2018-2019学年江苏省盐城市大丰区八年级(上)期中数学试卷
盐城市初二年级数学上册期中测试题(含答案解析)
盐城市2019初二年级数学上册期中测试题(含答案解析)盐城市2019初二年级数学上册期中测试题(含答案解析)一、选择题(每小题3分,共30分)1.已知点关于轴的对称点为,则的值是()A.1B.-1C.5D.-52.已知在坐标平面内有一点,若,那么点的位置在()A.原点B. 轴上C. 轴上D.坐标轴上3.(2019?湖北黄冈中考?3分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()C. D.4.已知点P坐标为,且P点到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)5.目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开分钟后,水龙头滴出y毫升的水,则y与之间的函数关系式是()A.y=0.05 B.y=5 C.y=100 D.y=0.05 +1006.如图所示,坐标平面上有四条直线1、2、3、4.若这四条直线中,有一条直线为函数3 -5y+15=0的图象,则此直线为()A.1 B.2 C.3 D.47.(2019?浙江丽水中考)在平面直角坐标系中,过点(-2,3)的直线经过第一、二、三象限,若点(0,),(-1,),(,-1)都在直线上,则下列判断正确的是()A. B. C. D.8.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A. B.C. D.9.如图所示,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等,两直线平行B.同旁内角互补,两直线平行C.内错角相等,两直线平行D.平行于同一条直线的两直线平行10.(2019?湖北襄阳)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°二、填空题(每小题4分,共16分)11.若一次函数与一次函数的图象的交点坐标为(,8),则_________.12.对于函数,根据表格的对应值,则可以判断方程=0(≠0,为常数)的解可能是.13.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B= 度.14. 如图所示,D是△ABC的边BC上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .三、解答题(共74分)15.(6分)在图中,确定点的坐标.请说明点B和点F有什么关系?16.(8分)已知一次函数,(1)为何值时,它的图象经过原点;(2)为何值时,它的图象经过点(0,).17.(8分)如图,在△ABC中,∠B=42o,∠C=72 o,AD是△ABC 的角平分线.(1)∠BAC等于多少度?简要说明理由.(2)∠ADC等于多少度?简要说明理由.18.(8分)写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果=0,那么=0,=0.(2)如果一个数的平方是9,那么这个数是3.19.(10分)小明同学骑自行车去郊外春游,图中表示的是他离家的距离y(千米)与所用的时间(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?20.(10分)如图所示,已知∠1+∠3=180°,∠2+∠3=180°.求证:AB∥OE∥CD.21.(12分)某市为了节约用水,规定:每户每月用水量不超过最低限量m3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过m3时,除了付同上的基本费和损耗费外,超过部分每1 m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:用水量(m3) 交水费(元)一月份9 9二月份15 19三月份22 33根据上面表格中的数据,求.22.(12分)(1)如图(1)所示,已知在△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC和∠A的关系,并说明理由.(2)如图(2)所示,若O为∠ABC的平分线BO和∠ACE的平分线CO的交点,则∠BOC与∠A的关系又该怎样?为什么?盐城市2019初二年级数学上册期中测试题(含答案解析)参考答案1.C 解析:因为点关于轴的对称点为,所以所以2.D 解析:∵,∴或.当时,横坐标是0,点在轴上;当时,纵坐标是0,点在轴上.故点在坐标轴上,选D.3.C 解析:因为货车和小汽车同时从甲地出发驶向乙地,所以选项D 不合题意.因为甲、乙两地相距180千米,货车的速度是每小时60千米,小汽车的速度是每小时90千米,所以小汽车达到乙地用时2小时,货车到达乙地用时3小时,所以小汽车从出发到达乙地再返回甲地共用4小时,因此货车达到乙地时,小汽车还没有返回到甲地,所以选项C正确.4.D 解析:因为P点到两坐标轴的距离相等,所以,所以.当5.B 解析:y=100×0.05 ,即y=5 .故选B.6.A 解析:将=0代入3 -5 +15=0得=3,∴函数3 -5 +15=0的图象与轴的交点为(0,3).将=0代入3 -5 +15=0得=-5,∴函数3 -5 +15=0的图象与轴的交点为(-5,0).观察图象可得直线1与、轴的交点恰为(-5,0)、(0,3),∴函数3 -5 +15=0的图象为直线1.故选A.7.D 解析:设直线的表达式为,直线经过一、二、三象限,,函数值随的增大而增大.,,故A项错误;,,故B项错误;,,故C项错误;,,故D项正确.8.C 解析:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点作对边的垂线,垂足在最长边上.故选C.9.C 解析:如图,∠ABD=∠BAC,故使用的定理为内错角相等,两直线平行.选C.10.D 解析:如图,根据矩形直尺的对边平行得到∠3=∠2= ,根据三角形的外角性质得到.11. 16 解析:将(,8)分别代入和得两式相加得12.-1(本题答案不唯一) 解析:∵根据题意得当=-1.05时,=-0.05;当=-0.97时,=0.02,∴可以判断方程(为常数)的解介于-1.05和-0.97之间.13.40 解析:∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴ 80°+2(180°-∠B)=360°,∴∠B=40°.14.24°解析:由图和题意可知:∠BAC=180°-∠2-∠3,∠3=∠4=∠1+∠2,所以63°=180°-∠2-(∠1+∠2).又因为∠1=∠2,所以63°=180°-3∠2,即∠2=39°,所以∠1=39°,所以∠DAC=∠BAC-∠1=63°-39°=24°.15.分析:从图中找到各点对应的横、纵坐标,从而进行求解.解:各点的坐标为:,点和点关于轴对称,且关于原点对称.16. 分析:(1)把点的坐标代入一次函数关系式,并结合一次函数的定义求解即可;(2)把点的坐标代入一次函数关系式即可.解:(1)∵图象经过原点,∴点(0,0)在函数图象上,代入解析式得,解得.又∵是一次函数,∴,∴.故符合.(2)∵图象经过点(0,),∴点(0,)的坐标满足函数解析式,代入得,解得.17.解:(1)∠BAC=180°-42°-72°=66°(三角形内角和为180°).(2) ∠ADC=∠B+∠BAD(三角形的一个外角等于和它不相邻的两内角之和).∵ AD是角平分线,∴∠BAD=∠CAD(角平分线定义),∴∠ADC=42°+33°=75°.18.分析:分别找出各命题的条件和结论将其互换即可.解:(1)逆命题:如果=0,=0,那么+=0,真命题;(2)逆命题:如果一个数是3,那么这个数的平方是9,真命题. 19.分析:(1)根据分段函数图象上点的坐标的意义可知:小明到达离家最远的地方需3小时,此时,他离家30千米;(2)因为C(2,15)、D(3,30)在直线上,利用待定系数法求出解析式后,把=2.5代入解析式即可;(3)分别利用待定系数法求得过E、F两点所在直线解析式以及过A、B两点所在直线解析式,分别令y=12,求出.解:(1)由图象可知小明到达离家最远的地方需3小时.此时,他离家30千米.(2)设CD的解析式为y=k1 +b1,将C(2,15)、D(3,30),代入得解得∴ =15 -15(2≤ ≤3).当=2.5时,y=22.5.答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2 +b2,将E(4,30),F(6,0),代入得解得∴ =-15 +90.(当设过A、B两点的直线解析式为y=k3 ,∵ B(1,15),∴∴ y=15 . •当y=12时,= .答:小明出发小时和小时时距家12千米.20.分析:根据同旁内角互补两直线平行,内错角相等两直线平行和平行于同一条直线的两直线平行进行证明即可.证明:∵∠1+∠3=180°,∴ CD∥OE.∵∠2+∠3=180°,∠3+∠BOE=180°,∴∠2=∠BOE,∴ AB∥OE.∵∥∥,∴ AB∥CD,∴ AB∥OE∥CD.21.分析:首先假设每月用水量为m3,支付水费为y元.根据的取值范围,列出y关于的表达式y= 再根据表中二、三月的用水量及水费,求得b的值,、c间的数值关系.采用反证法证明一月份用水量,求得c的值,那么也即可确定.至此问题解决.解:设每月用水量为m3,支付水费为y元.则y=由题意知:0c≤5,∴ 8 8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15 m3、22 m3均大于最低限量3,将分别代入②式,得解得b=2,2 =c+19. ③再分析一月份的用水量是否超过最低限量,不妨设9,将代入②,得9=8+2(9- )+c,即2 =c+17. ④④与③矛盾.故9≤ ,则一月份的付款方式应选①式,则8+c=9,∴ c=1代入③式,得=10.综上得10,b=2,c=1.22.分析:根据“三角形的外角等于与它不相邻的两内角和”和角平分线性质,(1)先列出∠A、∠ABC、∠ACB的关系,再列出∠BOC、∠OBC、∠OCB的关系,然后列出∠ABC和∠OBC、∠ACB和∠OCB的关系;(2)先列出∠A、∠ABC、∠ACE的关系,再列出∠OBC、∠O、∠OCE的关系,然后列出∠ABC和∠OBC、∠ACE和∠OCE的关系.解:(1)∠BOC=∠A+90°.理由如下:∵在△ABC中,∠A+∠ABC+∠ACB=180°,在△BOC中,∠BOC+∠OBC+∠OCB=180°,又∵ BO,CO分别是∠ABC,∠ACB的平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB.∴∠BOC+∠ABC+∠ACB=180°.又∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴∠BOC=∠A+90°.(2)∠BOC=∠A.理由如下:∵∠A+∠ABC=∠ACE,∠OBC+∠BOC=∠OCE,又∵ BO,CO分别是∠ABC和∠ACE的平分线,观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
苏科版盐城市八年级上期中数学试卷含答案解析
八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母代号填在题后括号内)1.下列图形中,是轴对称图形的是( )A.B.C.D.2.如图,在△ABC中,AB=AC,D为BC中点,△BAD=35°,则△C的度数为( )A.35°B.45°C.55°D.60°3.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开.若测得BM的长为1.2km,则点M与点C之间的距离为( )A.0.5km B.0.6km C.0.9km D.1.2km4.如图,已知△ABC=△DCB,下列所给条件不能证明△ABC△△DCB的是( )A.△A=△D B.AB=DC C.△ACB=△DBC D.AC=BD5.由下列条件不能判定△ABC为直角三角形的是( )A.△A+△C=△B B.a=,b=,c=C.(b+a)(b﹣a)=c2D.△A:△B:△C=5:3:26.如图,在△ABC中,△A=36°,AB=AC,CD是△ABC的角平分线.若在边AC上截取CE=CB,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.请仔细观察用直尺和圆规作一个角△A′O′B′等于已知角△AOB的示意图,请你根据图形全等的知识,说明画出△A′O′B′=△AOB的依据是( )A.SSS B.SAS C.ASA D.AAS8.如图①是4×4正方形方格,已有两个正方形方格被涂黑,请你再将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定经过旋转后全等的图案都视为同一种,图②中的两幅图就视为同一种,则得到的不同图案共有( )A.6种B.7种C.8种D.9种二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在题中横线上)9.如果等腰三角形有一个角等于50°,那么它的底角为__________°.10.角是轴对称图形,__________是它的对称轴.11.