定.此题难度适中,注意把握数形结合思想与分类讨论思想的应用.4、关于任意整数n,多项式(n+11)2-(n+2)2都能被()整除.A.9 B.2 C.11 D.n+9A【解答】分析:将多项式利用平方差公式分解因式,由n为整数,取得2n+13为整数,可得出多项式能被9整除.解答:解:多项式(n+11)2-(n+2)2=[(n+11)+(n+2)][(n+11)-(n+2)]=9(2n+13),∵n为整数,∴2n+13为整数,那么多项式(n+11)2-(n+2)2都能被9整除.应选A点评:此题考查了因式分解的应用,熟练把握平方差公式是解此题的关键.5、已知a-b=1,那么a2-b2-2b的值为()A.4 B.3 C.1 D.0C【解答】分析:先将原式化简,然后将a-b=1整体代入求解.解答:解:∵a-b=1,∴a2-b2-2b=(a+b)(a-b)-2b=a+b-2b=a-b=1.应选C.点评:此题考查的是整体代入思想在代数求值中的应用.6、若是x2+x-1=0,那么代数式x3+2x2-7的值为()A.6 B.8 C.-6 D.-8C【解答】分析:由x2+x-1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可.解答:解:由x2+x-1=0得x2+x=1,∴x3+2x2-7=x3+x2+x2-7,=x(x2+x)+x2-7,=x+x2-7,=1-7,=-6.应选C.点评:此题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,第一应从题设中获取代数式x2+x的值,然后利用“整体代入法”求代数式的值.7、若是x2+3x-3=0,那么代数式x3+3x2-3x+3的值为()A.0 B.-3 C.3 D.C【解答】分析:先对所求代数式的前三项提取公因式x,再利用整体代入来求值.解答:解:当x2+3x-3=0时,x3+3x2-3x+3,=x(x2+3x-3)+3,=3.应选C.点评:此题考查提公因式法分解因式,关键是提取公因式后显现已知条件的形式,然后利用整体代入求解.8、设x2-x+7=0,那么x4+7x2+49=()A.7 B.C.-D.0D【解答】分析:第一将x4+7x2+49变形,可得x2(x2+7)+49;然后将x2-x+7=0变形,可得:x2= x-7,x2+7=x,整体代入即可取得7x2-7,提取公因式7,即可求得.解答:解:∵x4+7x2+49=x2(x2+7)+49又∵x2-x+7=0,∴x2=x-7,∴,把x2=x-7和代入x2(x2+7)+49得:=(-7)+49,=7x2-7,=7(x2-x+7),=7×0,=0.应选D.点评:此题要紧考查了因式分解的应用.注意整体思想的应用9、设,那么代数式3a3+12a2-6a-12的值为24【解答】分析:将所求式子提取3后,拆项变形,别离取得a+1的因式,将已知等式变形取得a+1=,把a与a+1的值代入计算,即可求出值.解答:解:∵a=-1,即a+1=,∴3a3+12a2-6a-12=3(a3+4a2-2a-4)=3(a3+a2+3a2+3a-5a-5+1)=3[a2(a+1)+3a(a+1)-5(a+1)+1]=3×[(-1)2×+3(-1)×-5+1]=3(8-14+21-3-5+1)=3×8=24.故答案为:24点评:此题考查了因式分解的应用,将所求式子进行适当的变形是解此题的关键.10、已知关于x的方程x2-nx+m=0有一个根是m(m≠0),那么m-n= .答案是-1.【解答】分析:将x=m代入原方程,列出关于m的一元二次方程m2-nm+m=0,然后通过因式分解法解该方程求得m-n的值即可.解答:解:∵关于x的方程x2-nx+m=0有一个根是m(m≠0),∴x=m知足关于x的方程x2-nx+m=0,∴m2-nm+m=0,即m(m-n+1)=0,∴m=0(舍去),或m-n+1=0,∴m-n=-1;故答案是:-1.点评:此题考查了一元二次方程的解的概念、因式分解的应用.解答该题时,通过提取公因式m将方程m2-nm+m=0的左侧转化为两式之积的形式,从而求得m-n的值.11、若ab=3,a+b=4,那么a2b+ab2= .【答案】12.【解答】分析:此题只需先对a2b+ab2进行因式分解得ab(a+b),再将ab和a+b的值代入即可取得结果.解答:解:∵ab=3,a+b=4,∴a2b+ab2=ab(a+b)=3×4=12.故答案为:12.点评:此题考查了因式分解的应用,关键是提取公因式,比较简单.12、设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,那么= .答案为-32.【解答】分析:依照1-ab2≠0的题设条件求得b2=-a,代入所求的分式化简求值.解答:解:∵a2+2a-1=0,b4-2b2-1=0,∴(a2+2a-1)-(b4-2b2-1)=0,化简以后取得:(a+b2)(a-b2+2)=0,若a-b2+2=0,即b2=a+2,那么1-ab2=1-a(a+2)=1-a2-2a=-(a2+2a-1),∵a2+2a-1=0,∴-(a2+2a-1)=0,与题设矛盾∴a-b2+2≠0,∴a+b2=0,即b2=-a,∴==-=-()5=-25=-32.故答案为-32.解法二:∵a2+2a-1=0,∴a≠0,∴两边都除以-a2,得--1=0又∵1-ab2≠0,∴b2≠罢了知b4-2b2-1=0,∴和b2是一元二次方程x2-2x-1=0的两个不等实根∴+b2=2,×b2==-1,∴(ab2+b2-3a+1)÷a=b2+-3+=(b2+)+-3=2-1-3=-2,∴原式=(-2)5=-32.点评:此题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意1-ab2≠0的运用13、已知a+b=3,ab=-1,那么a2b+ab2= .【答案】-3【解答】分析:将所求式子提取公因式ab,分解因式后,将a+b及ab的值代入即可求出值.解答:解:∵a+b=3,ab=-1,∴a2b+ab2=ab(a+b)=-1×3=-3.故答案为:-3点评:此题考查了因式分解的应用,利用了整体代入的思想,将所求式子分解因式是此题的冲破点.14、已知m2+m-1=0,那么代数式m3+2m2-2020的值是{@answer}.【答案】-2020.【解答】分析:依照已知求出m2+m=1,把所求的代数式化成含有m2+m的形式,代入求出即可.解答:解:∵m2+m-1=0,∴m2+m=1.∴m3+2m2-2020=m(m2+m)+m2-2020=m•1+m2-2020=m+m2-2020=1-2020=-2020.故答案为:-2020.点评:此题考查了分解因式的应用,关键是如何把已知条件代入所求的代数式,思路是:求出m2+m的值,把m2+m看成一个整体进行代入.15、甲、乙两农户各有两块地,如下图,今年,这两个农户决定一起投资弄饲养业,为此,他们预备将这4块土地换成一块地,那块地的宽为(a+b)米,为了使所换土地的面积与原先4块地的总面积相等,互换以后的土地应该是{@answer}米.【答案】(a+c)米.【解答】分析:第一计算原先4块地的总面积,再进一步因式分解,显现a+b的形式.解答:解:原先四块地的总面积是a2+bc+ac+ab=a(a+c)+b(a+c)=(a+c)(a+b),那么互换以后的土地长是(a+c)米.故答案为:(a+c)米.点评:此题要能够熟练运用分组分解法进行因式分解.16、咱们学过因式分解的概念,在计算多项式的进程中,若是能适本地分解因式进行化简,会使得计算更为简单.咱们为此引入质因数分解定理:每一个大于1的整数都能分解为质因数的乘积的形式,若是把质因数依照从小到大的顺序排在一路,相同因数的积写成幂的形式,那么这种分解方式是唯一的.请你学习例题的解法,完成问题的研究.例:试求19乘以125的值.解:∵125=1000÷8∴19×125=19000÷8=7答:由上知,19×125=7.请依照例题,求一实数,使得它被10除余9,被9除余8,被8除余7,…,被2除余1.【答案】N=3×3×2×2×2×7×5-1=2519.【解答】分析:那个数加1能够被10,9,8,7,6,5,4,3,2整除,只需要求出10、9、8、7、6、5、4、3、2的最小公倍数减一即可.解答:解:设那个实数是N.依照题意,可知,那个自然数加1就能够够被10,9,8,7,6,5,4,3,2整除,则N确实是10,9,8,7,6,5,4,3,2的最小公倍数减去1,故N=3×3×2×2×2×7×5-1=2519.点评:此题考查带余数的除法,难度较大,关键是把握解答此题的解答步骤.17、按下面规那么扩充新数:已有a和b两个数,可按规那么c=ab+a+b扩充一个新数,而a,b,c三个数中任取两数,按规那么又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.①求按上述规那么操作三次取得扩充的最大新数;②可否通过上述规那么扩充取得新数5183并说明理由.【答案】5183能够通过上述规那么扩充取得.【解答】分析:①将2与3别离代入求解,再取其最大的两个值依次代入即可求得答案;②找到规律:设扩充后的新数为x,那么总能够表示为x+1=(a+1)m•(b+1)n,式中m、n为整数,即可适当a=2,b=3时,x+1=3m×4n,然后求解即可.解答:解:①∵a=2,b=3,c1=ab+a+b=6+2+3=11,∴取3和11,∴c2=3×11+3+11=47,取11与47,∴c3=11×47+11+47=575,∴扩充的最大新数575;②5183能够扩充取得.∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1),取数a、c可得新数d=(a+1)(c+1)-1=(a+1)(b+1)(c+1)(a+1)-1=(a+1)2(b+1),即d+1=(a+1)2(b+1),同理可得e=(b+1)(c+1)=(b+1)(a+1)-1,∴e+1=(b+1)2(a+1),设扩充后的新数为x,那么总能够表示为x+1=(a+1)m•(b+1)n,式中m、n为整数,当a=2,b=3时,x+1=3m×4n,又∵5183+1=5184=34×43,故5183能够通过上述规那么扩充取得.点评:此题考查了因式分解的应用,解题的关键是找到规律设扩充后的新数为x,那么总能够表示为x+1=(a+1)m•(b+1)n,式中m、n为整数.。
因式分解经典题及解析
