信号系统习题解答3版-4

合集下载

信号与系统课后习题与解答第三章

信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。

图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为Te jE e jE e jEe jEt f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。

若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20= 幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。

解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。

信号系统(第3版)习题解答

信号系统(第3版)习题解答

信号系统(第3版)习题解答《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。

] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S R S L S C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

《信号与系统(第三版)习题解析》勘误表

《信号与系统(第三版)习题解析》勘误表

《信号与系统(第三版)习题解析》勘误表1谷源涛2012年3月25日一、可能影响理解的错误1、 第12页,第3行“(t −π4)”改为“(t +π4)”,即把减号改成加号2、 第291页,第10行“=Wal2{[(i −1)⊕j ]+1,t]”改为“=Wal2{[(i −1)⊕j ]+1,t }”,即最后一个中括号改成大括号3、 第297页,第7行行末“πA 28δ(ω+1800)”改为“πA 28[δ(ω+1800)”并移至第8行行首,注意改动是插入方括号4、 第311页,倒数第6行“cos (ωc T −ωc t )+sin (ωc T −ωc t )”改成“cos (ωc T −ωc t )−sin (ωc T −ωc t )”,即加号改成减号5、 第311页,倒数第5行“cos (ωc t )−sin (ωc t )”改成 “cos (ωc t )+sin (ωc t )”,即减号改成加号6、 第391页,倒数第4行“DFT[x (n )]=X (k )”改为“DFT[x (n )]=X (k )”,即去掉x 和X 上的黑体;将“IDFT[X ](k )=x (n )”改为“IDFT[X (k )] =x (n )”,即一方面去掉黑体,另一方面将(k )移到方括号之内7、 第434页,第7行“0.739”改为“2.825”8、 第434页,倒数第3行“0.739”改为“2.825”9、 第455页,倒数第4行“,代价是增大了主瓣宽度和过渡带宽度”删掉10、 第460页,第9行“在∞有一个四阶零点,”删掉11、 第469页,第6行“ℒ[KΘ(t )]”改为“ℒ[Kθ(t )]”,即大写Θ改成小写θ,注意花体的ℒ还用原来的样子12、 第472页,倒数第3、4行“在PI 控制跟踪阶跃信号稳态误差不为零的情况下,”删掉13、 第472页,倒数第3行“可以改善”改为“可以提高系统稳定性,改善”14、 第486页,最后一行,分母“e jw −12”改成“e jω−12”,即把w 改成omega15、 第521页,第5行“|000−100006232−200−3|”改为“[000−100006232−200−3]”,即把绝对值号改为方括号 1 已将本勘误表交给出版社;希望这些问题能在第二次印刷中更正。

计算机网络吴功宜(第三版)课后习题解答(第1-4章)

计算机网络吴功宜(第三版)课后习题解答(第1-4章)

计算机网络-清华版_吴功宜(第三版)课后习题解答(第1-4 章)第一章计算机网络概论P421. 请参考本章对现代Internet 结构的描述,解释“三网融合”发展的技术背景。

答:基于Web的电子商务、电子政务、远程医疗、远程教育,以及基于对等结构的P2P网络、3G/4G与移动Internet 的应用,使得Internet 以超常规的速度发展。

“三网融合”实质上是计算机网络、电信通信网与电视传输网技术的融合、业务的融合。

2. 请参考本章对Internet 应用技术发展的描述,解释“物联网”发展技术背景。

答:物联网是在Internet 技术的基础上,利用射频标签、无线传感与光学传感等感知技术自动获取物理世界的各种信息,构建覆盖世界上人与人、人与物、物与物的智能信息系统,促进了物理世界与信息世界的融合。

3. 请参考本章对于城域网技术特点的描述,解释“宽带城域网”发展技术背景。

答:宽带城域网是以IP 为基础,通过计算机网络、广播电视网、电信网的三网融合,形成覆盖城市区域的网络通信平台,以语音、数据、图像、视频传输与大规模的用户接入提供高速与保证质量的服务。

4. 请参考本章对WPAN技术的描述,举出 5 个应用无线个人区域网络技术的例子。

答:家庭网络、安全监控、汽车自动化、消费类家用电器、儿童玩具、医用设备控制、工业控制、无线定位。

5.. 请参考本章对于Internet 核心交换、边缘部分划分方法的描述,举出身边 5 种端系统设备。

答:PDA、智能手机、智能家电、无线传感器节点、RFID 节点、视频监控设备。

7. 长度8B与536B的应用层数据通过传输层时加上了20B的TCP报头, 通过网络层时加上60B 的IP 分组头,通过数据链路层时加上了18B 的Ethernet 帧头和帧尾。

分别计算两种情况下的数据传输效率。

(知识点在:P33)解:长度为8B的应用层数据的数据传输效率:8/(8+20+60+18) ×100%=8/106×100%=7.55%长度为536B的应用层数据的数据传输效率:536/(536+20+60+18) ×100%=536/634×100%=84.54%8. 计算发送延时与传播延时。

