特殊三角形知识点及习题
浙教版八年级数学上册特殊三角形知识点归纳及练习
A.2 个 B.4 个 C.6 个 D.8 个
9.如图所示,已知△ABC 中,AB=6,AC=9,AD⊥BC 于 D,M 为 AD 上任一点,则 MC2=MB2 等 于( ) A.9 B.35 C.45 D.无法计算 10.若△ABC 是直角三角形,两条直角边分别为 5 和 12,在三角形内有一 点 D,D 到△ABC 各边的距离都相等,则这个距离等于 ( ) A.2 B.3 C.4 D.5
①等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对 __________);
②等腰三角形三线合一,这三线是指 ________________、________________、________________,也就是说这三线为同一条线 段;
③等腰三角形是________图形,它的对称轴有_________条。 2.等腰三角形的判定:
22.如图,已知点 B,C,D 在同一条直线上,△ABC 和△CDE 都是等边三角形,BE 交 AC 于 点 F,AD 交 CE 于点 H.(1)说明:△BCE≌△ACD;(2)说明:CF=CH;(3)判断△CFH 的形状 并说明理由.
19.如图,△ABC 是等边三角形,ABCD 是等腰直角三角形,其中∠BCD=90°,求∠BAD 的 度数.
20.如图,E 为等边三角形 ABC 边 AC 上的点,∠1=∠2,CD=BE,判断△ADE 的形状.
21.如图所示,已知:在△ABC 中,∠A=80°,BD=BE,CD=CF.求∠EDF 的度数.
例 2:如图,AB=AC,BD=BC,若∠A=40°,则∠ABD 的度数是( )
A.20°
B.30°
C.35°
D.40°
例 3:如图所示,在等腰△ABC 中,AD 是 BC 边上的中线,点 E 在 AD 上。求证:BE=CE。
特殊三角形练习题
特殊三角形练习题在几何学中,三角形是一种简单而重要的形状。
根据其边长和角度的关系,我们可以将三角形分为不同的类型,例如等边三角形、等腰三角形和直角三角形。
除了这些常见的三角形类型之外,还存在一些特殊的三角形,比如等边等腰三角形、等腰直角三角形和等腰等角三角形。
在本文中,我们将探讨一些涉及特殊三角形的练习题。
练习题一:等边等腰三角形1.已知等边等腰三角形的边长为4cm,求其周长和面积。
解析:等边等腰三角形具有三条边长度相等、三个角度相等的特点。
因此,根据已知边长为4cm,我们可以得知三角形的周长为12cm(4cm+4cm+4cm)。
另外,根据等边等腰三角形的性质,我们可以将其分为两个等腰直角三角形,每个直角三角形的底边长度为4cm,高为2√3cm。
因此,整个等边等腰三角形的面积为2 * (1/2 *4cm * 2√3cm) = 8√3cm²。
练习题二:等腰直角三角形2.已知等腰直角三角形的斜边长为5cm,求其面积。
解析:等腰直角三角形具有两条边长度相等、一个角为直角的特点。
根据已知斜边长为5cm,我们可以将等腰直角三角形划分为两个等边等腰三角形。
因此,每个等腰直角三角形的斜边长度为5cm,直角边长为5/√2cm。
根据等边等腰三角形的面积公式,我们可以计算出每个等腰直角三角形的面积为1/2 * (5/√2cm) * (5/√2cm) = 12.5cm²。
由于我们有两个相同的等腰直角三角形,因此整个等腰直角三角形的面积为2 * 12.5cm² = 25cm²。
练习题三:等腰等角三角形3.已知等腰等角三角形的周长为15cm,求其底边的长度。
解析:等腰等角三角形具有两条边长度相等、两个角度相等的特点。
根据已知周长为15cm,我们可以假设等腰等角三角形的底边长度为xcm。
由于等腰等角三角形的两条边长度相等,分别为xcm 和xcm,两个角度也相等,因此我们可以使用周长公式解方程,得出x + x + x = 15cm,化简后得出3x = 15cm,进一步化简得出x = 5cm。
浙教版-8年级-上册-数学-第2章《特殊三角形》分节知识点
浙教版-8年级-上册-数学-第2章《特殊三角形》分节知识点一、轴对称要点一、轴对称图形1、轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:(1)轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1、轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点.要点诠释:(1)轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2、轴对称与轴对称图形的区别与联系(1)轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质1、轴对称、轴对称图形的性质(1)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等要点诠释:(1)若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.二、等腰三角形性质定理要点一、等腰三角形的定义1、等腰三角形(1)有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(2)如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2、等腰三角形的作法(1)已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1、作线段BC=a;2、分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3、连接AB,AC.△ABC为所求作的等腰三角形.3、等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4、等边三角形(1)三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=.(2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx即为所求”.(3)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.(4)等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是,面积是.要点二、等腰三角形的性质1、等腰三角形的性质(1)性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.(2)推论:等边三角形的各个内角都等于60°.(3)性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2、等腰三角形的性质的作用(1)证明两条线段或两个角相等的一个重要依据.3、尺规作图:已知底边和底边上的高(1)已知线段a,h(如图)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h.作法:1、作线段BC=a.2、作线段BC的垂直平分线l,交BC与点D.3、在直线l上截取DA=h,连接AB,AC.△ABC就是所求作的等腰三角形.三、等腰三角形的判定定理要点一、等腰三角形的判定定理1、等腰三角形的判定定理(1)如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.2、等边三角形的判定定理(1)三个角相等的三角形是等边三角形.(2)有一个角是60°的等腰三角形是等边三角形.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)等边三角形是中考中常考的知识点,需要记住一下数据:边长为a的等边三角形它的高是,面积是.要点二、命题与逆命题,定理与逆定理(1)在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.