已知:△DEF△△ABC,AB=AC,且△ABC的周长为22cm,BC=4cm,则DE=__________cm.12.如图,在△ABC中,△C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的距离为__________.13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.14.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为__________.15.如图,△ABC中,D是BC上一点,AC=AD=DB,△BAC=105°,则△ADC=__________°.16.如图,在等边△ABC中,点D、E分别在边BC、AB上,且DE△AC,过点E作EF△DE,交CB的延长线于点F,若BD=2,则EF2=__________.17.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成__________个直角三角形.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为__________.三、解答题(本大题共有9小题,共74分.解答时应写出必要的文字说明、推理过程或演算步骤)19.如图,AC平分△BAD,△1=△2,AB与AD相等吗?请说明理由.20.如图,△ABC是正方形网格上的格点三角形(顶点A、B、C在正方形网格的格点上)(1)画出△ABC关于直线l的对称图形;(2)画出以P为顶点且与△ABC全等的格点三角形.(规定:点P与点B对应)21.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.22.如图,△ABC△△ADE,△EAB=125°,△CAD=25°,求△BFD的度数.23.已知:如图,AB=AC,点D是BC的中点,AB平分△DAE,AE△BE,垂足为E.(1)求证:AD=AE.(2)若BE△AC,试判断△ABC的形状,并说明理由.24.如图,在四边形ABCD中,△BAD=△BCD=90°,M、N分别是BD、AC的中点(1)求证:MN△AC;(2)若△ADC=120°,求△1的度数.25.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若△MFN=70°,求△MCN的度数.26.如图,在Rt△ABC中,△ACB=90°,E为AC上一点,且AE=BC,过点A作AD△CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.27.在△ABC和△DEC中,AC=BC,DC=EC,△ACB=△ECD=90°(1)如图1,当点A、C、D在同一条直线上时,AC=12,EC=5①求证:AF△BD ②求AF的长度;(2)如图2,当点A、C、D不在同一条直线上时,求证:AF△BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,△AFG是一个固定的值吗?若是,求出△AFG的度数;若不是,请说明理由-学年江苏省盐城市八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母代号填在题后括号内)1.下列图形中,是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.如图,在△ABC中,AB=AC,D为BC中点,△BAD=35°,则△C的度数为( )A.35°B.45°C.55°D.60°【考点】等腰三角形的性质.【分析】由等腰三角形的三线合一性质可知△BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【解答】解:AB=AC,D为BC中点,△AD是△BAC的平分线,△B=△C,△△BAD=35°,△△BAC=2△BAD=70°,△△C=(180°﹣70°)=55°.故选C.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.3.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开.若测得BM的长为1.2km,则点M与点C之间的距离为( )A.0.5km B.0.6km C.0.9km D.1.2km【考点】直角三角形斜边上的中线.【专题】应用题.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=BM=1.2km.【解答】解:△在Rt△ABC中,△ACB=90°,M为AB的中点,△MC=AB=BM=1.2km.故选:D.【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.4.如图,已知△ABC=△DCB,下列所给条件不能证明△ABC△△DCB的是( )A.△A=△D B.AB=DC C.△ACB=△DBC D.AC=BD【考点】全等三角形的判定.【分析】根据题目所给条件△ABC=△DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可.【解答】解:A、添加△A=△D可利用AAS判定△ABC△△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC△△DCB,故此选项不合题意;C、添加△ACB=△DBC可利用ASA定理判定△ABC△△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC△△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.由下列条件不能判定△ABC为直角三角形的是( )A.△A+△C=△B B.a=,b=,c=C.(b+a)(b﹣a)=c2D.△A:△B:△C=5:3:2【考点】勾股定理的逆定理;三角形内角和定理.【分析】由三角形内角和定理得出条件A和B是直角三角形,由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可得出条件C是直角三角形,B不是;即可得出结果.【解答】A、△△A+△C=△B,△△B=90°,故是直角三角形,正确;B、设a=20k,则b=15k,c=12k,△(12k)2+(15k)2≠2,故不能判定是直角三角形;C、△(b+a)(b﹣a)=c2,△b2﹣a2=c2,即a2+c2=b2,故是直角三角形,正确;D、△△A:△B:△C=5:3:2,△△A=×180°=90°,故是直角三角形,正确.故选:B.【点评】本题考查勾股定理的逆定理、三角形内角和定理;熟练掌握三角形内角和定理和勾股定理的逆定理是证明直角三角形的关键,注意计算方法.6.如图,在△ABC中,△A=36°,AB=AC,CD是△ABC的角平分线.若在边AC上截取CE=CB,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:△AB=AC,△△ABC是等腰三角形;△AB=AC,△A=36°,△△ABC=△C=72°,△BD是△ABC的角平分线,△△ABD=△DBC=△ABC=36°,△△A=△ABD=36°,△BD=AD,△△ABD是等腰三角形;在△BCD中,△△BDC=180°﹣△DBC﹣△C=180°﹣36°﹣72°=72°,△△C=△BDC=72°,△BD=BC,△△BCD是等腰三角形;△BE=BC,△BD=BE,△△BDE是等腰三角形;△△BED=(180°﹣36°)÷2=72°,△△ADE=△BED﹣△A=72°﹣36°=36°,△△A=△ADE,△DE=AE,△△ADE是等腰三角形;△图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.请仔细观察用直尺和圆规作一个角△A′O′B′等于已知角△AOB的示意图,请你根据图形全等的知识,说明画出△A′O′B′=△AOB的依据是( )A.SSS B.SAS C.ASA D.AAS【考点】作图—基本作图;全等三角形的判定.【分析】根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.【解答】解:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,在△OCD与△O′C′D′中,△△OCD△△O′C′D′(SSS),△△A′O′B′=△AOB.故选:A.【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.8.如图①是4×4正方形方格,已有两个正方形方格被涂黑,请你再将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定经过旋转后全等的图案都视为同一种,图②中的两幅图就视为同一种,则得到的不同图案共有( )A.6种B.7种C.8种D.9种【考点】利用轴对称设计图案.【分析】根据轴对称的性质画出图形,进一步得出答案即可.【解答】解:如图,得到的不同图案共有8种.故选:C.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在题中横线上)9.如果等腰三角形有一个角等于50°,那么它的底角为50或65°.【考点】等腰三角形的性质.【专题】证明题.【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故答案是:50°或65°.【点评】此题主要考查了三角形的内角和定理及等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10.角是轴对称图形,角平分线所在的直线是它的对称轴.【考点】轴对称图形.【专题】常规题型.【分析】根据角的对称性解答.【解答】解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.【点评】本题考查了角的对称轴,需要注意轴对称图形的对称轴是直线,此题容易说成是“角平分线”而导致出错.11.已知:△DEF△△ABC,AB=AC,且△ABC的周长为22cm,BC=4cm,则DE=9cm.【考点】全等三角形的性质.【分析】先求出AB的长,根据全等三角形的性质得出DE=AB,即可得出答案.【解答】解:△△ABC中,AB=AC,且△ABC的周长为22cm,BC=4cm,△AB=AC=9cm,△△DEF△△ABC,△DE=AB=9cm,故答案为:9.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等,解此题的关键是求出AB=DE和求出AB的长.12.如图,在△ABC中,△C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的距离为9.【考点】角平分线的性质.【分析】过点D作DE△AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用勾股定理列式求出CD,即可得解.【解答】解:如图,过点D作DE△AB于E,△△C=90°,AD是角平分线,△DE=CD,由勾股定理得,CD===9,△DE=9,即点D到AB的距离为9.故答案为:9.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理的应用,熟记性质是解题的关键.13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:13、84、85.【考点】勾股数.【专题】规律型.【分析】先根据给出的数据找出规律,再根据勾股定理进行求解即可.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,第6组第一个数是13,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:132+x2=(x+1)2,解得x=84.则得第6组数是:13、84、85.故答案为:13、84、85.【点评】本题考查了勾股数,关键是根据给出的数据找出规律,发现第一个数是从3,5,7,9,…的奇数,第二、第三个数相差为一.14.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为1或4.【考点】勾股定理的证明.【分析】分两种情况:①5为斜边时,由勾股定理求出另一直角边长为4,小正方形的边长=4﹣3=1,即可得出小正方形的面积;②3和5为两条直角边长时,求出小正方形的边长=2,即可得出小正方形的面积;即可得出结果.【解答】解:分两种情况:①5为斜边时,由勾股定理得:另一直角边长==4,△小正方形的边长=4﹣3=1,△小正方形的面积=12=1;②3和5为两条直角边长时,小正方形的边长=5﹣3=2,△小正方形的面积22=4;综上所述:小正方形的面积为1或4;故答案为:1或4.【点评】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理,分两种情况得出结果是解决问题的关键.15.如图,△ABC中,D是BC上一点,AC=AD=DB,△BAC=105°,则△ADC=50°.【考点】等腰三角形的性质.