信号与线性系统复习课用习题

信号与线性系统复习课用习题

第三、四章自测题解答一、 填空题:1、(1))(1t f 的参数为VA s T s 1,1,5.0===μμτ,则谱线间隔为__1000__kHz, 带宽为___2000__kHz 。

(2))(2t f 的参数为V A s T s 3,3,5.1===μμτ,则谱线间隔为___333__kHz, 带宽为_666__kHz 。

(3))(1t f 与)(2t f 的基波幅度之比为___1:3____。

(4))(1t f 的基波幅度与)(2t f 的三次谐波幅度之比为__1:1___。

2、由于周期锯齿脉冲信号的傅里叶级数的系数具有收敛性,因此,当k →∞时,k a =0。

3、信号x (t)的频带宽度为B ,x(2t)的频带宽度为 ,x(t/2)的频带宽度为 .3、根据尺度变化性质,可得x(2t)的频带宽度为2B ,可得x(t/2)的带宽为B/2。

6、设f (t)的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为2f ()πω-。

7、单个矩形脉冲的频谱宽度一般与其脉宽τ有关,τ越大,则频谱宽度 越窄 。

8、矩形脉冲通过RC 低通网络时,波形的前沿和后沿都将产生失真,这种失真的一个主要的原因是RC 低通网络不是理想低通滤波器,脉冲中的高频成分被削弱 。

9、为满足信号无失真,传输系统应该具有的特性(1)H(j )ω=;(2)h(t)= 。

9、(1)0j t Ke ω-(K 为常数),(2)0K (t-t )δ(0t 为常数) 10、已知某个因果连续时间LTI 系统的频率响应为H(j )ω,则该系统对输入信号tj t j e a e a E t x 0011)(ωω--++=的响应为 . 10、系统对输入信号t j t j e a e a E t x 0011)(ωω--++=的响应为)()()0()(010100ωωωωj H e a j H e a j EH t y t j t j -++=--。

信号与系统第二版课后习题解答(3-4)奥本海姆

信号与系统第二版课后习题解答(3-4)奥本海姆

Chap 33.1 A continuous-time periodic signal x(t) is real value and has a fundamental period T=8. The nonzero Fourier series coefficients for x(t) arej a a a a 4,2*3311====--.Express x(t) in the form)cos()(0k k k k t A t x φω+=∑∞=Solution:Fundamental period 8T =.02/8/4ωππ==00000000033113333()224434cos()8sin()44j kt j t j t j t j tk k j t j t j t j tx t a e a e a e a e a e e e je je t t ωωωωωωωωωππ∞----=-∞--==+++=++-=-∑A discrete-time periodic signal x[n] is real valued and has afundamental period N=5.The nonzero Fourier series coefficients for x[n] are10=a ,4/2πj e a --=,4/2πj e a =,3/*442πj e a a ==- Express x[n] in the form)sin(][10k k k k n A A n x φω++=∑∞=Solution:for, 10=a , 4/2πj ea --= , 4/2πj ea = ,3/42πj e a --=,3/42πj e a =n N jk k N k e a n x )/2(][π∑>=<=n j n j n j n j e a e a e a e a a )5/8(4)5/8(4)5/4(2)5/4(20ππππ----++++=n j j n j j n j j n j j e e e e e e e e )5/8(3/)5/8(3/)5/4(4/)5/4(4/221ππππππππ----++++=)358cos(4)454cos(21ππππ++++=n n)6558sin(4)4354sin(21ππππ++++=n nFor the continuous-time periodic signal)35sin(4)32cos(2)(t t t x ππ++= Determine the fundamental frequency 0ω and the Fourier seriescoefficients k a such thattjk k kea t x 0)(ω∑∞-∞==.Solution:for the period of )32cos(t πis 3=T , the period of )35sin(t πis 6=Tso the period of )(t x is 6, i.e. 3/6/20ππ==w )35sin(4)32cos(2)(t t t x ππ++=)5sin(4)2cos(21200t t ωω++=0000225512()2()2j t j t j t j t e e j e e ωωωω--=++-- then, 20=a , 2122==-a a , j a 25=-, j a 25-=3.5 Let 1()x t be a continuous-time periodic signal with fundamental frequency1ω and Fourier coefficients k a . Given that211()(1)(1)x t x t x t =-+-How is the fundamental frequency2ω of 2()x t related to? Also,find a relationship between the Fourier series coefficients k b of2()x t and the coefficients k a You may use the properties listed inTable 3.1. Solution:(1). Because )1()1()(112-+-=t x t x t x , then )(2t x has the same period as )(1t x , that is 21T T T ==, 12w w =(2). 212111()((1)(1))jkw t jkw t k TT b x t e dt x t x t e dt T --==-+-⎰⎰ 111111(1)(1)jkw t jkw t TTx t e dt x t e dt T T --=-+-⎰⎰111)(jkw k k jkw k jkw k e a a e a e a -----+=+=Suppose given the following information about a signal x(t): 1. x(t) is real and odd.2. x(t) is periodic with period T=2 and has Fourier coefficients k a .3. 0=k a for 1||>k .4 1|)(|21202=⎰dt t x .Specify two different signals that satisfy these conditions. Solution:0()j kt k k x t a e ω∞=-∞=∑while: )(t x is real and odd, then k a is purely imaginary and odd , 00=a , k k a a --=,.2=T , then 02/2ωππ==and0=k a for 1>kso0()j kt k k x t a e ω∞=-∞=∑00011j t j t a a e a e ωω--=++)sin(2)(11t a e ea t j tj πππ=-=-for12)(2121212120220==++=-⎰a a a a dt t x∴ j a 2/21±=∴)sin(2)(t t x π±=3 Consider a continuous-time LTI system whose frequency response is⎰∞∞--==ωωωω)4sin()()(dt e t h j H t jIf the input to this system is a periodic signal⎩⎨⎧<≤-<≤=84,140,1)(t t t x With period T=8,determine the corresponding system output y(t). Solution:Fundamental period 8T =.02/8/4ωππ==0()j kt k k x t a e ω∞=-∞=∑∴ 00()()jk t k k y t a H jk e ωω∞=-∞=∑0004, 0sin(4)()0, 0k k H jk k k ωωω=⎧==⎨≠⎩ ∴ 000()()4jkw t k k y t a H jk e a ω∞=-∞==∑Because 48004111()1(1)088T a x t dt dt dt T ==+-=⎰⎰⎰另:x(t)为实奇信号,则a k 为纯虚奇函数,也可以得到a 0为0。

