电化学发光免疫分析法

合集下载

电化学发光免疫分析法检测低值HBsAg与乙肝五项检测结果比较

电化学发光免疫分析法检测低值HBsAg与乙肝五项检测结果比较
有 一定 比例 , 正 常 人 群 HB s Ag水 平 在 5 I U/ mL 以 下 者 占
5为 差 异 有 统 计 学
乙型 肝 炎 血 清 学 特 征 复 杂 多 变 , HB V 感 染 者 会 在
A 组 与 B组 比较 , E C L I A法 和 E L I S A 法 的 阳性 符 合 率 差 异无统计学意义 ( P >O . 0 5 ) , 但 C组 的 阳性 符 合 率 较 A 组 和 B 组 显 著 降低 , 差异有统计学意义 ( P <O . 0 5 ) 。对 C组 中 EL I s A 法 检测 HB s Ag阴 性 、 HB e Ab 、 HB c Ab同 时 阳 性 或 HB c Ab单
E L I S A 法 阴性 的 6 4例 患 者 追 踪 3个 月 , 3个 月 后 再 次 分 别 采
用E C L I A 法 检 测 HB s A g , E L I S A 法检测 乙肝 五项 , 如 3个 月 后E us A 法 检 测 结 果 为 阳性 , 则不再 追踪 , 对于 E L I S A 法 检 测 结 果 仍 为 阴性 的患 者 , 再 连 续 追 踪 3个 月 , 方 法 同上 , 观 察 其 HB s Ag阳 性符 合 率 是 否 提 高 。 1 . 4 统计 学 处 理 采 用 S P S S 1 5 . 0软 件 对 数 据 进 行 处 理 , 计 量资料用 j ±S 表示 , 组 间 比较 采 用 t 检验 ; 计 数 资 料 以百 分 比 表示 , 组 间 比 较 采 用
( E L I S A) 法 乙肝 五 项 [ HB s Ag 、 乙肝 表 面抗 体 ( HB s A b ) 、 乙肝 e 抗原 ( HB e A g ) 、 乙肝 e 抗体 ( HB e Ab ) 、 乙肝 核 心 抗 体 ( HB c Ab ) ] 的检 测 结 果 , 为 临床 和 科 研 提 供 一 定 的科 学依 据 。方 法 根据 E C L I A 检 测 HB s Ag的 结 果 , 将2 0 7 例 患

评价电化学发光免疫分析法(ECLIA)在梅毒检测中的应用效果

评价电化学发光免疫分析法(ECLIA)在梅毒检测中的应用效果

评价电化学发光免疫分析法 (ECLIA)在梅毒检测中的应用效果【摘要】目的探讨电化学发光免疫分析法(ECLIA)在梅毒检测中的应用效果。

方法梅毒患者血清标本51例和非梅毒患者血清样本91例,运用电化学发光免疫分析法和毒螺旋体抗体(ELISA)进行检测,对比敏感度、特异性和准确性。

结果电化学发光免疫与毒螺旋体抗体的敏感度为100%、98.04%,而特异性98.90%、100%,对比两方法差异无统计学意义(P>0.05)。

ECLIA方法在敏感性方面高于ELISA方法。

结论 ECLIA用于梅毒检测中,有着很高的敏感度,有着较高的特异性,且准确性也很高,在进行梅毒检测的时候,操作上比较的简便,能够进行快速的检测,结果较为客观,有着较好的重复性等。

【关键词】电化学发光免疫分析法;梅毒检测;诊断梅毒是一种慢性全身性性传播疾病,该疾病的引发主要由苍白密螺旋体苍白亚种感染造成的,梅毒的传染性非常强,能够对全身各器官进行侵犯,对多器官造成损害,对人们的身心健康造成严重的影响。

近年来我国梅毒的发病率呈现攀升的趋势[1]。

但部分梅毒感染者由于有着较长的潜伏期而没有明显的症状,难以及早地发现,若是没有得到有效的治疗,容易引发严重的并发症。

在对梅毒进行诊断的时候,梅毒血清检测是重要的指标。

选择敏感性高、特异性高、准确性高的检测方法,能够使筛查和诊断更加的快速、准确,从而符合检测机构的要求,这显得十分的重要。

本文对梅毒检测中使用的电化学发光免疫分析法进行了研究,现报告如下。

1资料和方法1.1一般资料将2019年5月-2020年8月收治的经过病史询问、临床症状分析、血清学试验诊断,确诊51例梅毒患者血清标本,91例非梅毒患者血清标本,样本年龄介于22至78岁之间,平均(40.11±3.57)岁。

1.2 方法使用E601电化学发光免疫分析仪,还有与之相配的梅毒检测试剂,通过化学发光免疫来对苍白密螺旋抗体机械能检测苍。

电化学发光免疫分析

电化学发光免疫分析

电化学发光免疫分析是一种在电极表面由电化学引发的异性化学发光反应,是电化学和化学
发光两个过程的完美结合。

电化学发光免疫测定是电化学发光和免疫测定相结合的产物,是
目前非常先进的标记免疫测定技术。

电化学发光技术主要技术:
1. 三联吡啶钌标记技术;
(1)循环使用,不会被消耗,电极表面的氧化还原反应循环进行,测定信号无限循环放大,检测灵敏度大大提高
(2)其盐是很稳定的水溶性化合物,试剂的稳定性好,效期长
(3)N 羟基琥珀酰胺( NHS )酯能与蛋白质赖氨酸的ε-氨基或核酸上的氨基形成稳定的酰
胺键,应用广泛,宽广的检测菜单
(4)惰性元素,非放射性元素,稳定
(5) [Ru(bpy)32+]和TPA ,无电压的情况非常稳定,确保反应结果的准确性
2. 链霉亲和素—生物素技术;
(1)特异性强且结合紧密,灵敏度高
(2)一分子SA可与四分子B相结合,增大了抗体结合量,灵敏度高
3. 磁性微粒子技术;
(1)反应面积大,结合量增大
(2)反应在近乎液相中进行,信号均匀精确
(3)分离方便迅速,无背景干扰
4. 电启动的化学发光反应。