【分析】设△ADC=α,然后根据AC=AD=DB,△BAC=105°,表示出△B和△BAD的度数,最后根据三角形的内角和定理求出△ADC的度数.【解答】解:△AC=AD=DB,△△B=△BAD,△ADC=△C,设△ADC=α,△△B=△BAD=,△△BAC=105°,△△DAC=105°﹣,在△ADC中,△△ADC+△C+△DAC=180°,△2α+105°﹣=180°,解得:α=50°.故答案为:50.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.16.如图,在等边△ABC中,点D、E分别在边BC、AB上,且DE△AC,过点E作EF△DE,交CB的延长线于点F,若BD=2,则EF2=12.【考点】勾股定理;等边三角形的性质.【分析】根据平行线的性质可得△EDC=△C=60°,根据三角形内角和定理结合勾股定理即可求解;【解答】解:△△ABC是等边三角形,△△C=60°,△DE△AC,△△EDB=△C=60°,△EF△DE,△△DEF=90°,△△F=90°﹣△EDC=30°;△△ABC=60°,△EDB=60°,△△EDB是等边三角形.△ED=DB=2,△△DEF=90°,△F=30°,△DF=2DE=4,△EF2=FD2﹣DE2=12.故答案为:12.【点评】本题考查了等边三角形的判定与性质以及直角三角形的性质、勾股定理等知识,得出DF的长是解题关键.17.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成3个直角三角形.【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,△AD2+BD2=AB2,AC2+AB2=BC2,AC2+AB2=CD2,△能够组成3个直角三角形.故答案为:3.【点评】本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理,由勾股定理的逆定理得出直角三角形是解决问题的关键.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为4.8.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】压轴题.【分析】由折叠的性质得出EP=AP,△E=△A=90°,BE=AB=8,由ASA证明△ODP△△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:△四边形ABCD是矩形,△△D=△A=△C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP△△EBP,△EP=AP,△E=△A=90°,BE=AB=8,在△ODP和△OEG中,,△△ODP△△OEG(ASA),△OP=OG,PD=GE,△DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,△CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,△AP=4.8;故答案为:4.8.【点评】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大题共有9小题,共74分.解答时应写出必要的文字说明、推理过程或演算步骤)19.如图,AC平分△BAD,△1=△2,AB与AD相等吗?请说明理由.【考点】全等三角形的判定与性质.【分析】根据等角的补角相等得到△ABC=△ADC,再根据角平分线的定义得到△BAC=△DAC,然后根据全等三角形的判定方法得到△ABC△△ADC,再利用全等三角形的性质即可得到AB=AD.【解答】解:△△ABC+△1=180°,△ADC+△2=180°,而△1=△2,△△ABC=△ADC,△AC平分△BAD,△△BAC=△DAC,在△ABC和△ADC中,△△ABC△△ADC(AAS),△AB=AD.【点评】本题考查了全等三角形的判定与性质:有两组角分别相等,且其中一组角所对的边对应相等,那么这两个三角形全等,解决本题的关键是证明△ABC△△ADC.20.如图,△ABC是正方形网格上的格点三角形(顶点A、B、C在正方形网格的格点上)(1)画出△ABC关于直线l的对称图形;(2)画出以P为顶点且与△ABC全等的格点三角形.(规定:点P与点B对应)【考点】作图-轴对称变换.【分析】(1)分别作出各点关于直线l的对称点,再顺次连接各点即可;(2)根据勾股定理画出与△ABC全等的格点三角形即可.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,△FPE即为与△ABC全等的格点三角形.【点评】本题考查的是作图﹣轴对称变换,熟知图形轴对称的性质是解答此题的关键.21.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.【考点】勾股定理的应用.【专题】方案型;操作型.【分析】根据旗杆、绳子、地面正好构成直角三角形,设出旗杆的高度,再利用勾股定理解答即可.【解答】解:设旗杆的高为x米,则绳子长为x+1米,由勾股定理得,(x+1)2=x2+52,解得,x=12米.答:旗杆的高度是12米.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.如图,△ABC△△ADE,△EAB=125°,△CAD=25°,求△BFD的度数.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出△EAD=△CAB,△B=△D,求出△△EAC=△DAB=50°,根据三角形内角和定理求出△BFD=△DAB,代入求出即可.【解答】解:△△ABC△△ADE,△△EAD=△CAB,△B=△D,△△EAD﹣△CAD=△CAB﹣△CAD,△△△EAC=△DAB,△△EAB=125°,△CAD=25°,△△DAB=△EAC=(125°﹣25°)=50°,△△B=△D,△FGD=△BGA,△D+△BFD+△FGD=180°,△B+△DAB+△AGB=180°,△△BFD=△DAB=50°.【点评】本题考查了全等三角形的性质,三角形内角和定理的应用,能根据全等三角形的性质求出△EAD=△CAB,△B=△D是解此题的关键,注意:全等三角形的对应角相等,对应边相等.23.已知:如图,AB=AC,点D是BC的中点,AB平分△DAE,AE△BE,垂足为E.(1)求证:AD=AE.(2)若BE△AC,试判断△ABC的形状,并说明理由.【考点】等边三角形的判定;全等三角形的判定与性质.【专题】应用题.【分析】(1)由边角关系求证△ADB△△AEB即可;(2)由题中条件可得△BAC=60°,进而可得△ABC为等边三角形.【解答】证明:(1)△AB=AC,点D是BC的中点,△AD△BC,△△ADB=90°,△AE△AB,△△E=90°=△ADB,△AB平分△DAE,△△1=△2,在△ADB和△AEB中,,△△ADB△△AEB(AAS),△AD=AE;(2)△ABC是等边三角形.理由:△BE△AC,△△EAC=90°,△AB=AC,点D是BC的中点,△△1=△2=△3=30°,△△BAC=△1+△3=60°,△△ABC是等边三角形.【点评】本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够熟练掌握.24.如图,在四边形ABCD中,△BAD=△BCD=90°,M、N分别是BD、AC的中点(1)求证:MN△AC;(2)若△ADC=120°,求△1的度数.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】(1)首先由直接三角形的斜边上的中线的性质得出AM=CM,进一步利用等腰三角形的三线合一得出结论;(2)由直接三角形的斜边上的中线的性质得出AM=MD=MC,利用三角形的内角和得出△AMD=180°﹣2△ADM,△CMD=180°﹣2△CDM,求得△AMC,进一步利用等腰三角形的性质得出答案即可.【解答】(1)证明:△△BAD=△BCD=90°,M是BD的中点,△AM=BD,CM=BD,△N是AC的中点,△MN△AC;(2)解:△M是BD的中点,△MD=BD,△AM=DM,△△AMD=180°﹣2△ADM,同理△CMD=180°﹣2△CDM,△△AMC=△AMD+△CMD=180°﹣2△ADM+180°﹣2△CDM=120°,△AM=DM,△△1=△2=30°.【点评】本题考查了直角三角形斜边上中线性质,等腰三角形的判定的应用与性质,三角形的内角和定理,掌握图形的基本性质是解决问题的关键.25.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若△MFN=70°,求△MCN的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段的垂直平分线的性质得到MA=MC,NB=NC,根据三角形的周长公式计算即可;(2)根据四边形内角和定理和等腰三角形的性质求出△A+△B=70°,由△MCA=△A,△NCB=△B,计算即可.【解答】解:(1)△DM是AC边的垂直平分线,△MA=MC,△EN是BC边的垂直平分线,△NB=NC,AB=AM+MN+NB=MC+MN+NC=△CMN的周长=20cm;(2)△MD△AC,NE△BC,△△ACB=180°﹣△△MFN=110°,△△A+△B=70°,△MA=MC,NB=NC,△△MCA=△A,△NCB=△B,△△MCN=40°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键,注意三角形内角和定理的应用.26.如图,在Rt△ABC中,△ACB=90°,E为AC上一点,且AE=BC,过点A作AD△CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.【考点】全等三角形的判定与性质;勾股定理的证明.【分析】(1)根据全等三角形的判定与性质,可得△1与△3的关系,AB与DE的关系,根据余角的性质,可得△2与△3的关系;(2)根据面积的不同求法,可得答案.【解答】解:(1)AB=DE,AB△DE,如图2,△AD△CA,△△DAE=△ACB=90°.在△ABC和△DEA中,,△△ABC△△DEA (SAS),AB=DE,△3=△1.△△DAE=90°,△△1+△2=90°,△△3+△2=90°,△△AFE=90°,△AB△DE;(2)S四边形ADBE=S△ADE+S△BDE=DE•AF+DE•BF=DE•AB=c2,S四边形ADBE=S△ABE+S△ADE=a2+b2,△a2+b2=c2,△a2+b2=c2.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,面积的割补法是求勾股定理的关键.27.在△ABC和△DEC中,AC=BC,DC=EC,△ACB=△ECD=90°(1)如图1,当点A、C、D在同一条直线上时,AC=12,EC=5①求证:AF△BD ②求AF的长度;(2)如图2,当点A、C、D不在同一条直线上时,求证:AF△BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,△AFG是一个固定的值吗?若是,求出△AFG的度数;若不是,请说明理由【考点】全等三角形的判定与性质.【分析】(1)①证明△ACE△△BCD,得到△1=△2,由对顶角相等得到△3=△4,所以△BFE=△ACE=90°,即可解答;②根据勾股定理求出BD,利用△ABD的面积的两种表示方法,即可解答;(2)证明△ACE△△BCD,得到△1=△2,又由△3=△4,得到△BFA=△BCA=90°,即可解答;(3)△AFG=45°,如图3,过点C作CM△BD,CN△AE,垂足分别为M、N,由△ACE△△BCD,得到S△ACE=S△BCD,AE=BD,证明得到CM=CN,得到CF平分△BFE,由AF△BD,得到△BFE=90°,所以△EFC=45°,根据对顶角相等得到△AFG=45°.【解答】(1)①证明:如图1,在△ACE和△BCD中,△,△△ACE△△BCD,△△1=△2,△△3=△4,△△BFE=△ACE=90°,△AF△BD.②△△ECD=90°,BC=AC=12,DC=EC=5,△BD==13,△S△ABD=AD•BC=BD•AF,即△AF=.(2)证明:如图4,△△ACB=△ECD,△△ACB+△ACD=△ECD+△ACD,△△BCD=△ACE,在△ACE△△BCD中△△ACE△△BCD,△△1=△2,△△3=△4,△△BFA=△BCA=90°,△AF△BD.(3)△A FG=45°,如图3,过点C作CM△BD,CN△AE,垂足分别为M、N,△△ACE△△BCD,△S△ACE=S△BCD,AE=BD,△S△ACE=AE•CN,S△BCD=BD•CM,△CM=CN,△CM△BD,CN△AE,△CF平分△BFE,△AF△BD,△△BFE=90°,△△EFC=45°,△△AFG=45°.【点评】本题考查了全等三角形的判定定理与性质定理,角平分线的性质,解决本题的关键是证明△ACE△△BCD,得到三角形的面积相等,对应边相等.。
2018-2019(含答案)八年级(上)期中数学试卷
2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。
2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc
