传热学 第五章 对流原理.

合集下载

传热学 第五章 对流传热

传热学 第五章 对流传热

思路:
定性地分析对流传热的影响因素
深入讨论对流传热过程的数学描述 导出边界层问题的简化方程
给出相应的求解方法
3
2. 对流传热的特点 (1) 导热与热对流同时存在的复杂热传递过程 (2) 流固之间存在温差 (3) 必须有直接接触(流体与壁面)和宏观运动 (4) 由于流体的粘性,受壁面摩擦阻力的影响,紧贴壁面处会 形成速度梯度很大的边界层
自然对流:流体因各部分温度不同而引起的密度差所产生的 浮升力所推动的流动
5
(2) 流动状态
层流:(Laminar flow )流体微团沿主流方向做有规则的 分层运动,整个流场呈一簇互相平行的流线
湍流:(Turbulent flow )流体质点做复杂无规则的运动,
流体各部分之间发生剧烈的混合。
(3) 流体有无相变
15
2. 动量守恒方程
牛顿第二运动定律: 作用在微元体上各外力的总和等于控制体中流体动量的变化率
F = ma
作用力:体积力(重力、离心力、电磁力) 表面力:切应力、z应力
16
应力形式的运动微分方程:
(1)
牛顿流体的本构关系:
1)达朗伯原理——两相邻正交截面上的剪切力互等 2)斯托克斯三假设
a) 流体各向同性,任一质点在的各个方向上物理性质都相同 b) 应力分量与变形速度成正比 c) 变形速度为零:切应力为零,法向应力为流体静压强 P
Note: 第三类边界条件中的h为已知量
12
§5-2 对流传热问题的数学描述
为便于分析,以二维对流传热问题为研究对象: 假设:a) 流体为连续性介质 b) 流体为不可压缩的牛顿流体
c) 所有物性参数(?、cp、?、? )为常量 d) 粘性耗散热忽略不计 控制变量:速度 u、v;压力 p;温度 t 控制方程:连续性方程、动量方程、能量方程

传热学第五章_对流换热原理-6

传热学第五章_对流换热原理-6

2-2)管内流体平均温度
t f
c p tudf
f
c pudf
2 R 2um
R
turdr
0
f
其中,tf为根据焓值计算的截断面平均温度。
由热平衡方程
dQ hx (tw t f )x * 2R * dx cpumR2dt f

dQ q * 2R * dx
可得
dt f 2q 2hx (tw t f ) x
t
( tw t r tw t f
)rR
( r )rR tw t f
const
而同时又有
q
(
t r
)
r
R
h(t w
tf
)
于是,得
(
t r
)
r
R
h
const
tw t f
上式又表明,常物性流体在热充分发展段的一个特点是 换热系数保持不变。
另外,如果边界层在管 中心处汇合时流体流动 仍然保持层流,那么进 入充分发展区后也就继 续保持层流流动状态, 从而构成流体管内层流 流动过程。
若 Pr<1, 则意味着流动进口段长于热进口段; 1-3)管内流动充分发展段的流态判断
Re 2300 2300 Re 10 4 Re 10 4
层流 过渡流 旺盛湍流
2)管内流体平均速度与平均温度
2-1)管内流体运动平均速度
um
f udf 0f
2
R 2
R rudr V
0
f
其中,V-体积流量;f-管的截断面积;u-局部流速
dx c pum R
c pum R
积分上式可得全管长流体的平均温度。
由于热边界存在有均匀壁温和均匀热流两种典型情