(1)实现了结合相和游离相的完全自动化分离
(2)彻底清洗,反应易于控制
电化学发光技术特点:试剂稳定、测量范围宽,灵敏度高、特异性优异、检测菜单丰富、准
确性好,精密度高、操作便捷;。

不同方法学白介素6标准

不同方法学白介素6标准

不同方法学白介素6标准白介素6检测的不同方法学探讨白介素6(IL-6)是一种多功能细胞因子,在免疫调节、炎症反应以及多种疾病的发生和发展过程中起着重要作用。

因此,准确检测白介素6的含量对于基础研究和临床应用具有重要意义。

本文将探讨几种不同的白介素6检测方法,并分析其优缺点。

1. 酶联免疫吸附法(ELISA)酶联免疫吸附法是一种常用的检测白介素6的方法,其原理是利用酶标记的抗体与待测样本中的白介素6结合,形成酶-抗体-抗原复合物,然后通过底物显色反应来定量检测白介素6的含量。

这种方法具有灵敏度高、特异性强、操作简便等优点,适用于大批量样本的检测。

但是,ELISA方法也存在一些局限性,如操作过程中容易受到温度、时间等因素的影响,导致结果的不稳定性。

2. 放射免疫分析法(RIA)放射免疫分析法是一种利用放射性同位素标记的抗体来检测白介素6的方法。

这种方法具有灵敏度高、准确性好的特点,尤其适用于微量白介素6的检测。

然而,由于RIA方法涉及到放射性物质的操作和处理,对实验条件和操作人员的要求较高,且存在一定的安全隐患,因此在一般实验室中的应用受到一定限制。

3. 化学发光免疫分析法(CLIA)化学发光免疫分析法是一种基于化学发光原理来检测白介素6的方法。

该方法利用化学发光物质标记的抗体与白介素6结合后产生的化学发光信号进行定量检测。

CLIA方法具有灵敏度高、线性范围宽、操作简便等优点,且无需使用放射性物质,因此在实际应用中得到了广泛推广。

但是,CLIA方法的试剂成本相对较高,且发光信号的稳定性可能受到多种因素的影响。

4. 荧光免疫分析法(FIA)荧光免疫分析法是一种利用荧光标记的抗体来检测白介素6的方法。

该方法通过荧光信号的强弱来定量检测白介素6的含量,具有灵敏度高、特异性好的特点。

同时,FIA方法还可以实现多色荧光的同时检测,适用于复杂样本中多种细胞因子的同时测定。

但是,FIA方法需要专业的荧光检测设备,且荧光信号可能受到光漂白等因素的影响。

电化学发光免疫分析的原理

电化学发光免疫分析的原理

电化学发光免疫分析的原理电化学发光免疫分析(ELISA)是一种流行的抗体检测技术,可以检测和测定抗体或抗原。

ELISA最初由发明者迪卡贝尔(Dica Bell)于1970年发明,以前称为发光免疫分析法或发光免疫比色法。

它可以快速准确地检测抗原或抗体在生物样品中的浓度。

ELISA技术的基本原理是:首先将特定的抗原和发光探针分别固定到水凝胶的微孔平板上,然后将待测样品加入微孔平板,抗原识别抗体或抗原与它结合,抗体和发光探针之间形成免疫复合物。

然后,抗体免疫复合物结合到抗原,使抗体免疫复合物和发光探针之间形成发光免疫复合物。

最后,将产生的发光免疫复合物可以在发光分析仪上读取,从而实现抗原检测目的。

ELISA技术的预处理过程是:首先将特异性抗原固定到微孔平板上,然后将抗原固定物体洗涤干净,洗涤后,将含有实验样品的溶液加入。

抗原和实验抗体在抗原上结合,产生免疫复合物。

接下来,将发光探针加入该免疫复合物,使免疫复合物和发光探针形成发光免疫复合物,以发光的方式检测体外抗原的浓度。

ELISA技术的优点是快速、准确、可重复,可以用来检测各种抗原的抗体,如霍乱抗原、疱疹病毒抗原、轮状病毒、肝炎抗原等。

ELISA 技术也可以用来研究抗体的特异性、可稳定性和稳定性,从而为研究抗原提供重要的理论基础。

ELISA技术也有一些缺点,如测定样品抗体或抗原的反应强度不够准确。

此外,ELISA技术的准确性受到实验参数的影响,如反应温度、反应时间,以及抗原和抗体的浓度和稀释比例等。

ELISA技术具有快速、可靠和可重复性等特性,是当今最常用的免疫学检测方法。

它不仅能用于抗原抗体检测,还经常被用于临床检测,用于诊断疾病,如癌症、HIV等。

ELISA技术对对医学和科学领域都具有重要的意义,它可以准确、快速地检测抗原或抗体,为疾病的早期诊断和治疗提供有效的支持。

总之,电化学发光免疫分析(ELISA)技术是一种常见的抗体检测技术,也是当今最常用的免疫学检测方法,可以根据其特定的技术原理来进行抗原检测。

电化学发光免疫分析方法及其在医学中的应用研究

电化学发光免疫分析方法及其在医学中的应用研究

电化学发光免疫分析方法及其在医学中的应用研究目的:分析电化学发光免疫分析的方法和医学中的应用情况。

方法:对AFP 含量进行电化学发光免疫分析与放射免疫分析,做出线性评价、精密度评价与回收实验,并进行对比,运用两种方法对60例患者血清标本的AFP含量进行平行检测,然后进行相关性分析。