2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。
2018-2019(含答案)八年级(上)期中数学试卷 (9)
2018-2019(含答案)八年级(上)期中数学试卷 (9).................................................................................................................................................................2018.10.22一、选择题(将正确答案序号填入下表相应的空格内,每小题3分,共20分)1.下列标志中,可以看作是轴对称图形的是()A. B.C. D.2.在一个三角形的外角中,钝角至少有()A.个B.个C.个D.个3.已知等腰三角形中,腰,底,则这个三角形的周长为()A. B. C. D.4.将的三个顶点坐标的横坐标都乘以,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于轴对称B.关于轴对称C.关于原点对称D.将原图形沿轴的负方向平移了个单位5.如果一个多边形的内角和是,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,三角形纸片中,有一个角为,剪去这个角后,得到一个四边形,则的度数为()A. B. C. D.7.如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,作直线,交于点,连接.若的周长为,,则的周长为()A. B. C. D.8.下面四个图形中,线段是的高的图是()A. B.C. D.9.如图所示,,,,结论:① ;② ;③ ;④ .其中正确的有()A.个B.个C.个D.个10.已知:点、是的边上的两个点,且,的度数是()A. B. C. D.二、填空题(每小题2分,共20分)11.如图所示,图中的的值是________.12.如图,点在的平分线上,于,于,若,则________.13.如图是由射线,,,,组成的平面图形,则________.14.如图,在中,点是上一点,,,则________度.15.如图,已知中,,点、在上,要使,则只需添加一个适当的条件是________.(只填一个即可)16.如图,中,,,平分,平分,经过点,与、相交于点、,且,则的周长等于________.17.如图,,,若为,,则________.18.如图,在平面直角坐标系中,点在第一象限,点在轴上,若以,,为顶点的三角形是等腰三角形,则满足条件的点共有________个.三、解答题(8分)19.如图,五边形的内角都相等,且,,求的值.四、作图解答题(8分)20.如图,已知,,.为上一点,且到,两点的距离相等.用直尺和圆规,作出点的位置(不写作法,保留作图痕迹);连结,若,求的度数.五、解答题(8分)21.如图,在平面直角坐标系中的位置如图所示.画出关于轴对称的,并写出各顶点坐标;将向左平移个单位,作出平移后的,并写出的坐标.六、解答题(8分)22.如图,,,,求证:.七、解答题(8分)23.如图,等边三角形中,是的中点,为延长线上一点,且,,垂足为.求证:是的中点.八、解答题(8分)24.如图,过平分线上一点作交于点,是线段的中点,请过点画直线分别交射线、于点、,探究线段、、之间的数量关系,并证明你的结论.答案1. 【答案】C【解析】根据轴对称图形的概念,可得答案.【解答】解:、是中心对称图形,故错误;、是中心对称图形,故正确;、是轴对称图形,故正确;、是中心对称图形,故错误;故选:.2. 【答案】C【解析】因为三角形的内角和为,所以至少有两个锐角,因为外角和相邻的内角互补,所以外角中至少有两个钝角.【解答】解:一个三角形的三个内角中,至少有两个锐角,三个外角中至少有两个钝角.故选.3. 【答案】A【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.【解答】解:.故这个三角形的周长为.故选:.4. 【答案】B【解析】熟悉:平面直角坐标系中任意一点,分别关于轴的对称点的坐标是,关于轴的对称点的坐标是.【解答】解:根据对称的性质,得三个顶点坐标的横坐标都乘以,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于轴对称.故选.5. 【答案】C【解析】边形的内角和可以表示成,设这个正多边形的边数是,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是,则,解得:.则这个正多边形的边数是.故选:.6. 【答案】C【解析】三角形纸片中,剪去其中一个的角后变成四边形,则根据多边形的内角和等于即可求得的度数.【解答】解:∵ ,∴ .∵四边形的内角和等于,∴ .故选.7. 【答案】C【解析】首先根据题意可得是的垂直平分线,即可得,又由的周长为,求得的长,则可求得的周长.【解答】解:∵在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,作直线,交于点,连接.∴ 是的垂直平分线,∴ ,∵ 的周长为,∴ ,∵ ,∴ 的周长为:.故选.8. 【答案】D【解析】根据高的画法知,过点作边上的高,垂足为,其中线段是的高.【解答】解:线段是的高的图是.故选.9. 【答案】C【解析】根据已知的条件,可由判定,进而可根据全等三角形得出的结论来判断各选项是否正确.【解答】解:∵,∴ ;∴ ,∴ ,即;(故③正确)又∵ ,,∴ ;∴ ;(故①正确)由知:,;又∵ ,∴ ;(故④正确)由于条件不足,无法证得② ;故正确的结论有:①③④;故选.10. 【答案】B【解析】根据等边三角形的性质,得,再根据等腰三角形的性质和三角形的外角的性质求得,从而求解.【解答】解:∵ ,∴ ,,.又∵ ,,∴ .∴ .故的度数是.故选:.11. 【答案】【解析】根据四边形内角和等于列出方程求解即可.【解答】解:依题意有:,解得.故答案为:.12. 【答案】【解析】由点在的平分线上,丄于,丄于,根据角平分线上的点到角的两边的距离相等得到.【解答】解:∵点在的平分线上,丄于,丄于,∴ ,而,∴ .故答案为:.13. 【答案】【解析】首先根据图示,可得,,,,,然后根据三角形的内角和定理,求出五边形的内角和是多少,再用减去五边形的内角和,求出等于多少即可.【解答】解:.故答案为:.14. 【答案】【解析】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.由可得,易求解.【解答】解:∵ ,,∴ ,由三角形外角与外角性质可得,又∵ ,∴,∴ .15. 【答案】【解析】此题是一道开放型的题目,答案不唯一,如,根据推出即可;也可以等.【解答】解:,理由是:∵ ,∴ ,在和中,,∴ ,故答案为:.16. 【答案】【解析】根据平分,平分,且,可得出,,所以三角形的周长是.【解答】解:∵ 平分,平分,∴ ,,∵ ,∴ ,,∴ ,,∴ ,,∵ ,,∴ 的周长.故答案为:.17. 【答案】【解析】首先证明为等边三角形,然后依据证明全等,从而可得到,然后依据等腰三角形三线合一的性质可得到,从而可求得的长,故此可得到的长.【解答】解:在和中,∴ .∴ .又∵ ,∴ .∴ .∵ ,,∴ 为等边三角形.∴ .故答案为:.18. 【答案】或【解析】分为三种情况:① ,② ,③ ,分别画出即可.【解答】解:以为圆心,以为半径画弧交轴于点和,此时三角形是等腰三角形,即个;以为圆心,以为半径画弧交轴于点 ″(除外),此时三角形是等腰三角形,即个;作的垂直平分线交轴于一点,则,此时三角形是等腰三角形,即个;,当与轴正半轴夹角等于的时候,图中的,和会重合,是一个点,加上原来的负半轴的点,总共个点,故答案为或.19. 【答案】解:因为五边形的内角和是,则每个内角为,∴ ,又∵ ,,由三角形内角和定理可知,,∴ .【解析】由五边形的内角都相等,先求出五边形的每个内角度数,再求出,从而求出度.【解答】解:因为五边形的内角和是,则每个内角为,∴ ,又∵ ,,由三角形内角和定理可知,,∴ .20. 【答案】解:如图所示:点即为所求;; 在中,,∴ ,又∵ ,∴ ,∴ .【解析】利用线段垂直平分线的作法得出点坐标即可;; 利用线段垂直平分线的性质得出,,进而求出即可.【解答】解:如图所示:点即为所求;; 在中,,∴ ,又∵ ,∴ ,∴ .21. 【答案】解:如图,即为所求,,,;; 如图,即为所求,,.【解析】作出各点关于轴的对称点,再顺次连接,并写出各点坐标即可;; 根据图形平移的性质作出平移后的,并写出的坐标.【解答】解:如图,即为所求,,,;; 如图,即为所求,,.22. 【答案】证明:∵ ,∴ ,即,在和中∴ ,∴ .【解析】由条件证明即可.【解答】证明:∵ ,∴ ,即,在和中∴ ,∴ .23. 【答案】证明:连接,∵等边三角形中,是的中点,∴ ,∵ ,∴,∴ ,又∵ ,垂足为,∴ 是的中点.【解析】要证是的中点,根据题意可知,证明为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接,∵等边三角形中,是的中点,∴ ,∵ ,∴,∴ ,又∵ ,垂足为,∴ 是的中点.24. 【答案】解:线段、、之间的数量关系是:.证明:∵ 是的平分线,∴ ,又∵ ,∴ ,∴ ,∴ ,∵ 是线段的中点,∴ ,∵ ,∴,∴ ,又∵ ,∴ .【解析】首先根据是的平分线,,判断出,所以;然后根据是线段的中点,,推得,即可判断出,据此解答即可.【解答】解:线段、、之间的数量关系是:.证明:∵ 是的平分线,∴ ,又∵ ,∴ ,∴ ,∴ ,∵ 是线段的中点,∴ ,∵ ,∴,∴ ,又∵ ,∴ .。
2018-2019学年苏科版八年级上数学期中复习试题含答案详解
期中测试题【本试卷满分120分,测试时间120分钟】一、选择题(每小题3分,共36分) 1.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形. 正确的有( )A.1个B.2个C.3个D.4个 2.已知等腰三角形的周长为15 cm ,其中一边长为7 cm ,则该等腰三角形的底边长为( ) A.3 cm 或5 cm B.1 cm 或7 cm C.3 cm D.5 cm 3.下列各组数中互为相反数的是( )A.2)2(2--与 B.382--与 C.2)2(2-与 D.22与-4.下列运算中,错误的是( ) ①1251144251=;②4)4(2±=-;③22222-=-=-;④2095141251161=+=+. A. 1个 B. 2个 C. 3个 D. 4个 5.如图,在△中,是角平分线,∠∠36°,则图中有等腰三角形( ) A.3个 B.2个 C.1个 D.0个6.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60° 7.如图,已知∠∠15°,∥,⊥,若,则( )A.4B.3C.2D.18.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.12 9.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( )A.24B.36C.40D.48 10. 已知平行四边形的周长为,两条对角线相交于点,且△的周长比△的周长大,则的长为( ) A.2ba -B.2ba + C.22ba + D.22ba + 11. 下列图形是轴对称图形而不是中心对称图形的是( )A.平行四边形B.菱形C.正方形D.等腰梯形12.顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为( )A.平行四边形B.菱形C.对角线相等的四边形D.直角梯形 二、填空题(每小题3分,共30分)13.把下列各数填入相应的集合内:-7,0.32,31,46,0,8,21,3216,-2π. ①有理数集合: { };②无理数集合: { }; ③正实数集合: { };④实数集合: { }.14.若等腰梯形三边的长分别为3、4、11,则这个等腰梯形的周长为 . 15.在△中, cm , cm ,⊥于点,则_______. 16.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为________.17.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.18.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.19.已知5-a +3+b ,那么.20.若02733=+-x ,则_________.21.如图,点、分别是菱形的边、上的点,且∠∠60°,∠45°,则∠___________.22.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形. 三、解答题(共54分)23.(6分)如图,四边形ABCD 是平行四边形,,BD ⊥AD ,求BC ,CD 及OB 的长.24.(6分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).25.(6分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且.