高中数学模型解题法.doc
高中数学抛物线的一个重要模型(模型解题法)
![高中数学抛物线的一个重要模型(模型解题法)](https://img.taocdn.com/s3/m/d1aac2a3bceb19e8b8f6baa7.png)
DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。
过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。
在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
高中数学通用模型解题方法及技巧
![高中数学通用模型解题方法及技巧](https://img.taocdn.com/s3/m/562c6b893b3567ec112d8a39.png)
高中数学通用模型解题方法及技巧一、选择题解答模型策略近几年来,陕西高考数学试题中选择题为10道,分值50分,占总分的33.3%。
注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间,获取高分的秘诀。
高考中考生“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
一般地,选择题解答的策略是:①熟练掌握各种基本题型的一般解法。
②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
二、填空题解答模型策略填空题是一种传统的题型,也是高考试卷中又一常见题型。
陕西高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。
根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。
由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。
二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。
在解答填空题时,基本要求就是:正确、迅速、合理、简捷。
一般来讲,每道题都应力争在1~3分钟内完成。
填空题只要求填写结果,每道题填对了得满分,填错了得零分,所以,考生在填空题上失分一般比选择题和解答题严重。
高中数学中的解题模型教案
![高中数学中的解题模型教案](https://img.taocdn.com/s3/m/106b218a8ad63186bceb19e8b8f67c1cfad6eeac.png)
高中数学中的解题模型教案
课题:解题模型
教材:高中数学教材
目标:学生能够掌握常见数学问题的解题模型,提高解题能力。
教学内容:
1. 引入:解题模型在解决数学问题中的重要性和作用。
2. 概念:解题模型是指解决数学问题时的一种规范化的思维方式,通过建立模型、分析问题、推导解答等步骤,找到问题的解答。
3. 培养学生制定解题模型的能力:通过实例讲解和练习,教导学生如何在遇到数学问题时,找到适合的解题模型,并灵活运用。
4. 练习:对不同类型的数学问题,进行实例讲解和练习,巩固学生的解题模型运用能力。
5. 总结:总结本节课所学的解题模型,强调灵活运用解题模型的重要性。
教学活动:
1. 以问题为导向,引导学生通过思考、讨论,找到适合的解题模型。
2. 分组练习,让学生在合作中互相交流、讨论,并找出最佳解题方法。
3. 在课堂上进行实例讲解,并指导学生如何运用解题模型解决不同类型的数学问题。
4. 布置作业,让学生在家中巩固所学内容。
教学评估:
1. 通过课堂练习和作业,检验学生是否掌握了解题模型的使用方法。
2. 观察学生的课堂表现,看是否能够灵活运用解题模型解决数学问题。
3. 与学生进行交流,了解他们对解题模型的理解和反馈。
教学反思:
根据学生的表现和反馈,及时调整教学方法,帮助学生更好地掌握解题模型,提高解题能力。
高中数学解题大模型
![高中数学解题大模型](https://img.taocdn.com/s3/m/4f9e4c460640be1e650e52ea551810a6f524c8b2.png)
高中数学解题大模型随着高中数学的不断发展,解题技巧也在不断的深入探索。
高中数学的解题是一门系统性的研究,解题模型也是一个重要的组成部分。
解题模型是指用某种格式或形式,把问题解决的方法表达出来,且表达形式应当比较完整,从而使问题得到解决。
在解题模型的研究中,有一系列常用的、核心的解题模型,这些模型在高中数学解题中都有其重要的作用。
下面将介绍几种最常用的解题模型。
1、概率解题模型。
概率解题模型用来解决概率的计算问题,其基本形式为:某事件的概率=此事件的发生的次数/可能发生的所有事件的次数。
概率解题模型在高中数学中有着广泛的应用。
2、数列解题模型。
数列解题模型是高中数学解题中最重要的一种模型,用来解决数列的求和、求平均数等问题。
这种模型一般采用数列通项公式的形式,通过构造数列公式,对一定规律的数列求出其求和、求平均数等关键数据。
3、二次函数解题模型。
二次函数解题模型是高中数学中常见的一种解题模型,指的是将二次函数的图像、周长、最大值、最小值、极值点、凹凸性等问题,用二次函数的函数表达式或变量关系来解决。
4、排列组合计算模型。
排列组合计算模型是指从所有可能的排列组合中选出满足某一要求的排列组合的个数,此类问题通常采用“排列组合数公式”的形式进行求解。
5、几何解题模型。
几何解题模型是指用直线、圆、三角形、椭圆等图形的性质来解决几何问题的模型,其中最重要的两个性质是“相似性”和“平行性”。
通过这两个性质,一些复杂的几何问题可以被轻松解决。
6、比例解题模型。
比例解题模型是指用比例关系解决问题的模型,它是高中数学中最常用的解题模型之一,它可以用来解决比例关系问题,如比例结合题、比例平分题、比例比较题等。
7、函数解题模型。
函数解题模型是指用函数的单调性和凹凸性来解决函数的一类问题,它是高中数学解题中常用的一种模型,有着广泛的应用。
以上就是高中数学解题模型大全,在高中数学解题中,这些模型都有重要的作用,对于学生们,要掌握这些模型,把它们正确的应用到解题中,以便解决问题。
高中数学模型法解题-滑轮组-函数模型
![高中数学模型法解题-滑轮组-函数模型](https://img.taocdn.com/s3/m/ed19674a7dd184254b35eefdc8d376eeaeaa1703.png)
高中数学模型法解题-滑轮组-函数模型1. 引言滑轮组是高中数学中常见的问题类型之一,它涉及到力的作用和力的传递。
通过建立函数模型,我们可以解决滑轮组问题,计算力的大小和方向。
2. 滑轮组问题的解题步骤解决滑轮组问题可以遵循以下几个步骤:2.1 确定系统受力情况首先,我们需要确定滑轮组系统中受到的力,包括外力和内力。
外力可以是给定的力或者需要求解的力,而内力通常是滑轮组中不同部分之间的相互作用力。
2.2 建立受力方程根据受力情况,我们可以建立各个滑轮和绳子的受力方程。
利用牛顿第二定律和力的平衡条件,我们可以得到一系列的方程。
2.3 建立关系式根据滑轮组的几何关系和运动规律,我们可以建立各个滑轮和绳子之间的关系式。
这些关系式可以是绳子的长度关系、绳子与滑轮的接触关系等。
2.4 建立函数模型根据步骤2和步骤3的结果,我们可以建立滑轮组问题的函数模型。
函数模型可以包括力与角度、力与绳长等关系。
2.5 求解问题利用建立的函数模型,我们可以求解出需要计算的力的大小和方向,或者其他与问题相关的量。
3. 示例设有一个包含三个滑轮的滑轮组,绳子上施加了一个外力F1,求解绳子上的张力。
以下是解题步骤:3.1 确定系统受力情况绳子上的力分为外力和内力。
外力为F1,内力为绳子间的拉力T1、T2、T3。
3.2 建立受力方程根据牛顿第二定律和力的平衡条件,可以建立以下方程:T1 + T2 = 2T3T1 + T2 - F1 = 03.3 建立关系式滑轮组中的滑轮与绳子之间的关系可以表示为:L1 = 2L3L1 + L2 + L3 = L其中L1、L2、L3为绳子的长度,L为绳子的总长度。
3.4 建立函数模型根据步骤3中的关系式,我们可以将T1、T2、T3与绳子的长度L1、L2、L3联系起来,建立函数模型。
3.5 求解问题利用建立的函数模型,我们可以求解出绳子上的张力T1、T2、T3。
4. 总结通过建立函数模型,我们可以解决高中数学中关于滑轮组的问题。
143个高中高频数学解题模型
![143个高中高频数学解题模型](https://img.taocdn.com/s3/m/af8e63c4e43a580216fc700abb68a98271feac88.png)
143个高中高频数学解题模型一、一元一次方程与一元一次方程组1. 一元一次方程的定义一元一次方程指的是只含有一个变量,并且最高次数为一的方程,通常表示为ax+b=0。
解一元一次方程的方法主要有求解法和图解法。
2. 一元一次方程组的概念一元一次方程组指的是由若干个一元一次方程组成的方程组,通常表示为a1x+b1y=c1a2x+b2y=c2解一元一次方程组的方法主要有代入法、加减法和等系数消去法。
二、一元二次方程与一元二次不等式1. 一元二次方程的特点一元二次方程指的是最高次数为二的方程,通常表示为ax^2+bx+c=0。