结果:电化学发光免疫分析法的重复率明显优于放射免疫分析。

电化学发光免疫分析法的回收率明显优于放射免疫分析。

数据差异具有统计学意义(P<0.05)。

结论:电化学发光免疫检测血清甲胎蛋白的精确度与准确性都要优于放射免疫分析法,值得临床推广与运用。

标签:电化学发光免疫;临床运用;放射免疫;检验电化学发光免疫分析出现于自20世纪90年代,是一类化学发光免疫分析技术,集纳米微粒子技术、电子发光技术、抗原-抗体免疫反应、生物素-亲和素系统以及电磁场分离整合设计的自动化标记免疫分析系统,结合了电化学发光与免疫测定,具有化学发光与电化学两个过程,磁珠微球当做固相载体,发光物质为三氯联吡啶钌[Ru(bpy)3]2+,电极进行激发,三丙胺参与循环反应,稳定快速的发光,检测的结果可靠、稳定,具有的准确度与精密度要高于酶联免疫法[1]。

发光检测灵敏度高,不具有人为操作误差的影响。

1材料与方法1.1材料选取60例患者血清标本,18份标本血清甲胎蛋白浓度正常,42份标本血清甲胎蛋白的浓度超出正常的范围。

通过Roche Elecsys2010全自动化学发光免疫分析仪器与SN-697型自动双探头放射免疫γ计数器进行检验。

1.2方法放射免疫分析法运用甲胎蛋白宽范围放射免疫分析测定盒,电化学发光免疫分析运用的检测试剂为Elecsys2010配套AFP定量检测试剂盒,按照试剂说明书进行检测操作。

2结果2.1 通过NCCLS精密度评价方案,运用电化学发光免疫分析与放射免疫分析法对高浓度、中浓度、低浓度的血清甲胎蛋白质控血清作重复性实验。

实验结果显示,电化学发光免疫分析与放射免疫分析法都具有较好的重复性,而电化学发光免疫分析的CV值对比放射免疫分析法相对较小。

电化学发光免疫分析法

电化学发光免疫分析法

化学发光免疫分析
Chemiluminescence immunoassay (CLIA)
• 化学发光分析----根据化学发光反应在某一时刻的发光强 度或反应的发光总量来确定反应中相应组分含量的分析方 法,成为化学发光分析。
• 化学发光免疫分析----是集灵敏的化学发光技术和特异的 抗原抗体免疫测定于一体的检测技术。
• 化学发光免疫分析的特点:灵敏度高、特异性高、分离简 便、快速、试剂无毒、安全稳定、可自动化。
化学发光免疫技术的类型
按发光剂不同分为
1. 发光酶免疫测定(Chemiluminescence enzyme immunpassay CLEIA)
2. 化学发光免疫测定技术(Chemiluminescence immunoassay CLIA)
活性。
酶1,促酶反促应反的应发的光发底物光底物
• 是指经酶的降解作用而发出光的一类发光底物 • CLEIA中常用的酶有HRP和AP • HRP的发光底物有鲁米诺、对一羟基苯乙酸 • AP的发光底物有AMPPD、4—MUP(荧光底物) 特点:可做标记物,也可以做过氧化物酶的底物
1.鲁鲁米米诺诺
对一羟基苯乙酸(HPA)
进行电解反应的产物之间或与体系中共存组分反应产生化 学发光的现象. 它包含了电化学和化学发光两个过程.
ECL和CL的区别在于:ECL是电启动发光反应,而CL是通 过化合物混合启动发光反应,因此ECL反应便于精确控制, 具有灵活性.
电化学发光剂
三联吡啶钌的特点
ECL分析中采用三联吡啶钌作为标记物,其活化衍生物是 三联吡啶钌+N羟基琥珀酸胺脂(NHS),该衍生物具有水 溶性,且高度稳定,保证电化学发光反应的高效和稳定, 而且避免了本底噪声的干扰。

电化学发光免疫分析的原理

电化学发光免疫分析的原理

电化学发光免疫分析的原理化学发光(Electrochemiluminescence,ECL)免疫分析技术属于毗邻双重抗原识别(sandwich)免疫分析技术之一,它是一种高敏感、高灵敏度和自动化的免疫分析方法,它可以通过细胞内标记的抗原分子检测活性过程中的特异性结合反应来测定抗体和抗原的相互作用,从而准确可靠地测定抗原的存在量及其水平。

由于它具有极高的灵敏度,可以在超低浓度的抗原水平上得到检测结果,因此,它在免疫检测方面受到越来越多的关注。

在这篇文章中,我们将探讨一下电化学发光免疫分析的原理以及其在实际应用中的优势。

电化学发光免疫分析原理是这样的:首先,将抗原和特异抗体混合,其中抗原与抗体之间形成特异性双重抗原识别复合物;其次,在上清液中加入发光标记的抗体,此抗体与双重受体复合物形成特异性三重抗原识别复合物;最后,将上清液接触到电极上,将产生的离子流动到电位活化的族金属标记的抗体上,使抗体电极活化,产生发光反应,从而测定抗原的存在量。

电化学发光免疫分析具有诸多优势,首先它具有极高的灵敏度。

它可以检测非常低浓度的抗原,其灵敏度比传统的比色测定法要高出3到4个数量级,因此在检测低抗原水平时可以节省大量时间;其次,它操作简单快速,实验步骤短暂,耗时比其他免疫分析技术短;第三,它能够高效、安全地检测抗原,准确可靠,且可视化的检测过程具有很强的稳定性和可重复性。

电化学发光免疫分析技术已广泛用于医学、生物、食品安全和环境监测等领域。

例如,它可用于检测血清中癌抗原、血清素、抗体、病毒抗原等;它可以用于检测食物中的变质抗原、有毒物质、细菌等;它可以用于环境样品中有毒物质的检测,如重金属、氯代烃等有害物质。