每个命题都有它的逆命题,但每个真命题的逆命题不一定是真命题.(2)如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理.要点诠释:(1)每一个定理不一定都有逆定理,如果它存在逆定理,那么它一定是正确的.要点三、线段垂直平分线定理的逆定理(1)到线段两端距离相等的点在线段的垂直平分线上.已知:AB是一条线段,P是一点,且PA=PB.求证:点P在线段AB的垂直平分线上.证明:(1)当点P在线段AB上时,结论显然成立.(2)当点P不在线段AB上时,作PC⊥AB于点O.PA=PB,PO⊥AB,∵OA=OB,∴PC是AB的垂直平分线.∴点P在线段AB的垂直平分线上.四、直角三角形要点一、直角三角形的概念(1)有一个角是直角的三角形是直角三角形.直角三角形表示方法:Rt△.如下图,可以记作“Rt△ABC”.要点诠释:(1)三角形有六个元素,分别是:三个角,三个边,在直角三角形中,有一个元素永远是已知的,就是有一个角是90°.直角三角形可分为等腰直角三角形和含有30°的直角三角形两种特殊的直角三角形,每种三角形都有其特殊的性质.要点二、直角三角形的性质(1)直角三角形的两个锐角互余.(2)直角三角形斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形的特征是两锐角互余,反过来就是直角三角形的一个判定:两个角互余的三角形是直角三角形.(2)含有30°的直角三角形中,同样有斜边上的中线等于斜边的一半,并且30°的角所对的直角边同样等于斜边的一半.要点三、直角三角形判定(1)两个角互余的三角形是直角三角形.(2)在一个三角形中,如果一边的中线等于这边的一半,那么这个三角形是直角三角形.如图:已知:CD为AB的中线,且CD=AD=BD,求证:△ABC是直角三角形.证明:∵AD=CD,∴∠A=∠1.同理∠2=∠B.∵∠2+∠B+∠A+∠1=180°,即2(∠1+∠2)=180°,∴∠1+∠2=90°,即:∠ACB=90°,∴△ABC是直角三角形.五、勾股定理要点一、勾股定理(1)直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用(1)已知直角三角形的任意两条边长,求第三边;(2)用于解决带有平方关系的证明问题;(3)利用勾股定理,作出长为的线段.六、勾股定理的逆定理要点一、勾股定理的逆定理(1)如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:(1)当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、互逆命题(1)如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:(1)原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数(1)满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.(1)熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;七、直角三角形全等判定要点一、判定直角三角形全等的一般方法(1)由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理(1)斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“HL”时,虽只有两个条件,但必须先有两个Rt△的条件.要点三、角平分线的第二个性质定理(1)角的内部,到角两边距离相等的点,在这个角的平分线上.要点诠释:(1)这个性质定理和“角平分线上的点到角两边的距离相等”是互逆定理.它们的题设和结论交换了位置,运用的时候,一定要分清题设是什么,求证的结论又是什么.切不可发生混淆.。
中考数学专题复习27特殊三角形(解析版)
特殊三角形考点1:等腰三角形的性质与判定1.(2021·江苏苏州市)如图.在Rt ABC △中.90C ∠=︒.AF EF =.若72CFE ∠=︒.则B ∠=______.【答案】54°【分析】首先根据等腰三角形的性质得出∠A =∠AEF .再根据三角形的外角和定理得出∠A +∠AEF =∠CFE .求出∠A 的度数.最后根据三角形的内角和定理求出∠B 的度数即可.【详解】∠ AF =EF .∠ ∠A =∠AEF .∠∠A +∠AEF =∠CFE=72°.∠ ∠A =36°.∠ ∠C =90°.∠A +∠B +∠C =180°.∠ ∠B =180°-∠A -∠C =54°.故答案为:54°.2.(2021·江苏南京市·中考真题)如图.在四边形ABCD 中.AB BC BD ==.设ABC α∠=.则ADC ∠=______(用含α的代数式表示).【答案】11802α︒-【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠.∠BDC =1902CBD ︒-∠.两角相加即可得到结论.【详解】解:在∠ABD 中.AB =BD∠∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在∠BCD 中.BC =BD∠∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∠ABC ABD CBD α∠=∠+∠=∠ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠ =1180()2ABD CBD ︒-∠+∠ =11802ABC ︒-∠ =11802α︒- 故答案为:11802α︒-.3.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后.按图1分成六等份折叠得到图2.将图2沿虚线AB 剪开.再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒.则OBA ∠的度数为______.【答案】135°【分析】利用折叠的性质.根据等腰三角形的性质及三角形内角和定理解题.【详解】解:连接OC.EO由折叠性质可得:∠EOC=3603012︒=︒.EC=DC.OC平分∠ECD∠∠ECO=11(180275)15 22ECD∠=︒-⨯︒=︒∠∠OEC=180°-∠ECO-∠EOC=135°即OBA∠的度数为135°故答案为:135°4.(2021·山东中考真题)如图.在ABC中.ABC∠的平分线交AC于点D.过点D作//DE BC;交AB于点E.(1)求证:BE DE =;(2)若80,40A C ∠=︒∠=︒.求BDE ∠的度数.【答案】(1)见详解;(2)30BDE ∠=︒【分析】(1)由题意易得,ABD CBD CBD EDB ∠=∠∠=∠.则有ABD EDB ∠=∠.然后问题可求证; (2)由题意易得60ABC ∠=︒.则有30ABD CBD ∠=∠=︒.然后由(1)可求解.【详解】(1)证明:∠BD 平分ABC ∠.∠ABD CBD ∠=∠.∠//DE BC .∠CBD EDB ∠=∠.∠ABD EDB ∠=∠.∠BE DE =;(2)解:∠80,40A C ∠=︒∠=︒.∠18060ABC A C ∠=︒-∠-∠=︒.由(1)可得30ABD CBD BDE ∠=∠=∠=︒.5.(2020•台州)如图.已知AB =AC .AD =AE .BD 和CE 相交于点O .(1)求证:∠ABD ∠∠ACE ;(2)判断∠BOC 的形状.并说明理由.【分析】(1)由“SAS ”可证∠ABD ∠∠ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE .由等腰三角形的性质可得∠ABC =∠ACB .可求∠OBC =∠OCB .可得BO =CO .即可得结论.【解答】证明:(1)∠AB =AC .∠BAD =∠CAE .AD =AE .∠∠ABD∠∠ACE(SAS);(2)∠BOC是等腰三角形.理由如下:∠∠ABD∠∠ACE.