解一元二次方程的方法主要有配方法和求根公式。
2. 一元二次不等式的解法一元二次不等式指的是最高次数为二的不等式,通常表示为ax^2+bx+c>0或ax^2+bx+c<0。
解一元二次不等式的方法主要有因式分解法和图像法。
三、二元二次方程与二元二次不等式1. 二元二次方程的定义二元二次方程指的是含有两个变量且最高次数为二的方程,通常表示为ax^2+by^2+cxy+dx+ey+f=0。
解二元二次方程的方法主要有配方法和消元法。
2. 二元二次不等式的概念二元二次不等式指的是含有两个变量且最高次数为二的不等式。
解二元二次不等式的方法主要有图解法和代数法。
四、指数与对数1. 指数的基本性质指数是幂运算的一种表示方式,有基本性质包括乘法法则、除法法则和零指数法则。
2. 对数的基本概念对数是幂运算的逆运算,有基本性质包括对数的乘除法则和对数的换底公式。
五、三角函数与解三角形1. 三角函数的基本性质三角函数包括正弦函数、余弦函数和正切函数,有基本性质包括奇偶性、周期性和对称性。
2. 解三角形的基本方法解三角形主要包括利用三角函数和利用三角恒等式两种方法,主要应用于解直角三角形和不定角三角形。
六、平面向量的运算1. 平面向量的基本定义平面向量是具有大小和方向的量,有基本运算包括数乘、加法和减法。
高中数学-球专题讲义模型全解-学生版
![高中数学-球专题讲义模型全解-学生版](https://img.taocdn.com/s3/m/5de8ffd9b8f3f90f76c66137ee06eff9aef849a5.png)
目录专题一 墙角模型 2【方法总结】 2【例题选讲】 2【对点训练】 3专题二 对棱相等模型 7【方法总结】 7【例题选讲】 7【对点训练】 8专题三 汉堡模型 10【方法总结】 10【例题选讲】 10【对点训练】 11专题四 垂面模型 14【方法总结】 14【例题选讲】 14【对点训练】 15专题五 切瓜模型 19【方法总结】 19【例题选讲】 19【对点训练】 21专题六 斗笠模型 24【方法总结】 24【例题选讲】 24【对点训练】 25专题七 鳄鱼模型 28【方法总结】 28【例题选讲】 28【对点训练】 30专题八 已知球心或球半径模型 33【例题选讲】 33【对点训练】 34专题九 最值模型 38【方法总结】 38【例题选讲】 38【对点训练】 39专题十 内切球模型 44【方法总结】 44【例题选讲】 44【对点训练】 45专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R= a2+b2+c2.),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】例1.[例] (1)已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=3,BC=2,CD=5,则球O的表面积为( )A.12πB.7πC.9πD.8π(2)若三棱锥S−ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,则该三棱锥的外接球半径为( ).A.3B.6C.36D.9(3)已知S,A,B,C,是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于( ).A.4πB.3πC.2πD.π(4)在正三棱锥S-ABC中,M,N分别是棱SC,BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积是________.(5)(2019全国Ⅰ)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( ).A.86πB.46πC.26πD.6π(6)已知二面角α-l-β的大小为π3,点P∈α,点P在β内的正投影为点A,过点A作AB⊥l,垂足为点B,点C∈l,BC=22,PA=23,点D∈β,且四边形ABCD满足∠BCD+∠DAB=π.若四面体PACD的四个顶点都在同一球面上,则该球的体积为________.【对点训练】1.点A,B,C,D均在同一球面上,且AB,AC,AD两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为( )A.7πB.14πC.72πD.714π32.等腰△ABC中,AB=AC=5,BC=6,将△ABC沿BC边上的高AD折成直二面角B-AD-C,则三棱锥B-ACD的外接球的表面积为( )A.5πB.203πC.10πD.34π3.已知球O的球面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.4.已知四面体P-ABC四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=1,AB=PB =2,则球O的表面积为________.5.三棱锥P-ABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,三棱锥P-ABC的外接球的体积为( )A.272πB.2732π C.273π D.27π6.在空间直角坐标系Oxyz中,四面体ABCD各顶点的坐标分别为A(2,2,1),B(2,2,-1),C(0,2,1),D (0,0,1),则该四面体外接球的表面积是( )A.16πB.12πC.43πD.6π7.在平行四边形ABCD中,∠ABD=90°,且AB=1,BD=2,若将其沿BD折起使平面ABD⊥平面BCD,则三棱锥A-BDC的外接球的表面积为( D )A.2πB.8πC.16πD.4π8.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S-ABC的外接球的表面积为( )A.6πB.12πC.32πD.36π9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A-BCD为鳖臑,AB⊥平面BCD,且AB=BC=36CD,若此四面体的体积为833,则其外接球的表面积为________.10.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为32的正方形,AA1=3,E是线段A1B1上一点,若二面角A-BD-E的正切值为3,则三棱锥A-A1D1E外接球的表面积为________.专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R=a2+b2+c2(长方体的长、宽、高分别为a、b、c).秒杀公式:R2=x2+y2+z28(三棱锥的三组对棱长分别为x、y、z).可求出球的半径从而解决问题.【例题选讲】例2.[例] (1)正四面体的各条棱长都为2,则该正面体外接球的体积为________.(2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A−BCD外接球的表面积为________.(4)在正四面体A-BCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为7,则该正四面体的外接球的体积是( )A.6πB.6πC.3632π D.3 2π(5)已知三棱锥A-BCD,三组对棱两两相等,且AB=CD=1,AD=BC=3,若三棱锥A-BCD的外接球表面积为9π2.则AC=________.【对点训练】1.已知正四面体ABCD的外接球的体积为86π,则这个四面体的表面积为________.2.表面积为83的正四面体的外接球的表面积为( )A.43πB.12πC.8πD.46π3.已知四面体ABCD满足AB=CD=6,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是________.4.三棱锥中S-ABC,SA=BC=13,SB=AC=5,SC=AB=10.则三棱锥的外接球的表面积为______.5.已知一个四面体ABCD的每个顶点都在表面积为9π的球O的表面上,且AB=CD=a,AC=AD=BC =BD=5,则a=________.6.正四面体ABCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为14,则该正四面体的外接球表面积是( )A.12πB.32πC.8πD.24π专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,∴R 2=r 2+h 24.【例题选讲】例3.[例] (1)(2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A.3172 B.210 C.132 D.310(2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).A.πa 2B.73πa 2C.113πa 2D.37πa 2(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A.10πB.20πC.30πD.40π(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A.4πB.16π3C.32π3D.16π(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A.