以上就是电化学发光免疫分析的原理以及它在实际应用中的优势。

它的灵敏度极高,操作快速,可靠精准,能够准确有效地检测抗原,被广泛应用于许多领域,是近年来进行免疫检测的重要技术手段。

化学发光免疫分析

化学发光免疫分析

化学发光免疫分析化学发光免疫分析,也称为化学发光法或发光免疫测定法,是一种高灵敏度和高特异性的生物分析技术。

它结合了免疫学、生物学和化学的原理,利用特异性抗体与其抗原(或其他生物分子)相互作用,通过化学反应使其辐射出光信号,从而定量地检测目标物质的存在和含量。

一、化学发光免疫分析原理化学发光免疫分析原理基于化学发光原理和免疫学原理。

化学发光原理就是将化学反应的能量通过光子的辐射转换为光的能量。

免疫学原理是利用特异性免疫反应来识别和区分不同的抗原或抗体。

化学发光免疫分析技术的基本步骤如下:1.选择特异性的抗体与目标物质的结合;2.引入辐射源激活化学发光前体(例如,过氧化物或二氧化硫酞);3.目标物质与抗体发生结合后,释放了辐射源激活前体,使其进一步分解并产生化学发光;4.测定样品中的荧光强度,用于定量分析目标物质的存在和含量。

化学发光免疫分析发出的荧光信号对于抗原-抗体的结合非常敏感和特异。

比较常见的荧光标记物包括酶(如辣根过氧化物酶和碱性磷酸酶)、荧光染料(如荧光素和荧光素衍生物)、金纳米粒子等。

二、化学发光免疫分析的应用化学发光免疫分析的应用涉及生物分子、环境污染、中药等领域。

下面将从这些不同应用领域来介绍化学发光免疫分析技术的具体应用。

1.生物分子分析生物分子分析是化学发光免疫分析技术的主要应用领域之一。

常见的生物分子包括蛋白质、核酸、糖等。

如免疫荧光分析技术可以快速、准确地分析细胞表面分子、内部生物分子和变态反应特异性IgE。

同时,化学发光免疫分析技术可以用于患者体液中的特定免疫球蛋白或蛋白质的定量检测。

2.环境污染分析环境污染分析是化学发光免疫分析技术的另一个主要应用领域。

通过测量土壤、水、空气等样品中的污染物含量,可以快速精准地确定其存在和含量。

化学发光免疫分析技术可用于检测重金属、有机污染物、致癌物等。

该技术不仅检测灵敏,而且简便易行。

3.中药分析中药分析中常用的技术包括高效液相色谱法、气相色谱法、电化学法等。

电化学发光免疫分析法课件

电化学发光免疫分析法课件
案例总结
通过实验技巧的分享,帮助读者更好地掌握电化学发光免 疫分析法的实验操作和优化方法。
案例三:疑难问题解答
案例名称
解决电化学发光免疫分析法中的常见问题
案例描述
列举一些在电化学发光免疫分析法中常见的疑难问题,如信号干扰、非特异性吸附等,并 提供相应的解决方案和注意事项。
案例总结
通过疑难问题解答,帮助读者更好地规避实验中可能出现的问题,提高实验的准确性和可 靠性。
03
实验步骤
样本准备
样本采集
采集血液、尿液等生物样本,确 保样本质量和代表性。
样本处理
对样本进行离心、分离、稀释等 操作,以去除杂质并获得纯度较 高的待测组分。
加样和反应
加样
将处理后的样本加入到电化学发光免 疫分析试剂中,确保加样量准确。
反应条件
控制温度、pH值等反应条件,确保反 应顺利进行。
电化学发光免疫分析法PPT课件
目录
• 引言 • 工作原理 • 实验步骤 • 仪器与试剂 • 结果解读 • 应用与优势 • 案例分析
01
引言
目的和背景
01
介绍电化学发光免疫分析法的目 的和背景,包括其在医学、生物 、环境等领域的应用。
02
分析电化学发光免疫分析法的发 展历程,以及当前的研究热点和 挑战。
定期对仪器进行校准和维护,保 证检测结果的准确性和可靠性。
05
结果解读
结果判读方法
确定参考值范围
根据不同年龄、性别和生理状态 ,确定各项指标的正常参考值范
围。
观察指标变化趋势
注意各项指标的变化趋势,如逐 渐升高或降低,可能提示某种疾
病或生理变化。
综合分析
结合其他检查结果和患者的临床 表现,进行综合分析,以得出准

电化学发光免疫法

电化学发光免疫法

一、概念发光免疫测定(Electrochemiluminescence immunoassayECLI)。

ECLI 是继放射免疫、酶免疫、荧光免疫、免疫测定以后的新一代标记免疫测定技术。

电化学发光法源于电化学法和化学发光法,而ECLI 是电化学发光(ECL)和免疫测定相结合的产物,是一种在电极表面由电化学引发的特异性化学发光反应,包括了电化学和化学发光二个过程。

ECL 不仅可以应用于所有的免疫测定,而且还可用于/RNA探针检测。

二、反应底物ECL 反应底物有两种:1.三氯联吡啶钌[Ru(bpy)3] 2+络合物:钌(Ruthenium Ru),原子序数44,原子量101.07。

元素名来自拉丁文,原意是“俄罗斯”。

1827年俄国化学家奥赞在铂矿中发现钌;1844年俄国化学家克劳斯肯定它是一种新元素。

钌在地壳中的含量约为十亿分之一,是铂系元素中含量最少的一个。

钌常与其它铂系元素一起分散于冲积矿床和砂积矿床中。

钌有7种天然稳定:钌96、98、99、100、101、102、104。

钌为银白色金属,熔点2310℃,沸点3900℃,密度12.37×103/m3 。

钌的化学性质不活泼,在空气和潮湿环境中稳定;不溶于酸和王水,溶于熔融的强碱、碳酸盐、氰化物等;到900℃,时能与氧反应;加热时能与氟、氯、溴反应;钌有形成配位的强烈倾向,还有良好的催化性能。