∠∠ABD=∠ACE.∠AB=AC.∠∠ABC=∠ACB.∠∠ABC﹣∠ABD=∠ACB﹣∠ACE.∠∠OBC=∠OCB.∠BO=CO.∠∠BOC是等腰三角形.考点2:等边三角形的性质与判定6.(2021·四川凉山彝族自治州·中考真题)如图.等边三角形ABC的边长为4.C的半3P为AB边上一动点.过点P作C的切线PQ.切点为Q.则PQ的最小值为________.【答案】3【分析】连接OC和PC.利用切线的性质得到CQ∠PQ.可得当CP最小时.PQ最小.此时CP∠AB.再求出CP.利用勾股定理求出PQ即可.【详解】解:连接QC和PC.∠PQ和圆C相切.∠CQ∠PQ.即∠CPQ始终为直角三角形.CQ为定值.∠当CP最小时.PQ最小.∠∠ABC是等边三角形.∠当CP∠AB时.CP最小.此时CP∠AB.∠AB=BC=AC=4.∠AP=BP=2.∠CP22-3AC AP∠圆C的半径CQ3∠PQ22-=3.CP CQ故答案为:3.7.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的∠DEF的周长是.【分析】根据三等分点的定义可求EF的长.再根据等边三角形的判定与性质即可求解.【解析】∠等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.∠EF=2.∠DE∠AB.DF∠AC.∠∠DEF是等边三角形.∠剪下的∠DEF的周长是2×3=6.故答案为:6.8.(2020•凉山州)如图.点P、Q分别是等边∠ABC边AB、BC上的动点(端点除外).点P、点Q以相同的速度.同时从点A、点B出发.(1)如图1.连接AQ、CP.求证:∠ABQ∠∠CAP;(2)如图1.当点P、Q分别在AB、BC边上运动时.AQ、CP相交于点M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数;(3)如图2.当点P、Q在AB、BC的延长线上运动时.直线AQ、CP相交于M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数.【分析】(1)根据等边三角形的性质.利用SAS 证明∠ABQ ∠∠CAP 即可;(2)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =60°;(3)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =120°.【解析】(1)证明:如图1.∠∠ABC 是等边三角形∠∠ABQ =∠CAP =60°.AB =CA .又∠点P 、Q 运动速度相同.∠AP =BQ .在∠ABQ 与∠CAP 中.{AB =CA∠ABQ =∠CPA AP =BQ. ∠∠ABQ ∠∠CAP (SAS );(2)点P 、Q 在AB 、BC 边上运动的过程中.∠QMC 不变.理由:∠∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠ACM 的外角.∠∠QMC =∠ACP +∠MAC =∠BAQ +∠MAC =∠BAC∠∠BAC =60°.∠∠QMC =60°;(3)如图2.点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时.∠QMC 不变 理由:同理可得.∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠APM 的外角.∠∠QMC =∠BAQ +∠APM .∠∠QMC =∠ACP +∠APM =180°﹣∠P AC =180°﹣60°=120°.即若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动.∠QMC 的度数为120°.考点3:直角三角形的性质9.(2020•衡阳)如图.在∠ABC 中.∠B =∠C .过BC 的中点D 作DE ∠AB .DF ∠AC .垂足分别为点E 、F .(1)求证:DE =DF ;(2)若∠BDE =40°.求∠BAC 的度数.【分析】(1)根据DE ∠AB .DF ∠AC 可得∠BED =∠CFD =90°.由于∠B =∠C .D 是BC 的中点.AAS 求证∠BED ∠∠CFD 即可得出结论.(2)根据直角三角形的性质求出∠B =50°.根据等腰三角形的性质即可求解.【解答】(1)证明:∠DE ∠AB .DF ∠AC .∠∠BED =∠CFD =90°.∠D 是BC 的中点.∠BD =CD .在∠BED 与∠CFD 中.{∠BED =∠CFD∠B =∠CBD =CD. ∠∠BED ∠∠CFD (AAS ).∠DE =DF ;(2)解:∠∠BDE =40°.∠∠B=50°.∠∠C=50°.∠∠BAC=80°.10.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上.抽象出如图(2)的平面图形.∠ACB与∠ECD恰好为对顶角.∠ABC=∠CDE=90°.连接BD.AB =BD.点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时.连接DF(如图(2)).小明经过探究.得到结论:BD∠DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换.即:BD∠DF.则点F为线段CE的中点.请判断此结论是否成立.若成立.请写出证明过程;若不成立.请说明理由.问题解决:(3)若AB=6.CE=9.求AD的长.【分析】(1)证明∠FDC+∠BDC=90°可得结论.(2)结论成立:利用等角的余角相等证明∠E=∠EDF.推出EF=FD.再证明FD=FC 即可解决问题.(3)如图3中.取EC的中点G.连接GD.则GD∠BD.利用(1)中即可以及相似三角形的性质解决问题即可.【解析】(1)如图(2)中.∠∠EDC=90°.EF=CF.∠DF=CF.∠∠FCD=∠FDC.∠∠ABC=90°.∠∠A+∠ACB=90°.∠BA=BD.∠∠A=∠ADB.∠∠ACB=∠FCD=∠FDC.∠∠ADB+∠FDC=90°.∠∠FDB=90°.∠BD∠DF.故答案为是.(2)结论成立:理由:∠BD∠DF.ED∠AD.∠∠BDC+∠CDF=90°.∠EDF+∠CDF=90°.∠∠BDC=∠EDF.∠AB=BD.∠∠A=∠BDC.∠∠A=∠EDF.∠∠A+∠ACB=90°.∠E+∠ECD=90°.∠ACB=∠ECD.∠∠A=∠E.∠∠E=∠EDF.∠EF=FD.∠∠E+∠ECD=90°.∠EDF+∠FDC=90°.∠FD =FC .∠EF =FC .∠点F 是EC 的中点.(3)如图3中.取EC 的中点G .连接GD .则GD ∠BD .∠DG =12EC =92. ∠BD =AB =6.在Rt∠BDG 中.BG =√DG 2+BD 2=√(92)2+62=152. ∠CB =152−92=3.在Rt∠ABC 中.AC =√AB 2+BC 2=√62+32=3√5.∠∠ACB =∠ECD .∠ABC =∠EDC .∠∠ABC ∠∠EDC .∠AC EC =BC CD. ∠3√59=3CD. ∠CD =9√55. ∠AD =AC +CD =3√5+9√55=24√55. 11.(2020•常德)已知D 是Rt∠ABC 斜边AB 的中点.∠ACB =90°.∠ABC =30°.过点D 作Rt∠DEF 使∠DEF =90°.∠DFE =30°.连接CE 并延长CE 到P .使EP =CE .连接BE .FP .BP .设BC 与DE 交于M .PB 与EF 交于N .(1)如图1.当D .B .F 共线时.求证:∠EB =EP ;(2)如图2.当D .B .F 不共线时.连接BF .求证:∠BFD +∠EFP =30°.【分析】(1)∠证明∠CBP 是直角三角形.根据直角三角形斜边中线可得结论; ∠根据同位角相等可得BC ∠EF .由平行线的性质得BP ∠EF .可得EF 是线段BP 的垂直平分线.根据等腰三角形三线合一的性质可得∠PFE =∠BFE =30°;(2)如图2.延长DE 到Q .使EQ =DE .