(125-12)πB.123πC.(123+3)πD.16π【对点训练】一直三棱柱的每条棱长都是2,且每个顶点都在球O的表面上,则球O的表面积为( )A.28π3B.22π3 C.43π3 D.7π2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.3.已知正三棱柱ABC-A1B1C1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC-A1B1C1外接球的表面积为( )A.4πB.8πC.16πD.32π4.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=1,∠BAC=60°,AA1=2,则该三棱柱的外接球的体积为( )A.40π3B.4030π27 C.32030π27 D.20π5.已知矩形ABCD中,AB=2AD=2,E,F分别为AB,CD的中点,将四边形AEFD沿EF折起,使二面角A-EF-C的大小为120°,则过A,B,C,D,E,F六点的球的表面积为( )A.6πB.5πC.4πD.3π6.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的表面上,若AB=AC=1,AA1=23,∠BAC= 2π3,则球O的体积为( )A.32π3B.3πC.4π3D.8π7.有一个圆锥与一个圆柱的底面半径相等,此圆锥的母线与底面所成角为60°,若此圆柱的外接球的表面积是圆锥的侧面积的4倍,则此圆柱的高是其底面半径的( )A.2倍B.2倍C.22倍D.3倍8.正四棱柱ABCD-A1B1C1D1中,AB=2,二面角A1-BD-C1的大小为π3,则该正四棱柱外接球的表面积为( )A.12πB.14πC.16πD.18π9.正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=2,设四棱柱的外接球的球心为O,动点P在正方形ABCD的边上,射线OP交球O的表面点M,现点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径长为________.10.已知圆柱的上底面圆周经过正三棱锥P-ABC的三条侧棱的中点,下底面圆心为此三棱锥底面中心O.若三棱锥P-ABC的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径的比值为____ ____.专题四 垂面模型【方法总结】垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径AO1=r,OO1=h2,∴R2=r2+h24.【例题选讲】例4.[例] (1)已知在三棱锥S-ABC中,SA⊥平面ABC,且∠ACB=30°,AC=2AB=23,SA=1.则该三棱锥的外接球的体积为( )A.13813πB.13πC.136πD.13136π(2)三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥AC,PA=PC=AC=2,AB=4,则三棱锥P-ABC的外接球的表面积为( )A.23πB.234πC.64πD.643π(3)在三棱锥S-ABC中,侧棱SA⊥底面ABC,AB=5,BC=8,∠ABC=60°,SA=25,则该三棱锥的外接球的表面积为( )A.643πB.2563πC.4363πD.2048327π(4)在三棱锥P-ABC中,已知PA⊥底面ABC,∠BAC=120˚,PA=AB=AC=2,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A.103πB.18πC.20πD.93π(5)在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=120°,AC=2,AB=1,设D为BC中点,且直线PD与平面ABC所成角的余弦值为55,则该三棱锥外接球的表面积为________.【对点训练】1.三棱锥S-ABC中,SA⊥底面ABC,若SA=AB=BC=AC=3,则该三棱锥外接球的表面积为( )A.18πB.21π2C.21πD.42π2.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形,若AB=2,则球O的表面积为( )A.4πB.12πC.16πD.32π3.已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC=2,∠BAC=60°,则球O的表面积为( )A.4πB.12πC.16πD.64π4.在三棱锥P-ABC中,已知PA⊥底面ABC,∠BAC=60°,PA=2,AB=AC=3,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A.4π3B.82π3 C.8π D.12π5.在三棱锥A-BCD中,AC=CD=2,AB=AD=BD=BC=1,若三棱锥的所有顶点,都在同一球面上,则球的表面积是________.6.如图,在△ABC中,AB=BC=6,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC=PD,连接PC,得到三棱锥P-BCD,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是( )A.7πB.5πC.3πD.π7.已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为23的正方形.若PA=26,则△OAB的面积为( ).A.3B.22C.33D.638.三棱锥P-ABC中,AB=BC=15,AC=6,PC⊥平面ABC,PC=2,则该三棱锥的外接球表面积为________.9.中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA⊥平面ABCE,四边形ABCD为正方形,AD=5,ED=3,若鳖臑P-ADE的外接球的体积为92π,则阳马P-ABCD的外接球的表面积为________.10.在四棱锥P-ABCD中,PA⊥平面ABCD,AP=2,点M是矩形ABCD内(含边界)的动点,且AB= 1,AD=3,直线PM与平面ABCD所成的角为π4.记点M的轨迹长度为α,则tanα=________.;当三棱锥P-ABM的体积最小时,三棱锥P-ABM的外接球的表面积为________.专题五 切瓜模型【方法总结】切瓜模型是有一侧面垂直底面的棱锥型,常见的是两个互相垂直的面都是特殊三角形且平面ABC⊥平面BCD,如类型Ⅰ,△ABC与△BCD都是直角三角形,类型Ⅱ,△ABC是等边三角形,△BCD是直角三角形,类型Ⅲ,△ABC与△BCD都是等边三角形,解决方法是分别过△ABC与△BCD的外心作该三角形所在平面的垂线,交点O即为球心.类型Ⅳ,△ABC与△BCD都一般三角形,解决方法是过△BCD的外心O1作该三角形所在平面的垂线,用代数方法即可解决问题.设三棱锥A-BCD的高为h,外接球的半径为R,球心为O.△BCD的外心为O1,O1到BD的距离为d,O与O1的距离为m,则R2=r2+m2,R2=d2+(h-m)2,解得R.可用秒杀公式:R2=r21+r22-l24(其中r1、r2为两个面的外接圆的半径,l为两个面的交线的长)【例题选讲】例5.[例] (1)已知在三棱锥P-ABC中,V PABC=433,∠APC=π4,∠BPC=π3,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P-ABC外接球的体积为________.(2)如图,已知平面四边形ABCD满足AB=AD=2,∠A=60˚,∠C=90˚,将△ABD沿对角线BD翻折,使平面ABD⊥平面CBD,则四面体ABCD外接球的体积为________.(3)已知三棱锥A-BCD中,△ABD与△BCD是边长为2的等边三角形且二面角A-BD-C为直二面角,则三棱锥A-BCD的外接球的表面积为( )A.10π3B.5πC.6πD.20π3(4)已知ΔABC是以BC为斜边的直角三角形,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=22,PC=5,则三棱锥P-ABC外接球的表面积为________.(5)已知等腰直角三角形ABC中,AB=AC=2,D,E分别为AB,AC的中点,沿DE将△ABC折成直二面角(如图),则四棱锥A-DECB的外接球的表面积为________.【对点训练】1.把边长为3的正方ABCD沿对角线AC对折,使得平面ABC⊥平面ADC,则三棱锥D-ABC的外接球的表面积为( )A.32πB.27πC.18πD.9π2.在三棱锥A-BCD中,△ACD与△BCD都是边长为4的正三角形,且平面ACD⊥平面BCD,则该三棱锥外接球的表面积为________.3.已知如图所示的三棱锥D-ABC的四个顶点均在球O的球面上,△ABC和△DBC所在的平面互相垂直,AB=3,AC=3,BC=CD=BD=23,则球O的表面积为( )A.4πB.12πC.16πD.36π4.