传热学-5 对流传热原理

传热学-5 对流传热原理
电场与温度场:微分方程相同,内容不同。 强制对流换热与自然对流换热:微分方程的形式和内容都 有差异。 外掠平板和外掠圆管:控制方程相同,单值性条件不同。
5-4 相似原理简介
1)几何相似 对应的长度量成固定比例,对应的角度相等。
若(1)(2)相似
a' a ''
b' b ''
c' c ''
h' h ''
' ''
P' P ''
CF
5-4 相似原理简介
4)初始条件和边界条件相似 保证定解条件一致。
几何相似是运动相似和动力相似的前提; 动力相似是决定流动相似的主要因素(保证); 运动相似是几何相似和动力相似的表现。
y
u
u
tw x
5-1 对流传热概述
特点: (1)导热与热对流同时存在的复杂热传递过程; (2)必须有流体和壁面的直接接触和宏观运动, 也必须有温差; (3)由于流体的黏性和受壁面摩擦阻力的影响,紧 贴壁面处会形成速度梯度很大的流动边界层; (4)紧贴壁面处同时形成温度梯度很大的热边界层。
5-1 对流传热概述
偏微分方程+定解条件
速度场和温度场
表面传热系数h
2 实验法
相似原理指导下通过实验获得表面传热系数的 计算式(是目前工程计算的主要依据)。
对流传热问题的研究方法
3 比拟法
通过研究热量传递与动量传递的共性或类似特性, 建立起表面传热系数 h 与阻力系数 cf 间的相互联系, 通过较易测定的阻力系数来获得相应的表面传热系数 值。
主流区:速度梯度为0, 0 可视为无粘性理想流

传热学第五章对流换热

传热学第五章对流换热

1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:

传热学第五章_对流换热原理-1

传热学第五章_对流换热原理-1

Velocity = v Velocity = 0
Velocity Temperature
Boundary Boundary
Layer
Layer
HOT SURFACE, TEMP = TH
3. 热边界层厚度δt和流动边界层厚度δ的区 别与联系
(2) 边界层产生原因:
由于粘性的作用,流体与 壁面之间产生一粘滞力, 粘滞力使得靠近壁面处的 速度逐渐下降,最后使壁 面上的流体速度降为零, 流体质点在壁面上产生一 薄层。随着流体的流动, 粘滞力向内传递,形成的 薄层又阻碍邻近流体层中 微粒运动的作用,依此类 推,形成的薄层又阻碍邻 近流体层微粒运动,到一 定程度,粘滞力不再起作 用。
➢ 如果流体为粘性流体,情况会如何呢?我们用一测速仪来 测量壁面附近的速度分布。测量发现在法向方向上,即y 方向上,壁面上速度为零,随着y方向的增加,流速急剧 增加,到达一薄层后,流速接近或等于来流速度,普朗特 研究了这一现象,并且在1904年第一次提出了边界层的概 念。
普朗特在仔细观察了粘性流体流过固体表面的特性后提出了 突破性的见解。他认为,粘滞性起作用的区域仅仅局限在 靠近壁面的薄层内。在此薄层以外,由于速度梯度很小粘 滞性所造成的切应力可以略而不计,于是该区域中的流动 可以作为理想流体的无旋流动。这种在固体表面附近流体 速度发生剧烈变化的薄层称为流动边界层(又称速度边界 层).图5—5示出了产生流动边界层的两种常见情形。如 图5—5a所示,从y=o处u=0开始,流体的速度随着离开 壁面距离y的增加而急剧增大,经过一个薄层后u增长到接 近主流速度。这个薄层即为流动边界层,其厚度视规定的 接近主流速度程度的不同而不同。通常规定达到主流速度 的99%处的距离y为流动边界层的厚度,记为δ 。