连接CD .PQ .FQ .证明∠QEP ∠∠DEC (SAS ).则PQ =DC =DB .由QE =DE .∠DEF =90°.知EF 是DQ 的垂直平分线.证明∠FQP ∠∠FDB (SAS ).再由EF 是DQ 的垂直平分线.可得结论.【解答】证明(1)∠∠∠ACB =90°.∠ABC =30°.∠∠A =90°﹣30°=60°.同理∠EDF =60°.∠∠A =∠EDF =60°.∠AC ∠DE .∠∠DMB =∠ACB =90°.∠D 是Rt∠ABC 斜边AB 的中点.AC ∠DM .∠BM BC =BD AB =12. 即M 是BC 的中点.∠EP =CE .即E 是PC 的中点.∠ED ∠BP .∠∠CBP =∠DMB =90°.∠∠CBP 是直角三角形.∠BE =12PC =EP ; ∠∠∠ABC =∠DFE =30°.∠BC ∠EF .由∠知:∠CBP =90°.∠BP ∠EF .∠EB=EP.∠EF是线段BP的垂直平分线.∠PF=BF.∠∠PFE=∠BFE=30°;(2)如图2.延长DE到Q.使EQ=DE.连接CD.PQ.FQ.∠EC=EP.∠DEC=∠QEP.∠∠QEP∠∠DEC(SAS).则PQ=DC=DB.∠QE=DE.∠DEF=90°∠EF是DQ的垂直平分线.∠QF=DF.∠CD=AD.∠∠CDA=∠A=60°.∠∠CDB=120°.∠∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP.∠∠FQP∠∠FDB(SAS).∠∠QFP=∠BFD.∠EF是DQ的垂直平分线.∠∠QFE=∠EFD=30°.∠∠QFP+∠EFP=30°.∠∠BFD+∠EFP=30°.考点4:勾股定理及其逆定理12.(2021·四川凉山彝族自治州·中考真题)如图.ABC中.∠=︒==.将ADE沿DE翻折.使点A与点B重合.则CE的长为90,8,6ACB AC BC()A.198B.2C.254D.74【答案】D【分析】先在RtABC中利用勾股定理计算出AB=10.再利用折叠的性质得到AE=BE.AD=BD=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中根据勾股定理可得到x2=62+(8-x)2.解得x.可得CE.【详解】解:∠∠ACB=90°.AC=8.BC=6.∠AB22AC BC+∠∠ADE沿DE翻折.使点A与点B重合.∠AE=BE.AD=BD=12AB=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中∠BE2=BC2+CE2.∠x2=62+(8-x)2.解得x=25 4.∠CE=2584-=74.故选:D.。
三角形及特殊三角形知识点(经典完整版)
三角形及特殊三角形知识点(经典完整版)
三角形及特殊三角形知识点(经典完整版)
三角形定义
三角形是一个由三条边和三个内角组成的图形。
根据边长关系,三角形可以分为以下三种情况:
1. 等边三角形:三条边的长度都相等。
2. 等腰三角形:两条边的长度相等。
3. 普通三角形:三条边的长度都不相等。
三角形内角和
三角形的三个内角之和始终为180度。
根据角度大小,三角形
可以进一步分类:
1. 直角三角形:一个内角为90度。
2. 钝角三角形:一个内角大于90度。
3. 锐角三角形:三个内角都小于90度。
三角形特性
三角形还有一些重要属性和特性:
1. 垂心:垂心是三角形三条高的交点,即垂直于三边的线段的交点。
2. 重心:重心是三角形三条中线的交点,即三角形三个顶点与对边中点的连线的交点。
3. 外心:外心是三角形外接圆的圆心,即可以过三角形三个顶点的圆的圆心。
4. 内心:内心是三角形内切圆的圆心,即可以切三角形三个边的圆的圆心。
特殊三角形
除了普通的三角形外,还有一些特殊的三角形:
1. 等边三角形:三条边的长度都相等,内角均为60度。
2. 等腰直角三角形:一个内角为90度,且两条直角边的长度相等。
3. 等腰钝角三角形:一个内角大于90度,且两条等腰边的长度相等。
4. 等腰锐角三角形:三个内角都小于90度,且两条等腰边的长度相等。
以上是关于三角形及特殊三角形的一些知识点。
掌握这些概念可以帮助我们更好地理解三角形的性质和特点。
直角三角形知识点
直角三角形知识点直角三角形是一种特殊的三角形,其内部包含一个90度的直角。
本文将介绍直角三角形的定义、性质、勾股定理以及一些相关的例题。
一、直角三角形的定义直角三角形是指一个三角形内部有一个角度是90度的三角形。
在直角三角形中,较长的边称为斜边,与直角相邻的边称为直角边。
直角三角形的性质与常规三角形有着显著的不同。
二、直角三角形的性质1. 直角三角形中,直角边的长度相等。
2. 根据勾股定理,直角三角形中的斜边长度等于直角边长度的平方和的平方根。
3. 直角三角形的三个角度之和等于180度。
三、勾股定理勾股定理是直角三角形中最重要的定理之一,也是直角三角形应用最为广泛的原理。
勾股定理表述如下:直角三角形中,斜边的平方等于直角边的平方和。
公式表示为:c² = a² + b²其中,c表示斜边的长度,a和b分别表示直角三角形的两个直角边的长度。
勾股定理在日常生活中有许多应用,例如测量直角三角形的边长,计算三角形的角度等。
四、直角三角形的应用举例1. 求斜边长度:根据已知直角边的长度,可以利用勾股定理求出斜边的长度。
2. 求角度大小:已知两个直角边的长度,可以利用三角函数中的正弦、余弦和正切等函数求出各个角度的大小。
3. 判断三角形是否为直角三角形:通过测量三个角度的大小,如果发现其中一个角度为90度,则可以判断为直角三角形。
五、例题解析1. 已知一个直角三角形的直角边长为3cm和4cm,求斜边的长度。
根据勾股定理,斜边的长度c = √(3² + 4²) = √(9 + 16) = √25 = 5cm。
2. 已知一个直角三角形的斜边长为10cm,直角边的长度为6cm,求另一个直角边的长度。
根据勾股定理,直角边的长度a或b = √(c² - 直角边的长度²) = √(10² - 6²) = √(100 - 36) = √64 = 8cm。
特殊三角形(知识点汇总 浙教8上)
第2章特殊三角形一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点34.轴对称的性质①关于某直线对称的两个图形是全等形。
①如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
①轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
①如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
四、等腰三角形1.等腰三角形的性质(1)等腰三角形的两个底角相等。
(等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)(3)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°①等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
①等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ①等腰三角形的三角关系:设顶角为顶角为①A ,底角为①B 、①C ,则①A=180°—2①B ,①B=①C=2180A∠-︒ 2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等 判定:SSS 、SAS 、ASA 、AAS 。
特殊三角形章节必考点题型归纳
特殊三角形二十个考点归纳总结考点1轴对称图形的识别解决此类问题关键是掌握如果一个图形沿一条直线折丧,直线两旁的部分能够互相重合,这个图形叫做轴 对称图形.例题1 2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,全国多家医院纷纷选派医护人员 驰援武汉.下面是四家医院标志的图案部分,其中图案部分是轴对称图形的是( )功盘 ⑥曲A.协和医院B.湘雅医院C.齐鲁医院D.华西医院【分析】利用轴对称图形的定义进行解答即可.【解析】工、不是轴对称图形,故此选项不合题意:不是轴对称图形,故此选项不符合题意:C 、是轴对称图形,故此选项符合题意;。