在三棱锥A-BCD中,平面ABC⊥平面BCD,ΔABC是边长为2的正三角形,若∠BDC=π4,三棱锥的各个顶点均在球O上,则球O的表面积为( ).A.52π3B.3πC.4πD.28π35.已知空间四边形ABCD,∠BAC=23π,AB=AC=23,BD=4,CD=25,且平面ABC⊥平面BCD,则该几何体的外接球的表面积为( )A.24πB.48πC.64πD.96π6.如图,已知四棱锥P-ABCD的底面为矩形,平面PAD⊥平面ABCD,AD=22,PA=PD=AB=2,则四棱锥P-ABCD的外接球的表面积为( )A.2πB.4πC.8πD.12π7.在四棱锥A-BCDE中,ΔABC是边长为6的正三角形,BCDE是正方形,平面ABC⊥平面BCDE,则该四棱锥的外接球的体积为( )A.2121πB.84πC.721πD.2821π8.已知空间四边形ABCD,∠BAC=2π3,AB=AC=23,BD=CD=6,且平面ABC⊥平面BCD,则空间四边形ABCD的外接球的表面积为( )A.60πB.36πC.24πD.12π9.在三棱锥P-ABC中,AB=AC=4,∠BAC=120°,PB=PC=43,平面PBC⊥平面ABC,则三棱锥P-ABC外接球的表面积为________.10.在三棱锥P-ABC中,平面PAB⊥平面ABC,AP=25,AB=6,∠ACB=π3,且直线PA与平面ABC所成角的正切值为2,则该三棱锥的外接球的表面积为( )A.13πB.52πC.52π3D.5213π3 10.答案 B 解析 如图,过点P作PE⊥AB于E,D为AB的中点,设ΔABC的外心是O1,半径是r,连接O1B,O1E,O1D,由正弦定理得2r=ABsin∠ACB=43,则O1B=r=23,D为AB的中点,BD=AD=12AB=3,O1D⊥AB,所以O1D=O1B2-BD2=3,因为平面PAB⊥平面ABC,PE⊥AB于E,平面PAB∩平面ABC=AB,则PE⊥平面ABC,所以直线PA与平面ABC所成的角是∠PAE,则tan∠PAE=PEAE=2,即PE =2AE,因为AP=PE2+AE2=25,所以PE=2AE=4,则DE=1,故O1E=2,设三棱锥P-ABC外接球球心是O,连接OO1,OB,OP,过O作OH⊥PE于H,则OO1⊥平面ABC,于是OO1⎳PE,从而O1OHE是矩形,所以外接球半径R满足R2=OO21+O1B2=OH2+(PE-HE)2=O1E2+(PE-OO1)2,解得R=13.所以外接球的表面积为4πR2=52π.专题六 斗笠模型【方法总结】圆锥、顶点在底面的射影是底面外心的棱锥.秒杀公式:R=h2+r22h(其中h为几何体的高,r为几何体的底面半径或底面外接圆的圆心)【例题选讲】例6.[例] (1)一个圆锥恰有三条母线两两夹角为60°,若该圆锥的侧面积为33π,则该圆锥外接球的表面积为________.(2)(2020·全国Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )A.64πB.48πC.36πD.32π(3)在三棱锥P-ABC中,PA=PB=PC=26,AC=AB=4,且AC⊥AB,则该三棱锥外接球的表面积为________.(4)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9πD.27π4(5)如图所示,在正四棱锥P-ABCD中,底面ABCD是边长为4的正方形,E,F分别是AB,CD的中点,cos∠PEF=22,若A,B,C,D,P在同一球面上,则此球的体积为________.(6)在三棱锥P-ABC中,PA=PB=PC=2,AB=AC=1,BC=3,则该三棱锥外接球的体积为( )A.4π3B.823πC.43πD.323π【对点训练】1.已知圆锥的顶点为P,母线PA与底面所成的角为30°,底面圆心O到PA的距离为1,则该圆锥外接球的表面积为________.2.在三棱锥P -ABC 中,PA =PB =PC =3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为( )A.πB.π3C.4πD.4π33.在三棱锥P -ABC 中,PA =PB =PC =6,AC =AB =2,且AC ⊥AB ,则该三棱锥外接球的表面积为( )A.4πB.8πC.16πD.9π4.已知体积为3的正三棱锥P -ABC 的外接球的球心为O ,若满足OA +OB +OC =0 ,则此三棱锥外接球的半径是( )A.2B.2C.32D.345.已知正四棱锥P -ABCD 的各顶点都在同一球面上,底面正方形的边长为2,若该正四棱锥的体积为2,则此球的体积为( )A.124π3B.625π81C.500π81D.256π96.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若ΔSAB 的面积为8,则该圆锥外接球的表面积是________.7.已知圆台O 1O 2上底面圆O 1的半径为2,下底面圆O 2的半径为22,圆台的外接球的球心为O ,且球心在圆台的轴O 1O 2上,满足|O 1O |=3|OO 2|,则圆台O 1O 2的外接球的表面积为________.8.在六棱锥P -ABCDEF 中,底面是边长为2的正六边形,PA =2且与底面垂直,则该六棱锥外接球的体积等于________.9.在三棱锥P -ABC 中,PA =PB =PC =2,AB =2,BC =10,∠APC =π2,则三棱锥P -ABC 的外接球的表面积为________.10.在三棱锥P -ABC 中,PA =PB =PC =92,AB =8,AC =6.顶点P 在平面ABC 内的射影为H ,若AH =λAB +μAC 且μ+2λ=1,则三棱锥P -ABC 的外接球的体积为________.专题七 鳄鱼模型【方法总结】鳄鱼模型即普通三棱锥模型,用找球心法可以解决.如果已知其中两个面的二面角,则可用秒杀公式:R2= m2+n2-2mn cosα+l24(其中l=|AB|)解决.sin2α【例题选讲】例7.[例] (1)在三棱锥A-BCD中,ΔABD和ΔCBD均为边长为2的等边三角形,且二面角A-BD-C的平面角为60°,则三棱锥的外接球的表面积为________.(2)在等腰直角ΔABC中,AB=2,∠BAC=90°,AD为斜边BC的高,将ΔABC沿AD折叠,使二面角B-AD-C为60°,则三棱锥A-BCD的外接球的表面积为________.(3)在四面体ABCD中,AB=AD=2,∠BAD=60°,∠BCD=90°,二面角A-BD-C的大小为150°,则四面体ABCD外接球的半径为________.(3)在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA=SC=2,二面角S-AC-B的余弦值是-33,若S,A,B,C都在同一球面上,则该球的表面积是( )A.4πB.6πC.8πD.9π(4)已知三棱锥P-ABC中,AB⊥BC,AB=22,BC=3,PA=PB=32,且二面角P-AB-C的大小为150°,则三棱锥P-ABC外接球的表面积为( )A.100πB.108πC.110πD.111π(5)在三棱锥P-ABC中,AB⊥BC,三角形PAC为等边三角形,二面角P-AC-B的余弦值为-63,当三棱锥P-ABC的体积最大值为13时,三棱锥P-ABC的外接球的表面积为________.(6)在体积为233的四棱锥P-ABCD中,底面ABCD为边长为2的正方形,ΔPAB为等边三角形,二面角P-AB-C为锐角,则四棱锥P-ABCD外接球的半径为( )A.213B.2C.3D.32【对点训练】1.在三棱锥S-ABC中,SB=SC=AB=BC=AC=2,二面角S-BC-A的大小为60°,则三棱锥S-ABC外接球的表面积是( )A.14π3B.16π3C.40π9D.52π92.已知三棱锥A-BCD,BC=6,且ΔABC、ΔBCD均为等边三角形,二面角A-BC-D的平面角为60°,则三棱锥外接球的表面积是________.3.已知边长为6的菱形ABCD中,∠BAD=120°,沿对角线AC折成二面角B-AC-D的大小为θ的四面体且cosθ=13,则四面体ABCD的外接球的表面积为________.4.在三棱锥P -ABC 中,顶点P 在底面ABC 的投影G 是ΔABC 的外心,PB =BC =2,且面PBC 与底面ABC 所成的二面角的大小为60°,则三棱锥P -ABC 的外接球的表面积为________.5.直角三角形ABC ,∠ABC =π2,AC +BC =2,将ΔABC 绕AB 边旋转至ΔABC 位置,若二面角C -AB -C 的大小为2π3,则四面体C -ABC 的外接球的表面积的最小值为( )A.6π B.3π C.32π D.2π6.已知空间四边形ABCD 中,AB =BD =AD =2,BC =1,CD =3,若二面角A -BD -C 的取值范围为π4,2π3 ,则该几何体的外接球表面积的取值范围为________.7.在三棱锥S -ABC 中,底面ΔABC 是边长为3的等边三角形,SA =3,SB =23,二面角S -AB -C 的大小为60°,则此三棱锥的外接球的表面积为________.8.