数字信号处理课后答案+第4章(高西全丁美玉第三版)

数字信号处理课后答案+第4章(高西全丁美玉第三版)

6*. 按照下面的IDFT算法编写MATLAB语言 IFFT程 序, 其中的FFT部分不用写出清单, 可调用fft函数。 并分 别对单位脉冲序列、 矩形序列、 三角序列和正弦序列进行 FFT和IFFT变换, 验证所编程序。
解: 为了使用灵活方便, 将本题所给算法公式作为函 数编写ifft46.m如下: %函数ifft46.m %按照所给算法公式计算IFET function xn=ifft46(Xk, N) Xk=conj(Xk); %对Xk取复共轭 xn=conj(fft(Xk, N))/N; %按照所给算法公式计算IFFT 分别对单位脉冲序列、 长度为8的矩形序列和三角序列 进行FFT, 并调用函数ifft46计算IFFT变换, 验证函数 ifft46的程序ex406.m如下:
快速卷积时, 需要计算一次N点FFT(考虑到H(k)= DFT[h(n)]已计算好存入内存)、 N次频域复数乘法和 一次N点IFFT。 所以, 计算1024点快速卷积的计算时间Tc 约为
Fs <
1024 = 15 625 次 /秒 65536 × 10−6
Fs 15625 = = 7.8125 kHz 2 2
1 x ( n) = IDFT[ X ( k )] = [DFT[ X * ( k )]]* N
%程序ex406.m %调用fft函数计算IDFT x1n=1; %输入单位脉冲序列x1n x2n=[1 1 1 1 1 1 1 1]; %输入矩形序列向量x2n x3n=[1 2 3 4 4 3 2 1]; %输入三角序列序列向量x3n N=8; X1k=fft(x1n, N); X2k=fft(x2n, N); X3k=fft(x3n, N); %计算x1n的N点DFT %计算x2n的N点DFT %计算x3n的N点DFT

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统第三版张小虹

信号与系统第三版张小虹
不变,输入 为零时,系统的出为
当题(2)中初始条件为零,输入 即 系统的输出为
1-20解:因为线性系统的输出可以看成是零输入响应和零状态响应之和,且当初始状态和输入信号 发生变化时,零输入响应和零状态响应分别发生相应变化,由题意有:
解方程组得
所以,当题(1)中初始条件不变,输入 为零时,系统的出为
例3.7-1解1:电路进行拉普拉斯变换,在S域求解系统响应Y(S),然后求拉普拉斯反变换得到y(t);在求解过程中还可求出系统函数H(S),令S=jw得到H(jw),并求出该复数的模和相位函数
对电路列回路方程有 ①
)
又,由①可得 = ,令S=jw代入得:
所以有 ;
解法2,见书本上128页
第4章p222
当题(2)中初始条件为零,输入 为原来的两倍时时,系统的出为
思考:当初始条件为 时,输出
(提示:
1-21(1)D(2)B(3)D(理由参见上两题的计算)
第2章
2-15
(1)
2-16(1)
注:卷积的求解有两种常用的方法,一种是公式法,将积分式中 转换成积分的上限和下限,即可将积分值算出(因积分下线为0,最后得到的函数中要加 以表示);对于两个阶跃函数时移后相乘的情况由于转换积分上线下线涉及到 的时移,比较容易错,因此可采用2-15(1)的方法,即利用冲激函数积分特性和卷积的交换结合律等性质来计算。常用的性质为:
4-18 解:微分方程两边同时进行拉普拉斯变换得:
1)代入题中给出的初始条件并整理得:
)u(t)
2)代入题中给出的初始条件并整理得:
)u(t)
信号与系统部分习题解答
第1章p40
1-15(1)线性时不变(2)非线性时变(3)线性时变(4)非线性时不变(5)线性时不变(6)非线性时不变