2013组卷1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣①=(x+1)2﹣22﹣﹣﹣﹣﹣﹣②=…解决下列问题:(1)填空:在上述材料中,运用了_________ 的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3;(3)请用上述方法因式分解x2﹣4x﹣5.2.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_________ .A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底_________ .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.6.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.7.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.8.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.9.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.10.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.11.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:_________ .(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x﹣3)+4.12.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是_________ ,由②到③这一步的根据是_________ ;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是_________ ;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).13.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.答案1.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.2.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的 C .A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.3.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.4.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.5.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.x=时多项式的值为×6.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.7.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.8.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.9.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.10.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:(x+3)4.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x﹣3)+4.11.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是提公因式法分解因式,由②到③这一步的根据是同底数幂的乘法法则;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是(1+x)2007;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).12.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.。
部编数学八年级上册专题14因式分解(解析版)(重点突围)含答案
专题14 因式分解考点一 判断是否是因式分解考点二 公因式及提提公因式分解因式考点三 已知因式分解的结果求参数考点四 运用公式法分解因式考点五 十字相乘法分解因式考点六 分组分解法分解因式考点七 因式分解的应用考点一 判断是否是因式分解例题:(2021·福建省泉州市培元中学八年级期中)下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(1)1x x x x -+=-+C .229(9)(9)x y x y x y -=+-D .2412(6)(2)--=-+x x x x 【答案】D【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解即可.【详解】解:A 、右边不是积的形式,故本选项错误,不符合题意;B 、右边不是积的形式,故本选项错误,不符合题意;C 、()()22933x y x y x y -=+-,故本项错误,不符合题意;D 、是因式分解,故本选项正确,符合题意.故选:D .【点睛】此题考查因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【变式训练】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可.【详解】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C .等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意;故选:D .【点睛】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.2.(2022·江苏宿迁·七年级期末)下列等式从左到右的变形是因式分解的是( )A .()ax ay a x y -=-B .()()2224x x x +-=-C .()2243223x x x x +-=+-D .32632a b a ab=×【答案】A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解: A .是因式分解,运用了提公因式法,符合题意;B .是整式的乘法运算,不符合题意;C .不是因式分解,右边不是乘积的形式,不符合题意,D .左边是单项式,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的定义,把一个多项式转化成几个整式积的形式.掌握因式分解的定义是解题的关键.考点二 公因式及提提公因式分解因式例题:(2022·江苏·南师附中新城初中黄山路分校七年级期中)多项式322363x y x y -的公因式是______.【答案】223x y 【分析】根据“公因式的系数为各项系数的最大公约数,各项相同字母的最低次幂是公因式的因式”求出公因式的即可.【详解】解:∵各项系数6、3的最大公约数是3,各项都含有的字母是x 与y ,x 的最低指数是2,y 的最低指数是2,∴该多项式的公因式为:223x y .故答案为:223x y .【点睛】本题考查公因式,掌握公因式的确定方法是解决问题的关键.【变式训练】1.(2022·宁夏·中宁县第三中学八年级期中)分解因式233x x -=_______【答案】3x (x -1)【分析】原式提取公因式即可得到结果.【详解】解:233x x -=3x (x -1);故答案为:3x (x -1).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(2022·湖南·双牌县第一中学七年级期中)多项式2x 2-12xy 2+8xy 3的公因式是_____________.【答案】2x【分析】按照公因式的提取方法提取公因式即可.【详解】解:2232128x xy xy -+232(64)x x y y =-+多项式的公因式为2x .故答案为:2x .【点睛】此题考查了多项式的公因式,解题的关键是记住提取公因式方法,方法如下:方法如下:公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.考点三 已知因式分解的结果求参数例题:(2021·河北·石家庄市藁城区尚西中学八年级阶段练习)把多项式26x mx ++因式分解得(x +3)(x +2),则m =_____.【答案】5【分析】把(x +3)(x +2)展开,利用多项式相等的条件即可求出m 的值.【详解】解:∵26x mx ++=(x +3)(x +2)=256x x ++,∴m =5,故答案为:5.【点睛】本题考查多项式乘多项式,熟练掌握多项式乘多项式的运算法则是解题的关键.【变式训练】1.(2022·河北保定·八年级期末)若多项式228x ax +-因式分解为(4)(7)x x -+,则=a ________.【答案】3【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出a 即可.【详解】解:()()22477428328x x x x x x x -+=+--=+-,∵多项式228x ax +-因式分解为(4)(7)x x -+,∴a =3,故答案为:3.【点睛】本题考查了多项式乘法和因式分解,熟知因式分解和整式乘法互为逆运算是解题的关键.2.(2022·浙江舟山·七年级期末)已知二次三项式25x x m -+分解后有一个因式为()2x -,则m =______.【答案】6【分析】设另一个因式为(x +n ),根据多项式乘多项式运算法则可得二元一次方程组,求解即可.【详解】解:设另一个因式为(x +n ),得x 2-5x +m =(x -2)(x +n ),则x 2-5x +m =x 2+(n -2)x -2n .∴252n n m -=-ìí-=î,解得36n m =-ìí=î.∴m 的值为6.故答案为:6.【点睛】本题考查了因式分解,多项式乘多项式,解二元一次方程组等知识点,能得出关于m 、n 的方程组是解此题的关键.考点四 运用公式法分解因式例题:(2022·黑龙江大庆·八年级期末)因式分解:(1)321025m n m n mn -+; (2)()()2224649p p -+-+【答案】(1)2(5)mn m -(2)22()1)(1p p +-【分析】(1)先提公因式mn ,再利用完全平方公式继续分解即可;(2)先利用完全平方公式分解因式,再利用平方差公式继续分解即可.(1)解:321025m n m n mn-+2(1025)mn m m =-+2(5)mn m =-;(2)解:()()2224649p p -+-+()2243p éù=-+ëû()221p =-()()211p p éù=+-ëû()()2211p p =+-.【点睛】此题考查因式分解.熟练掌握因式分解的步骤和方法是关键.注意因式分解一定要分解到每一个因式不能再分解为止.【变式训练】1.(2022·江苏宿迁·七年级期末)因式分解(1)2218m -;(2)()222224a b a b +-.【答案】(1)2(3)(3)m m +-(2)()()22a b a b +-【分析】(1)提取公因数后利用平方差公式分解因式;(2)先用平方差公式,再结合完全平方公式分解因式;(1)解:原式=2222(9)2(3)2(3)(3)m m m m -=-=+-(2)原式=()()()()()()2222222222222a b a b a b ab ab b b ab a a +-+-+=+-=+【点睛】本题主要考查平方差公式()()22a b a b a b -=+-和完全平方公式()2222a b a b ab ±=+±的灵活运用,熟记公式是解题关键.2.(2021·河南·鹤壁市淇滨中学八年级阶段练习)分解因式:(1)416a - (2)2229x xy y -+- (3)5322472m m m---【答案】(1)()()()2422a a a ++-(2)()()33x y x y -+--(3)()2226m m -+【分析】(1)利用平方差公式分解因式即可;(2)先利用完全平方公式分解因式,再利用平方差公式分解因式即可;(3)先提公因式,然后利用完全平方公式分解因式即可.