在四面体ABCD中,BC=CD=BD=AB=2,∠ABC=90°,二面角A-BC-D的平面角为150°,则四面体ABCD外接球的表面积为( )A.313πB.1243πC.31πD.124π9.在三棱锥A-BCD中,AB=BC=CD=DA=7,BD=23,二面角A-BD-C是钝角.若三棱锥A -BCD的体积为2.则三棱锥A-BCD的外接球的表面积是( )A.12πB.373πC.13πD.534π10.在平面五边形ABCDE中,∠A=60°,AB=AE=63,BC⊥CD,DE⊥CD,且BC=DE=6.将五边形ABCDE沿对角线BE折起,使平面ABE与平面BCDE所成的二面角为120°,则沿对角线BE折起后所得几何体的外接球的表面积是________.专题八 已知球心或球半径模型【例题选讲】例8.[例] (1)(2017·全国Ⅰ)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.(2)已知三棱锥A-BCD的所有顶点都在球O的球面上,AB为球O的直径,若该三棱锥的体积为3,BC= 3,BD=3,∠CBD=90˚,则球O的体积为________.(3)(2012全国Ⅰ)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为( )A.26B.36C.23D.22(4)(2020·新高考全国Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.(5)三棱锥S-ABC的底面各棱长均为3,其外接球半径为2,则三棱锥S-ABC的体积最大时,点S到平面ABC的距离为( )A.2+3B.2-3C.3D.2【对点训练】1.已知三棱锥P-ABC的所有顶点都在球O的球面上,△ABC满足AB=22,∠ACB=90°,PA为球O 的直径且PA=4,则点P到底面ABC的距离为( )A.2B.22C.3D.232.已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=23,且四棱锥O-ABCD 的体积为83,则R等于( )A.4B.23C.479D.133.已知三棱锥P-ABC的四个顶点均在某球面上,PC为该球的直径,△ABC是边长为4的等边三角形,三棱锥P-ABC的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π34.已知三棱锥A-SBC的体积为233,各顶点均在以PA为直径球面上,AB=AC=2,BC=2,则这个球的表面积为_____________.5.(2017·全国Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.6.(2020·全国Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )A.64πB.48πC.36πD.32π7.(2020·全国Ⅱ)已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为( )A.3B.32C.1D.328.如图,半径为R的球的两个内接圆锥有公共的底面,若两个圆锥的体积之和为球的体积的38,则这两个圆锥高之差的绝对值为( )A.R2B.2R3C.4R3D.R9.如图,已知正方体ABCD-A1B1C1D1的棱长为2,长为2的线段MN的一个端点M在棱DD1上运动,点N在正方体的底面ABCD内运动,则MN的中点P的轨迹的面积是( )A.4πB.πC.2πD.π210.在三棱锥A-BCD中,底面为Rt△,且BC⊥CD,斜边BD上的高为1,三棱锥A-BCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥A-BCD的体积的最大值为________.专题九 最值模型【方法总结】最值问题的解法有两种方法:一种是几何法,即在运动变化过程中得到最值,从而转化为定值问题求解.另一种是代数方法,即建立目标函数,从而求目标函数的最值.【例题选讲】例9.[例] (1)已知三棱锥P-ABC的顶点P,A,B,C在球O的球面上,△ABC是边长为3的等边三角形,如果球O的表面积为36π,那么P到平面ABC距离的最大值为________.(2)在四面体ABCD中,AB=1,BC=CD=3,AC=2,当四面体ABCD的体积最大时,其外接球的表面积为( )A.2πB.3πC.6πD.8π(3)已知四棱锥S-ABCD的所有顶点在同一球面上,底面ABCD是正方形且球心O在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O的体积等于( )A.42π3 B.162π3 C.322π3 D.642π3(4)三棱锥A-BCD内接于半径为5的球O中,AB=CD=4,则三棱锥A-BCD的体积的最大值为( )A.43B.83C.163D.323(5)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为_ _______.【对点训练】1.三棱锥P-ABC的四个顶点都在体积为500π3的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为( )A.4B.6C.8D.102.(2015·全国Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π3.已知点A,B,C,D均在球O上,AB=BC=6,AC=23.若三棱锥D-ABC体积的最大值为3,则球O的表面积为________.4.在三棱锥A-BCD中,AB=1,BC=2,CD=AC=3,当三棱锥A-BCD的体积最大时,其外接球的表面积为________.5.已知三棱锥D-ABC的所有顶点都在球O的球面上,AB=BC=2,AC=22,若三棱锥D-ABC体积的最大值为2,则球O的表面积为( )A.8πB.9πC.25π3D.121π96.三棱锥A-BCD的一条棱长为a,其余棱长均为2,当三棱锥A-BCD的体积最大时,它的外接球的表面积为( )A.21π4B.20π3C.5π4D.5π37.已知三棱锥O-ABC的顶点A,B,C都在半径为2的球面上,O是球心,∠AOB=120°,当△AOC与△BOC的面积之和最大时,三棱锥O-ABC的体积为( )A.32B.233C.23D.138.(2018·全国Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为( )A.123B.183C.243D.5439.已知球的直径SC=4,A,B是该球球面上的两点,∠ASC=∠BSC=30˚,则棱锥S-ABC的体积最大为( )A.2B.83C.3D.2310.四棱锥P-ABCD的底面为矩形,矩形的四个顶点A,B,C,D在球O的同一个大圆上,且球的表面积为16π,点P在球面上,则四棱锥P-ABCD体积的最大值为( )A.8B.83C.16D.16311.(2016·全国Ⅲ)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC =8,AA1=3,则V的最大值是( )A.4πB.9π2C.6πD.32π312.已知半径为1的球O中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为___.13.如图,在矩形ABCD中,已知AB=2AD=2a,E是AB的中点,将△ADE沿直线DE翻折成△A1DE,连接A1C.若当三棱锥A1-CDE的体积取得最大值时,三棱锥A1-CDE外接球的体积为82π3,则a=( )A.2B.2C.22D.414.已知三棱锥S-ABC的顶点都在球O的球面上,且该三棱锥的体积为23,SA⊥平面ABC,SA=4,∠ABC=120°,则球O的体积的最小值为________.专题十 内切球模型【方法总结】以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ;第三步:解出r =3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC =3V S 表.秒杀公式(万能公式):r =3V S 表【例题选讲】例10.[例] (1)已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为________.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.(3)阿基米德(公元前287年~公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论.要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边.若表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为( )。
模型解题法 高中数学 模型十五 角模型
![模型解题法 高中数学 模型十五 角模型](https://img.taocdn.com/s3/m/840204cd6137ee06eff9181d.png)