传热学对流传热原理

传热学对流传热原理

+v
t y
=
cp
2t x2
+
2t y2
4个方程,4个未知量 —— 可求得速度场(u,v)和温度场(t) 以及压力场(p), 既适用于层流,也适用于湍流(瞬时值)
➢ 边界层型对流传热问题的数学描写
动量方程中的惯性力项和能量方程中的对流 项均为非线性项,难以直接求解
边界层理论
简化
流动
普朗特 速度边界层
2t y2
→固体中的热传导过程是介质中传热过程的一个特例。
稳态对流换热微分方程组:
(常物性、无内热源、二维、不可压缩牛顿流体)
u v 0 x y
(u
u x
v
u y
)
Fx
p x
(
2u x 2
2u y 2
)
(u
v x
v
v y
)
Fy
p y
(
2v x 2
2v y 2
)
hx
t
t
y
w
,x
u
t x
5.4 相似原理与量纲分析
1、目的—— 简化实验 • 减少自变量的个数
1
1
hx x
0.332
u x
2
3
v a
Nu x
0.332
Re
1 x
2
Pr
1
3
• 缩小实验模型的尺寸 • 反映同一类现象的规律性
建立基于相似理论的实验关联式
(1)相似分析法;(2)量纲分析法
控制方程的无量纲化
二维、稳态、常物性、不可压缩、不计重力、无内热源、 无粘性耗散、牛顿流体的外掠平板强迫对流换热。
• y=0:u = 0, v = 0, t = tw

第五章-传热学

第五章-传热学

h
' h,x
' h,y
cpuxtvytdxdy
8
单位时间内微元体热力学能的增加为
dU
d
cp
t
dxdy
于是根据微元体的能量守恒
h
dU
d
可得
2t x2
2t y2
dxdy
cpuxtvytdxdy
cp
t
dxdy
cptux tvy ttu xv y
2t x2
2t y2
2
20
cp
uxt
v t y

2t x2
2t y2
1
11 1
1
2
1 1
1
2
对流换热微分方程组简化为
h t tw tf y w
u v 0 x y
简化方程组只有4个方
程,但仍含有h、u、v、 p、t 等5个未知量,方
程组不封闭。如何求解?
uuxvuy1ddpxy2u2
u t x
v t y
26
第六节 相似理论基础
相似原理指导下的实验研究仍然是解决复杂对流换 热问题的可靠方法。
相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
一、 相似原理的主要内容
1.物理现象相似的定义 2.物理现象相似的性质 3.相似特征数之间的关系 4.物理现象相似的条件
三、解的函数形式——特征数关联式
特征数是由一些物理量组成的无量纲数,例如毕 渥数Bi和付里叶数Fo。对流换热的解也可以表示成 特征数函数的形式,称为特征数关联式。
通过对流换热微分方程的无量纲化可以导出与对 流换热有关的特征数。

传热学第五章_对流换热原理-2

传热学第五章_对流换热原理-2
3 能量微分方程
能量微分方程式描述流体温度场—能量守恒
[导入与导出的净热量] + [热对流传递的净 热量] +[内热源发热量] = [总能量的增量] + [对外作膨胀功]
Q = E + W
Q — Q导热 Q对流 Q内热源
W — 体积力(重力)作的功 表面力作的功 (1)压力作的功: a) 变形功;b) 推动功 (2)表面应力作的功:a) 动能;b)
流体的连续流动遵循质量守恒规律。
从流场中 (x, y) 处取出边长为 dx、dy 的微元 体,并设定x方向的流体流速为u,而y方向上 的流体流速为v 。 M 为质量流量 [kg/s]
单位时间内流入微元体的净质量 = 微元体内流 体质量的变化。
mass balance
v v dy y
mass mass mass
作用力 = 质量 加速度(F=ma)
①控制体中流体动量的变化率
从x方向进入元体质量流量 在x方向上的动量 :
v v dy y
udy 1 u
从x方向流出元体的质量流 u
量在x方向上的动量
dy
u u dx x
u u dx dy 1 u u dx
x x
dx v
从y方向进入元体的质量流量在x方向上的动量为 :
作用在x方向上表面力的净值为 :
yx dxdy 1 x dxdy 1
y
x
作用在y方向上表面力的净值为
xy dxdy 1 y dxdy 1
x
y
斯托克斯提出了归纳速 度变形率与应力之间的 关系的黏性定律
xy
yx
u y
v x
x
p 2
u x
y