数字信号处理第三版课后答案

数字信号处理第三版课后答案

数字信号处理第三版课后答案西安电⼦(⾼西全丁美⽟第三版)数字信号处理课后答案1.2教材第⼀章习题解答1.⽤单位脉冲序列及其加权和表⽰题1图所⽰的序列。

解:2.给定信号:(1)画出序列的波形,标上各序列的值;(2)试⽤延迟单位脉冲序列及其加权和表⽰序列;(3)令,试画出波形;(4)令,试画出波形;(5)令,试画出波形。

解:(1)x(n)的波形如题2解图(⼀)所⽰。

(2)(3)的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(⼆)所⽰。

(4)的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所⽰。

(5)画时,先画x(-n)的波形,然后再右移2位,波形如题2解图(四)所⽰。

3.判断下⾯的序列是否是周期的,若是周期的,确定其周期。

(1),A是常数;(2)。

解:(1),这是有理数,因此是周期序列,周期是T=14;(2),这是⽆理数,因此是⾮周期序列。

5.设系统分别⽤下⾯的差分⽅程描述,与分别表⽰系统输⼊和输出,判断系统是否是线性⾮时变的。

(1);(3),为整常数;(5);(7)。

解:故该系统是时不变系统。

故该系统是线性系统。

(3)这是⼀个延时器,延时器是⼀个线性时不变系统,下⾯予以证明。

令输⼊为,输出为,因为故延时器是⼀个时不变系统。

⼜因为故延时器是线性系统。

(5)令:输⼊为,输出为,因为故系统是时不变系统。

⼜因为因此系统是⾮线性系统。

(7)令:输⼊为,输出为,因为故该系统是时变系统。

⼜因为故系统是线性系统。

6.给定下述系统的差分⽅程,试判断系统是否是因果稳定系统,并说明理由。

(1);(3);(5)。

(1)只要,该系统就是因果系统,因为输出只与n时刻的和n时刻以前的输⼊有关。

如果,则,因此系统是稳定系统。

(3)如果,,因此系统是稳定的。

系统是⾮因果的,因为输出还和x(n)的将来值有关.(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。

如果,则,因此系统是稳定的。

7.设线性时不变系统的单位脉冲响应和输⼊序列如题7图所⽰,要求画出输出输出的波形。

信号与系统课后习题答案

信号与系统课后习题答案

f 2 (−1) (t) =
δ (t − 2) − δ (t − 3)
*
t ε e(−t+1) (t + 1)dt
−∞
= [δ (t − 2) − δ (t − 3)]* (1 − e−(t+1) )ε (t + 1)
= (1 − e−(t−2+1) )ε (t − 2 + 1) − (1 − e−(t−3+1) )ε (t − 3 + 1)
) − iL (t) − uC (t) R1
R2
状态方程为:
⎪⎪⎧u&C (t) ⎨
=
f (t) R1C

uC (t) R1C

iL (t) C
⎪⎪⎩i&L
(t)
=
uC
(t)
− R2iL L
(t)
1.17 写出题图 1.8 系统的输入输出方程。
解: (b)系统框图等价为:
⎧x′′(t) = f (t) − 3x′(t) − 2 y(t)
x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)

信号与系统第4章作业解答

信号与系统第4章作业解答
零状态响应 零输入响应
s5 sr (0 ) 3r (0 ) r (0 ) 4 3 2 Rzi ( s) 2 s 3s 2 s 3s 2 s 1 s 2
rzi (t ) 4e t 3e 2t
(t 0)
10
2 6 求激励信号和起始状态 为以下二种情况下系统 的完全响应, 并指出其零输入响应、 零状态响应、 自 由响应、 强迫响应各分量 . (2) e(t ) e 3t u (t ), r (0 ) 1, r (0 ) 2.
4
4 5 分别求下列函数的逆变换的初值和终值
s3 (2) ( s 1) 2 ( s 2)
s3 f (0 ) lim sF ( s) lim s 0 2 s s ( s 1) ( s 2)
s3 f () lim sF ( s) lim s 0 2 s 0 s 0 ( s 1) ( s 2)
(1) r (t ) rzi (t ) rzs (t )
d g (t ) g (t ) (t ) 2e t u (t ) dt
2 s 1 sG ( s ) G ( s ) 1 s 1 s 1 1 G(s) g (t ) e t u (t ) s 1
f (t ) (t 2et tet e t e2t )u(t )
7
4 4 求下列函数的拉普拉斯逆变换
e s (19) 4s( s 2 1)
1 A Bs C 2 2 s( s 1) s s 1
A B 0 C 0 A 1
( s 3) E ( s ) e(0 ) Rzs ( s ) s 2 3s 2
1 (2) E ( s ) e( 0 ) 0 s3