模型十五角模型(一)单角模型我们在解决三角函数问题的时候经常遇到这样一类题目:题目只涉及一个未知角或者已知非特殊角,通过二倍或者与已知特殊角的组合,加上各种三角函数的综合使用,使得题目形式变化多各类,丰富多彩,那么在相关的题目中是如何体现这种角的组合,以及三角函数的综合使用的呢?例1 化简y=).A.−sin2−cos2B.sin2+cos2C.sin2−cos2D.−sin2+cos2例2 已知1+tanα1−tanα=3+22,求:(1)sinα+2cosα2sinα−cosα;(2)3cos2π−α+sin(π+α)⋅cosπ−α+2sin2(α−π)的值.例3(1)设cos(−x)=cos x,则x的取值范围是____;(2)设cos(−x)=cos x,则x的取值范围是____;(3)设sin(−x)=sin x,则x的取值范围是____;(4)设sin(−x)=sin x,则x的取值范围是____.例4已知sinθ+cosθ=15,θ∈0,π,则tanθ=____.例5已知关于x的方程2x2−3+1 x+m=0的两根为sinθ和cosθ,θ∈(0,2π),求:(1)sin2θsinθ−cosθ+cosθ1−tanθ的值;(2)m的值;(3)方程的两根及θ的值.模型归纳有关三角函数的运算,当只出现一个未知角,但伴随与特殊角的组合或多种三角函数综合使用使三角运算丰富多样,要解决这些问题,我们需要掌握一个基本原则,那就是“化简”,使用的公式包括同角三角函数基本关系式和诱导公式.同角三角函数基本关系式有两个:sin2α+cos2α=1,tanα=sinαcosα.在使用同角三角函数基本关系式的时候需要注意:(1)多种函数同时出现时,要正切化弦;(2)正余弦互求时,通过角的范围确定正负.诱导公式比较多,总的口诀是:“奇变偶不变,符号看象限”,其中“奇偶”是指在未知角上附加的角是π2的多少倍,如果是奇数倍,名称需要改变,如果是偶数倍,名称不改变;“符号看象限”是指借助当未知角为锐角时,组合角所在象限所决定的三角函数的正负,来确定是否添加负号.例如sin(π2+α)中,未知角α上附加的角符号看象限是π2的一倍(奇数倍),因此名称改变,另外当α为锐角时,π2+α为第二象限角,sin(π2+α)>0,因此sin(π2+α)=cos α.这类题目的解题模型是:用诱导公式将角统一,排除特殊附加角的干扰→使用同角三角基本关系式,尽量做到:函数种类、项数减少,次数降低,分式化为整式,无理式化为有理式→保留结果:数字或者最简的三角函数式模型演练1.已知cos(π+α)=−35,α为第四象限角,则sin(−2π+α)=( ).A.35B.−45C.±45 D .35 2.已知tan x =13,求(1)2sin x−cos x sin x +cos x ;(2)2sin 2x +sin x cos x .(二)多角模型我们解决完一个角的三角函数问题之后,开始研究多个角的和或差的三角函数,这种问题不仅在题设和问题构造上变化多样,而且综合使用正弦、余弦和正切函数的和角或差角公式,使问题难度加大,能够发现和研究多个角之间的关系,以及研究不同角三角函数值之间的关系是解决多角问题的关键,那么在具体的题目当中,是如何构建多角问题,以及如何考查和、差角公式呢?例1 求cos 10°sin 50° tan 10°− 3 的值.例2 已知tan α+β =7,tan α⋅tan β=35, 求sin α的值.例3 若α∈ 0,π ,cos α+π6 =35,求sin α的值.例4 已知π2<β<α<3π4,cos α−β =1213,sin(α+β)=−35,求sin α的值. 例5 已知sin(x +y )=13,sin x −y =15, 求tan x tan y 的值.例6 已知sin α=55,sin β= 1010, 且α,β都是锐角,求α+β的值.例7 已知tan(α−β)=12,tan β=−17, 且α,β∈ 0,π , 求2α−β的值.模型归纳对于角之间的关系,我们应该辩证地来看,比如当把α+β看成α与β的和不方便解决问题时,也可以把α看成α+β与β的差,再如2α−β可以看成α乘以2再与β作差,也可以看成α与α−β的和,或者看成α−β的2倍与β的和等等.对于多角三角函数的关系问题,主要是对和差角公式的结构的研究,比如,sinα−β=sinαcosβ−cosαsinβ中共涉及到三个角α−β、α和β,五个三角函数sinα−β、sinα、cosβ和sinβ,没有涉及α−β的余弦,针对这一特点,我们将未知(待求)于等式左侧,两个已知(条件)于等式右侧.对于弦函数和切函数同时出现的时候,除非出现弦函数齐次式,一般都需要将切函数化为弦函数.对于给值求角的题目,通常是借助角的某一个三角函数来求,需要注意两点:(1)三角函数种类的选用,以不造成多解可能为宜,比如当角的范围为0,π时,尽量不选用正弦,因为正弦值求完之后如果不等于,确定它是锐角或钝角比较麻烦,可以考虑使用余弦;(3)三角函数值算完以后,尽量确定该角尽量小的一个范围,以确定该角的具体取值.对于同一个角的正弦和余弦的组合,我们通常是逆向使用和差角的正余弦公式,以达到化简的目的,比如sinα+3cosα=2sin α+π3等.这类题目的解题模型是:分析各个角之间的和或者差的关系,注意辩证使用→根据题目条件和特点,结合角之间的关系选用恰当的和差角公式→根据选用公式的结构特点,使用恰当的运算技巧,进行相关运算模型演练1.锐角α,β满足cosα=45,cos(α+β)=35,则sinβ=().A.1725B.35C.725D.152.已知cosα−cosβ=12,sinα−sinβ=−13, 则cosα−β=().A.5972B.5173C.1336D.12133.已知sinα+sinβ+sinγ=0, 则cos(β−γ)=().A.−1B.−12C.12D. 1(三)倍角模型二倍关系是两个角之间一种非常特殊的关系,二倍角公式是三角函数的一种重要变形,其表现形式多样,有时比较直接,有时不是特别明显,二倍角公式及其变形公式是解决三角函数问题的一种重要手段,也是考查的一个重要内容.那么二倍关系在题目当中如何体现,二倍角公式又是如何考查的呢?精选例题例1求值:cosπ5cos2π5.例2已知α为锐角,且tan12,求sin2αcosα−sinαsin2αcos2α的值.例3化简:1+cosθ−sinθ1−sinθ−cosθ+1−cosθ−sinθ1−sinθ+cosθ.例4 求函数sin2x+2sin x cos x+3cos2x的最大值,及相应x的值.例5 己知sin2θ=a,θ∈π2,3π4,那么sinθ+cosθ=____.模型归纳对于二倍角的余弦公式,我们需要记住几个重要变形:1+cos2α=2cos2α,1−cos2α=2sin2α,cos2α=1+cos2α2,sin2α=1−cos2α2等,另外我们需要了解二倍角公式及其变形公式的结构特点是:协调角的倍数和三角函数的次数的关系,如cos2α=2cos2α−1等号左边角2倍,三角发次数1次,等号右边角1倍,三角函数次数2次.了解这一特点,我们可以权据题目的要求,在倍数与次数之间进行转化,比如例4,减小次数,增大倍数.对于二倍角的正弦公式sin22α=2sinαcosα,我们关注角倍数与三角函数次数情报同时,我们还应关另一个细节,就是关于三角函数的名称,等号左侧只有一个正弦,等号右侧一个正弦,一个余弦,这就意味着:正向使用公式,派生出一个余弦;逆向使用公式,隐藏掉一个余弦.比如例1,题目所涉及两个角有2倍关系,可以考虑使用二倍角公式,另外以余弦形式出现,可以考虑逆向使用二倍角正弦公式,以求将余弦逐个隐藏.我们还应记住几个和1有关的二倍角公式变形:1+sin2α=sinα+cosα2,1−sin2α=sinα−cosα2这类题目的解题模型是:根据题目的结构特点,确定已知与待求之间角的关系:倍角关系选择适当的二倍角公式或变形公式先利用公式进行变形转化,再将复杂式子化简或求值模型演练1.若25π≤α<3π,则2+2cosα+1−sinα−sinα2+cosα2可化简为A.0B.2cosα2−sinα2C.−2cosα2−sinα2D.2cosα22.已知f x=1+x,当π≤θ<54π时,f sin2θ−f−sin2θ为A. 2sinθ B.−2sinθ C.−2cosθD. 2cosθ3.cos2π15cos4π15cos8π15cos16π15的值为____.(四)三角函数线模型模型思考三角函数线是借助有向线段来表示三角函数的方法,是三角函数的图形表示,但是我们在做题的时候,单纯使用三角函数线有时并不是十分快捷,为了快捷有效地解决问题,我们可以考虑将三角函数线进行改造,得到改良后的三角函数线即我们所说的“大风车”模型,那么什么是“大风车”,“大风车”又该如使使用以及解决什么问题呢?精选例题例1 求满足sinα>12的角α的取值范围.例2 若A是△ABC的内角,则sin A+cos A的取值范围是____.例3 由不等式组sinα−cosα<0cosα+sinα>0,所确定的角的α取值范围是____.例4 如果α是第三象限角,且满足1+sinα=cosα2+sinα2,那么α2是A.第四象限角B.第三象限角C.第二象限角D.第一象限角例5 设0≤α<π2,比较sinα与cosα的大小关系.例6 设α,β是第二象限角,那么下列结论正确的是()A.tanα>tanβB.tanα<tanβC.cosα>sinαD.cosα<sinα例7 已知sinα>cosβ,那么下列结论成立的是()A.