传热学 第五章 对流换热

传热学 第五章 对流换热

t qw
n w
第三类边界条件?
思考
对流换热微分方程表明,在边界上垂直于壁面的热量传 递完全依靠导热,那么在对流换热过程中流体的流动起 什么作用?
hx
tw t
x
t y
y0,x
c
p
t
u t x
v
t y
2t x2
2t y 2
流场决定温度场
小结
我们学习了 影响对流换热的一些因素; 对流换热微分方程:对流换热系数的定义 对流换热微分方程组:连续性方程、动量方程、能量方程
A qxdA
A
hx
tw
t
x
dA
h
1 A
A hxdA
对流换热的 核心问题
对流换热的影响因素
对流换热是流体的导热和热对流两种基本传热方式共同作用的结果。 影响因素:
1)流动的起因:强迫对流换热与自然对流换热 2) 流动的状态:层流和紊流 3) 流体有无相变 4) 流体的物理性质
5) 换热表面的几何因素
v
t y
2t x2
2t y 2
2) 对流换热的单值性条件
(1) 几何条件 (2) 物理条件 (3) 时间条件 (4) 边界条件
1904年,德国科学家普朗特(L. Prandtl)提出著名 的边界层概念后,上述方程的求解才成为可能。
第一类边界条件 t w f x, y, z,
q 第二类边界条件 w f x, y, z,
采用氢冷须注意其密封结构,否则泄露后会发生爆炸。
5) 换热表面的几何因素
强迫对流
(1)管内的流动
(2)管外的流动
自然对流
(3)热面朝上
(4)热面朝下
对流换热分类

传热学第五章

传热学第五章

h Atw t
以后除非特殊声明外,我们所说的对流换热系数皆指平均对流换
热系数,以 h 表示.
h(x)规律说明
Laminar region
x (x) h (x) 导热
Transition region
扰动
h(x)
Turbulent region
湍流部分的热阻很小,热阻主要集中在
粘性底层中.
2.按有无相变分
单相介质传热:对流换热时只有一种流体.
相变换热:传热过程中有相变发生.
物质有三态,固态,液态,气态或称三相.
相变换热有分为:
沸腾换热:(boiling heat transfer)物质由液态变为气态时发生 的换热.
凝结换热:(condensation heat transfer)物质由气态变为 液态时发生的换热. 熔化换热(melting heat transfer) 凝固换热(solidification heat transfer) 升华换热(sublimation heat transfer) 凝华换热(sublimation heat transfer )
由上述分析可见,边界层控制着传热过程,故一些研究人员试图通过
破坏粘性底层来达到强化传热的目的,并取得了一些成果.
二、边界层微分方程组.
牛顿流体(Newtonian fluid),常物性,无内热源,耗散不计,稳态,
二维,略去重力.
完性分析已知:u,t,l 的量级为0(1) , t 的量级为0()
以此五个量为分析基础。
2.动量方程(momentum equation)
u v 0 x y
u
u
u x
v
u y
Fx
p x

传热学第五章_对流换热原理-6

传热学第五章_对流换热原理-6
是,全管长流体平均温度为 t f t w t m
其中,
t m
(t w
t f ' ) (t w t f ln( t w t f ' ) tw t f ''
'')
t't' ' ln t'
t' '
t
tw
t=C
tf
t tw = C
tf
入口段
充分发展段 x
恒热流时
恒壁温时
x
其中,tf’, tf”分别为出口、进口截面上的平均温
由热平衡方程
dQ hx (tw t f )x * 2R * dx cpumR2dt f

dQ q * 2R * dx
可得
dt f 2q 2hx (tw t f ) x
dx c pum R
c pum R
积分上式可得全管长流体的平均温度。
由于热边界存在有均匀壁温和均匀热流两种典型情
况。对于均匀热流边界情况(q=const),在常物性
管内层流换热特点
(1)对于同一截面形状的通道,均匀热流条件下的Nu总 是高于均匀壁温下的Nu,热边界条件的影响不能忽略;
(2)对于等截面通道,层流充分发展时的Nu数与Re无关; 比如,对于管内常壁温流动(tw=const), Nuf=3.66; 对于管内常热流流动(qw=const),Nuf=4.36 (3)对于使用当量直径作特征尺寸时,不同截面管道层流 充分发展段的Nu数不同
若假设L0.825 m,则有:Re*Pr *(d/L)>10
选管内常壁温层流 关联式:
Nu
1.86 Re
Pr
d l
1 3