(1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.26.(6分)如图,在梯形中,∥,,⊥,延长至点,使.(1)求∠的度数.(2)试说明:△为等腰三角形.27.(7分)如图,四边形为一梯形纸片,∥,.翻折纸片,使点与点重合,折痕为.已知⊥,试说明:∥.28.(7分)如图,菱形中,点是的中点,且⊥,.求:(1)∠的度数;(2)对角线的长;(3)菱形的面积.29.(8分)已知矩形中,6,8,平分∠交于点,平分∠交于点.(1)说明四边形为平行四边形;(2)求四边形的面积.30.(8分)如图,点是等腰直角△的直角边上一点,的垂直平分线分别交、、于点、、,且.当时,试说明四边形是菱形.期中测试题参考答案一、选择题1.A 解析:①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误; ③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A . 2.B 解析:(1)当边长7是腰时,底边长(cm ), 三角形的三边长为1、7、7,能组成三角形; (2)当边长7是底边时,腰长(cm ),三角形的三边长为4、4、7,能组成三角形.因此,三角形的底边长为1 cm 或7 cm . 3.A 解析:选项A 中;选项B 中;选项C 中;选项D中,故只有A 正确.4.D 解析:4个算式都是错误的.其中①12111213144169144251===;②4)4(2=-; ③22-没有意义; ④204125162516251161=⨯+=+.5.A 解析:∵ 是角平分线,∠36°,∴ ∠36°,∠72°,∴ (△是等腰三角形). ∵ ∠∠72°,∴(△是等腰三角形).∵ ∠72°,∴ (△是等腰三角形),故选A . 6.A 解析:∵ △和△都是等腰直角三角形,∴ ∠∠. 又∵ △绕着点沿逆时针旋转度后能够与△重合,∴ 旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A .7.C 解析:如图,作⊥于点,∵ ∠,⊥,⊥,∴ .∵ ∥,∴ ∠2∠30°,∴ 在Rt △中,,故选C .8.C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径. ∵,∴.∵ ,∴ ,即蚂蚁要爬行的最短距离是10 cm . 9.D 解析:设,则,根据“等面积法”得,解得,∴ 平行四边形的面积.10.B 解析:依据平行四边形的性质有,由△的周长比△的周长大,得,故2ba +. 11.D 解析:A 是中心对称图形,不是轴对称图形;B 、C 是轴对称图形,也是中心对称图形;D 是轴对称图形,不是中心对称图形,故选D . 12.C 解析:由于菱形的四边相等,且原四边形对角线为菱形边长的2倍,故原四边形为对角线相等的四边形. 二、填空题13. ①-7,0.32,31,46,0,3216;②8,21,-2π; ③0.32,31,46,8,21,3216;④-7,0.32,31,46,0,8,21,3216,-2π14.29 解析:当腰长为3时,等腰梯形不成立.同理,当腰长为4时,也不能构成等腰梯形.故只有当腰长为11时满足条件,此时等腰梯形的周长为29.15.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角平分线三线合一, ∴.∵,∴ .∵ ,∴ (cm ).16.108 解析:因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.17.15 解析:∵ 点关于的对称点是,关于的对称点是,∴ ,. ∴ △的周长为. 18. 解析:如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.19.8 解析:由5-a +3+b ,得,所以.20.27 解析:因为,所以,所以. 21. 解析:连接,∵ 四边形是菱形,∠, ∴ ∠,,∠,∠21∠.∴ ∠,△为等边三角形,∴ ,∠,即∠.又∠,即∠, ∴ ∠.又,∠,∴△≌△(ASA),∴.又,则△是等边三角形,∴.又,则.22.6、3 解析:因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形.三、解答题23.分析:在平行四边形中,可由对边分别相等得出,的长,再在Rt △中,由勾股定理得出线段的长,进而可求解的长.解:∵四边形ABCD是平行四边形,∴,,.∵ BD⊥AD,∴,∴2125.24.解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,则,分别为两矩形的对称中心,过点,的直线就是所求的直线,如图所示.25.(1)证明:在矩形ABCD中,,且,所以.(2)解:△ABF≌△DEA.证明:在矩形ABCD中,∵ BC∥AD,∴∠.∵ DE⊥AG,∴∠.∵∠,∴∠.又∵,∴△ABF≌△DEA.26.分析:(1)在三角形中,根据等边对等角,再利用角的等量关系可知,再由直角三角形中,两锐角互余即可求解.(2)有两条边相等的三角形是等腰三角形,故连接,根据等腰梯形的性质及线段间的关系及平行的性质,可得.解:(1)∵∥,∴.∵,∴.∴.∵,∴梯形为等腰梯形,∴.∴.在△中,∵,∴.∴.∴21.∴.(2)如图,连接,由等腰梯形可得.EF在四边形中,∵ ∥,,∴ 四边形是平行四边形.∴ ,∴ , 即△为等腰三角形.27.分析:过点作∥,交的延长线于点,连接,交于点,则. 证明四边形是平行四边形,△是等腰三角形,根据等腰三角形的性质,底边上的高是底边上的中线,得到是△的中位线, 可得∥,即∥.解:如图,过点作∥,交的延长线于点, 连接,交于点,则.∵ ∥,∴ 四边形是平行四边形,∴ ,.∵ ,∴ .∴ △是等腰三角形.又∵ ⊥,∴ .∴ 是△的中位线.∴ ∥.∴ ∥. 28.分析:(1)连接,可证△是等边三角形,进而得出;(2)可根据勾股定理先求得的一半,再求的长; (3)根据菱形的面积公式计算即可. 解:(1)如图,连接,∵ 点是的中点,且⊥,∴ (垂直平分线的性质).又∵ ,∴ △是等边三角形,∴ .∴ (菱形的对角线互相垂直平分,且每一条对角线平分一组对角). (2)设与相交于点,则2a.根据勾股定理可得a 23,∴ a 3.(3)菱形的面积=21××a 3=223a . 29.分析:(1)可证明∥,又∥,可证四边形为平行四边形.(2)先求△的面积,再求平行四边形的面积. 解:(1)∵ 四边形是矩形,∴ ∥,∥,∴ ∵ 平分,平分,∴ .∴ ∥. ∴ 四边形为平行四边形(两组对边分别平行的四边形是平行四边形). (2)如图,作⊥于点.∵ 平分∠,∴ (角平分线的性质).又,∴ ,.在Rt △中,设,则, 那么,解得.∴ 平行四边形的面积等于.30.解:如图,过点作⊥于点,∵,,∴△是等腰直角三角形,∵,,∴.又,,∴△≌△,∴.∵是的垂直平分线,∴,,∴,∴△≌△,∴,∴四边形是菱形.。
2018-2019学年第一学期期中考试八年级数学试卷参考答案
∴∠CBE= (180°-150°)=30°-
∴=30°.…………………………………………………………………………………………12分
20.由题知:点P在第四象限.
∴ 解得a<- ……………………………………………………………………………7分
21.(1)证明:∵∠ADE=∠2+∠BDE=∠1Βιβλιοθήκη ∠ACE∴∠BDE=∠ACE
又∵∠A=∠B,AE=BE
∴△ACE≌△BDE,∴AC=BD.………………………………………………………………………5分
2018--2019学年第一学期期中考试
八年级数学试题参考答案
一、选择题:1.D;2.C;3.A;4.B;5.D;6.A;7.C;8.D;9.B;10.B.
二、填空题:11.10;12.0;13.64º;14.3;15.(4,-4);16.7.
三、解答题:
17.略.…………………………………………………………………………………………………6分
18.由题知:∠ABD=2∠DBE=56º
∴∠BAC=180º-56º-70º=54º………………………………………………………………………6分
19.(1)略;………………………………………………………………………………………………4分
(2)A1(8,0),B1(6,-2),C1(5,2)…………………………………………………………………7分
(2)由(1)知:△ACE≌△BDE,∴CE=DE
∴∠C=∠CDE= (180º-40º)=70º
∴∠BDE=70º……………………………………………………………………………………………8分
22.(1)易得∠ADE=∠CDF=30º,
苏科版2018-2019学年八年级上册期中数学试题及答案
2018-2019学年八年级(上册)期中数学试卷一、选择题1.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列各式中,正确的是()A.=﹣2 B.=9 C.=±3 D.±=±33.如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D4.下列命题中,正确的是()A.有理数和数轴上的点一一对应B.到角两边距离相等的点在这个角的平分线上C.全等的两个图形一定成轴对称D.实数不是有理数就是无理数5.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或106.在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9 B.1,,2 C.4,6,8 D.,,7.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为()A.B.C.4 D.58.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④二、填空题9.的平方根是;的立方根是﹣;立方根等于本身的数为.10.若一个正数的两个不同的平方根为2m﹣6与m+3,则m为;这个正数为.数a、b满足,则=.11.(1)若等腰三角形有一外角为100°,则它的底角为度;(2)若直角三角形两边长为3和4,则斜边上的中线为.12.如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=°.13.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为.14.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.15.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点,则BE的长为.17.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E 是AC边上的动点,则CF+EF的最小值为.18.如图,在△ABC中,AD为∠CAB平分线,BE⊥AD于E,EF⊥AB于F,∠DBE=∠C=15°,AF=2,则BF=.19.如图,点P、Q是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A出发,沿线段AB运动,点Q从顶点B出发,沿线段BC运动,且它们的速度都为1cm/s,连接AQ、CP交于点M,在P、Q运动的过程中,假设运动时间为t秒,则当t=时,△PBQ为直角三角形.三、解答题。
大丰区二中~初二上期中考试数学试题
大丰区二中~第一学期期中考试初二数学试题(考试时间:120分钟,满分150分)一、选择题(本大题共8小题,每小题3分,计24分.) 题 号 1 2 3 4 5 6 7 8 答 案1.下面图案中是轴对称图形的有 ( )A.1个 B .2个 C.3个 D.4个2.在下列各组条件中,不能说明△ABC ≌△DEF 的是( ). A . AC =DF , BC =EF ,∠A =∠D B .AB =DE ,∠B =∠E ,∠C =∠F C .AB =DE ,∠A =∠D ,∠B =∠E D .AB =DE ,BC =EF ,AC =DF 3.到三角形的三个顶点距离相等的点是 ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点 4.已知等腰三角形的周长为15 cm ,其中一边长为7 cm ,则底边长为( )A.3 cmB. 5 cmC. 1 cm 或7 cmD. 3 cm 或5 cm5.由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A -∠B =∠C B .31=a ,41=b ,51=c C .(b +c )(b -c )=a 2 D .∠A :∠B :∠C =1:3:26.如图,等腰△ABC 中,AB=AC ,∠A =20°.线段AB 的垂直 平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A .80°B .70°C .60°D .50° 7.如图,在Rt △ABC 中∠C =90°,AD 平分∠BAC 交BC 于点D ,若BC=6,且BD ∶CD =2∶1, 则D 到AB 的距离为( ) A .4 B .3 C .2 D .1A8.下列命题: ①等腰三角形的底角必为锐角 ; ②三个角对应相等的两个三角形全等;③线段有一条对称轴;④有两边和第三边上的高对应相等的两三角形全等。