钌是铂和钯的有效硬化剂;金属钛中加入0.1%的钌就可大大提高耐腐蚀性;钌钼合金是一种超导体;含钌的催化剂多用于石油化工。

2.三丙胺(Tripropylamine,TPA)三、电化学发光反应原理电化学反应过程:在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+ 释放电子发生氧化反应而成为三价的三氯联吡啶钌 [Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+ ,并迅速自发脱去一个质子而形成三丙胺自由基 TPA·,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA·。

eclia法

eclia法

eclia法
ECLIA(Electrochemiluminescence Immunoassay,电化学发光免疫分析)是一种常用的免疫分析技术,用于检测生物体内特定分子(例如蛋白质、抗体、激素等)的浓度或存在量。

ECLIA基于免疫反应原理,通过测量电化学发光信号来定量分析目标分子的浓度。

其基本步骤包括:
1. 抗原抗体反应:样品中的目标分子(抗原)与标记有特定抗体的发光物质(标记物)反应,形成抗原-抗体复合物。

2. 清洗步骤:通过洗涤去除未结合的物质,减少非特异性信号的干扰。

3. 发光步骤:将清洗后的试剂加入样品中,触发发光反应。

标记物释放出一种化学物质,激发发光物质发出光信号。

4. 光信号检测:使用光学检测系统测量发光信号的强度,该信号与目标分子的浓度成正比。

ECLIA具有高灵敏度、高特异性和宽动态范围等优势,被广泛应用于临床诊断、药物研发和科学研究等领域。

常见的应用包括检测疾病标志物、药物浓度监测、免疫学研究等。

化学发光免疫分析技术原理简介(精)

化学发光免疫分析技术原理简介(精)

化学发光免疫分析技术原理简介20 世纪60 年代即有人利用化学发光法测定水样中细菌含量和菌尿症患者尿液检查。

1977 年Halman 等将化学发光系统与抗原抗体反应系统相结合,创建了化学发光免疫分析法,保留了化学发光的高度灵敏性,又克服了它特异性不足的缺陷。

近年来对技术与仪器的不断改进,使此技术已成为一种特异,灵敏,准确的自动化的免疫学检测方法。

1996 年推出的电化学发光免疫技术,在反应原理上又具有一些新的特点。

这两种技术目前已在国内一些大型医院实验室用于常规免疫学检验。

一、化学发光免疫分析法化学发光免疫分析法( chemiluminescence immunoassay , CLlA) 是把免疫反应与发光反应结合起来的一种定量分析技术,既具有发光检测的高度灵敏性,又具有免疫分析法的高度特异性。

在CLIA中,主要有两个部分,即免疫反应系统和化学发光系统。

免疫反应系统与放射免疫测定中的抗原抗体反应系统相同化学发光系统则是利用某些化合物如鲁米诺( luminol) 、异鲁米诺(isolu-minol) 、金刚烷( AMPPD) 及吖啶酯( AE) 等经氧化剂氧化或催化剂催化后成为激发态产物,当其回到基态时就会将剩余能量转变为光子,随后利用发光信号测量仪器测量光量子的产额。

将发光物质直接标记于抗原(称为化学发光免疫分析)或抗体上(称为免疫化学发光分析) ,经氧化剂或催化剂的激发后,即可快速稳定的发光,其产生的光量子的强度与所测抗原的浓度可成比例。

亦可将氧化剂(如碱性磷酸酶等)或催化剂标记于抗原或抗体上,当抗原抗体反应结束后分离多余的标记物,再与发光底物反应,其产生的光量子的强度也与待测抗原的浓度成比例。

发光免疫分析的灵敏度高于包括RIA 在内的传统检测方法,检测范围宽,测试时间短,仅需30 - 60min 即可。

试剂货架寿命长,稳定性好,具有大规模自动化测试的功能。

这项技术发展很快,已有许多厂商生产各具特色的测定仪器与配套试剂。

电化学发光免疫分析法与酶联免疫吸附、胶体金测定低浓度HBsAg的效果评价

电化学发光免疫分析法与酶联免疫吸附、胶体金测定低浓度HBsAg的效果评价

[ 5 3 董伟. 新 型 的 电 化 学 发 光 免 疫分 析及 其 临 床 应 用 [ J ] . 标 记 免 疫 分
析与临床 , 2 0 0 1 , 8 ( 1 ) : 3 1 3 E C I I A和 E 1 I S A 检 测 血 清 HB s A g的 结 果 比 较
经 济 学 方 法 拟 ‘ 最佳检验方法 , 为l I 缶床 合 理选 择 检 验 项 目提 供 客 观 依 据 。本 研 究 中 , C I I A 检 测 的成 本 / 效果值低 于 F Q — P C R
国际检验 医学杂 志 2 0 1 3年 5月第 3 4 卷第 9 期
I n t J L a bMe d , Ma y 2 0 1 3 , V l _ 3 4 , N o . 9
法l 。E l 1 S A检测 的应 用 提 高 了 检测 速 度 , 但 一 步 法 检 测 HB s Ag等项 目会 因 抗 原 浓 度 过 高 产 生 钩 状 效 应 而 出 现 假 阴 性; 二 步法 则 导 致 检 测 时 间 延 长 , 当抗 原 浓 度 过 低 时 , 会 因 敏 感 性低而漏检 ; 溶血 、 脂血 、 黄疸 会使 E I I s A检 测产 生灰 区而 出 现 假 阳性 , 且 钩状 效 应 可 引 起 假 阴 性 或 低 值 灰 区 。 C L I A 采 用 的固相载体体积小 , 增 大 了反 应 面 积 , 且标记物可循环利用 , 延 长了发光时间 , 大大 提 高 了敏 感 性 , 表 面 抗 原 检 测 敏 感 性 可 达 到 0 . 0 5 n g / mI 。故 C I 1 A 能 较 早 检 测 出 HB s Ag , 确 证 HB V
Mi c r o b i o l , 1 9 9 9, 3 7 ( 8 ): 2 6 3 9 2 6 4 7 .