(1)解:416a -()()2244a a =+-()()()2422a a a =++-.(2)解:2229x xy y -+-()29x y =--()()33x y x y =-+--.(3)解:5322472m m m---()4221236m m m =-++()2226m m =-+.【点睛】本题主要考查了分解因式,熟练掌握平方差公式和完全平方公式,是解题的关键.考点五 十字相乘法分解因式例题:(2022·上海·七年级专题练习)因式分解:21124x y xy y-+【答案】()()38y x x --【分析】首先提取公因式,然后再用十字相乘法分解因式即可.【详解】解:21124x y xy y-+()21124y x x =-+()()38y x x =--.【点睛】此题考查了因式分解,熟练掌握提取公因式和十字相乘法是本题的关键.【变式训练】1.(2022·上海·七年级专题练习)因式分解:()()2223242410x x x x ----【答案】(3)(8)(4)(6)x x x x +--+【分析】先把式子化成()()22222432410x x x x ----,再运用十字相乘法分解因式即可.【详解】解:原式=()()22222432410x x x x ----=22(245)(242)x x x x ---+=22(524)(224)x x x x --+-=(3)(8)(4)(6)x x x x +--+【点睛】此题考查了因式分解,解题的关键是学会用十字相乘法进行因式分解.2.(2022·福建三明·八年级期中)阅读下面材料完成分解因式.()2x p q x pq ++型式子的因式分解()2x p q x pq++2x px qx pq=+++()()2x px qx pq =+++()()x x p q x p =+++()()x p x q =++.这样,我们得到()()()2x p q x pq x p x q +++=++.利用上式可以将某些二镒项系数为1的二次三项式分解因式.例把232x x ++分解因式分析:232x x ++中的二次项系数为1,常数项212=´,一次项系数312=+,这是一个()2x p q x pq +++型式子.解:()()()223212212x x x x x x ++=+++=++请仿照上面的方法将下列多项式分解因式.(1)21024x x ++(2)223336a ab b --【答案】(1)()()46x x ++(2)()()343a b a b -+【分析】(1)仿照题意进行分解因式即可;(2)仿照题意进行分解因式即可.(1)解:21024x x ++()26424x x =+++()()46x x =++;(2)解:223336a ab b --()22312a ab b =--()2233412a ab b éù=+--ëû()()343a b a b =-+.【点睛】本题主要考查了分解因式,正确理解题意是解题的关键.考点六 分组分解法分解因式例题:(2022·广东·南山实验教育集团八年级期中)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:()()()()()224242222222x y x y x y x y x y x y x y --+=+---=-+-.这种分解因式的方法叫分组分解法.请利用这种方法分解因式22216x xy y -+-.【答案】()()44x y x y -+--【分析】把前三项分为一组,最后一项单独作为一组,然后利用平方差公式进行分解即可解答.【详解】解:22216x xy y -+-2()16x y =--()()44x y x y =-+--.【点睛】本题考查了因式分解-分组分解法,公因式,因式分解-运用公式法,合理进行分组是解题的关键.【变式训练】1.(2022·江苏·扬州市江都区第三中学七年级期中)先阅读以下材料,然后解答问题,分解因式.mx nx my ny+++()()mx nx my ny =+++()()x m n y m n =+++()()m n x y =++;也可以mx nx my ny+++()()mx my nx ny =+++()()m x y n x y =+++()()m n x y =++.以上分解因式的方法称为分组分解法,(1)请用分组分解法分解下列因式:①2()--+a x y x y②2244x y x --+(2)拓展延伸①若22228160x xy y x -+-+=求x ,y 的值;(2)()()22x y x y -++、()()22222a b a ab b -+-+(3)()()22x y x y -+--【分析】(1)阅读材料可知分组须有“预见性”,预见下一步能继续分解,即可求解;(2)根据分组分解的方法,依据下一步利用公式进行分组;(3)根据分组分解法因式分解即可求解.(1)分组后能出现公因式,分组后能应用公式(2)22x y x y -++=()()22x y x y -++,22222a a b ab b +--+=()()22222a b a ab b -+-+,故答案为:()()22x y x y -++,()()22222a b a ab b -+-+.(3)2224x xy y -+-()()()2422x y x y x y =--=-+--.【点睛】本题考查了因式分解,掌握分组分解法是解题的关键.考点七 因式分解的应用(2)16(3)9【分析】(1)通过完全平方公式进行变式得()()22310a b ++-=,然后由非负数性质求得结果;(2)由22228160x y xy y +-++=得()()2240x y y -++=,然后由非负数性质求得结果;(3)把方程通过变式得()()222140a b -+-=,然后由非负数性质求得a 、b ,根据三角形三边关系进而得c ,便可求得三角形的周长.(1)解:由2262100a b a b ++-+=得,()()22310a b ++-=,∵()23a -≥0,()210b -³,∴a -3=0,b -1=0,∴a =3,b =1.故答案为:3;1;(2)由22228160x y xy y +-++=,得,()()2240x y y -++=,,4x y y \==-,∴4,4x y =-=-,∴16xy =;(3)由22248180a b a b +--+=得()()222140a b -+-=,∴1,4a b ==,∵△ABC 的三边长a 、b 、c 都是正整数,∴4141c -<<+,∴35c <<,∴4c =,∴△ABC 的周长为1449++=.【点睛】本题考查了因式分解的应用,三角形的三边关系,偶次方的非负性,理解阅读材料中的解题思路是解题的关键.【变式训练】()()2240x y y -++=∴x -y =0,y -4=0,∴x =y =4,∴x y ×=16;(3)∵a +b =8,∴b =8-a ,∵21041ab c c -+=,∴2281610250a a c c -++-+=,∴()()22450a c -+-=,∴a -4=0,c -5=0,∴a =4,c =5,∴b =4,∴△ABC 的周长为a +b +c =4+4+5=13.【点睛】本题考查了因式分解的应用,三角形的三边关系,偶次方的非负性,理解阅读材料中的解题思路是解题的关键.2.(2022·江苏·扬州中学教育集团树人学校七年级期中)先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:∵2222690m mn n n ++-+=,∴2222690m mn n n n +++-+=,∴()()2230m n n ++-=,∴m +n =0,n ﹣3=0∴m =﹣3,n =3问题:(1)不论x ,y 为何有理数,2210845x y x y +-++的值均为( )A .正数B .零C .负数D .非负数(2)若2222440x y xy y +-++=,求y x 的值.(3)已知a ,b ,c 是△ABC 的三边长,满足2210841a b a b +=+-,且c 是△ABC 中最长的边,求c 的取值范∴()()22450a b -+=-,∴a -5=0,b -4=0,∴a =5,b =4,∵a ,b ,c 是△ABC 的三边长,且c 是△ABC 中最长的边,∴554c £<+,即5≤c <9,即c 的取值范围是5≤c <9.【点睛】此题考查了完全平方公式因式分解、非负数的性质、三角形三边关系的应用等知识,利用完全平方公式变形是解题的关键.一、选择题1.(2021·湖南·衡阳市第十七中学八年级期中)多项式4ab 2+16a 2b 2﹣12a 3b 2c 的公因式是( )A .4ab 2cB .ab 2C .4ab 2D .4a 3b 2c【答案】C【分析】根据确定多项式各项公因式的方法,①定系数,即确定各项系数的最大公约数②定字母,即确定各项相同字母因式(或相同多项式因式)③定指数,即各项相同字母因式(或相同多项式因式)的指数最低次幂,确定公因式即可【详解】原式224(143)ab a a c =+-∴公因式为4ab 2故选:C【点睛】本题考查了确定公因式的方法,关键是掌握确定公因式的方法.2.(2022·山东·济南市济阳区创新中学八年级期中)下列各式从左到右的变形,属于因式分解的是( )A .()()2111x x x +-=-B .()()22x y x y x y -=+-C .()22121x x x x -+=-+D .2322842x y x y y =×【答案】B【分析】根据因式分解的定义是把一个多项式转化成几个整式积的形式,依次进行分析判断可得答案.【详解】解:A . ()()2111x x x +-=-,是整式的乘法,不是因式分解,故A 错误;B . ()()22x y x y x y -=+-,把一个多项式转化成几个整式积的形式,故B 正确;C . ()22121x x x x -+=-+,没把一个多项式转化成几个整式积的形式,故C 错误;D . 2322842x y x y y =×,不是把一个多项式转化成几个整式积的形式,故D 错误.故选:B .【点睛】本题考查因式分解的意义,注意掌握因式分解是把一个多项式转化成几个整式积的形式.3.(2022·四川·成都市龙泉驿区新思源学校八年级阶段练习)对任意自然数n ,代数式()()2275n n +--的值一定能被( )整除.A .6B .24C .4D .8【答案】B【分析】先将题目中的代数式化简,即可得到题目中的代数式一定可以被哪个数整除,本题得以解决.【详解】解:∵()()2275n n +--=[(n +7)+(n -5)][(n +7)-(n -5)]=(n +7+n -5)(n +7-n +5)=(2n +2)×12=24(n +1),∴代数式()()2275n n +--的值一定能被24整除,故选:B .【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.4.(2021·江苏无锡·九年级期中)已知a ,b 是一个等腰三角形的两边长,且满足2268250a b a b +--+=,则这个等腰三角形的周长为( )A .10B .11C .10或11D .12【答案】C【分析】先将25改成9+16,运用完全平方公式将原等式化为平方和为0的形式,继而求出a ,b 的值,最后根据等腰三角形的性质即可得出结论.【详解】解:∵2268250a b a b +--+=,∴2269816))0((a a b b +++=﹣﹣,∴22()(340)ab +=﹣﹣,∴a =3,b =4.