苏科版2018-2019学年八年级上学期期中考试数学试卷(解析版)
2018-2019学年八年级上学期期中考试数学试卷一、选择题(每小题3分,共30分)1.以下图形中对称轴的数量小于3的是()A.B.C.D.2.下列各式中,正确的是()A.(﹣)2=9B.=﹣2C.±=±3D.=﹣33.在实数:﹣3.14,,π,4.3333,中,无理数的个数为()A.0个B.1个C.2个D.3个4.把0.356按四舍五入法精确到0.01的近似值是()A.0.3B.0.36C.0.35D.0.3505.如图,∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS6.下列数组作为三角形的三条边,其中不能构成直角三角形的是()A.1、、4B.1.5、2、2.5C.、、5D.、、7.如图,在△ABC中,AC的垂直平分线分别交AB、AC于点D、E,EC=5,△ABC的周长为26,则△BDC的周长为()A.14B.16C.18D.198.如图,在2×3的正方形网络中,有一个以格点为顶点的三角形,此网格中所有与该三角形成轴对称且以格点为顶点的三角形共有()A.1个B.2个C.3个D.4个9.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是()A.25°B.30°C.40°D.45°10.如图,已知AB=2,BF=8,BC=AE=6,CE=CF=7,则△CDF与四边形ABDE的面积比值是()A.1:1B.2:1C.1:2D.2:3二、填空题(每小题2分,共16分)11.﹣27的立方根是.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为.13.已知a、b为两个连续的整数,且,则a+b=.14.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=°.15.如图,已知AD∥BC,DE、CE分别平分∠ADC、∠DCB,AB过点E,且AB⊥AD,若AB=8,则点E到CD的距离为.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为厘米/秒.17.如图,在△ABC和△ADC中,已知AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,则线段CD的长是.18.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.三、解答题(共74分)19.(10分)计算:(1);(2)(2018﹣π)0﹣()﹣1++|﹣2|20.(10分)求下列各式中x的值:(1)9x2﹣4=0;(2)(3x﹣1)3+64=0.21.(6分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.22.(6分)如图,点E在线段AC上,BC∥DE,AC=DE,CB=CE,求证:∠A=∠D.23.(6分)如图,在长度为1个单位的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线MN成轴对称的△A1B1C1;(不写画法)(2)请你判断△ABC的形状,并求出AC边上的高.24.(8分)在等腰△ABC中,已知AB=AC,BD⊥AC于D.(1)若∠A=48°,求∠CBD的度数;(2)若BC=15,BD=12,求AB的长.25.(8分)已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为.(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.26.(10分)画图计算:(1)已知△ABC,请用尺规在图1中△ABC内确定一个点P,使得点P到AB和BC的距离相等,且满足P到点B和点C的距离相等(不写作法,保留作图痕迹).(2)如图2,如果点P是(1)中求作的点,点E、F分别在边AB、BC上,且PE=PF.①若∠ABC=60°,求∠EPF的度数;②若BE=2,BF=8,EP=5,求BP的长.(3)如图3,如果点P是△ABC内一点,且点P到点B的距离是7,若∠ABC=45°,请分别在AB、BC上求作两个点M、N,使得△PMN的周长最小(不写作法,保留作图痕迹),则△PMN的最小值为27.(10分)【定义】数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值;(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.以下图形中对称轴的数量小于3的是()A.B.C.D.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选:D.【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.下列各式中,正确的是()A.(﹣)2=9B.=﹣2C.±=±3D.=﹣3【分析】根据二次根式的性质:和,以及立方根的概念,即可得到结论.【解答】解:A.(﹣)2=3,故本选项错误;B.==2,故本选项错误;C.±=±3,故本选项正确;D.=﹣3,故本选项错误;故选:C.【点评】本题主要考查了立方根,平方根以及算术平方根的概念,解题时注意:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.在实数:﹣3.14,,π,4.3333,中,无理数的个数为()A.0个B.1个C.2个D.3个【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【解答】解:在所列实数中,无理数只有π这1个数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.把0.356按四舍五入法精确到0.01的近似值是()A.0.3B.0.36C.0.35D.0.350【分析】根据近似数的精确度求解.【解答】解:0.356≈0.36(精确到0.01).故选:B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.5.如图,∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS【分析】已知∠C=∠D=90°,AC=AD,且公共边AB=AB,故△ABC与△ABD全等【解答】解:在Rt△ABC与Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL)故选:A.【点评】本题考查全等三角形的判定,解题的关键是注意AB是两个三角形的公共边,本题属于基础题型.6.下列数组作为三角形的三条边,其中不能构成直角三角形的是()A.1、、4B.1.5、2、2.5C.、、5D.、、【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+()2=4,能构成直角三角形,故选项错误;B、(1.5)2+22=52,能构成直角三角形,故选项错误;C、1.52+22=2.52,能构成直角三角形,故选项错误;D、()2+()2≠()2,不能构成直角三角形,故选项正确;故选:D.【点评】本题考查了勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.7.如图,在△ABC中,AC的垂直平分线分别交AB、AC于点D、E,EC=5,△ABC的周长为26,则△BDC的周长为()A.14B.16C.18D.19【分析】根据线段的垂直平分线的性质得到DA=DC,AC=2EC=10,根据三角形的周长公式计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AC=2EC=10,∵△ABC的周长为26,∴AB+AC+BC=26,∴AB+BC=16,∴△BDC的周长=BD+CD+BC=BD+AD+BC=AB+BC=16,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.如图,在2×3的正方形网络中,有一个以格点为顶点的三角形,此网格中所有与该三角形成轴对称且以格点为顶点的三角形共有()A.1个B.2个C.3个D.4个【分析】因为对称图形是全等的,所以面积相等,据此连接矩形的对角线,观察得到的三角形即可解答.【解答】解:如图,与△ABE成轴对称的格点三角形有△ABF、△AEF、△EBC共3个,故选:C.【点评】此题考查利用轴对称设计图案,要做到全部找到不漏掉还是不容易的,解题的关键是仔细观察.9.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是()A.25°B.30°C.40°D.45°【分析】由折叠的性质可得出:∠CAE=∠DAE,∠ADE=∠C=90°,结合点D为线段AB的中点,利用等腰三角形的三线合一可得出AE=BE,进而可得出∠B=∠DAE,再利用三角形内角和定理,即可求出∠B的度数.【解答】解:由折叠,可知:∠CAE=∠DAE,∠ADE=∠C=90°,∴ED⊥AB.∵点D为线段AB的中点,ED⊥AB,∴AE=BE,∴∠B=∠DAE.又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=9°,∴∠B=30°.故选:B.【点评】本题考查了翻折变换、等腰三角形的性质以及三角形内角和定义,根据折叠的性质及等腰三角形的性质找出∠B=∠DAE=∠CAE是解题的关键.10.如图,已知AB=2,BF=8,BC=AE=6,CE=CF=7,则△CDF与四边形ABDE的面积比值是()A.1:1B.2:1C.1:2D.2:3【分析】由题意得AC=CB+BA=8,可得AC=BF,利用SSS可证得△AEC≌△BCF,从而可得S△AEC=S△BCF,也就得出S△CDF+S△CDB=S四边形ABDE+S△CDB,这样可求出四边形ABDE与△CDF面积的比值.【解答】解:由题意得AC=CB+BA=8,∴AC=BF,在△AEC和△BCF中,∴△AEC≌△BCF(SSS),∴S△AEC =S△BCF,故可得S△CDF +S△CDB=S ABDE+S△CDB⇒S四边形ABDE=S△CDF,∴四边形ABDE与△CDF面积的比值是1:1.故选:A.【点评】本题考查了面积及等积变换的知识,难度一般,根据题意证明△AEC≌△BCF是解答本题的关键,另外要注意等量代换在解答数学题目中的运用.二、填空题(每小题2分,共16分)11.﹣27的立方根是﹣3.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为13.【分析】由两个直角边的长度,利用勾股定理可求出斜边的长度,此题得解.【解答】解:=13.故答案为:13.【点评】本题考查了勾股定理,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.13.已知a、b为两个连续的整数,且,则a+b=11.【分析】先求出,得出a=5,b=6,代入求出即可.【解答】解:∵∴∵a<b,且a、b为两个连续的整数∴a=5,b=6∴a+b=5+6=11,故答案为11.【点评】本题考查了估计无理数的大小的应用,解此题的关键是确定的范围,题目比较好,但是一道比较容易出错的题目.14.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=50°.【分析】根据全等三角形的性质得到AB=AD,∠EAD=∠CAB,根据等腰三角形的性质、三角形内角和定理计算,得到答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠EAD=∠CAB,∴∠ADB=∠B=65°,∠EAD﹣∠CAD=∠CAB﹣∠CAD,∴∠EAC=∠BAD=50°,故答案为:50.【点评】本题考查的是全等三角形的性质,等腰三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.15.如图,已知AD∥BC,DE、CE分别平分∠ADC、∠DCB,AB过点E,且AB⊥AD,若AB=8,则点E到CD的距离为4.【分析】过点E作EF⊥CD于F,根据两直线平行,同旁内角互补可得∠B=90°,然后根据角平分线上的点到角的两边距离相等可得AE=EF=BE,从而得解.【解答】解:如图,过点E作EF⊥CD于F,∵AD∥BC,AB⊥AD,∴∠A=∠B=180°﹣90°=90°,∵CE平分∠BCD,DE平分∠ADC,∴AE=EF=BE,∵AB=8,∴EF=×8=4,即点E到CD的距离为4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作出辅助线构造出角平分线的性质的应用条件是解题的关键.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为2或3厘米/秒.【分析】分两种情形讨论①当BD=CM=4,BM=CN时,△DBM≌△MCN,②当BD=CN,BM =CM时,△DBM≌△NCM,再根据路程、时间、速度之间的关系求出点N的速度.