、不是轴对称图形,故此选项不合题意;故选:C.变式1 下列交通指示标识中,是轴对称图形的有( )【分析】根据轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合解答.【解析】第一、二、四个图形是轴对称图形,第三个图形不是轴对称图形,故选:C.【小结】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 变式2 下列与防疫有关的图案中不是轴对称图形的有( )A A ® A 当心辐射I I 当心感染I I 必须戴防护手套]I 小心腐蚀A. 1个B. 2个C. 3个D. 4个A.1个B. 2个C. 3个D. 4个【分析】根据轴对称图形定义进行分析即可.【解析】第一个图案和第二个图案是轴对称图形,第三个图案和第四个图案不是轴对称图形,则不是轴对称图形的有2个,故选:B.【小结】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.变式3 下列图形中,是轴对称图形的有()个.①角②线段③等腰三角形④等边三角形⑤扇形⑥圆⑦平行四边形A. 4个B. 5个C. 6个D. 7个【分析】直接利用轴对称图形的定义分析得出答案.【解析】①角②线段③等腰三角形④等边三角形⑤扇形⑥圆⑦平行四边形中只有平行四边形不是轴对称图形.故轴对称图形有6个.故选:C.【小结】此题主要考查了轴对称变换,正确把握轴对称图形的定义是解题关键.考点2轴对称的性质与运用轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.例题2 如图,尸为内一点,分别画出点尸关于。
特殊三角形
特殊三角形知识定位特殊三角形在初中几何或者竞赛中占据非常大的地位,不管三解形还是特殊三角形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础。
特殊三角形的判定和性质是证明有关三角形问题的基础,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中特殊三角形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理三角形类型定义性质判定等腰三角形有两条边相等的三角形是等腰三角形,其中相等的两条边分别叫做腰,另一条边叫做底边,两腰的夹角叫顶角,腰和底边的夹角为底角1.等腰三角形是对称图形,顶角平分线所在直线为它的对称轴2.等腰三角形两底角相等,即在同一个等腰三角形中,等边对等角3.等腰三角形的顶角平分线,底边上的中线和高线互相重合,简称等腰三角形的三线合一1.(定义法)有两条边相等的三角形是等腰三角形2.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,即,在同一个三角形中,等角对等边等边三角形三条边都相等的三角形是等边三角形,它是特殊的等腰三角形,也叫正三角形1.等边三角形的内角都相等,且为60°2.等边三角形是轴对称图形,且有三条对称轴3.等边三角形每条边上的中线,高线和所对角的角平分线三线合一,他们所在的直线都是等边三角形的对称轴1.三条边都相等的三角形是等边三角形2.三个内角都等于60°的三角形是等边三角形3.有一个角是60°的等腰三角形是等边三角形直角三角形有一个角是直角的三角形是直角三角形,即“R t△”1.直角三角形的两锐角互余2.直角三角形斜边上的中线等于斜边的一半3.直角三角形中30°角所对的直角边等于斜边的一半4.直角三角形中两条直角边的平方和等于斜边的平方(勾股定理)1.有一个角是直角的三角形是直角三角形2.有两个角互余的三角形是直角三角形3.如果一个三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形(勾股定理逆定理)2、等腰三角形(1)有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。
特殊三角形性质
12.如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD= ,AB=20.求∠A的度数。
13.(2010•雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN。
10.如图,在△ABC中,∠B=∠C,D在BC上,∠BAD=50°AE=AD,则∠EDC的度数为()
A.15°B. 25°C. 30°D. 50°
11.如图,△ABC中,∠B=45°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=18㎝,求△DEB的周长。
12.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.
勾股定理:直角三角形斜边的平方等于两直角边的平方和。
【经典例题】
【例1】已知:如图,在△ABC中,∠A=45°,AC= ,AB= ,CD⊥AB,求BC边的长。
【例2】已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.
求证:CD⊥AB。
【例3】如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.
9.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是cm2。
10.已知 三内角 的对边分别为 ,给出以下条件: ① 的度数之此为 ; ② =
③ ④
其中不能推导出 为直角三角形的条件是(写序号即可)。
11.在△ABC中,BD⊥AC,垂足为D点,已知,AB=8,AD=4,∠ABC=75°.
特殊三角形知识点及例题
特殊三角形知识点及例题三角形是几何学中的基本形状之一,由三条边和三个角构成。
在三角形中,存在着一些特殊的三角形,它们具有一些特殊的性质和性质。
本文将介绍特殊三角形的知识点,并给出一些例题供读者练习。
一、等边三角形等边三角形是指三条边的边长相等的三角形。
等边三角形具有以下特点:1. 三条边相等。
2. 三个角都是60度。
3. 对称轴是三条中线,也是三条高线,也是三条角平分线。
例题:1. 在等边三角形ABC中,AB=BC=CA=6cm,求三角形的高度。
解:由于等边三角形的高线与中线重合且相等,所以三角形的高高线长等于边长。
二、等腰三角形等腰三角形是指两条边的边长相等的三角形。
等腰三角形具有以下特点:1. 两条边相等。
2. 两个底角(底边两侧的角)相等。
3. 对称轴是高线,也是角平分线。
例题:1. 在等腰三角形ABC中,AB=AC=4cm,BC=6cm,求三角形的高度。
解:由等腰三角形的性质可知,高线与底边垂直且平分底角,所以可以利用勾股定理求解。
三、直角三角形直角三角形是指其中一个角为90度的三角形。
直角三角形具有以下特点:1. 包含一个直角(90度)。
2. 两边的平方和等于斜边的平方(勾股定理)。
3. 对称轴是斜边的中线和中线的垂线。
例题:1. 在直角三角形ABC中,∠ABC=90度,AB=3cm,BC=4cm,求三角形的斜边长度。
解:利用勾股定理可以求得斜边的长度。
四、等腰直角三角形等腰直角三角形是指两条直角边的长度相等的直角三角形。
等腰直角三角形具有以下特点:1. 包含一个直角(90度)。
2. 两条直角边相等。
3. 对称轴是斜边的中线和中线的垂线。
例题:1. 在等腰直角三角形ABC中,∠ABC=90度,AB=AC=5cm,求三角形的斜边长度。
解:利用勾股定理可以求得斜边的长度。
五、等腰直角三角形等腰直角三角形是指两条直角边的长度相等的直角三角形。
等腰直角三角形具有以下特点:1. 包含一个直角(90度)。
初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析