(完整版)信号与系统课后题答案

(完整版)信号与系统课后题答案

《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。

图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V CR = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。

信号系统(第3版)习题解答

信号系统(第3版)习题解答

《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。

](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S RS LS C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

信号与系统(第三版)新增习题解析

信号与系统(第三版)新增习题解析
H i (s ) ;
(3)再取 H i ( s) 的逆变换得到此逆系统的冲激响应 hi (t ) , 它应 当与第二章 2.9 节的结果一致。 解:(1)
r (t ) = e(t ) + ae(t − T ) ,对上式做 R( s) = 1 + ae −Ts E ( s)
1 1 + ae −Ts
L 变换得
欢 迎 访 问 慧 易 升 考 研 网 :
0
下载更多清华大学信号与系统考研资料
所以 h ( t ) = ke* ( t0 − t ) = ke ( t0 − t ) = ke ( T − t ) ,
h ( t ) = ke (T − t ) = {cos[ωc (T − t )] + sin[ωc (T − t )]}[ u(T − t) − u(T − t − T )]
(2)由第二问的结论可知:
r (t ) = e(t ) * h(t ) = [cos(ωc t ) + sin(ωc t )][u (t ) − u (t − T )]*[cos(ωc t ) − sin(ωc t )][u (t ) − u(t − T )]
= t cos(ωc t )[u (t ) − u (t − T )] − (t − 2T ) cos(ωc t )[u (t − T ) − u (t − 2T )]
i →∞ i =0
认为线性时不变的,所以:
+∞
H [e(t )] = H [e(0 + )u (t ) + lim ∑ [e(ti +1 ) − e(ti )]u (t − ti )]
i →∞ i =0
+∞
= H [e(0+ )u (t )] + H [lim ∑ [ e(ti +1 ) − e(ti )]u( t − ti )]

信号与系统习题解答 (4)

信号与系统习题解答 (4)

(h) 由1 Re{s} 0, x(t)应为双边信号
x(t )
L -1 X
(s)
L
-1
s(s
s 1 1)( s
2)
L
-1
1/2
s
1/2 s2
1 2
u (t )
1 2
e 2t u (t )
7.11 已知因果系统的系统函数 入x(t)的零状态响应。
H
(s)
s2
s,1求系统对于下列输
(e) (f)
L {teatu(t)}sin
0 (t
)u(t)}
e e e e j0 j0t
j0 j0t
L{
2j
u(t)}
e e j0 j0t
e e j0 j0t
L{
u(t)} L {
u(t)}
2j
2j
e j0
1
e j0
1
s sin 0 0 cos0
X (s) (s 3) y(0) y`(0)
Y (s) s2 3s 2
s2 3s 2
Yx (s)
s2
X (s) 3s
2
s2
1 3s
2
2 s
1 s
2 s 1
s
1
2
yx (t) 1 2et e2t u(t)
1) 5s
6
L
-1
(s
(s 1) 2)(s
3)
L
-1
(
1 s 2)
(s
2
3)
e 2t u (t )
2e 3t u (t )
(f) 由0 Re{s} 1, x(t)应为双边信号
x(t )

信号系统习题解答3版

信号系统习题解答3版

第3章习题答案3-1 已知周期矩形脉冲信号的重复频率 5 kHzf=,脉宽20 sτ=μ,幅度10VE=,如图题3-1所示。

用可变中心频率的选频回路能否从该周期矩形脉冲信号中选取出5,12,20,50,80及100 kHz频率分量来?要求画出图题3-1所示信号的频谱图。

图题3-1解:5kHzf=,20μsτ=,10VE=,11200T sfμ==,41210fππΩ==频谱图为从频谱图看出,可选出5、20、80kHz的频率分量。