传热学第五章对流传热的理论基础

传热学第五章对流传热的理论基础
30
实验数据如何整理(整理成什么样函数关系) 强制对流:Nu f (Re,Pr); Nux f ( x' , Re,Pr)
自然对流换热:Nu f (Gr, Pr) 混合对流换热:Nu f (Re, Gr, Pr)
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
2
流体流过固体表面时,。。。
普朗特边界层理论:粘性流体流过固体表面时,粘滞性 起作用的区域仅仅局限在靠近壁面的薄层内。
3
2. 对流传热系数
u∞ ; t ∞
tw
由傅里叶定律:
q t y w
W m2
对流传热的定义式: q ht h tw t [W/m2 ]
在边界层不脱落的前提下:
q ht = t y w
x为当前点与板前缘的距离。 Pr=
a
1
1
hx x
0.332
u x
2
a
3
Nux 0.332Re1x 2 Pr1 3
上述理论解与实验值吻合。
注意:层流
18
2. 对于外掠平板层流分析解的几个讨论
(1)局部对流传热系数,平均对流传热系数
局部对流传热系数
Nux
hx x
11
0.332Rex 2 Pr 3
第五章 对流传热的理论基础
1
5.1 对流传热概述
1. 对流传热的定义、研究对象
流体流过固体表面时,流体与固体之间的热量传递。
工程上约定的计算习惯:
若tw t,Φ hA(tw t ) W 若tw t,Φ hA(t tw ) W

对流传热原理

对流传热原理
4.流 体 相 变
5.壁 面 形 状
确定对流换热系数的方法: 1)理论解法
在边界层建立对流传热微分方程组的基础上, 通过数学分析法、积分近似解法、数值解法和比拟 解法求得。
2)实验解法
对微分方程组进行量纲分析,得出有关相似 特征数,在相似原理的指导下建立实验台和整理 实验数据,求得各特征数间的函数关系,再将函 数关系推广至与实验现象相似的现象中去。
从y方向流出微元体的质量流量在x方向上的 动量为: ∂v ∂u
v dy dx 1 u dy ∂y ∂y
x方向上的动量改变量 :
∂u ∂u dxdy 1 u v ∂y ∂x
化简过程中利用了连续性方程和忽略了高阶 小量。 同理,导出y方向上的动量改变量 :
1)定义
具有很大温度变化的流体薄层,即具有明显 温度梯度的流体薄层为热边界层。 2)热边界层厚度 把从壁面过余温度(t-tw)为零,到流体过 余温度为来流过余温度的99 % 的热边界层 距离称为热边界层厚度,用δ t 表示。
热边界层的形成和发展与速度边界类似。
3、热边界层与速度边界层的关系 速度边界层厚度δ与速度分布有关,反映 流体分子动量是扩散能力与运动粘度有关。 热边界层厚度δt与温度分布有关,反映流体 分子热量扩散能力,与热扩散率α 有关。
单位时间内微元体内流体质量的变化:
∂ρdxdy ) ( ∂τ = ∂ρ ∂τ dxdy
∵单位时间:流入微元体的净质量 = 微元体内 流体质量的变化
∂ u ) ( ∂x dxdy ∂ v) ( ∂y dxdy ∂ ∂ dxdy
∴连续性方程:
∂ρ ∂τ
+
∂ρu ∂x
+

传热学-第五章 对流换热(Convection Heat Transfer)

传热学-第五章 对流换热(Convection Heat Transfer)


∂ 2t ∂y 2
⎤ ⎥⎦
=
u
∂t ∂x
+
v
∂t ∂y
+
∂t
∂τ
能量守恒方程
对流换热微分方程组 (常物性、无内热源、二维、不可压缩牛顿流体)
∂u + ∂v = ∂x ∂y
ρ( ∂u ∂τ
+
u
∂u ∂x
+
v
∂u ∂y
)
=
Fx