分两种情况讨论:①当腰为3时,3+3>4,能构成三角形,等腰三角形的周长为3+3+4=10,②当腰为4时,3+4>4,能构成三角形,等腰三角形的周长为4+4+3=11.综上所述:该等腰三角形的周长为10或11.故选C .【点睛】本题考查了完全平方公式及等腰三角形的性质.解题的关键是将25改成9+16,运用完全平方公式将原等式化为平方和为0的形式.5.(2021·浙江·嵊州市马寅初初级中学七年级期中)小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:21,31,1x a b x a x --++,,,分别对应下列六个字: 中, 爱, 我, 数, 学,马, 现将 223(1)3(1)a x b x ---因式分解,结果呈现的密码信息可能是( )A .我爱学B .爱马中C .我爱马中D .马中数学【答案】C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:()()223131a x b x --- ()()231x a b =--=()()()311x x a b +--,∵21,31,1x a b x a x --++,,,分别对应下列六个字:中, 爱, 我, 数, 学,马,∴结果呈现的密码信息可能是:我爱马中,故选:C .【点睛】本题考查了因式分解的综合应用,正确将所给的式子进行因式分解是解决本题的关键.二、填空题6.(2022·广东汕头·八年级期末)因式分解:2m 3﹣2m =______________.【答案】2(1)(1)m m m +-【点睛】本题考查了求代数式的值和因式分解以及整式计算,解题关键是熟练利用因式分解把所求代数式变形,然后整体代入求值.9.(2022·河南平顶山·八年级期末)若三角形ABC 的三边长a ,b ,c 满足22a ab c bc +=+,则三角形ABC 的形状是_______.【答案】等腰三角形【分析】通过对a +2ab =c +2bc 的变形得到(2b +1)(a -c )=0,由此得到a =c ,易判断三角形ABC 的形状.【详解】解:∵a +2ab =c +2bc ,∴a -c +2ab -2bc =0,即(2b +1)(a -c )=0,∵a ,b ,c 是△ABC 的边长,∴b >0,∴2b +1≠0,∴a -c =0,∴a =c ,即三角形ABC 的形状是等腰三角形,故答案为:等腰三角形.【点睛】该题主要考查了因式分解及其应用问题,等腰三角形的判定,解题的关键是牢固掌握分组分解法或提公因式法,灵活选用有关方法来变形、化简、求值或证明.10.(2022·辽宁沈阳·八年级期末)如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a 的正方形,两块是边长为b 的正方形,三块是长为a ,宽为b 的矩形(a b >).观察图形,发现多项式2232a ab b ++可因式分解为____________.【答案】()(2)a b a b ++【分析】图中大长方形的面积有两种求法,一是由三个正方形的面积与三个小长方形的面积之和计算,二是由大长方形的长(2)a b +与宽()a b +的乘积计算,两者相等即可确定多项式2232a ab b ++因式分解的结果.【详解】解:结合图形,可得长方形的面积为2222232S a ab ab ab b b a ab b =+++++=++,长方形的面积也可以为()(2)S a b a b =++,∴2232a ab b ++=()(2)a b a b ++.故答案为:()(2)a b a b ++.【点睛】本题主要考查了因式分解与几何图形的面积,弄清图形中的面积关系是解题关键.三、解答题11.(2021·河北·石家庄市藁城区尚西中学八年级阶段练习)分解因式:(1)221218x x -+;(2)224()9()a x y b y x -+-;【答案】(1)()223x -(2)()()()2323x y a b a b -+-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.(1)解:221218x x -+=()2269x x =-+()223x =-;(2)224()9()a x yb y x -+-()()2249a x y b x y =---()()2249x y a b =--()()()2323x y a b a b =-+-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(2022·浙江·杭州市实验外国语学校七年级期中)因式分解(1)3221624x x x -+-(2)222222a b x y ay bx--+-+【答案】(1)()()226x x x ---(2)()()a yb x a y b x -+---+【分析】(1)先提公因式,再利用十字相乘法继续分解即可解答;(2)先根据完全平方公式进行分组,再利用平方差公式继续分解即可解答.(1)解:3221624x x x-+-()22812x x x =--+()()226x x x =---(2)解:222222a b x y ay bx--+-+()()222222a ay y b bx x =-+--+()()22a y b x =---()()a yb x a y b x =-+---+【点睛】本题考查了提公因式法与公式法的综合运用,因式分解—分组分解法,一定要注意如果多项式的各项含有公因式,必须先提公因式.13.(2021·福建省泉州实验中学八年级期中)因式分解:(1)241616a a -+;(2)()()216a x y y x -+-;(3)22962x x y y ---;(4)()()2222223m m m m ----.【答案】(1)()242a -;(2)()()()44x y a a -+-;(3)()()332x y x y +--;(4)()()()212321m m m m +--+.【分析】(1)先提取公因式,再利用完全平方公式分解即可求解;(2)先进行公式变形为()()216a x y x y ---,再提取公因式,最后用平方差公式分解即可;(3)先将原式分组为()()22962x y x y --+再分别利用平方差公式和提公因式法分解,最后提公因式即可;(4)先利用十字相乘法进行分解,再次利用十字相乘法进行分解即可求解.(1)解:241616a a -+=()2444a a -+()242a =-;(2)解:()()216a x y y x -+-()()216a x y x y =---()()216x y a =--()()()44x y a a =-+-;(3)解:22962x x y y---()()22962x y x y =--+()()()3323x y x y x y =+--+()()332x y x y =+--(4)()()2222223m m m m ----()()222321m m m m =---+()()()212321m m m m =+--+ .【点睛】本题考查了将多项式因式分解,因式分解的一般方法是先提公因式,再利用公式法分解,如果此方法无法正常分解,一般可以利用十字相乘法或分组分解法进行因式分解,注意因式分解一定要彻底.14.(2021·山西临汾·八年级期中)在数学课外探究小组活动中,有一道这样的题目:对多项式()()2242464a a a a -+-++进行因式分解.指导老师的讲解过程如下.解:令24a a t -=,则原式222(2)(6)48124816(4)t t t t t t t =+++=+++=++=+.∵24t a a =-,∴原式()2244a a =-+.老师解答到此就停止了,并提出了以下2个问题:(1)上述解答的结果是否分解到最后?_______(填“是”或“否”).如果否,直接写出最后的结果______(如果是则不用填写).(2)请模仿以上方法对多项式()()222221b b b b --++进行因式分解.【答案】(1)否;()42a -(2)()41b -【分析】(1)检查解答结果继续应用完全平方公式进行分解即可;(2)利用题目提供的信息进行分解因式即可.(1)解:∵()()()222424422a a a a éù-+=-=-ëû,∴上述解答的结果没有分解到最后.故答案为:否;()42a -.(2)解:令22b b t -=,则()()222221b b b b --++()21t t =++221t t =++()21t =+∵22b b t -=,∴原式()2221b t =-+()221b éù=-ëû()41b =-【点睛】本题主要考查了因式分解,读懂题意,熟练掌握完全平方公式,是解题的关键.15.(2022·四川·八年级期中)由整式的乘法运算法则可得()()()2.ax b cx d acx ad bc x bd ++=+++由于我们道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可如可把()2acx ad bc x bd +++中的x 着作是未知数.a 、b 、c 、d 在作常数的二次三项式:通过观察()()()2.acx ad bc x bd ax b cx d +++=++可知此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数.此分解过程可以用十字相乘的形式形象地表示成如图1,此分解过程可形象地表述为“坚乘得首、尾,叉乘凑中项,这种分解的方法称为十字相乘法.如:将二次三项式2273x x ++的二项式系数2与常数项3分别进行适当的分解,如图2,则()()2273321x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法因式分解:24913x x +-;(2)用十字相乘法因式分解:()2()1235x y x y +-++;(3)结合本题知识,因式分解:222887146x xy y x y ++--+.【答案】(1)()()4131x x +-(2)()()57x y x y +-+-(3)()()24322x y x y +-+-【分析】(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.(1)解:()()249134131x x x x +-=+-;(2)解:()()()2()123557x y x y x y x y +-++=+-+-;(3)解:222887146x xy y x y ++--+()222447146x xy y x y =++--+()22(2)726x y x y =+-++()()22322x y x y éù=+-+-ëû()()24322x y x y =+-+-.【点睛】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.16.(2022·广东广州·八年级期末)常见的分解因式的方法有提公因式法、公式法及十字相乘法,而有的多项式既没有公因式,也不能直接运用公式分解因式,但是某些项通过适当的调整能构成可分解的一组,用分组来分解一个多项式的因式,这种方法叫分组分解法.如x 2+2xy +y 2﹣16,我们细心观察这个式子就会发现,前三项符合完全平方公式,分解后与后面的部分结合起来又符合平方差公式,可以继续分解,过程为:x 2+2xy +y 2﹣16=(x +y )2﹣42=(x +y +4)(x +y ﹣4).它并不是一种独立的因式分解的方法,而是为提公因式或运用公式分解因式创造条件.