若α,β是第一象限角,cosα>cosβB.若α,β是第二象限角,tanα>tanβC.若α,β是第三象限角,cosα>cosβD.若α,β是第四象限角,tanα>tanβ例8 若α,β为锐角,且cosα>sinβ,则()A.α+β<π2B. α+β>π2C. α+β=π2D. α<β模型归纳通过分析,我们可以发现借助“大风车”图示,可以快捷有效地进行同角不同函数或不同角同一三角函数的大小比较或解决取值范围的问题.我们将各种“大风车”总结如下:(1)正弦特点是:左右对称,向上集中.(2)余弦特点是:上下对称,向右集中.(3)正切特点是:单向旋转,上下无穷(4)sinα+cosα特点是:左下最小,右上集中(5)sinα−cosα特点是:右下最小,左上集中这类题目的解题模型是:确定比较项:同角不同函数或同函数不同角通过选定的比较项,确定适归的“大风车”模型通过模型比较不同角或不同函数值的大小确定角或三角函数值的取值范围(五)和“1”有关的三角函数模型模型思考数字1作为数字的基本单位,在三角函数的运算中却有着广泛的应用,无论是特殊角三角函数值还是三角公式,无处不有1的影子,发现它,利用它,可以快速有效地解决在关三角函数的问题.那么,1是如何在题目中藏身,又是如何发挥它的作用的呢?精选例题例1 已知sin4α+cos4α=1,那么sinα+cosα=____.例2 已知sinα+cosβ=1,cosα+cosβ=1,则sinα+cosα=____.例3 已知sinθ+sin2θ=1,则cos2θ+cos4θ+cos6θ=____.例4 表达式1+sin2θ−cos2θ1+sin2θ+cos2θ可以化简为()A.tanθB.1tanθC.sinθD.2sinθ例5 化简:1+tan15°1−tan15°.例6 如果a sin x+cos x=1,b sin x−cos x=1,且x≠kπ (k为整数)那么ab等于A.−1B.0C.0.5D.1例7 已知sinαsinβ=1,则cosα+β=()A.−1B.0C.1D.±1例8 已知sinα+sinβ=2,求sin(α−β)的值.模型归纳对和“1”有关的公式与性质作一梳理:(1)特殊角sinπ2=1,cos0=1,tanπ4=1等等;(2)一般规律sin2α+cos2α=1,sinα≤1,cosα≤1等等;(3)公式变形1+sin2α=sinα+cosα2,1−sin2α=sinα−cosα2,1+cos2α=2cos2α,1−cos2α=2sin2α等等.这类题目的解题模型是分析题目:抓住特殊角或特殊值根据特殊角或特值的特点,选择适归的三角公式将特殊角或特殊值代入相关表达式计算模型演练=____.1.已知sin x+cos x=1,则sin x−cos x1+sin x cos x2.在△ABC中,若tan A⋅tan B>1,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定。
专题02 全等模型-半角模型(解析版)
![专题02 全等模型-半角模型(解析版)](https://img.taocdn.com/s3/m/1a988c80970590c69ec3d5bbfd0a79563c1ed4a3.png)
专题02 全等模型-半角模型(解析版)全等模型-半角模型(解析版)全等模型是高中数学中的重要概念之一,它在几何图形的研究和证明中占据着重要地位。
而半角模型则是全等模型的一种特殊形式,在解题过程中起到简化问题的作用。
本文将深入探讨全等模型和半角模型,分析其定义、性质以及解题方法。
一、全等模型的定义与性质全等模型是指两个几何图形的各个对应部分完全相等。
当两个几何图形的所有对应角相等,对应边相等时,我们可以称这两个图形是全等的。
全等模型不仅包括了普通的三角形全等模型,还包括了平行四边形、直角三角形等特殊图形的全等模型。
全等模型的性质有以下几点:1. 全等模型的对应边和对应角相等。
2. 全等模型的对应线段相等。
3. 全等模型的对应角度相等。
二、半角模型的定义与性质半角模型是指含有一个角的两个图形,其中一个角为已知角,另一个角为未知角。
半角模型常见于求解未知角度的问题,特别是在解三角形问题时经常使用。
半角模型的性质有以下特点:1. 已知角和未知角的对应边是相等的。
2. 已知角和未知角的对应边可以通过等式关系来求解。
3. 半角模型可以通过运用角平分线的性质来简化问题。
三、全等模型与半角模型的关系全等模型包含了半角模型,因为当一个图形是全等模型时,我们可以通过已知角和对应边的关系来推导出未知角的值。
而半角模型是全等模型的一种特殊情况,它将求解未知角度的问题简化为已知角和对应边之间的关系。
在解题过程中,我们可以将全等模型转化为半角模型,通过已知条件等式的关系求解未知角度。
这种转化能够帮助我们更好地理解和解决几何问题,并且降低解题的难度。
四、利用半角模型解题的具体方法利用半角模型解题的具体方法如下:1. 根据已知条件画出给定图形,并标出已知角度和对应边。
2. 将问题转化为半角模型,确定未知角度。
3. 利用已知角度和对应边之间的关系,建立方程或等式。
4. 解方程或等式,求解未知角度的值。
5. 检验解的合理性,并进行必要的推理和证明。
高中数学丨外接球与内切球解题方法,8大模型
![高中数学丨外接球与内切球解题方法,8大模型](https://img.taocdn.com/s3/m/eb809fa8970590c69ec3d5bbfd0a79563c1ed492.png)
高中数学I夕卜接球与内切球解题方法,8大模型空间几何体的外接球与内切球-、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球。
2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正弦定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直。
高中数学解题模型和解法
![高中数学解题模型和解法](https://img.taocdn.com/s3/m/8b9bb5ea49649b6648d7475d.png)
高中数学解题模型和解法高中数学学习现状一、不会解:想不到、分不清、思维定势据调查显示:半数中学生成绩被数学、物理拖后提,原因并不是智力问题,也不是懒惰,而是方法的问题。
这些学生做题就像在荒原上开汽车,很容易迷路,绕弯路。
二、解题慢:速度慢、不熟练、记忆模糊80%的考生感叹:考试时间段,题目做不完。
其实,这隐含着一个人们最容易忽视的问题:那就是没有在解题时建立正确的方法。
公式、定理背的的滚瓜烂熟,但一到做题的时候就卡壳。
尤其在考试的时候,时间又紧,做题卡壳,做小题的时间都不后用,最后几道大题直接就放弃了。
三、老出错:不细心、踩陷阱、毫厘之差很多学生会说:这个题我做错,不是我不会,是因为粗心做错了。
其实这个观点是大错特错。
出题人会在出提时故意设置陷阱,就算你再细心,也还是很容易犯错,也就是说,罪魁祸首根部不是你粗心、细心的问题,而是解题方法的问题。
其实,将这些总结为一句话:成绩差,归根到底,没方法,缺少正确的引导!针对这个令广大莘莘学子头疼的问题,我们提出模型解题法。
只要在科学方法的引导下,成绩一定会得到最大程度的提高。
模型三大步:看题型、套模型、出结果。
第一步:熟悉模型,不会的题有清晰的思路第二步:掌握模型,总做错的题不会错了第三步:活用模型,大题小题都能轻松化解一、选择题解答模型策略注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间,获取高分的秘诀。
高考中考生“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
一般地,选择题解答的策略是:① 熟练掌握各种基本题型的一般解法。
高中数学数学模型解题技巧
![高中数学数学模型解题技巧](https://img.taocdn.com/s3/m/deb311fcab00b52acfc789eb172ded630b1c98e9.png)
高中数学数学模型解题技巧高中数学作为一门重要的学科,常常涉及到各种数学模型的解题。
数学模型是将实际问题抽象化为数学问题的过程,通过建立数学模型,我们可以更好地理解和解决实际问题。
然而,对于许多学生来说,数学模型解题常常是一项难题。
本文将介绍一些高中数学数学模型解题的技巧,帮助学生更好地应对这类题目。
首先,了解题目背景和要求是解决数学模型问题的第一步。
在解题过程中,我们需要仔细阅读题目,理解题目所描述的实际情境,并确定问题的要求。
例如,假设我们遇到一个汽车行驶问题,题目给出了汽车的速度和行驶时间,我们需要通过建立数学模型来求解汽车行驶的距离。
在这个例子中,我们需要明确问题的背景是汽车行驶,要求是求解行驶距离。
其次,建立数学模型是解决数学模型问题的关键。
建立数学模型是将实际问题转化为数学问题的过程,需要根据题目所给的条件和要求,选择适当的数学工具和方法。
在建立数学模型时,我们可以使用代数、几何、函数等数学概念和方法。
例如,在解决汽车行驶问题时,我们可以使用速度、时间和距离之间的关系进行建模,利用速度等于距离除以时间的公式来求解行驶距离。
然后,运用数学方法求解数学模型问题。