∂p ∂x
+
η
(
∂2u ∂x 2
+
∂2u ∂y 2
)
ρ( ∂v ∂τ
∂(vt) ∂y
dxdy
=
− ρc p
⎢⎣⎡u
∂t ∂x
+
v
∂t ∂y
+
t
∂u ∂x
+
t
∂v ∂y
⎥⎦⎤dxdy
U Δ
=
=
−ρcp ⎢⎣⎡u
c dx ρp
∂t ∂x
dy
+

v
t
∂t ∂y
⎥⎦⎤dxdy
d
τ
∂τ
∂u + ∂v = − ∂ρ = 0 ∂x ∂y ∂τ
λ ρc p
⎡ ∂2t ⎢⎣ ∂x 2
第五章 对流换热(Convection Heat Transfer)
§5-1 对流换热概说
1. 对流换热的定义和性质
定义:对流换热是指 流体流经固体时流体 与固体表面之间的 热量传递现象。
对流换热与热对流不同,既有热对流,也有导热;不是 基本传热方式 对流换热实例:(1) 暖气管道; (2) 电子器件冷却;(3) 换热器

传热学-第五章-对流原理.

传热学-第五章-对流原理.

三个准则数分别称为努谢尔特准则,雷诺 准则和普朗特准则,相应地用符号Nu、Re 和Pr表示,代入式(d)中,得
N uARcePer
写成一般形式的无量纲关系式,则为
u=f〔Re,Pr)
上两式称之为准则方程式,式中的系 数和指数,或方程的具体形式由试验确
定。
至于自然对流换热,无论是理论分析还 是试验分析,都觉察正是由于壁面和流 体之间存在的温度差,使流体密度不均 匀所产生的浮升力,导致了自然对流运 动的发生和进展。自然对流换热系数α 与其影响因素的一般关系式为
如下图,流体接触管道后,便从两侧流过, 并在管壁上形成边界层。正对着来流方向 的圆管最前点,即φ=0处,流速为零, 边界层厚度为零。此后,在圆管壁上形成 层流边界层,并随着φ角的增大而增厚。 当厚度增加到肯定程度时,便过渡到紊流 边界层。在圆管壁φ=80°四周处,流体 脱离壁面并在圆管的后半部形成旋涡。
明显,流体温度的分布与流体的流淌有关, 深受速度边界层的影响。流体呈层流状态时, 流体微团沿相互平行的流线进展,没有横向 流淌,不发生物质交换,壁面法线方向上的 热量传递,根本上靠分子的导热进展,层内 温度变化较大,温度分布呈抛物线型。对于 紊流边界层,其中层流底层的热量传递也是 靠导热,而在紊流核心层的热交换,除靠分 子的导热外,主要靠流体涡流扰动的对流混 合,从而使得层流底层的温度梯度最大,而 在紊流核心层温度变化平缓比较均匀全都。
二、
从上节可以知道,在大多数状况下, 影响无相变对流换热过程的换热系数 α的物理因素可归结为流体流态、物 性、换热壁面状况和几何条件、流淌 缘由四个方面。争论说明,对于管内 受迫流淌,假设假定物性是常数,不 随温度而变,争论的是平均对流换热 系数。影响换热系数α的因素有流速V, 管径D,流体密度ρ,动力粘度μ,比 热cp和导热系数λ。