阅读材料并解答下列问题:(1)分解因式:2a 2﹣8a +8;(2)请尝试用上面的方法分解因式:x 2﹣y 2+3x ﹣3y ;(3)若△ABC 的三边a ,b ,c 满足a 2﹣ab ﹣ac +bc =0,请判断△ABC 的形状并加以说明.【答案】(1)()222a -(2)()()3x y x y ++-(3)等腰三角形【分析】(1)先提公因式2,再利用完全平方公式分解;(2)先分组,再利用分组分解法求解;(3)把等式左边利用分组分解法因式分解得到()()0a c a b --=,利用三角形三边的关系得到a =c 或a =b ,从而可判断△ABC 的形状.(1)解:2288a a -+=()2244a a -+=()222a -;(2)2233x y x y--+=()()()3x y x y x y -++-=()()3x y x y ++-;(3)2a ab ac bc--+=2a ab bc ac--+=()()a abc b a -+-=()()a abc a b ---=()()a c ab --=0∴a =c 或a =b∴△ABC 为等腰三角形.【点睛】本题考查了利用完全平方公式分解因式,提公因式的方法分解因式,分组分解法是,因式分解的应用,等腰三角形的定义,理解题意,掌握“整体法分解因式”是解本题的关键.17.(2022·江西吉安·八年级期末)阅读与思考:分组分解法指通过分组分解的方式来分解用提公因式法和公式法无法直接分解的多项式,比如:四项的多项式一般按照“两两”分组或“三一”分组,进行分组分解.例1:“两两分组”:ax ay bx by+++解:原式()()ax ay bx by =+++()()a x yb x y =+++()()a b x y =++例2:“三一分组”:2221xy x y +-+解:原式2221x xy y =++-()21x y =+-()()11x y x y =+++-归纳总结:用分组分解法分解因式要先恰当分组,然后用提公因式法或运用公式法继续分解.请同学们在阅读材料的启发下,解答下列问题:(1)分解因式:①255x xy x y -+-;②2244m n m --+;(2)已知ABC V 的三边,,a b c 满足220a b ac bc --+=,试判断ABC V 的形状.【答案】(1)①(5)()x x y +-;②(2)(2)m n m n -+--;(2)ABC V 是等腰三角形.【分析】(1)①将原式进行分组,然后再利用提取公因式法进行因式分解;②将原式进行分组,然后利用完全平方公式和平方差公式进行因式分解;(2)将原式进行分组,然后利用平方差公式和提公因式法进行因式分解,然后结合三角形三边关系和多项式乘法的计算法则分析判断.【详解】解:(1)①255x xy x y-+-2()(55)x xy x y =-+-()5()x x y x y =-+-()(5)x y x =-+;②2244m n m --+22(44)m m n =-+-22(2)m n =--(2)(2)m n m n =-+--;(2)220a b ac bc --+=Q ,22()()0a b ac bc \---=,()()()0a b a b c a b \+---=,()()0a b a b c \-+-=,a Q ,b ,c 是ABC V 的三边,a b c \+>,0a b c \+->,0a b \-=,a b \=,即ABC V 是等腰三角形.【点睛】本题考查了因式分解的应用,掌握提取公因式的技巧和完全平方公式:2222()a ab b a b ++=+,平方差公式22()()a b a b a b -=+-是解题关键.。
(必考题)初中八年级数学上册第十四章《整式的乘法与因式分解》经典题(含答案解析)
一、选择题1.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得: ()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.2.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .9A 解析:A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.3.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x - D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有4种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2,故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 4.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 5.已知: 13m m +=, 则: 331m m +的值为( ) A .15B .18C .21D .9B 解析:B【分析】把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键6.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- A 解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意. 故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.7.已知1x x +=1x x -的值为( )A B .2± C .D 解析:C【分析】将1x x +=两边平方得出22x 15x +=,再求得21-⎛⎫ ⎪⎝⎭x x 即可得答案. 【详解】解:∵1x x+= ∴217⎛⎫+= ⎪⎝⎭x x ∴22127x x ++= ∴22x 15x += ∴22211-=x -2+=5-2=3x ⎛⎫ ⎪⎝⎭x x∴1=-±x x故选:C【点睛】 本题主要考查了利用完全平方公式的变形求值,熟练掌握完全平方公式是解题的关键8.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .解析:A【分析】利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.9.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.10.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --= D解析:D【分析】 根据整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算并判断.【详解】A 、235x x x =,故该项错误;B 、2222x x x +=,故该项错误;C 、22(2)4x x -=,故该项错误;D 、358(3)(5)15a a a --=,故该项正确;故选:D .【点睛】此题考查整式的计算,正确掌握整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算法则是解题的关键.二、填空题11.若2330x x --=,则()()()123x x x x ---的值为______.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x +3则原式=(x2−x )(x2−5x +6)=(2x +3)(−2x +解析:15【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可求出值.【详解】∵x 2−3x−3=0,∴x 2=3x +3,则原式=(x 2−x )(x 2−5x +6)=(2x +3)(−2x +9)=−4x 2+12x +27=−4(3x +3)+12x +27=−12x−12+12x +27=15.故答案为:15【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键. 12.若2,3x y a a ==,则22x y a +=_______________________.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可.【详解】解:∵2,3x y a a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36,故答案为36.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键. 13.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x =∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.14.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.15.若294x kx ++是一个完全平方式,则k 的值为_____.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±.【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可.【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键. 16.若3x y -=,2xy =,则22x y +=__________.【分析】根据完全平方公式变形计算即可得解【详解】∵∴=9+4=13故答案为:13【点睛】此题考查完全平方公式变形计算熟记完全平方公式并正确理解所求与公式的关系是解题的关键 解析:13【分析】根据完全平方公式变形计算即可得解.【详解】∵3x y -=,2xy =,∴22x y +=2()2x y xy -+=9+4=13,故答案为:13.【点睛】此题考查完全平方公式变形计算,熟记完全平方公式并正确理解所求与公式的关系是解题的关键.17.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____.3x -4【分析】利用面积公式计算即可得到答案【详解】设这条边上的高为a 由题意得:∴ay=3xy-4y ∴a=3x-4故答案为:3x-4【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单解析:3x -4【分析】利用面积公式计算即可得到答案.【详解】设这条边上的高为a , 由题意得:12342y a xy y ⋅⋅=-, ∴ay=3xy-4y ,∴a=3x-4,故答案为:3x-4.【点睛】 此题考查多项式除以单项式法则:用多项式中的每一项分别除以单项式,再把结果相加. 18.因式分解:24ay a -=_______.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.19.若a - b = 1, ab = 2 ,则a + b =______. 【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键.20.若210x x --=,则3225x x -+的值为________.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+ ()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键.