特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。
三角形与特殊三角形知识点归纳
三角形与特殊三角形(一):【知识梳理】1.三角形中的主要线段(1)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(2)中线:连结三角形的一个顶点和它的对边中点的线段叫做三角形的中线.(3)高:从三角形的一个顶点向它的对边(或其延长线)引垂线,顶点和垂足间的线段叫做三角形的高.(4)中位线:连接三角形两边的中点的线段。
2.三角形的边角关系(1)三角形边与边的关系:三角形中两边之和大于第三边;三角形任意两边之差小于第三边;(2)三角形中角与角的关系:三角形三个内角之和等于180o. 3.三角形的分类(1)按边分:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不等的等腰三角形等腰三角形等边三角形(2)按角分:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形4.特殊三角形(1)直角三角形性质①角的关系:∠A+∠B=900;②边的关系:222a b c +=③边角关系:00901230C BC AB A ⎫∠=⎪⇒=⎬∠=⎪⎭; ④09012C CE AB AE BE ⎫∠=⇒=⎬=⎭⑤2ch ab s ==; ⑥2c R =a+b-c 外接圆半径;内切圆半径r=2(2)等腰三角形性质①角的关系:∠A=∠B ;②边的关系:AC=BC ;③AC BC AD BDCD AB ACD BCD==⎫⎧⇒⎬⎨⊥∠=∠⎭⎩ ④轴对称图形,有一条对称轴。
(3)等边三角形性质①角的关系:∠A=∠B=∠C=600;②边的关系:AC=BC=AB ;③AB AC BD CDAD BC BAD CAD==⎫⎧⇒⎬⎨⊥∠=∠⎭⎩;④轴对称图形,有三条对称轴。
(4)三角形中位线:12AD BD DE BCAE BE DE BC⎧==⎫⎪⇒⎬⎨=⎭⎪⎩∥ 5.特殊三角形的判定] 6.两个重要定理:(1)角平分线性质定理及逆定理:角平分线上的点到角的两边的距离相等;到角的两边的距离相等的点在这个角的平分线上;三角形的三条角平分线相交于一点(内心)(2)垂直平分线性质定理及逆定理:线段垂直平分线上的点到两个端点的距离相等;到线段两端点的距离相等的点在这条线段的垂直平分线上;三角形的三边的垂直平分线相交于一点(外心)二):【课前练习】1.以下列各组线段长为边,能组成三角形的是( ) A .1cm ,2cm ,4 cm B .8 crn ,6cm ,4cm C .12 cm ,5 cm ,6 cm D .2 cm ,3 cm ,6 cm2.若线段AB=6,线段DC=2,线段AC= a ,则( ) A .a =8 B .a =4 C .a =4或8 D .4<a<83.等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( ) A .15cm B .20cm C .25 cm D .20 cm 或25 cm4.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_______.5.如图,四边形ABCD 中,AB=3,BC=6,AC=35,AD=2,∠D=90○,求CD 的长和四边形 ABCD 的面积.二:【经典考题剖析】1.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角中,最多有______个钝角,最多有______个锐角.2.两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm 的范围是__________3.已知D 、E 分别是ΔABC 的边AB 、BC 的中点,F 是BE 的中点.若面ΔDEF 的面积是10,则ΔADC 的面积是多少?4.正三角形的边长为a ,则它的面积为_____.5.如图,DE 是△ABC 的中位线, F 是DE 的中点,BF 的延长线交 AC 于点H ,则AH :HE 等于( )A .l :1B .2:1C .1:2D .3:2DCABEDC B A三:【课后训练】1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.5cm,7cm,13cm D.7cm,7cm,15cm2.过△ABC的顶点C作边AB的垂线,如果这条垂线将∠ACB分为50°和20°的两个角,那么∠A、∠ B中较大的角的度数是________.3.如图,OE是∠AOB的平分线,CD∥OB交OA于C,交OE于D,∠ACD=50o,则∠CDE的度数是()A.175° B.130° C.140° D.155°4.如图,△ABC中,∠C=90○,点E在AC上,ED⊥AB,垂足为D,且ED平分△ABC的面积,则AD:AC等于()A.1:1 B.1: 2 C.1:2 D.1:45.在ΔABC中,AC=5,中线AD=4,则AB边的取值范围是()A.1<AB<9 B.3<AB<13C.5<AB<13 D.9<AB<136.如图,直角梯形ABCD中,AB∥ CD,CB⊥AB,△ABD是等边三角形,若AB=2,则CD=_______,BC=_________.7.如图所示,在△ABC中,∠A=50°,BO、CO分别平分∠ABC和∠ACB.求∠BOC的度数.8. 已知:△ABC的两边AB=3cm,AC=8cm.(1)求第三边BC的取值范围;(2)若第三边BC长为偶数,求BC的长;(3)若第三边BC长为整数,求BC的长9.已知△ABC,(1)如图1-1-27,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=1902A ︒+∠;(2)如图1-1-28,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=12A ∠;(3)如图1-1-29,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=1902A︒-∠。
特殊三角形知识点及习题
(2)等腰三角形两腰上的中线相等
(3)等腰三角形两底角的平分线相等
(4)等腰三角形一腰上的高与底边的夹角等于顶角的一半
(5)等腰三角形顶角的外角平分线与底边平行
(6)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高
(7)等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高
性质
(1)直角三角形的两个锐角互余。
(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,斜边上的中线等于斜边的一半。
勾股定理及逆定理
勾股定理
直角三角形两直角边a、b的平方和,等于斜边c的平方.即:________
勾股
定理
的逆
定理
逆定理
如果三角形的三边长a、b、c有关系: ________ ,那么这个三角形是直角三角形
用途
(1)判断某三角形是否为直角三角形;(2)证明两条线段垂直;(3)解决生活实际问题
勾股数
能构成直角三角形的三条边长的三个正整数,称为勾股数
特殊三角形
重点知识透视一
等腰三角形的概念与性质
定义
有两条边相等的三角形是等腰三角形.相等的两边叫腰,第三边为底
性质பைடு நூலகம்
轴对称性
等腰三角形是轴对称图形,有1条对称轴。
定理1
等腰三角形的两个底角相等(简称为:等角对等边)。
定理2
等腰三角形顶角的平分线、底边上的中线和底边上的高相互重合,简称“三线合一”。
拓展
重点知识透视二
等腰三角形的判定
定理
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成:等边对等角)
特殊三角形知识点及习题
特殊三角形知识点及习题三角形是几何学中一个重要的概念,具有广泛的应用。
在三角形中,特殊三角形是一类具有特殊性质的三角形。