【解答】解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t==1,∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t==2,CN=BD=6厘米,∴点N的速度为:=3厘米/秒.故点N的速度为2或3厘米/秒.故答案为:2或3.【点评】本题考查等腰三角形的性质、全等三角形的判定和性质,用分类讨论是正确解题的关键.17.如图,在△ABC和△ADC中,已知AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,则线段CD的长是8.【分析】根据题意和图形,利用勾股定理,锐角三角函数可以求得CD的长,本题得以解决.【解答】解:作CE⊥AB于点E,作AF⊥CD于点F,则∠CED=∠CEB=90°,∠AFD=∠AFC=90°,∵在△ABC和△ADC中,AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,∴∠BCE=45°,∠D=45°,∠BAD=105°,∴∠ECA=60°,∴∠CAE=30°,∴∠DAC=75°,∴∠DCA=60°,设BE=a,则CE=a,AE=8﹣a,∵∠CAE=30°,∠CEA=90°,∴=tan30°,解得,a=4(﹣1),∴AC=2a=8(﹣1),∵∠AFC=90°,∠ACF=60°,∴CF=4(﹣1),AF=12﹣4,∵∠AFD=90°,∠D=45°,∴DF=AF=12﹣4,∴CD=DF+CF=12﹣4+4(﹣1)=8,故答案为:8.【点评】本题考查勾股定理、含30°角的直角三角形、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.【分析】如图,取AB的中点E,连接CE,PE.由△QBC≌△PBE(SAS),推出QC=PE,推出当EP⊥AC时,QC的值最小;【解答】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.【点评】本题考查全等三角形的判定和性质,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.三、解答题(共74分)19.(10分)计算:(1);(2)(2018﹣π)0﹣()﹣1++|﹣2|【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)利用负指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=4+2﹣1=5;(2)原式=1﹣2+3+2﹣=4﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(10分)求下列各式中x的值:(1)9x2﹣4=0;(2)(3x﹣1)3+64=0.【分析】(1)先移项,然后开方即可得出x的值.(2)先移项,然后开立方可得出3x﹣1的值,进而可得出x的值.【解答】解:(1)原方程可化为:x2=,∴x=±;(2)原方程可化为:(3x﹣1)3=﹣64,∴3x﹣1=﹣4,解得:x=﹣1.【点评】本题考查了平方根和立方根的知识点.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.21.(6分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a的值,根据立方根的定义求出b的值,根据算术平方根的定义求出a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣12=﹣8,解得:b=4;(2)a+b=5,a+b的平方根为.【点评】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.22.(6分)如图,点E在线段AC上,BC∥DE,AC=DE,CB=CE,求证:∠A=∠D.【分析】根据平行线的性质和全等三角形的判定可以判断△ABC≌△DCE,然后根据全等三角形的性质即可证明结论成立.【解答】证明:∵BC∥DE,∴∠BCA=∠CED,在△ABC和△DCE中,,∴△ABC≌△DCE(SAS),∴∠A=∠D.【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,利用全等三角形的判定和性质解答.23.(6分)如图,在长度为1个单位的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线MN成轴对称的△A1B1C1;(不写画法)(2)请你判断△ABC的形状,并求出AC边上的高.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)利用勾股定理以及勾股定理的逆定理判断即可;【解答】解:(1)△A1B1C1如图所示.(2)∵AB ==,BC ==,AC ==,∴AB 2+BC 2=AC 2,AB =BC ,∴△ABC 是等腰直角三角形.设AC 边上的高为h ,则有: =•h ,∴h =.∴AC 边上的高为. 【点评】本题考查作图﹣轴对称变换,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(8分)在等腰△ABC 中,已知AB =AC ,BD ⊥AC 于D .(1)若∠A =48°,求∠CBD 的度数;(2)若BC =15,BD =12,求AB 的长.【分析】(1)根据等腰三角形的性质和直角三角形的两个锐角互余,可以求得∠CBD 的度数; (2)根据题目中的数据和勾股定理,可以求得AB 的长.【解答】解:(1)∵在等腰△ABC 中,AB =AC ,BD ⊥AC ,∴∠ABC =∠C ,∠ADB =90°,∵∠A =48°,∴∠ABC =∠C =66°,∠ABD =42°,∴∠CBD =24°;(2)∵BD ⊥AC ,∴∠BDC =90°,∵BC =15,BD =12,∴CD =9,设AB =x ,则AD =x ﹣9,∵∠ADB =90°,BD =12,∴122+(x﹣9)2=x2,解得,x=,即AB=.【点评】本题考查勾股定理,等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(8分)已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为BD=EF+AG..(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.【分析】(1)结论:BD=EF+AG.只要证明△FDE≌△HCD(AAS),可得EF=DH,同理可证:△BHC≌△AGB,可得AG=BH,即可解决问题;(2)结论不变,证明方法类似;【解答】解:(1)结论:BD=EF+AG.理由:如图1中,作CH⊥MN于H.∵EF⊥MN,AG⊥MN,∴∠EFD=∠EDC=∠CHD=90°,∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,∴∠EDF=∠DCH,∵DE=DC,∴△FDE≌△HCD(AAS),∴EF=DH,同理可证:△BHC≌△AGB,∴AG=BH,∴BD=EF+AG.故答案为BD=EF+AG.(2)结论不变.理由:如图2中,作CH⊥MN于H.∵EF⊥MN,AG⊥MN,∴∠EFD=∠EDC=∠CHD=90°,∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,∴∠EDF=∠DCH,∵DE=DC,∴△FDE≌△HCD(AAS),∴EF=DH,同理可证:△BHC≌△AGB,∴AG=BH,∴BD=EF+AG.故答案为BD=EF+AG.【点评】本题考查翻折变换、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(10分)画图计算:(1)已知△ABC,请用尺规在图1中△ABC内确定一个点P,使得点P到AB和BC的距离相等,且满足P到点B和点C的距离相等(不写作法,保留作图痕迹).(2)如图2,如果点P是(1)中求作的点,点E、F分别在边AB、BC上,且PE=PF.①若∠ABC=60°,求∠EPF的度数;②若BE=2,BF=8,EP=5,求BP的长.(3)如图3,如果点P是△ABC内一点,且点P到点B的距离是7,若∠ABC=45°,请分别在AB、BC上求作两个点M、N,使得△PMN的周长最小(不写作法,保留作图痕迹),则△PMN的最小值为7【分析】(1)作∠ABC的平分线BM,线段BC的垂直平分线EF,直线EF交射线BM于点P,点P即为所求;(2)①由Rt△PME≌Rt△PNF(HL),推出∠EPM=∠FPN,推出∠EPF=∠MPN,即可解决问题;②由Rt△PMB≌Rt△PNB(HL),推出BM=BN,由Rt△PME≌Rt△PNF(HL),推出EM=FN,推出BE+BF=BM﹣EM+BN+NF=2BN=10,推出BN=NM=5,再利用勾股定理即可解决问题;(3)分别作点P关于边AB、BC的对称点E、F,连接EF,分别与边AB、BC交于点M、N,连接PM、PN.则线段EF的长度即为△PMN的周长的最小值;【解答】解:(1)如图,点P即为所求;(2)①连接BP,作PM⊥AB于M,PN⊥BC于N.∵BP平分∠ABC,PM⊥AB,PN⊥BC,∴PM=PN,∵PE=PF,∠PME=∠PNF=90°,∴Rt△PME≌Rt△PNF(HL),∴∠EPM=∠FPN,∴∠EPF=∠MPN,∵∠MPN=360°﹣90°﹣90°﹣60°=120°,∴∠EPF=120°.②∵PB=PB,PM=PN,∠PMB=∠PFB=90°∴Rt△PMB≌Rt△PNB(HL),∴BM=BN,∵Rt△PME≌Rt△PNF(HL),∴EM=FN,∴BE+BF=BM﹣EM+BN+NF=2BN=10,∴BN=NM=5,∵BE=2,PE=5,∴EM=3,PM==4,∴BP==.(3)分别作点P关于边AB、BC的对称点E、F,连接EF,分别与边AB、BC交于点M、N,连接PM、PN.则线段EF的长度即为△PMN的周长的最小值.∵点E与点P关于AB对称,点F与点P关于BC对称,∴∠EBA=∠PBA,∠FBC=∠PBC,BE=BF=BP=7.∴EF=BE=7∴△PMN周长的最小值为7.故答案为7.【点评】本题考查作图﹣复杂作图,角平分线的性质,线段的垂直平分线的性质,轴对称最短问题等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴对称解决最短问题,属于中考常考题型.27.(10分)【定义】数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值84°或103.5°或124°或117°或126°;(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.【分析】【定义】如图①,如图②所示,根据题意画出图形即可;【应用】(1)①如图③当∠B=42°,AD为“好线”,②如图④当∠B=42°,AD为“好线”,③如图⑤当∠ABC=42°时,BD为“好线”,④如图⑥,当∠B=42°时,CD为“好线”,⑤如图⑦,当∠B=42°时,CD为“好线”,根据等腰三角形的性质即可得到结论;(2)设∠B=x°,①当AD=DE时,如图1(a),②当AD=AE时,如图1(b),③当EA=DE 时,根据等腰三角形的性质列方程即可得到结论.【解答】解:【定义】如图①,如图②所示,【应用】(1)①如图③当∠B=42°,AD为“好线”,则AD=AD=BD,故这个三角形最大内角是∠C=84°;②如图④当∠B=42°,AD为“好线”,则AB=AD,AD=CD,这个三角形最大内角是∠BAC=103.5°;③如图⑤当∠ABC=42°时,BD为“好线”,则AD=BD,CD=BC,故这个三角形最大内角是∠C=124°,④如图⑥,当∠B=42°时,CD为“好线”,则AD=CD=BC,故这个三角形最大内角是∠ACB=117°,⑤如图⑦,当∠B=42°时,CD为“好线”,则AD=AC,CD=BD,故这个三角形最大内角是∠ACB=126°,综上所述,这个三角形最大内角的所有可能值是84°或103.5°或124°或117°或126°,故答案为:84°或103.5°或124°或117°或126°;(2)设∠B=x°,①当AD=DE时,如图1(a),∵AD=CD,∴∠C=∠CAD=27°,∵DE=EB,∴∠B=∠EDB=x°∴∠AED=∠DAE=2x°,∴27×2+2x+x=180,∴x=42,∴∠B=42°;②当AD=AE时,如图1(b),∵AD=CD,∴∠C=∠CAD=27°,∵DE=EB,∴∠B=∠EDB=x°∴∠AED=∠ADE=2x°,∴2x+x=27+27,∴x=18,∴∠B=18°.③当EA=DE时,∵90﹣x+27+27+x=180,∴x不存在,应舍去.综合上述:满足条件的x=42°或18°.【点评】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键,并注意第二问的分类讨论的思想,不要丢解.。
2018-2019(含答案)八年级(上)期中数学试卷 (3)