三、解答题21.计算:4a 2·(-b )-8ab ·(b -12a ). 解析:28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+ab ab a b=28ab -.【点睛】 本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.22.阅读下列文字,并解决问题.已知x 2y =3,求2xy (x 5y 2﹣3x 3y ﹣4x )的值.我们知道,满足x 2y =3的x ,y 的值可能较多,不可能逐一代入求解,而运用整体思想能使问题化繁为简,化难为易,运用整体代入的方法能巧妙地解决一些代数式的求值问题,于是将x 2y =3整体代入.解:2xy (x 5y 2﹣3x 3y ﹣4x )=2x 6y 3﹣6x 4y 2﹣8x 2y=2(x 2y )3﹣6(x 2y )2﹣8x 2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab =4,求(2a 3b 2﹣3a 2b+4a )•(﹣2b )的值;(2)已知x ﹣1x=5,求1x x +的值.解析:(1)-192;(2)1x x += 【分析】(1)根据单项式乘多项式的运算法矩形计算,根据积的乘方法则变形,把已知数据代入计算即可;(2)根据完全平方公式把原式变形,把已知数据代入计算即可.【详解】解:(1)∵ab =4,∴(2a 3b 2﹣3a 2b+4a )•(﹣2b )=﹣4a 3b 3+6a 2b 2﹣8ab=﹣4(ab )3+6(ab )2﹣8ab=﹣4×43+6×42﹣8×4=﹣192;(2)∵x ﹣1x=5, ∴22211()()45429x x x x +=-+=+=.1x x∴+=【点睛】本题考查的整式的混合运算及完全平方公式,正确理解题意掌握相关运算顺序和计算法则正确计算是解题的关键.23.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.解析:(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.24.先化简,再求值:()()()2222x y x y x y --+-其中1x =-,2y =解析:248xy y -+,40 【分析】先提公因式(2)x y -,然后计算括号内的运算,得到最简整式,然后把1x =-,2y =代入计算,即可得到答案.【详解】解:原式()()()222x y x y x y =---+⎡⎤⎣⎦()[]222x y x y x y =----()42y x y =--248xy y =-+.当1x =-,2y =时,原式()4212240=-⨯⨯--⨯=.【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则进行化简. 25.已知7,12a b ab -==-(1)求22ab a b -的值(2)求22a b +的值解析:(1)84;(2)25.【分析】(1)先提取公因式ab -将所求式子因式分解为()ab a b --,再将已知式子的值代入即可得;(2)利用完全平方公式进行变形求值即可得.【详解】(1)7,12a b ab -==-,()22ab a b ab a b ∴-=--,()127=--⨯,84=;(2)7,12a b ab -==-,()249∴-=,a b22249∴+-=,a b ab()2221249∴+-⨯-=,a b2225∴+=.a b【点睛】本题考查了利用因式分解和完全平方公式进行变形求值,熟练掌握因式分解的方法和完全平方公式是解题关键.26.第一步:阅读材料,掌握知识.要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出公因式a,再把它的后两项分成一组,提出公因式b,从而得: am+an+bm+bn=a(m+n)+b(m +n).这时,由于a(m+n)+b(m+n)中又有公因式(m+n),于是可提出(m+n),从而得到(m+n)(a+b),因此有: am+an+bn+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m +n)(a+b).这种方法称为分组法.第二步:理解知识,尝试填空.(1)ab-ac+bc-b2=(ab-ac)+(bc-b2)=a(b-c)-b(b-c)=.第三步:应用知识,解决问题.(2)因式分解:x2y-4y-2x2+8.第四步:提炼思想,拓展应用.(3)已知三角形的三边长分别是a、b、c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由.解析:(1)(b-c)(a-b);(2)(y-2)(x+2)(x-2);(3)这个三角形为等边三角形,理由见解析.【分析】(1)提取b-c即可;(2)先分组,用提取公因式法分解,再用平方差公式分解即可;(3)移项后分解因式,可得出a=b=c,则可得出答案.【详解】解:(1)a(b-c)-b(b-c)=(b-c)(a-b).故答案为:(b-c)(a-b);(2)x2y-4y-2x2+8=(x2y-4y)-(2x2-8)=y(x2-4)-2(x2-4)=(y-2)(x2-4)=(y-2)(x+2)(x-2);(3)这个三角形为等边三角形.理由如下:∵a2+2b2+c2=2b(a+c),∴a 2+2b 2+c 2-2ba-2bc=0,∴a 2-2ab+b 2+b 2-2bc+c 2=0,∴(a-b )2+(b-c )2=0,∵(a-b )2≥0,(b-c )2≥0,∴a-b=0,b-c=0,∴a=b=c ,∴这个三角形是等边三角形.【点睛】本题考查分组因式分解,等边三角形的定义.能理解题意,掌握分组分解法是解题关键. 27.计算:(1)x 2·x (2)(x 3)5(3)(-2x 3)2解析:(1)3x ,(2)15x ,(3)64x .【分析】(1)按照同底数幂相乘法则计算即可;(2)按照幂的乘方法则计算即可;(3)先按照积的乘方运算,再计算幂的乘方即可.【详解】解:(1)2213x x x x +⋅==,(2)353515()x x x ⨯==,(3)322326(2)(2)()4x x x -=-⨯=.【点睛】本题考查了同底数幂相乘、幂的乘方、积的乘方运算,熟练掌握这些幂的运算法则是解题关键.28.计算(1)()()433a a -⋅-(2)(ab 2)2 •(﹣a 3b )3÷(﹣5ab ) 解析:(1)15a -;(2)10615a b 【分析】(1)先算乘方,再算同底数幂的乘法即可;(2)先算乘方,再算乘法,后算除法.【详解】(1)()()433aa -⋅- =()123a a ⋅- =15a -;(2)(ab 2)2 •(﹣a 3b)3÷(﹣5ab)=a 2b 4.(-a 9b 3) ÷(﹣5ab)= -a 11b 7÷(﹣5ab) =10615a b . 【点睛】 本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.。
部编数学八年级上册专题07因式分解的六种方法大全(解析版)(人教版)含答案
专题07 因式分解的六种方法大全题型一、提取公因式法与公式法综合例.分解因式:32214a ab ab -+=______.【答案】21()2a ab -【详解】解:32214a a b ab -+=221()4a a ab b -+=21()2a ab -.故答案是:21()2a ab -.【变式训练1】因式分解:322882x x y xy -+=________________.【答案】22(2)x x y -【详解】解:原式=2x (4x 2−4xy +y 2)=2x (2x −y )2故答案为:2x (2x −y )2.【变式训练2】因式分解:21222a b ab b -+=_________.【答案】21(2)2b a -【详解】22211122(44)(2)222a b ab b b a a b a -+=-+=-故答案为:21(2)2b a -.【变式训练3】分解因式:a 4﹣3a 2﹣4=_____.【答案】(a 2+1)(a +2)(a ﹣2)【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2),故答案为:(a 2+1)(a +2)(a ﹣2).【变式训练4】小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.现将()()2222ac x y bc x y ---因式分解,结果呈现的密码信息可能是( )A .抗疫胜利B .抗疫必胜C .我必胜利D .我必抗疫【答案】B【详解】解:原式=()()22x y ac bc --()()()c a b x y x y =-+-Q x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.x y \-对应抗,x y +对应疫,c 对应必,-a b 对应胜故结果呈现的密码信息可能是为:抗疫必胜故选:B题型二、十字相乘法例.将多项式()211a a --+因式分解,结果正确的是( )A .1a -B .()()12a a --C .()21a -D .()()11a a +-【答案】B【详解】解:()211a a --+=2211a a a -+-+=232a a -+=()()12a a --.故选B .【变式训练1】多项式239514x x +-可因式分解成(3)()x a bx c ++,其中a 、b 、c 均为整数,求2a c +之值为何?( )A .12-B .3-C .3D .12【答案】A【详解】解:利用十字相乘法,把239514x x +-多项式因式分解,可得,239514(32)(137)x x x x +-=+-∵多项式239514x x +-可因式分解成(3x +a )(bx +c )∴ 2a =,13b =,7c =-∴222(7)12a c +=+´-=-故选:A .【变式训练2】分解因式:321024a a a +-=____.【答案】()()122a a a +-【详解】解:()()()32210241024122a a a a a a a a a +-=+-=+-.故答案为:()()122a a a +-【变式训练3】因为()()22331x x x x +-=+-,这说明多项式223x x +-有一个因式为1x -,我们把1x =代入此多项式发现1x =能使多项式223x x +-的值为0.利用上述阅读材料求解:(1)若()3x +是多项式212x kx ++的一个因式,求k 的值;(2)若()3x -和()4x -是多项式3212x mx x n +++的两个因式,试求m ,n 的值.(3)在(2)的条件下,把多项式3212x mx x n +++因式分解.【答案】(1)7k =;(2)7m =-,0n =;(3)(3)(4)x x x --【解析】(1)解:Q 3x +是多项式212x kx ++的一个因式,\当3x =-时,21293120x kx k ++=-+=,解得7k =;(2)Q (3)x -和(4)x -是多项式3212x mx x n +++的两个因式,\3232331230441240m n m n ì+´+´+=í+´+´+=î,解得70m n =-ìí=î.\7m =-,0n =.(3)解:由(2)得3212x mx x n +++即为32712x x x -+,\32712x x x-+2(712)x x x =-+(3)(4)x x x =--.