3-3 求图题3-3 所示周期锯齿信号指数形式的傅里叶级数,并大致画出频谱图。

图题3-3解:()f t在一个周期(0,T1)内的表达式为:11()()Ef t t TT=--111110011111()()(1,2,3)2T Tjn t jn tnE jEF f t e dt t T e dt nT T T nπ-Ω-Ω==--=-=±±±⎰⎰L11010011111()()2T T E EF f t dt t T dtT T T==--=⎰⎰傅氏级数为:111122()22244j t j t j t j tE jE jE jE jEf t e e e eππππΩ-ΩΩ-Ω=-+-+-Lnc12(kHz)f5205010015080(1,2,3)2nEF nnπ==±±±L(0)2(0)2nnnπϕπ⎧->⎪⎪=⎨⎪<⎪⎩频谱图为:3-4 求图题3-4 所示半波余弦信号的傅里叶级数,若10 VE=, 10 kHzf=,大致画出幅度谱。

图题3-4解:由于()f t是偶函数,所以展开式中只有余弦分量,故傅氏级数中0nb=,另由图可知()f t有直流分量,()f t在一个周期(2T-,2T)内的表达式为:111cos4()4TE t tf tTt⎧Ω<⎪⎪=⎨⎪>⎪⎩其中:112TπΩ=11112401112411()cosT TT TEa f t dt E tdtT Tπ--==Ω=⎰⎰111111241112422()cosT Tjn t jn tT Tn na c f t e dt E t e dtT T-Ω-Ω--===Ω⋅⎰⎰nF2Eπ6Eπ10Eπ1Ω13Ω15Ω1-Ω13-Ω15-ΩLL4Eπ12Ω14Ω8Eπ2E12-Ω14-Ω2π-2πnϕ15-Ω13-Ω1-Ω1Ω13Ω15ΩLL12Ω12-Ω14-Ω14Ω211sin sin 2122cos 3,5,71112n n E E n n n n n πππππ+-⎡⎤⎢⎥=+=-=⎢⎥+--⎢⎥⎣⎦L111211122()2Tj t T E a c f t e dt T -Ω-===⎰所以,()f t 的三角形式的傅里叶级数为:11122()cos cos 2cos 42315EE E E f t t t t πππ=+Ω+Ω-Ω+L3-6 利用信号()f t %的对称性,定性判断图题3-6中各周期信号的傅里叶级数中所含有的频率分量。

电子教案《信号与系统》(第三版)信号系统习题解答.docx

电子教案《信号与系统》(第三版)信号系统习题解答.docx

《信号与系统》(第 3 版)习题解析高等教育出版社目录第 1 章习题解析 (2)第 2 章习题解析 (6)第 3 章习题解析 (16)第 4 章习题解析 (23)第 5 章习题解析 (31)第 6 章习题解析 (41)第 7 章习题解析 (49)第 8 章习题解析 (55)第 1 章习题解析1-1题 1-1 图示信号中, 哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c)(d)题 1-1图解 (a)、(c)、(d)为连续信号; (b)为离散信号; (d)为周期信号;其余为非周期信号; (a)、(b)、(c)为有始(因果)信号。

1-2 给定题 1-2 图示信号 f( t ),试画出下列信号的波形。

[提示: f( 2t )表示将 f( t )波形压缩,f( t)表示将 f( t )波形展宽。

]2(a) 2 f( t 2 )(b) f( 2t ) (c) f(t)2(d) f( t +1 )题1-2图解 以上各函数的波形如图 p1-2 所示。

图 p1-21-3如图1-3图示,R、L、C元件可以看成以电流为输入,电压为响应的简单线性系统S R、S L、 S C,试写出各系统响应电压与激励电流函数关系的表达式。

S RS LS C题 1-3图解各系统响应与输入的关系可分别表示为u R (t)R i R (t )u L (t)di L (t )L1dttu C (t )i C ( )dC1-4如题1-4图示系统由加法器、积分器和放大量为 a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

题 1-4图解 系统为反馈联接形式。

设加法器的输出为 x( t ),由于x(t ) f (t) ( a) y(t)且y(t ) x(t)dt ,x(t) y (t)故有y (t) f (t ) ay (t)即y (t ) ay(t ) f (t)1-5已知某系统的输入 f( t )与输出 y( t )的关系为 y( t ) = | f( t )|,试判定该系统是否为线性时不变系统?解 设 T 为系统的运算子,则可以表示为y(t) T[ f (t )]f (t)不失一般性,设 f( t ) = f 1( t ) + f 2 ( t ),则T[ f 1 (t)]f 1 (t)y 1 (t )T[ f 2 (t)] f 2 (t )y 2 (t )故有T[ f (t)] f 1 (t )f 2 (t ) y(t)显然f 1 (t ) f 2 (t)f 1 (t ) f 2 (t )即不满足可加性,故为非线性时不变系统。