化学发光免疫分析方法.

化学发光免疫分析方法.

为85.5%。Magliulo 等[20]建立了牛奶中黄曲霉毒素M1的化学发光酶
免疫分析方法,通过将黄曲霉毒素M牛血清白蛋白包被在聚丙烯板上,
通过酶标二抗在含有鲁米诺的基板上进行检测。该方法的最低检测限为
1 pg/mL,且板间板内数据的变异系数均低于9%,回收率在96%~
122%之间。 Lin 等[21]建立了农产品中黄曲霉毒素B1 的化学发光免 疫分析方法。该方法线性检测范围在0.05~10 ng/g 之间 ,检测灵敏度 为0.01 ng/g,板间及板内变异系数分别为12.2%及 10.0%。 农产品中样 品添加回收率在79.8%~115.4%之间。 同时, 将建立的分析方法与黄 曲霉毒素商品化酶联免疫试剂盒进行了相关性试验,相关系数为
菌素B1 的 ELISA 方法相比,其方法灵敏度提高了10 倍。 且通过样品的
添加回收率试验表明其有良好的回收率,其分析结果与ELISA 分析方法
与 HPLC 方法有良好的相关性。
Yang等[17]建立了食品中葡萄球菌肠毒素B(SEB)的碳纳米管的化
学发光免疫分析方法,通过将SEB 抗体吸附在碳纳米管表面 , 然后将抗
方面报道还有Perschel 等[13]通过化学发光免疫分析对原发性醛固酮
过多症(PHA)进行快速筛选, Tudorache等[14]利用磁颗粒免疫支
持液膜方法(m-ISLMA)检测唾液中的孕酮含量,Iwata 等[15]利用双
夹心化学发光免疫分析方法测定血浆中内皮素-1的含量等。关于这方
面的应用,化学发光免疫分析方法应用的最为广泛,正是在医学检测方
种生物化学领域中最新的超灵敏的碱性磷酸酶底物,其特点是反应速度
快,在很短时间内提供正确可靠的结果。在它的分子结构中有两个重要

电化学发光免疫分析方法及其应用

电化学发光免疫分析方法及其应用

[ 1 ] 1 9 2 9 年电致化学发光现象由 H a r v e y 发现。2 0
免疫反应系统和电化学发光系统。免疫反应系统主 要是抗原抗体结合形成免疫复合物, 而电化学发光 系统是利用电化学发光物质经氧化剂氧化形成激发 态中间体, 这种中间体不稳定, 在其返回基态时, 会 发射出光子, 其产率可以用发光信号检测仪接收测 [ 4 ] 检测 量 。以钌标记物电化学发光免疫分析为例, 中以标记有链霉亲和素直径几微米的磁珠作为固相 载体, 与生物素标记抗原或抗体结合后可以捕获检 测样本中的抗体或抗原, 再与反应体系中钌分子标 记的抗抗体或抗体结合, 形成的免疫复合体在外磁 场的作用下, 借助磁珠的磁力吸附完成固液相分离, 截留特异性抗原 抗体复合体, 洗涤除去多余或游离 的抗体或抗原。当反应体系中加入电子供体三丙胺 后, 在电场作用下, 钌分子和三丙胺在电极表面分别 被氧化成三价钌和带阳离子的自由基三丙胺。后者 很不稳定, 迅速失去一个质子形成强还原剂自由基 三丙胺, 将三价钌分子还原成激发态的二价钌, 其自 身则被氧化成二丙胺和丙醛。接着激发态的钌分子 2 0n m的 衰减成基态钌分子, 同时放出一个波长为 6 [ 3 , 5 ] 光子 。这一过程在电极表面以每毫秒几十万次 的速度循环进行, 产生的光子经光电倍增管检测光 强度, 从而测出待检抗体或抗原的含量。
2 + 3 [ 7 ]
3 项肿瘤标志物糖类抗原1 5 3 ( c a n c e r a n t i g e n , C A 1 5 3 ) 、 糖类抗原1 2 5 ( c a n c e r a n t i g e n , C A 1 2 5 ) 、 癌胚抗原 c a r c i n o e m b r y o n i ca n t i g e n , C E A ) 的含量进行检测, 结 ( 果显示3 项指标联合检测的灵敏度和特异度分别为 9 0 . 7 6 % 和9 6 . 8 3 %, 优 于 单 项 检 测 时 的7 7 . 9 4 %和 8 9 . 5 7 %、 9 5 . 6 3 %和4 1 . 1 7 %、 3 8 . 2 3 %和9 3 . 9 1 %, 提示 用E C L I A联合检测能提高乳腺癌早期诊断和鉴别诊

常见化学发光免疫分析技术比较

常见化学发光免疫分析技术比较

常见化学发光免疫分析技术比较1、化学发光免疫分析化学发光免疫分析(chemiluminescence immunoassay,CLIA),英音:[,kemi,lju:mi’nesəns] [,imju:nəuə’sei]是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。

是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。

CLIA是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。

是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。

1.1、化学发光免疫分析原理化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。

化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化,形成一个激发态的中间体,当这种激发态中间体回到稳定的基态时,同时发射出光子(hv) , 利用发光信号测量仪器测量光量子产额。