题型四、分组法例.分解因式:4322221x x x x ++++【答案】22(1)(1)x x ++【详解】解:4322221x x x x ++++423(21)(22)x x x x =++++,222(1)2(1)x x x ++=+,22(1)(1)2x x x +=++22(1)(1)x x =++【变式训练1】已知221m a b =+-,4614n a b =--,则m 与n 的大小关系是()A .m n ³B .m >nC .m n £D .m <n【答案】A【详解】解:∵221m a b =+-,4614n a b =--,∴()()2214614b a m b n a -=---+-2246114b b a a =+--++()()224469a a b b =-++++()()2223a b =-++0³m n \³,故选A【变式训练2】分解因式:224b 12c 9c -++.【答案】()()23c b 23c b +++-【详解】解:224b 12c 9c -++=()22412c 9c b ++-=()2223c b +-=()()23c b 23c b +++-【变式训练3】分解因式:2244x y y -+-=__________.【答案】(2)(2)x y x y +--+【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【变式训练4】阅读理解:把多项式am an bm bn +++分解因式.解法:()()am an bm bn am an bm bn +++=+++()()a m nb m n =+++()()m n a b =++观察上述因式分解的过程,回答下列问题:(1)分解因式:222mb mc b bc -+-.(2)ABC V 三边a 、b 、c 满足2440a bc ac ab -+-=,判断ABC V 的形状.【答案】(1)(2)()b c m b -+;(2)等腰三角形【解析】(1)解:222mb mc b bc-+-()2(2)2mb mc b bc =-+-(2)(2)m b c b b c =-+- (2)()b c m b =-+(2)解:∵2440a bc ac ab -+-=,∴2440a ab ac bc -+-=,∴()()40a a b c a b -+-=,∴()()40a b a c -+=,∵40a c +>,∴0a b -=,∴a b =,∴ABC V C 的形状是等腰三角形.题型四、添项、拆项法例.分解因式;.x 3﹣3x 2﹣6x +8=_______.【答案】(x ﹣4)(x ﹣1)(x +2)【详解】解:x 3﹣3x 2﹣6x +8=3232268x x x x x -+--+=()()323288x x x x -+--=()()()1281x x x x ----=()()128x x x ---éùëû=()()2128x x x ---=(x ﹣4)(x ﹣1)(x +2),故答案为:(x ﹣4)(x ﹣1)(x +2).【变式训练1】把多项式分解因式:x 3﹣2x 2+1=_________________.【答案】(x ﹣1)(x 2﹣x ﹣1)【详解】解:原式=x 3﹣x 2﹣x 2+1=x 2(x ﹣1)﹣(x +1)(x ﹣1)=(x ﹣1)(x 2﹣x ﹣1)故答案为:(x ﹣1)(x 2﹣x ﹣1)【变式训练2】因式分解:a a a 32+3+3+2【答案】()()a a a 2=+2++1【详解】原式()a a a 32=+3+3+1+1()a 33=+1+1()()()a a a 2éù=+1+1+1-+1+1ëû()()a a a 2=+2++1.故答案为:()()a a a 2=+2++1【变式训练3】添项、拆项是因式分解中常用的方法,比如分解多项式21a -可以用如下方法分解因式:①()()()()22111111a a a a a a a a a -=-+-=-+-=-+;又比如多项式31a -可以这样分解:②()()()()()3322221111111a a a a a a a a a a a a a a -=-+-+-=-+-+-=-++;仿照以上方法,分解多项式51a -的结果是______.【答案】()()43211a a a a a -++++【详解】解:51a -54433221a a a a a a a a a =-+-+-+-+-()()()()43211111a a a a a a a a a =-+-+-+-+-()()43211a a a a a =-++++,故答案为:()()43211a a a a a -++++题型五、换元法(整体思想)例.因式分解:()()()()222222261516121x x x x x x ++++++++【答案】()()229411x x x +++【解析】解:()()()()222222261516121x x x x x x ++++++++()()2222212216122x x x x x x =++++++++()()2294121x x x x =++++()()229411x x x =+++【变式训练1】分解因式:()()()222241211y x y x y +--+-【答案】()2221x y x y -++【详解】()()()222241211y x y x y +--+-=()()()()222412111y x y y x y +-+-+-=()()2211y x y éù+--ëû=()2221x y x y -++【变式训练2】因式分解:(x 2+4x )2﹣(x 2+4x )﹣20.【答案】2(5)(1)(2)x x x +-+【详解】解:原式=(x 2+4x ﹣5)(x 2+4x +4)=(x +5)(x ﹣1)(x +2)2.【变式训练3】因式分解:(1)2223238x x x x +-+-()() (2)421x x x --+【答案】(1)()()()()1241x x x x +++-;(2)()()3211x x x -+-.【详解】解:(1)原式=()()223234x x x x +++-=()()()()1241x x x x +++-;(2)原式=()()2211xx x ---=()()()2111x x x x +---=()()2111x x x éù-+-ëû=()()3211x x x -+-.题型六、主元法例.分解因式:2222372x y z xy yz xz --+++.【答案】(2)(3)x y z x y z =+--+【详解】解:2222372x y z xy yz xz--+++222(2)(273)x y z x y yz z =++--+=2(2)(2)(3)x y z x y z y z ++---∴原式(2)(3)x y z x y z =+--+.【变式训练1】因式分解:(1)a b c ab ac bc abc1+++++++(2)()()a a b b b 6+11+4+3-1-2(3)()()()y y x x y y 22+1+1+2+2+1【答案】(1)()()()a b c =+1+1+1;(2)()()b b 3+2-1;(3)()()yx y yx x y =++1++【详解】(1)把a 视为未知数,其它视为参数.原式a ab ac abc b c bc =++++1+++()()a b c bc b c bc =1++++1+++()()a b c bc =+11+++()()()a b c =+1+1+1;(2)原式=()a b a b b 226+11+4+3--2,b b 23--2=()()b b 3+2-1,再次运用十字相乘法可知原式()()a b a b =2+3+23+-1;(3)选x 为主元,原式()()yx y yx x y =++1++.【变式训练2】因式分解:(1)a b ab bc ac222--++2(2)()x a b x a ab b 222+2+-3+10-3【答案】(1)()()a b b c 2+-+;(2)()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3【详解】(1)首先将原式按a 的降幂排列,写成关于a 的二次三项式()a c b a bc b 222+2-+-,此时的“常数bc b 2-”提取公因式b 即可分解成()b c b -,再运用十字相乘法便可很快将原式分解成()()a b a b c 2+-+;(2)这是x 的二次式,“常数项”可分解为()()a ab b a b a b 22-3+10-3=-3--3再对整个式子运用十字相乘()()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3.【变式训练3】因式分解:a b ab a c ac abc b c bc 222222-+--3++【答案】()()a b c ab ac bc =--+-【详解】原式()()()b c a b c bc a b c bc 22222=+-++3++()()()b c a b c bc a bc b c 222=+-++3++[()][()]a b c b c a bc =-++-()()a b c ab ac bc =--+-.课后作业1.如果2240m m +-=,那么20182019202032m m m --的值为( )A .2018m B .2018m -C .1D .-1【答案】B【详解】解:∵2m 2+m -4=0,∴-2m 2-m =-4,∴3m 2018-m 2019-2m 2020=m 2018×(3-m -2m 2)=m 2018×(3-4)=m 2018×(-1)=-m 2018,故选:B .2.如图,有一张边长为b 的正方形纸板,在它的四角各剪去边长为a 的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M 表示其底面积与侧面积的差,则M 可因式分解为( )A .()()62b a b a --B .()()32b a b a --C .()()5b a b a --D .()22b a -【详解】解:底面积为(b ﹣2a )2,侧面积为a •(b ﹣2a )•4=4a •(b ﹣2a ),∴M =(b ﹣2a )2﹣4a •(b ﹣2a ),提取公式(b ﹣2a ),M =(b ﹣2a )•(b ﹣2a ﹣4a ),=(b ﹣6a )(b ﹣2a )故选:A .3.已知250x y -+=,则224201x y y -+-=______.【答案】24【详解】解:250x y -+=Q ,25x y \-=-,224201x y y \-+-()()22201x y x y y =+-+-()52201x y y =-++-5101x y =-+-()521x y =--- 251=-24=,故答案为:24.4.分解因式:2232x y xy y -+=____________.【答案】2()y x y -【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -5.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.22216x xy y -+-()216x y =--()()44x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+;(3)△ABC 三边a 、b 、c 满足2222220a c b ab bc ++--=,判断△ABC 的形状并说明理由.