第五章对流传热理论基础

第五章对流传热理论基础
动量方程中的惯性力项和能量方程中的对流项均为非线性项,难以直接求解
简化
流动
普朗特 速度边界层
类比
对流换热
波尔豪森 热边界层
38
传热学
一、流动边界层
1、流动边界层及其厚度 定义:当流体流过固体壁面时,由于流 体粘性的作用,使得在固体壁面附近存 在速度发生剧烈变化的薄层称为流动 边界层或速度边界层。
实际流动 ≈ 边界层区粘性流动+主流区无粘性理想流动
大空间自然对流 有限空间自然对流
沸腾换热 有相变
凝结换热
大容器沸腾 管内沸腾
管外凝结 管内凝结
14
传热学
六、研究对流传热的方法(确定h的方法)
四种:1)分析法;2)实验法;3)比拟法;4)数值法
适当介绍
重点介绍 一定介绍
不作介绍
1)分析法
解析:二维、楔形流、平板 边界层积分方程(近似解析)
2)实验法
u∞
y δ
0x xc
粘性底层
掠过平板时边界层的形成与发展
湍流核心 缓冲层
41
传热学
层流: 流体做有秩序的分层流动,各层互不干扰,只有分子扩散,
无大微团掺混
湍流: 流体微团掺混,紊乱的不规则脉动
粘性底层 :速度梯度较大、分子扩散—导热
湍流边界层
缓冲层 :导热+对流 湍流核心 :质点脉动强化动量传递,速度变化
换热表面的形状、大小、换热表面与流体运动方向的 相对位置及换热表面的状态(光滑或粗糙)
内部流动对流传热:管内或槽内 外部流动对流传热:外掠平板、圆管、管束
10
传热学
11
传热学
(5) 流体的热物理性质:
热导率 [W (m C)] 比热容 c [J (kg C)]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章

对流换热
对流换热是指流体与固体壁面直接 接触时所发生的热传递过程。这一章, 我们要进一步探讨对流换热的机理,分 析影响对流换热的各种因素,并简要介 绍用因次分析法确定对流换热系数的方 法等。
对流换热分类: 1.按有无相变分类:有相变的对流换热和无相 变的对流换热。 2.按流动原因分类:强(受)迫对流换热和自 然对流换热。 3.按流体流过壁面情况分类:内部(有界)流 动对流换热和外部(无界)流动对流换热。

如果流体的流动是由于流体冷热部分的密度不同 引起的浮升力造成的,则称为自然对流。暖气 片的散热,蒸汽或其他热流体输送管道的热量 损失,都与这类换热有关。 一般来讲:强迫对流 换热优于自然对流。
二、 在分析对流换热时,还应分清流体的流态。 流体力学告诉我们,流体受迫在流道内流 动时可以有两种不同性质的流态。流体分 层地平行于流道的壁面流动,呈现层流状 态。但当流动状态到超过某一临界值时, 流体的流动出现了旋涡,而且在不断地发 展和扩散,引起不规则的脉动,使流动呈 现紊流状态。

显然,流体温度的分布与流体的流动有关, 深受速度边界层的影响。流体呈层流状态时, 流体微团沿相互平行的流线进行,没有横向 流动,不发生物质交换,壁面法线方向上的 热量传递,基本上靠分子的导热进行,层内 温度变化较大,温度分布呈抛物线型。对于 紊流边界层,其中层流底层的热量传递也是 靠导热,而在紊流核心层的热交换,除靠分 子的导热外,主要靠流体涡流扰动的对流混 合,从而使得层流底层的温度梯度最大,而 在紊流核心层温度变化平缓比较均匀一致。
5.1 速度边界层和热边界层
对流换热是导热和热对流同时起作用 的过程,过程中所传热量的基本计算依据是 牛顿冷却定律,即 Q=αA(tf-tw) W 或 q=α(tf-tw) W/m2 (5-1)
α =q/(tf-tw) W
对流换热系数 α表征着对流换热的强弱 。
在数值上,它等于流体和壁面之间的温度 差为 1℃时,通过对流换热交换的热流密 度。单位为W/(m2·℃)。 对流换热量以及相应的换热系数的大小,将 更多地取决于流体的运动性质和情况。
层流边界层 紊流核心区
过渡区 紊流边界层 层流底层 主流区 速度边界层厚度 临界距离
层流
过渡流
湍流
u
y
x

xc

层流底层 缓冲层
根据流体力学知识,层流边界层厚度 xv 5x 5x 5 vf vf x Re x

在层流边界层内的速度分布线为抛物线型; 在紊流边界层内,层流底层部分的速度 分布较陡,接近于直线,而在底层以外 的区域,由于流体微团的紊流运动,动 量传递被强化了,速度变化趋于平缓。
二、热边界层 热边界层又称温度边界层,它和速度边 界层的概念相类似。实验表明,当流体 流过与其温度不同的固体壁面时,在紧 贴壁面的那一层流体中,沿壁面法线方 向温度发生显著变化,流体的温度由壁 面温度变化到主流温度。传热学中,把 温度发生剧烈变化,具有明显温度梯度 的这一流体薄层称为热边界层。 图 5-2 为流体流过平板时热边界层的形成 和发展过程。