免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体)直接标记在抗原(化学发光免疫分析)或抗体(免疫化学发光分析) 上,或酶作用于发光底物.1。

2、化学发光免疫分析类型化学发光免疫分析法以标记方法的不同而分为两种:(1)化学发光标记免疫分析法;(2)酶标记、以化学发光底物作信号试剂的化学发光酶免疫分析法1。

2.1化学发光标记免疫分析化学发光标记免疫分析又称化学发光免疫分析(CL IA ), 是用化学发光剂直接标记抗原或抗体的免疫分析方法.常用于标记的化学发光物质有吖啶酯类化合物-acridiniumester (AE) ,是有效的发光标记物,其通过起动发光试剂(NaOH-H2O2)作用而发光,强烈的直接发光在一秒钟内完成,为快速的闪烁发光。

电化学发光免疫分析的原理

电化学发光免疫分析的原理

电化学发光免疫分析的原理
电化学发光免疫分析技术(Electrochemiluminescence Immunoassay,简称ECLIA)是一种新的生物分析技术,它利用生物反应物和特定的抗体来检测分子,从而对检测物有着准确的测定。

ECLIA的基本原理是,将待测物和夹带特异性抗体的过滤管体中的反应液一起放入体外,然后再加入电催化剂以及分子活性物质(如碳酸氢钠),在外部加入电场来促进反应物和抗体之间的免疫反应,即反应物与抗体结合后发出电化学发光。

与其他免疫分析方法相比,ECLIA具有更高的灵敏度和准确度。

ECLIA的优势有:(1)具有极佳的灵敏度(亚拉芬斯),可以检测出极低浓度的免疫物质;(2)反应过程十分快捷,几十秒内即可完成;(3)测量过程简便,不需要复杂的仪器和设备;(4)结果可以实时观察和记录,减少了人工把柄;(5)可以实现多重反应,可以同时检测多种免疫物质;(6)可以宽泛应用于血液、尿液、细胞液等多种样本中的病毒抗体的检测,对于应用研究和检验检测有重要的作用。

以上就是ECLIA技术的原理和优势,它在生物学研究、病毒检测以及其他方面都非常有用,受到了广泛应用。

随着实验技术的发展,ECLIA技术被不断改进和完善,也会被用于更多的生物医学检测工作中。

电化学发光免疫分析法电化学发光免疫分析法

电化学发光免疫分析法电化学发光免疫分析法
• 化学发光是指在某些特殊的化学反应中, 反应的中间体或产物由于吸收了反应释 放的化学能而处于电子激发态,当其回 到基态时伴随产生的光辐射现象。
化学发光 反应包括 两个关键 步骤,即 化学激发 和发光。
化学发光反应能级图
化学发光分析
• 根据化学发光反应在某一时刻的发光强 度或反应的发光总量来确定反应中相应 组分含量的分析方法,称为化学发光分 析。
方法评价
• “链霉亲和素-生物素”是是具有很强的非共 价相互作用的一对化合物,具有牢固而特 异的结合,应用此放大系统,使检测的灵 敏度大大提高;
方法评价
• 利用氧化铁的磁性,使用电磁场分离结 合态和游离态,方便迅速,实现了精确 的全自动化; • 标记物的再循环利用,使发光时间更长、 强度更高、易于测定。
• • • • •
免疫分析法 发光和化学发光 化学发光免疫分析法 电化学发光 电化学发光是通过在电极上施 加一定波形的电压或电流信号进行电解 反应的产物之间或与体系中共存组分反 应产生化学发光的现象。
电致化学发光(ECL)
• ECL与CL的差异在于ECL是电启动发光反 应,而CL是通过化合物混合启动发光反 应。因此ECL反应易精确控制,具有灵活 性。
三联吡啶钌 ( [Ru(bpy)3]2+ )特点
三联吡啶钌( [Ru(bpy)3]2+ )特点
• [Ru(bpy)3]2+衍生物与免疫球蛋白结合的分子 比超过20仍不会影响抗体的可溶性和免疫 活性; • [Ru(bpy)3]2+分子量小,空间位阻小 ,即便 小分子的核酸也能标记,使检测的菜单大 大丰富,更重要的是为其检测菜单的开发 前景提供了广阔空间。
ECLI原理
• 在电极表面由电化学引发的特异性化学发 光反应,用电化学发光剂三联吡啶钌 [Ru(bpy)3]2+标记Ab,通过Ag-Ab反应和磁珠 分离技术,根据三联吡啶钌在电极上发出 的光强度对待测的Ag或Ab进行定量/定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三联吡啶钌( [Ru(bpy)3]2+ )特点
[Ru(bpy)3]2+衍生物与免疫球蛋白结合的分 子比超过20仍不会影响抗体的可溶性和免 疫活性; [Ru(bpy)3]2+分子量小,空间位阻小 ,即便 小分子的核酸也能标记,使检测的菜单大 大丰富,更重要的是为其检测菜单的开发 前景提供了广阔空间。
化学发光分析优点
化学发光具有荧光的特异性,同时不需要 激发光,就避免了荧光分析中激发光杂散 光的影响有很高的灵敏度, 并且不象放射分析那样存在强烈的环境污 染和健康危害,是一种非常优秀的定量分 析方法。
化学发光分析缺点
虽然化学发光具备很高的特异性和很 小的干扰,但化学分析本身的不特异 性,制约了整个方法的使用。
临床应用
激素 肿瘤标记物 内分泌功能 传染性疾病 其它

如VB12、叶酸、铁蛋白、肌钙蛋白、肌红蛋白、酶、 脂肪酸、维生素和药物等多种检测项目。
化学ቤተ መጻሕፍቲ ባይዱ光免疫分析
化学发光免疫分析( CLIA)分类
按分离方法不同分