在建立数学模型后,我们需要运用数学方法来求解问题。
这包括代数运算、方程求解、函数图像分析等数学技巧。
在解题过程中,我们需要根据题目的要求,选择合适的数学方法进行求解。
例如,在解决汽车行驶问题时,我们可以使用代数运算和方程求解的方法,通过代入已知条件和未知数,求解出行驶距离的值。
最后,检验和解释结果是解决数学模型问题的最后一步。
在解题过程中,我们需要对所得的结果进行检验和解释。
检验结果是为了确保所得的解符合实际情况和题目要求。
解释结果是为了对解的意义和实际应用进行解释和说明。
例如,在解决汽车行驶问题时,我们可以检验所得的行驶距离是否满足速度和时间的关系,同时解释结果是指汽车在给定速度下行驶了多远。
通过以上的解题技巧,我们可以更好地解决高中数学数学模型问题。
高中数学解题八个思维模式和十个思维策略【精选文档】
![高中数学解题八个思维模式和十个思维策略【精选文档】](https://img.taocdn.com/s3/m/cb027effb52acfc788ebc9c0.png)
高中数学解题八种思维模式和十种思维策略引言“数学是思维的体操”“数学教学是数学(思维)活动的教学。
”学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。
作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。
高中数学思维中的重要向题它可以包括:高中数学思维的基本形式高中数学思维的一般方法高中数学中的重要思维模式高中数学解题常用的数学思维策略高中数学非逻辑思维(包括形象思维、直觉思维)问题研究;高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究;高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性高中数学思维的基本形式从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a 同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式. 3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。
二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。
3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。
4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。
5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感.6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。
高中数学模型解题法
![高中数学模型解题法](https://img.taocdn.com/s3/m/4fe6267127d3240c8447efad.png)
高中数学解题方法1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}======|lg|lg(,)|lgA x y xB y y xC x y y x A B C如:集合,,,、、中元素各表示什么?A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂ (答:,,)-⎧⎨⎩⎫⎬⎭1013显然,这里很容易解出A={-1,3}.而B 最多只有一个元素。
故B 只能是-1或者3。
根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B 为空集的情况,也就是a=0,不要把它搞忘记了。
3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。
同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n个子集。
当然,我们也要注意到,这2n种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n-()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,有些版本可能是这种写法,遇到后要能够看懂,A B A B A B A B ==4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于的不等式的解集为,若且,求实数x ax x a M M M a --<∈∉50352的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学模型解题法
高中数学模型解题理念
数学模型解题首先需要明确以下六大理念(原则):
理念之一理论化原则。
解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的!
理论之二个性化原则。
倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。
因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。
理论之三能力化原则。
只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔!
理论之四示范化原则。
任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。
关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。
理论之五形式化原则。
哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。
理论之六习惯性原则。
关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。
这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。
第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题统一模型的思考。
第三个层次,主动的解题,就是对题目的设计进行思考,如何通过增删条件,改变提问等方法确立结论成立的最少条件、获得最深结论,即如何以本题目为原型进行变式训练,或进行引申、演变、拓展、推广等等。
高中数学模型解策略设计
具体解释:关于解题策略:实质上就是通过审题来构思、探究解题思路的思维过程。
解题必须充分运用条件和尽可能满足结论的需要,因而,通过审题全面掌握题意了解题的基础与首要任务。
那么,审题要从哪些方面进行呢?这里有五点建议:
(1)初步地全面理解题意(理解它的每一个字、词、每一句话),能清楚地理解全部条件和结论;
(2)准确地作出必要的图形,包括示意图;
(3)必要时,要把语言和不宜于直接计算的算式化为能直接计算的算式,把不便于进行数学处理的语言化为便于进行数学处理的语言;
(4)发现比较隐蔽的条件;
(5)根据题目的特征提供的启示(信息)预见主要步骤或主要原则。
这五项要求,前三项式基本的,后两项是较高的。
数学模型解题法解释
对于此数学模型解题法,需要明确其具体含义,主要有二:
一、正向发散:即分析解决问题的思维策略模型的探究与构建,是直接的、正向的、尽情地发散的,而且往往是针对一个具体问题的;
二、逆向聚合:将一些相似甚至看似联系不大的大同小异甚至小学科(如几何、代数、向量等不同范围与形式)的题目进行简化、抽象,并对其分析解决方法进行系统的归纳,概括,从中抽出具有共性即共同的解题规律性的东西。
数学模型解题法模型的程序设计及其操作要义
第一步:审题、识模
观察题设条件与所求结论的结构特征,这主要从代数结构与几何结构两个方面进行,对此结构特征进行广泛地联想与想象,与头脑中已有的认知结构中相关或相似特征相联系,用所寻求的认知结构相似性来演绎、指导对于现有知识结构的调动与激活,旨在对题目的类型与模型进行探索与识别。
第二步:简化、建模
通过分析,舍弃繁杂与次要因素,抓住主要矛盾及主要因素建立数学模型,将原问题转化为规范的、可实际操作的数学问题。
第三步:解模、引申
①制订解题策略,并实施解题计划;
②可从不同角度进行一题多解训练,以便于充分地发散;
③引申推广,扩大战果,并作变式训练,以从广、深两个
维度认识问题的本质和规律。
第四步:释模、还原
将数学问题结果进行解释还原、检验、反证,以回归原问题,并总结出分析问题、解决问题的统一思维模型。
高中数学模型解题法案例分析
教育家钱仲寒说,每节课都是给学生自学的示范。
例题教学也不例外,它是通过引导学生挖掘典型题目的潜在教育教学价值,从不同方面不同层次锻炼思维品质,培养思维能力,以此培养自主学习能力,其作用直接表现为:
①对新授课中的定义、定理、公式的内涵与外延进行深化,连点成线,线组成面,由面成体,构建立体认知结构网络;
②丰富应用含义,增加应用层次;
③概括提炼数学方法,进而形成数学思想,增强数学应用意识。