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

第 1 章
时域离散信号和时域离散系统
故该系统是非时变系统。 因为 y(n)=T[ax1(n)+bx2(n)] =ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)]
+3[ax1(n-2)+bx2(n-2)]
T[ax1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2) T[bx2(n)]=bx2(n)+2bx2(n-1)+3bx2(n-2) 所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)] 故该系统是线性系统。
第 1 章
时域离散信号和时域离散系统
题4解图(一)
第 1 章
时域离散信号和时域离散系统
题4解图(二)
第 1 章
时域离散信
(4) 很容易证明:
时域离散信号和时域离散系统
x(n)=x1(n)=xe(n)+xo(n) 上面等式说明实序列可以分解成偶对称序列和奇对称序列。 偶对称序列可 以用题中(2)的公式计算, 奇对称序列可以用题中(3)的公式计算。 5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输 出, 判断系统是否是线性非时变的。 (1)y(n)=x(n)+2x(n-1)+3x(n-2) (2)y(n)=2x(n)+3 (3)y(n)=x(n-n0) (4)y(n)=x(-n) n0为整常数

m 4
(2m 5) (n m) 6 (n m)
m 0
1
4
第 1 章
时域离散信号和时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位, 再乘以2, 画出图形如题2解图 (二)所示。 (4) x2(n)的波形是x(n)的波形左移2位, 再乘以2, 画出图形如题2解图(三) 所示。 (5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章习题答案4-2 已知系统微分方程相应的齐次方程为(1)22d ()d ()22()0d d y t y t y t t t ++=(2)22d ()d ()2()0d d y t y t y t tt ++= 两系统的起始条件都是:(0)1, (0)2y y --'==,试求两系统的零输入响应zi ()y t ,并粗略画出波形。

解:(1)0222=++ααj j --=+-=1121ααt e C t e C e A e A t y t t t t h cos sin )(212121--+=+=αα1)0(2==+C y2cos sin sin cos )0(2102211,=-=---==----+C C t e C t e C t e C t e C y t t t t t ⎩⎨⎧==1321C C0cos sin 3)(≥+=--t te t e t y tth(2) 0122=++αα1121-=-=ααt t h te A e A t y --+=21)(t t t h te A e A e A t y ----+-=221,)( ⎩⎨⎧=+-=21211A A A ⎩⎨⎧==3121A A 03)(≥+=--t tee t y tthty h (t)π/2π1ty h (t)2/33e -2/34-3 给定系统微分方程、起始状态及激励信号分别如下,试判断系统在起始点是否发生跳变,并据此写出()(0)k +y 的值。

(1)d ()d ()2()3d d y t x t y t t t+= (0)0y -=,()()x t u t = (2)22d ()d ()d ()234()d d d y t y t x t y t t tt ++= (0)1y -=,(0)1y -'=,()()x t u t =*(3)22d ()d ()d ()234()()d d d y t y t x t y t x t t t t ++=+(0)1y -=,(0)1y -'=,()()x t t δ=解:(1) )(3)(2)(t t y t y dtdδ=+因为方程在t =0时,存在冲激作用,则起始点会发生跳变设:代入方程⎪⎩⎪⎨⎧=+=)()()()()(t au t y t bu t a t y dtdδ得:a =3, 3)0(3)0(=+-+y y =(2) )()(4)(3)(222t t y t y dtdt y dt d δ=++因为方程在t =0时,存在冲激作用,则起始点会发生跳变设:代入方程⎪⎩⎪⎨⎧=+=)()()()()(22t au t y dt d t bu t a t y dt d δ得:a =0.5, ⎩⎨⎧==5.1)0(5.0)0(1)0()0(,,=+=-+-+y y y y(3) )()(')(4)(3)(222t t t y t y dtd t y dt d δδ+=++ 因为方程在t =0时,存在冲激和冲激偶作用,则起始点会发生跳变设:代入方程⎪⎪⎩⎪⎪⎨⎧=+=++=)()()()()()()()()('22t au t y t bu t a t y dtdt cu t b t a t y dt d δδδ⎩⎨⎧-4/12/1==b a ⎩⎨⎧=+=4/3)0()0(2/3)0()0(,,=+=-+-+y b y y a y4-4 给定系统微分方程为 22d ()d ()d ()32()3()d d d y t y t x t y t x t t tt ++=+ 若激励信号与起始状态为以下二种情况时,分别求它们的全响应。

并指出其零输入响应、零状态响应、自由响应和强迫响应各分量(应注意在起始点是否发生跳变)。

(1)()()x t u t =,(0)1y -=,(0)2y -'= (2)3()e ()t x t u t -=,(0)1y -=,(0)2y -'=解:(1))(3)()(2)(3)(22t u t t y t y dt dt y dtd +=++δ0232=++αα 2121-=-=αα齐次解:tt h e A e A t y 221)(--+= 特解:2/3)(=t y p完全解:2/3)(221++=--t t e A e A t y 因为方程在t =0时,存在冲激作用,则起始点会发生跳变设:代入方程⎪⎩⎪⎨⎧=+=)()()()()(22t au t y dt d t bu t a t y dt d δ 得:a =1, ⎩⎨⎧==3)0(1)0(1)0()0(,,=+=-+-+y y y y 则:2/523212/3212121-⎩⎨⎧--++====A A A A A A完全解:023252)(2≥+-=--t e e t y t t设零输入响应为:tzi t zi zi e A e A t y 221)(--+= 342)0(21)0(21,2121-⎩⎨⎧--=+--=====zi zi zi zi zi zi A A y A A y A A则:034)(2≥-=--t e e t y tt zi05.15.02)()()(2≥++-=-=--t e e t y t y t y t t zi zs自由响应:t te e25.22---;强迫响应:1.5。