本文将介绍关于特殊三角形的知识点,并提供相关习题。
一、等边三角形等边三角形是指三条边的长度相等的三角形。
特点是三个角度都相等,每个角度为60度。
等边三角形的三条高、三条中线、三条角平分线都重合于同一条线段,且等边三角形的内切圆和外接圆半径相等。
求等边三角形的面积可使用海伦公式。
习题1:若等边三角形的边长为a,则该等边三角形的高、中线、角平分线的长度分别为多少?习题2:已知等边三角形的周长为18 cm,求其面积。
二、等腰三角形等腰三角形是指两条边的长度相等的三角形。
特点是两个底角(底边两侧的角)相等,顶角(顶边两侧的角)与底角不相等。
等腰三角形的高线、中线、角平分线都重合于同一条线段,且等腰三角形的内切圆与底边相切于一点。
习题3:已知等腰三角形的底边长度为a,腰边长度为b,求该等腰三角形的顶角和面积。
习题4:已知等腰三角形的面积为16 cm²,底边长度为4 cm,求腰边的长度。
三、直角三角形直角三角形是指其中一个角度为90度的三角形。
直角三角形的边分为三个部分:斜边、邻边和对边。
直角三角形中,邻边与对边满足勾股定理的关系,即邻边的平方加上对边的平方等于斜边的平方。
习题5:已知直角三角形的邻边长度为3 cm,对边长度为4 cm,求斜边的长度。
习题6:已知直角三角形的斜边长度为5 cm,对边长度为4 cm,求邻边的长度。
四、30-60-90三角形30-60-90三角形是指其中一个角为30度,另一个角为60度的三角形。
30-60-90三角形中,长边(斜边)的长度是中边(底边)长度的2倍,短边(高边)的长度是中边长度的根号3倍。
习题7:已知30-60-90三角形的中边长度为a,求其高边和斜边的长度。
习题8:已知30-60-90三角形的高边长度为3 cm,求斜边和中边的长度。
综上所述,特殊三角形具有一些独特的性质,包括等边三角形、等腰三角形、直角三角形和30-60-90三角形等。
八上第一章 认识三角形和第二章 特殊三角形-知识点
1考点一、认识三角形1、三角形中的主要线段:角平分线(角平分线+∥等腰三角形);中线;高线;2、三角形的稳定性应用:需要稳定的东西一般都制成三角形的形状;3、三角形的分类(1)三角形按边的关系分类如下:不等边三角形:三边都不相等三角形底和腰不相等的等腰三角形等腰三角形等边三角形(2)三角形按角的关系分类如下:特殊的三角形:等腰直角三角形;它是两条直角边相等的直角三角形;直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形分类讨论:锐角,钝角△钝角三角形(有一个角为钝角的三角形)4、三角形的三边关系定理及推论(1)定理:三角形任何两边之和大于第三边;(2)推论:三角形任何两边之差小于第三边;(3)作用:判断三条已知线段能否组成三角形;当已知两边时,可确定第三边的范围;证明线段不等关系;已知最大边时,只需较小两边的和大于最大边即可;若不确定最大边时,满足两边的差<第三边<两边的和.5、三角形的内角和定理及推论(1)内角和定理:三角形三个内角的和等于180°;(2)推论:①直角三角形的两个锐角互余;②三角形的外角等于与它不相邻的两个内角的和;三角形的外角大于任何一个和它不相邻的内角;注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角;6、三角形的面积S=×底×高;;(S ,C 是△的面积,周长;r 是内切圆半径);考点二、全等三角形1、全等三角形的概念:能够重合的两个三角形叫做全等三角形;2、全等三角形的性质:全等三角形的对应边相等,对应角相等;3、全等三角形的表示注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上;全等用符号“≌”表示,读作“全等于”;如△ABC ≌△DEF ,读作“三角形ABC 全等于三角形DEF ”;4、三角形全等的判定:“SSS ”;“SAS ”(两边必须是夹角),“HL ”(Rt △,斜边与一直角边);“ASA ”,“AAS ”;一定不能证全等:SSA ;要特别注意:是否有公共边及公共角;6、相关知识(1)线段的垂直平分线的性质:线段垂直平分线上的点到线段两端的距离相等(SAS ).(2)角平分线的性质:角平分线上的点到角两边的距离相等(AAS ).注意:角平分线性质定理的逆定理:角的内部,到角两边距离相等的点,在这个角的平分线上.考点三、常用逻辑用语命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.一个命题分为“条件”和“结论”两部分,由条件推出结论,通常条件在前,结论在后.“若,则”形式的命题中的称为命题的条件,称为命题的结论.逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若,则”,它的逆命题为“若,则”.2考点一、图形的轴对称1、轴对称图形的概念:如果把一个图形沿着一条直线折叠后,直线两侧的部分能够互相重合,那么这个图形叫轴对称图形.这条直线叫做对称轴;图形中能够完全重合的两个点称为对称点.2、轴对称图形的性质:对称轴垂直平分连结两个对称点的线段.3、图形的轴对称:一般地,由一个图形变成另一个图形,并使这两个图形沿某一条直线折叠后能够互相重合,这样的图形改变叫做图形的轴对称,这条直线叫做对称轴.4、图形的轴对称的性质:成轴对称的两个图形是全等图形.考点二、等腰三角形1、等腰三角形的概念:有两边相等的三角形叫等腰三角形;等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.2、等腰三角形的性质(1)等腰三角形的两个底角相等(“在同一个三角形中,等边对等角”)(性质定理1).(2)等腰三角形的顶角平分线,底边上的中线和高线互相重合(性质定理2).简称“等腰三角形三线合一”①AB=AC ;②BD=CD ;③∠BAD=∠CAD ;④AD ⊥CD ;四个中有两个成立,另外两个一定成立.(3)等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴.(4)等腰三角形两腰上的中线(高线)相等,等腰三角形两底角的平分线相等.3、等腰三角形的判定定理(1)如果一个三角形有两个角相等,那么这个三角形是等腰三角形.简单地说,在同一个三角形中,等角对等边.(2)利用三线合一证明等腰三角形.考点三、等边三角形1、等边三角形的概念:三条边都相等的三角形叫做等边三角形.(是特殊的等腰三角形)2、等边三角形的性质:(1)等边三角形的三边相等,三个内角都相等且等于60°;(2)等边三角形是轴对称图形,有三条对称轴;(3)等边三角形各边上中线,高和所对角的平分线都三线合一.3、等边三角形的判定定理:(1)三边相等的三角形是等边三角形(定义法).(2)三个角都相等的三角形是等边三角形(判定定理1).(3)有一个角是60°的等腰三角形是等边三角形(判定定理2).考点四、直角三角形1、直角三角形的概念:有一个角是直角的三角形叫做直角三角形,直角三角形可以用符号“Rt △”表示.2、直角三角形的性质(1)直角三角形的两个锐角互余.∵∠ACB=90°,∴∠A+∠B=90°;(2)直角三角形斜边上的中线等于斜边的一半.∵∠ACB=90°,AD=DB ,∴DA=DB=DC ;(3)∵∠ACB=90°,DB=DC ,∴DA=DB=DC ;(同角的余角相等)(推论1).(4)勾股定理:直角三角形两条直角边的平方和等于斜边的平方(短边为勾,长边为股,斜边为弦).3、直角三角形的判定定理:(1)有一个角是直角的三角形叫做直角三角形(定义).(2)有两个角互余的三角形是直角三角形.(3)三角形一条边上的中线等于这条边的一半,则这个三角形是直角三角形(推论2).∵DA=DB=DC ,∴∠ACB=90°;(4)勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形.。
特殊三角形基本知识点整理
特殊三角形基本知识点整理一、特殊三角形的定义与分类特殊三角形是指具有特殊性质和特点的三角形。
常见的特殊三角形主要包括等腰三角形、等边三角形和直角三角形。
等腰三角形是指至少有两边相等的三角形。