【答案】(1)()()3535a b a b ---+;(2)()()222x y x y -+-;(3)△ABC 是等边三角形,理由见解析【解析】(1)解:226925a ab b -+-()2325a b =--()()3535a b a b =---+;(2)解:22424x y x y--+()()()2222x y x y x y =-+--()()222x y x y =-+-;(3)解:△ABC 是等边三角形,理由如下:∵2222220a c b ab bc ++--=,∴()()2222220a ab b c bc b -+-++=,∴()()220a b b c -+-=,∵()20a b -³,()20b c -³,∴a -b =0,且b -c =0,∴a =b ,且b =c ,∴a =b =c ,∴△ABC 是等边三角形.6.把下列各式因式分解:(1)2416x -;(2)23216164a b a ab --.【答案】(1)4(2)(2)x x +-(2)24(2)a a b --【解析】(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b éù=--+ëû24(2)a a b =--.7.(1)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.(2)已知ABC V 的三边长为a ,b ,c ,且满足220a b ac bc --+=,请判断ABC V 的形状.【答案】(1)答案见解析(2)ABC V 是等腰三角形【详解】(1)拼接如图:拼接成的长方形的面积还可以表示为一个正方形和三个长方形的面积之和:22212132x x x x x +++´=++g g ;拼接成的长方形的面积:长´宽()()21x x =++;∴据此可得到因式分解的式子为:()()23221++=++x x x x .故答案为:()()23221++=++x x x x .(2)∵220a b ac bc --+=,∴()()()0a b a b c a b +---=,∴()()0a b a b c -+-=.∵ABC V 的三边长为a ,b ,c ,∴a b c +>,∴0a b c +->,∴0a b -=,∴a b =,V是等腰三角形.∴ABCV是等腰三角形.故答案为:ABC。
人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12C 解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.4.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.6.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.7.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- D 解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确.故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A 解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则. 二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.14.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的【分析】 完全平方式可以写为首末两个数的平方()2x m +,则中间项为x 和m 积的2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成()2x m +,则中间项为x 和m 积的2倍,故62x x m =,∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.18.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 19.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦解析:(1)()()22x y x y -+;(2)9a【分析】 (1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦=()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦ =2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.解析:(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =,∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值.根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论; (2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020.【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.已知2,3x y a a ==,求23x y a +的值解析:108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.因式分解:(1)322242a a b ab -+(2)4481x y -解析:(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.27.如果2()()41x m x n x x ++=+-.①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值:(1)225m mn n ++;(2)2()m n -.解析:①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1,∴m +n =4,mn =−1.故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13;(2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.28.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).解析:()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.。
初二因式分解题20道
初二因式分解题20道一、提取公因式法1. 分解因式:3x + 6- 解析:先找出各项的公因式,在3x+6中,公因式为3。
所以3x + 6=3(x + 2)。
2. 分解因式:5x^2-10x- 解析:公因式为5x,则5x^2 - 10x = 5x(x - 2)。
3. 分解因式:8x^3y - 12x^2y^2- 解析:公因式为4x^2y,8x^3y-12x^2y^2 = 4x^2y(2x - 3y)。
二、公式法(平方差公式:a^2 - b^2=(a + b)(a - b))4. 分解因式:x^2-9- 解析:x^2-9=x^2 - 3^2,根据平方差公式可得(x + 3)(x - 3)。
5. 分解因式:16y^2 - 25- 解析:16y^2-25=(4y)^2 - 5^2=(4y + 5)(4y - 5)。
6. 分解因式:49x^4 - 16y^4- 解析:49x^4-16y^4=(7x^2)^2-(4y^2)^2=(7x^2 + 4y^2)(7x^2-4y^2),其中7x^2 - 4y^2还可以继续分解为(√(7)x+2y)(√(7)x - 2y),所以49x^4 - 16y^4=(7x^2 +4y^2)(√(7)x + 2y)(√(7)x - 2y)。
三、公式法(完全平方公式:a^2±2ab + b^2=(a± b)^2)7. 分解因式:x^2+6x + 9- 解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。
8. 分解因式:4y^2-20y + 25- 解析:4y^2-20y + 25=(2y)^2-2×5×2y + 5^2=(2y - 5)^2。
9. 分解因式:x^2 - 4xy+4y^2- 解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。
四、综合运用(先提公因式,再用公式法)10. 分解因式:2x^3 - 8x- 解析:先提公因式2x,得到2x(x^2 - 4),然后x^2 - 4可以用平方差公式继续分解为(x + 2)(x - 2),所以2x^3-8x = 2x(x + 2)(x - 2)。
初中因式分解典型例题汇总(附答案)
例 9 因式分解 2ax-10ay+5by-bx.
分析 用分组分解法.可将一、二两项和四、三两项分别作为一组,
这样不仅每组可分解,而且确保继续分解.
解 2ax-10ay+5by-bx
=2ax-10ay-bx+5by
=(2ax-10ay)-(bx-5by)
=2a(x-5y)-b(x-5y)
=(x-5y)(2a-b).
组分解. 解 (1)x4+4y4=x4+4x2y2+4y4-4x2y2 =(x2+2y2)2-(2xy)2 =(x2+2xy+2y2)(x2-2xy+2y2). (2)x3+5x-6=x3-x+6x-6 =(x3-x)+(6x-6) =x(x+1)(x-1)+6(x-1) =(x-1)(x2+x+6) 点评 若将-6 拆成-1-5,应如何分解? 例 17 已知x2-2xy-3y2=5,求整数x和y的值. 分析 原式左端可分解为两个一次因式的乘积,由题意可知,这两个 因式都表示整数,这样只能是一个因式为 1(或-1),而另一个因式 为 5(或-5).于是便可列出方程组求出 x 和 y 的值. 解 因为x2-2xy-3y2=5,所以 (x-3y)(x+y)=5. 依题意 x,y 为整数,所以 x-3y 和 x+y 都是整数,于是有:
丢掉. 本例题中,各项的公因式有 2,a,b,2a,2b,ab,2ab等.其中 2ab 是它们的最高公因式,故提取 2ab.作为因式分解后的一个因式,另 一个因式则是分别用 6a2b,4ab2和-2ab除以 2ab所得的商式代数和, 其中-2ab÷2ab=-1,这个-1 不能丢. 例 3 因式分解 m(x+y)+n(x+y)-x-y. 分析 将-x-y 变形为-(x+y),于是多项式中各项都有公因式 x+y,提 取 x+y 即可. 解 m(x+y)+n(x+y)-x-y =m(x+y)+n(x+y)-(x+y) =(x+y)(m+n-1). 点评 注意添、去括号法则. 例 4 因式分解 64x6-1. 分析 64x6可变形为(8x3)2,或变形为(4x2)3,而 1 既可看作 12,也可 看作 13,这样,本题可先用平方差公式分解,也可先用立方差公式分 解. 解 方法一 64x6-1=(8x3)2-1 =(8x3+1)(8x3-1) =[(2x)3+1][(2x)3-1] =(2x+1)(4x2-2x+1)(2x-1)(4x2+2x+1) 方法二