微粒子化学发光免疫测定 磁颗粒化学发光免疫测定
化学发光免疫分析( CLIA)分类
按发光剂不同分为



发光酶免疫测定(chemiluminescence enzyme immunoasssay, CLEIA ) 化学发光免疫测定技术 (chemiluminescence immunoassay, CLIA ) 电化学发光免疫测定技术(electro- chemiluminescence immunoassay, ECLI )
化学发光是指在某些特殊的化学反应中, 反应的中间体或产物由于吸收了反应释 放的化学能而处于电子激发态,当其回 到基态时伴随产生的光辐射现象。
化学发光 反应包括 两个关键 步骤,即 化学激发 和发光。
化学发光反应能级图
化学发光分析
根据化学发光反应在某一时刻的发光强 度或反应的发光总量来确定反应中相应 组分含量的分析方法,称为化学发光分 析。
电化学发光免疫分析法
Electro-Chemiluminescence Immunoassay (ECLI )
免疫分析法 发光和化学发光 化学发光免疫分析法 电化学发光 电化学发光免疫分析法
免疫分析
基于抗原和抗体的特异性反应进行检测的 一种手段; 免疫标记技术是将一些既易测定又具有高 度敏感性的物质标记到特异性抗原或抗体 分子上,通过这些标记物的增强放大效应 来显示反应系统中抗原或抗体的性质与含 量。
免疫学检测历史演进
放射免疫检测(兴起于20世纪70年代,现 仍普遍使用于县级以上医院); 酶联免疫检测(兴起于20世纪80年代,各 临床机构普遍使用); 以化学发光为代表的光生物学标记及免疫 检测技术(20世纪90年代开始推广使用, 产品步入成长期)三个阶段。
免疫分析法 发光和化学发光 化学发光免疫分析法 电化学发光 电化学发光免疫分析法
免疫分析法 发光和化学发光 化学发光免疫分析法 电化学发光 电化学发光免疫分析法
电致化学发光(ECL)
电致化学发光 (ECL) 是通过在电极上施 加一定波形的电压或电流信号进行电解 反应的产物之间或与体系中共存组分反 应产生化学发光的现象。
电致化学发光(ECL)
ECL与CL的差异在于ECL是电启动发光 反应,而CL是通过化合物混合启动发光 反应。因此ECL反应易精确控制,具有 灵活性。
电化学发光原理图
TPA TPA
3+ R u ( b py ) 3
+●

激发态
Ru(bpy) 3 R u ( b p y )32 +
基态
不稳定
*
光 子( 6 2 0 n m )
免疫分析法 发光和化学发光 化学发光免疫分析法 电化学发光 电化学发光免疫分析法
(Electro-Chemiluminescence Immunoassay, ECLI)
方法评价
采用的固相载体是带有磁性的直径约2.8 μm的聚苯乙烯微粒。其特点是反应面积 比板式扩大20-30倍,吸附效率高;在 液体中形成均匀的悬液,参与反应时类 似液相,反应速度大大加快;
方法评价
“链霉亲和素-生物素”是是具有很强的非 共价相互作用的一对化合物,具有牢固而 特异的结合,应用此放大系统,使检测的 灵敏度大大提高;
方法评价
利用氧化铁的磁性,使用电磁场分离结 合态和游离态,方便迅速,实现了精确 的全自动化; 标记物的再循环利用,使发光时间更长、 强度更高、易于测定。
ELIA优越性
高度敏感,可达pg/ml或pmol水平; 特异性强,重复性好,CV<5%。 测定范围宽,可达7个数量级。 试剂稳定,无毒害,无污染,有效期长, 达数月甚至数年。 操作简单,耗时短,易于自动化。 在对环保很重视的国家,CLIA成了取代 RIA的首选方法。
发光现象
萤火虫发光
深海鱼发光
发光分类
光照发光:发光剂经短波长入射光照射后 进入激发态,当回复至基态时发出较长 波长的可见光。
生物发光:反应底物在荧光素酶的 催化下利用ATP产能,生成激发态 的氧化荧光素,后者在回复到基态 时多余的能量以光子形式放出。 化学发光
化学发光 Chemiluminescence (CL)
ECLI是继EIA、RIA、FIA、时间分辨 荧光免疫技术(TRFIA)之后的新一 代标记免疫测定技术; ECLI是电化学发光(ECL)和免疫测定相结 合的产物; ECLI是目前最先进的标记免疫测定技术 之一。
电化学发光免疫分析
ECLI原理
在电极表面由电化学引发的特异性化学发 光反应,用电化学发光剂三联吡啶钌 [Ru(bpy)3]2+标记Ab,通过Ag-Ab反应和磁 珠分离技术,根据三联吡啶钌在电极上发 出的光强度对待测的Ag或Ab进行定量/定 性。
免疫分析法 发光和化学发光 化学发光免疫分析法 电化学发光 电化学发光免疫分析法
chemiluminescence immunoassay ( CLIA)
CLIA是将化学发光分析和免疫反应相结 合而建立的一种新的免疫分析技术。 这种方法兼有发光分析的高灵敏度和抗 原抗体反应的高度特异性。
电化学发光剂
定义:指通过在电极表面进行电化学反应 而发出光的物质。 特点


反应在电极进行 化学发光剂:三联毗啶钌 电子供体为:三丙胺(TPA)
三联毗啶钌分子结构图
O O N N Ru N N N N O O N
三联吡啶钌 ( [Ru(bpy)3]2+ )特点
ECL分析中采用[Ru(bpy)3]2+作为标记物, 其活化衍生物是[Ru(bpy)3]2++N羟基琥珀 酸胺酯(NHS) ,该衍生物具有水溶性, 且高度稳定,保证电化学发光反应的高效 和稳定,而且避免了本底噪声的干扰。
相关文档
最新文档