(2)微分方程右边为:)()(3)()(3333t t u e t e t u e t t t δδ=++----原方程为:)()(2)(3)(22t t y t y dtdt y dt d δ=++由上述微分方程可知,t>0后方程右边没有输入,因此,系统没有强迫响应,完全响应和自由响应相同,零输入和零状态响应的形式均为齐次解形式,且零输入响应同(1),为:034)(2≥-=--t e e t y tt zi零状态响应的形式为:tzs t zs zs e A e A t y 221)(--+=设:代入方程⎪⎩⎪⎨⎧=+=)()()()()(22t au t y dt d t bu t a t y dt d δ得:a =1, ⎩⎨⎧=--1)0()0(0)0()0(,,a y y y y ==-+-+ 11120212121-⎩⎨⎧--+====A A Azs Azs A A zs zs则:0)(2≥-=--t e e t y tt zs045)()()(2≥-=+=--t e e t y t y t y tt zs zi4-6 一线性时不变系统在相同的起始状态下,当输入为()x t 时,全响应为(2e cos2)()t t u t -+;当输入为2()x t 时,全响应为(e 2cos2)()t t u t -+,求输入为4()x t 时的全响应。

解:系统的零状态响应为:)()2cos ()2cos 2()2cos 2()()()(12t u t e t e t e t y t y t y tttzs +-=+-+=-=---当输入为4x (t )时,系统的全响应为:)()2cos 4()()(3)(1t u e t t y t y t y t zs --=+=)(3)()()(1t u e t y t y t y t zs zi -=-=4-7 系统的微分方程由下列各式描述,分别求系统的冲激响应与阶跃响应。

(1)d ()2()()d y t y t x t t+=解:(1)首先求阶跃响应,原方程变为:)()(2)(t u t g t g dtd=+ 方程右边没有冲激作用,则起始点不会发生跳变,0)0()0(==-+g g 特征方程:02=+α2-=α齐次解:th e A t g 21)(-= 特解:B =0.5则:5.0)(21+=-t e A t g ,代入初始值,05.01=+A 系统的阶跃响应为:)()5.05.0()(21t u et g t+-=-系统的冲激响应为:)()()(2t u e t g dtd t h t-==*4-12 一线性时不变系统,当激励信号为1()()x t t δ=时,全响应为1()()e ()t y t t u t δ-=+;当激励信号为2()()x t u t =时,全响应为2()3e ()t y t u t -=。

求系统的冲激响应()h t (两种激励下,起始状态相同)。

解:)2()1()(3)()()()()()()()(21⎪⎩⎪⎨⎧=+=+=+=-∞--⎰t u e t y d h t y t u e t t y t h t y tzi t tzi ττδ 式(1) – 式(2)得:)(2)()()(t u e t d h t h t t-∞--=-⎰δττ上式求导:)(2)(2)()()(''t u e t t t h t h t-+-=-δδ设:)()()(t u Be t A t h t-+=δ代入上式:''()()()()()()2()2()t t t A t B t Be u t A t Be u t t t e u t δδδδδ---+---=-+方程两边函数相等:1,1-==B A)()()(t u e t t h t --=δ4-13 试求下列各函数1()f t 与2()f t 的卷积12()()()s t f t f t =* (1)1()()f t u t =,2()()f t u t =(3)1()(1)[()(1)]f t t u t u t =+--,2()(1)(2)f t u t u t =---解:(1))()()(1t t u dtd t f dt d δ== )()()(1)()(002t tu t u t t u d d u d f t tt t=⋅===⎰⎰⎰∞-∞-τττττ1212()()()()()()()()t s t f t f t d f t f d dtt tu t tu t ττδ-∞=*=*=*=⎰ (3)a)1()0t S t -∞<<=时12211b)12()(1)(0.5)(1)02t t t S t d t ττττ--≤<=+=+=-⎰时τf 1(τ)1210τf 2(t-τ)t-1t-21τ121t-121<≤t 0τ12t-232<≤t 0tS (t )1222113c)23()(1)(0.5)222t t S t d t t t ττττ-≤<=+=+=-++-⎰时d)3()0t S t ≤<+∞=时*4-14 对图题4-14所示的各组信号,求二信号的卷积12()()()s t f t f t =*,并绘出()s t 的波形。

相关文档
最新文档