当粘性流体以主流速度 vf 流过固体壁面 时,由于流体的粘性产生的壁面的摩擦 力,使紧贴壁面处流体的速度降为零, 离壁面愈远的流体速度愈接近于来流速 度vf,沿壁面法线方向上出现速度梯度。 流体力学中,把具有明显速度梯度的那 一层流体薄层叫做速度边界层,图5-1表 明了速度边界层在平板上的形成和发展 过程。
一、速度边界层
流体力学指出,具有粘性且能湿润固 体壁面的流体,流过壁面会产生粘性力。 根据牛顿粘性(内摩擦)定律,流体粘性 力 τ 与垂直于运动方程速度梯度 (dv/dy ) 成正比,即: τ=μ(dv/dy) N/m2 (5-2) 式中,μ 称为流体的动力粘度,单位为Pa· s 或kg/(m· s)。
x
x
f
w x
t x ( ) w, x (t f tw ) x y
f
(5.3)
式(5-3)描述了对流换热系数与流体温度场的关系,称为 对流换热过程微分方程式
由式可知:在流体性质和传热温差一定的情况 下,对流换热系数α 的大小取决于边界层内的 温度梯度。一切能提高温度梯度的因素都能强 化换热过程,反之,将削弱换热过程。对于不 存在相变(如无沸腾、冷凝现象)的单相流体对 流换热过程,各种因素往往通过影响边界层厚 度而影响。 如果层流底层的厚度减小,则相应的温度边界 层的厚度也要减小,从而使得温度梯度上升, α 也增高。因此,通过改善流动状况,使层流 底层厚度减薄,是强化对流换热的主要途径之 一。 下面我们就着重围绕这一线索来分析各种因素 对α 的影响。


假定恒物性流体进入平板时的温度各处均匀 一致,为 tf ,平板表面温度也各处均匀一致, 为tw,且tf>tw。由图可见;热边界层内,垂 直壁面法线方向上温度分布情况,是紧贴壁 面的流体温度等于壁面温度 tw ,随着离壁面 距离的增加,温度逐渐升高,直到某处等于 流体主流温度 tf ,以后基本不变。通常,把 无量纲过余温度比(t-tw)/(tf-tw)=0的 壁面处到 (t - tw) /( tf- tw )= 0.99处的那一 流体层视为热边界层,其沿壁面法线方向的 距离定义为热边界层的厚度,用符号δ t表示。

5.2
影响对流换热的因素很多,研究表 明,对流换热的强弱与流体的流动原因、 流态、流体的性质、壁面的几何特征以 及流体相对于壁面的位置、流体有无相 变等有关。
一、流体流动的原因 根据引起流体流动的原因,可将对流换 热分为受(强)迫流动对流换热和自然对 流换热两大类。 如果流体的流动是由泵、风机或其他压 差作用所造成,称受(强)迫流动。油 气输送管线,伴热管线中流体与壁面的 换热、大中型内燃机中流过散热器中的 水、风等都属于此类。 当流体在管内受迫流动时,边界层的形 成和发展如图5-4所示。
三、换热微分方程式
温度差主要集中在热边界层内,通过紧贴壁面的层流边 界层和层流底层的热量只能以导热方式进行 , 由付立 叶定律计算: t qx f ( ) w, x (a)
y
所有的传热量都必须通过这薄层流体,局部换热系数为 αx,据牛顿冷却定律: (b) q (t t )
相关文档
最新文档