相等的两条边称为这个三角形的腰,另一边则称为底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等边三角形是一种特殊的等腰三角形,它的三条边都相等,三个角也都相等,并且每个角都是 60 度。
直角三角形则是指其中一个角为直角(90 度)的三角形。
直角所对的边称为斜边,其余两条边称为直角边。
二、等腰三角形的性质1、两腰相等这是等腰三角形最基本的性质,也是其名称的由来。
2、两底角相等即等腰三角形的两个底角大小相等。
这一性质可以通过三角形内角和定理以及等边对等角的原理来证明。
3、三线合一等腰三角形底边上的高、底边上的中线、顶角平分线相互重合,简称“三线合一”。
这是等腰三角形非常重要的一个性质,在解决与等腰三角形相关的几何问题时经常会用到。
4、轴对称性等腰三角形是轴对称图形,对称轴是底边上的高(或顶角平分线、底边上的中线)所在的直线。
三、等腰三角形的判定1、有两条边相等的三角形是等腰三角形。
这是最直接的判定方法。
2、有两个角相等的三角形是等腰三角形。
此判定方法基于等角对等边的原理。
四、等边三角形的性质1、三边相等这是等边三角形最显著的特征。
2、三个角都相等,且都为 60 度由于三角形内角和为180 度,所以等边三角形的每个角都是60 度。
3、具有等腰三角形的一切性质因为等边三角形是特殊的等腰三角形,所以等腰三角形的性质它都具备。
4、是轴对称图形,有三条对称轴分别是三条边的高所在的直线。
五、等边三角形的判定1、三条边都相等的三角形是等边三角形。
这是最直观的判定方法。
2、三个角都相等的三角形是等边三角形。
3、有一个角是 60 度的等腰三角形是等边三角形。
六、直角三角形的性质1、直角三角形两直角边的平方和等于斜边的平方这就是著名的勾股定理,例如,如果直角三角形的两条直角边分别为 a 和 b,斜边为 c,那么 a²+ b²= c²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊三角形重点知识透视一
等腰三角形的概念与性质
重点知识透视二等腰三角形的判定
重点知识透视三
等边三角形
1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()
A.12 B.15 C.12或15 D.18
2.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC
的度数是()第6题图D
C
B
A
A.18°B.24°C.30°D.36°3.△ABC中,AB=AC,∠B=70°,
则∠A的度数是()
A.70°
B. 55°
C. 50°
D. 40°
4.等腰三角形的一条边长为6,另一边长为13,
则它的周长为()
A.25
B.25或32
C.32
D.19
5.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,)M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()
A.5
B.6
C.7
D.8
6.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,
连接DE,则DE=________
7.若等腰三角形的一个角为50°,则它的
顶角为____________
8.等腰三角形的周长为16,其一边长为6,
则另两边为___________
9.如图,在平面直角坐标系中,
矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA
的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,
点P的坐标为___________________
重点知识透视四
直角三角形的概念、性质与判定
定义有一个角是________的三角形叫做直角三角形
性质
(1)直角三角形的两个锐角互余
(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于______________
(3)在直角三角形中,斜边上的中线等于________________
勾股定理及逆定理
(1)两个内角互余的三角形是直角三角形
(2)一边上的中线等于这边的一半的三角形是直角三角
形
(3)在一个三角形中,0
30角所对的边是另一边一半时,
这个三角形为直角三角形
(4)一个三角形中其中两边的平方和等于第三边的平方,
那么这个三角形是直角三角形。
S Rt△ABC=
1
2
ch=
1
2
ab,其中a、b为两直角边,c为斜边,h
为斜边上的高。
两直角三角形全等(HL)
1.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系,
并说明理由.
解析:先通过平行条件得到两对内错角相等,结合线段中点得到的线段相等,可证明两个三角形全等;由角相等的条件可证明△DFG是等腰三角形,再结合点E是DF的中点,根据等腰三角形“三线合一”的性质可证明结论.
解:(1)证明:∵AD∥BC,
∴∠ADE=∠BFE,∠DAE=∠FBE.
∵E是AB的中点,
∴AE=BE.
∴△ADE≌△BFE.
(2)EG与DF的位置关系是EG⊥DF.
∵∠GDF=∠ADF,
又∵∠ADE=∠BFE,
∴∠GDF=∠BFE,
∴GD=GF.
由(1)得,DE=EF,
∴EG⊥DF.
2,已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的平分线上,并说明理由.
解析:(1)利用△BDC≌△CEB证明∠DCB=∠EBC;(2)连接AO,通过HL证明△ADO≌△AEO,从而得到∠DAO=∠EAO,利用角平分线上
解:(1)证明:∵OB=OC,
∴∠OBC=∠OCB.
∵BD、CE是两条高,∴∠BDC=∠CEB=90°.又∵BC=CB,∴△BDC
≌△CEB (AAS).
∴∠DBC =∠ECB, ∴AB =AC .∴△ABC 是等腰三角形.
3.将一个有45度角的三角板的直角顶点放在一张宽为3 cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图,则三角板的最大边的长为( )
4.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )
5.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处. (1)请你画出蚂蚁能够最快到达目的地的可能路径;
(2)当AB =4,BC =4,CC 1=5时,求蚂蚁爬过的最短路径的长; (3)求点B 1到最短路径的距
离.
解:(1)如图,木柜的表面展开图是两个矩形和.
蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC 1.
(2)蚂蚁沿着木柜表面经线段A 1B 1到C′1,爬过的路径的长是l 1=42+(4+5)2=97.
A.365
B.12
25 C.94 D.334
蚂蚁沿着木柜表面经线段BB
1到C
1
,爬过的路径的长是l
2
=(4+4)2+52
=89.
l
1>l
2
,最短路径的长是l
2
=89.
(3)作B1E⊥AC1于E,则B1E=B1C1
AC1·AA1=
4
89
·5=
20
8989
6.如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D,
(1) 判断直线BE与AD的位置关系是________;BE与AD之间的距离是线段___________的长;
(2) 若AD=6cm,BE=2cm.,求BE与AD之间的距离及AB的长.
解:(1) 直线BE与AD的位置关系是平行;BE与AD之间的距离是线段ED 的长;
(2) ∵AC=BC,BE⊥CE,AD⊥CE,∠ACB=90°∴∠1与∠3互余,
∠2与∠3互余,∴∠1=∠2,∴△CBE≌△ACD(AAS)
∴BE与AD之间的距离ED=6―2=4 (cm )
又∵AC=BC=,
∴AB=(cm)。