2018-2019(含答案)八年级(上)期中数学试卷 (3).................................................................................................................................................................2018.10.22一、选择题(本大题共16个小题,共42分)1.在,,,,,,分式的个数是()A.个B.个C.、个D.个2.的平方根为()A.和B.和C. D.3.已知,,,则A. B. C. D.4.若分式无意义,那么的取值为()A. B. C. D.5.分式约分的结果是()A. B. C. D.6.的相反数为()A. B. C. D.7.如图,下列条件中,不能证明的是()A.,B.,C.,D.,8.分式,,的最简公分母是()A. B. C. D.9.如图,在方格纸中,以为一边作,使之与全等,从,,,四个点中找出符合条件的点,则点的个数为()A. B. C. D.10.计算:A. B. C. D.11.若有平方根,则的取值范围是()A. B. C. D.12.若,,则分式的值是()A. B. C. D.13.的整数部分是()A. B. C. D.14.如图,小敏做了一个角平分仪,其中,.将仪器上的点与的顶点重合,调整和,使它们分别落在角的两边上,过点,画一条射线,就是的平分线.此角平分仪的画图原理是:根据仪器结构,可得,这样就有.则说明这两个三角形全等的依据是()A. B. C. D.15.一个水塘里放养了鲤鱼和草鱼,草鱼的数量占总数的,现又放进了条鲤鱼,这时草鱼的数量占总数的,则这个水塘里草鱼的数量是()A. B. C. D.16.下列命题中:①已知两数,,如果,那么;②同旁内角互补,两直线平行;③全等三角形的对应角相等,对应边相等;④对顶角相等;其逆命题是真命题的是()A.①②B.②③C.③④D.①④二、填空题(本大题有3个小题,共10分)17.的平方根是________.18.若分式的值为,则的值为________.19.若关于的分式方程有增根,则的值是________;若分式方程无解,则的值为________.三、解答题(本大题共7个小题,共68分)20.把下列各数分别填入相应的大括号中:,, . ,,,,,,, . ,,整数: ...分数: ...负实数: ...无理数: ....21.如图,点,,,在同一条直线上,,,.与相等吗?说说你的理由;与平行吗?说说你的理由.22.化简并求值:,其中,.22.解分式方程:.23.如图,已知线段及,只用直尺和圆规,求作,使,,(保留作图痕迹,不写作法)24.某公司接到一份合同,要生产部新型手机,有,两个车间接受此任务,车间每天的综合费用为万元,车间每天加工的数量为车间的 . 倍,若,两车间共同完成一半,剩余的由车间单独完成,则共需要天完成.求,两车间每天分别能加工多少部?25.如图,在中,,,过点的直线交于点,过点作,垂足为,过点作,垂足为,请你在图中找出一对全等三角形,并说明理由.26.阅读:例:若,求,因为,所以.探究:填空:①若,则________;②若,则________;③若,则________;规定:若,用符号“ ”表示,即填空:① ________;② ________;③ ________;应用:________;________;________;举例说明,,之间的关系.答案1. 【答案】B【解析】根据分式的定义,可得答案.【解答】解:,,是分式,故选:.2. 【答案】A【解析】根据平方根的定义即可得.【解答】解:的平方根为,故选:.3. 【答案】D【解析】根据全等三角形的性质即可求出的度数.【解答】解:∵ ,∴ ,∵∴故选4. 【答案】C【解析】根据分式无意义,分母等于列方程求解即可.【解答】解:由题意得,,解得.故选.5. 【答案】B【解析】先对分子、分母找出公约式,再约分即可.【解答】解:,故选.6. 【答案】D【解析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:的相反数为,故选:.7. 【答案】C【解析】全等三角形的判定定理有,,,,根据定理逐个判断即可.【解答】解:、,,,符合全等三角形的判定定理,能推出,故本选项不符合题意;、,,,符合全等三角形的判定定理,能推出,故本选项不符合题意;、,,不能推出,不符合全等三角形的判定定理,故本选项符合题意;、∵ ,∴ ,∵ ,∴根据三角形内角和定理得出,,,,符合全等三角形的判定定理,能推出,故本选项不符合题意.故选.8. 【答案】A【解析】确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的最简公分母是;故选9. 【答案】B【解析】根据全等三角形的判定定理进行分析即可.【解答】解:符合条件的点的个数为个,分别是,,故选:.10. 【答案】A【解析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式,故选11. 【答案】D【解析】根据非负数有平方根列式求解即可.【解答】解:根据题意得,解得.故选:.12. 【答案】B【解析】先算除法,再算减法,最后把,的值代入进行计算即可.【解答】解:原式,当,时,原式.故选.13. 【答案】C【解析】由被开方数的范围确定出所求无理数的整数部分即可.【解答】解:∵ ,∴,则的整数部分为,故选14. 【答案】D【解析】在和中,由于为公共边,,,利用定理可判定,进而得到,即.【解答】解:在和中,,∴ ,∴ ,即.故选:.15. 【答案】A【解析】设这个水塘里草鱼的数量是,根据题意列出方程解答即可.【解答】解:这个水塘里草鱼的数量是,可得:,解得:,经检验是原方程的解,故选16. 【答案】B【解析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①已知两数,,如果,那么的逆命题是:已知两数,,如果,那么,错误,如,都是负数时;②同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,正确;③全等三角形的对应角相等,对应边相等的逆命题是对应角相等,对应边相等的三角形是全等三角形,正确;④对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故本选项错误;其逆命题是真命题的是②③;故选.17. 【答案】【解析】根据平方根的定义,求数的平方根,也就是求一个数,使得,则就是的平方根,由此即可解决问题.【解答】解:的平方根.故答案为:.18. 【答案】【解析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得且,解得,故答案为:.19. 【答案】,或【解析】根据分式方程的增根,可得关于的整式方程,根据解方程,可得答案.【解答】解:两边都乘以,得,将代入,得,故答案为:;两边都乘以,得,将代入,得,时,,故答案为:或.20. 【答案】,,,,,, . , . ,,,, . ,,,,,,【解析】根据实数的分类即可求出答案.【解答】解:整数:...分数: . . ...负实数:...无理数:....21. 【答案】证明:.理由如下:在和中,,∴ ,∴ ,∴ ,即;; .理由如下:∵ ,∴ ,∴ .【解析】利用“边角边”证明和全等,根据全等三角形对应边相等可得,再求解即可;; 根据全等三角形对应角相等可得,再根据同位角相等,两直线平行证明即可.【解答】证明:.理由如下:在和中,,∴ ,∴ ,∴ ,即;; .理由如下:∵ ,∴ ,∴ .22. 【答案】解:原式,当时,原式;; 解:方程两边同乘以得,,解得:,经检验,是原方程的解.【解析】原式去括号合并得到最简结果,把的值代入计算即可求出值;; 首先方程的两边同乘以最简公分母,把分式方程转化为整式方程,再求解即可,最后要把求得的的值代入到最简公分母进行检验.【解答】解:原式,当时,原式;; 解:方程两边同乘以得,,解得:,经检验,是原方程的解.23. 【答案】解:如图,①作线段.②作,,与交于点.即为所求.【解析】①作线段.②作,,与交于点.即为所求.【解答】解:如图,①作线段.②作,,与交于点.即为所求.24. 【答案】,两车间每天分别能加工和部.【解析】关键描述语是:“ 车间每天加工的数量为车间的 . 倍”;等量关系为:共需要天完成,根据等量关系列式.,【解答】解:设两车间每天能加工部,根据题意可得:.解得:,经检验是原方程的解,. ,25. 【答案】解:,理由:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ ,在与中,,∴ .【解析】根据余角的性质得到,根据全等三角形的判定即可得到结论.【解答】解:,理由:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ ,在与中,,∴ .26. 【答案】,,; ; ,,; ,,; 设,,则,而,故即,,之间的关系是.【解析】根据题目中的例子可以解答本题;; ; 根据中的规定和中的结果可以解答本题;; 根据前面的问题解答可以解答本题;; 列出具体的数据加以说明,,之间的关系即可.【解答】解: ①∵ ,,∴ ,②∵ ,,∴ ,③∵ ,,∴ ,; ; 由可得,① ,② ,③ ,; ∵∴ ,∵,∴,∵ ,∴ ,; 设,,则,而,故即,,之间的关系是.。
大丰区期中八年级数学试卷
一、选择题(每题3分,共30分)1. 若x=3,则下列代数式的值为()A. 2x-1 = 5B. 2x+1 = 7C. 2x-1 = 7D. 2x+1 = 52. 已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,2),则下列选项中,a的取值范围是()A. a>0B. a<0C. a≥0D. a≤03. 在等腰三角形ABC中,底边BC=8,腰AB=AC=10,则顶角A的度数是()A. 36°B. 45°C. 60°D. 90°4. 已知一次函数y=kx+b的图象经过点(1,3)和(-2,-1),则下列选项中,k的取值范围是()A. k>0B. k<0C. k≥0D. k≤05. 在直角坐标系中,点A(2,3),点B(-3,-1),则线段AB的中点坐标是()A. (-1,2)B. (1,-2)C. (-1,-2)D. (1,2)6. 已知一元二次方程x^2-5x+6=0的两个根为x1和x2,则x1+x2的值为()A. 5B. -5C. 6D. -67. 在等边三角形ABC中,边长AB=AC=BC=6,则角B的度数是()A. 30°B. 45°C. 60°D. 90°8. 已知一元一次方程3x-5=2x+1的解为x=2,则该方程的系数k的值为()A. 2B. 3C. 4D. 59. 在等腰直角三角形ABC中,斜边AB=10,则底边BC的长度是()A. 5B. 8C. 10D. 1210. 已知一元二次方程2x^2-3x-2=0的两个根为x1和x2,则x1^2+x2^2的值为()A. 5B. 6C. 7D. 8二、填空题(每题5分,共50分)11. 若x=2,则代数式2x-3的值为______。
12. 二次函数y=ax^2+bx+c的图象开口向下,且顶点坐标为(-1,2),则a的值为______。
苏科版2018--2019学年度第一学期八年级期中考试数学试卷
绝密★启用前苏科版2018--2019学年度第一学期八年级期中考试数学试卷望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!1.(本题3分)在实数﹣2,, ,0.1122,π中,无理数的个数为( ) A . 0个 B . 1个 C . 2个 D . 3个2.(本题3分)在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( ) A .34 B . 35 C . 45 D . 1253.(本题3分)已知2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( ) A.3 B.7 C.3或7 D.1或7 4.(本题3分) 的整数部分为( ) A . 1 B . 2 C . 3 D . 45.(本题3分)等腰直角三角形的三边之比为( )A . 3∶4∶5B . 1∶1∶2C . 1∶1∶D . ∶ ∶16.(本题3分)如图,△OAD ≌△OBC ,且∠O =72°,∠C =20°,则∠AEB =_____度.7.(本题3分)下列各式中,正确的是( )A 2=-B .2(9=C 3=-D 3=○………………○………○…………………○…线…………○…※※请※※※※订※※线※※答※※题※※ ……○…线……………论中不正确的是A .B .C .D .9.(本题3分)如图,将 ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm ,△ADC 的周长为12cm ,则BC 的长为( )A . 7cmB . 10cmC . 12cmD . 22cm10.(本题3分)(题文)下列图形中不是轴对称图形的是( )A .B .C .D .二、填空题(计32分)11.(本题4分)如图,Rt ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.12.(本题4分) 的平方根是______.13.(本题4分)如图,在△ABC 中,AB =15cm ,AC =13cm ,BC =14cm ,则△ABC 的面积为________cm 2.…………○……………○………名:___________班级:__:___________………○…………线…………………○…………内……14.(本题4分)如果一个正数的两个平方根是a +9和2a +15,则这个数为____________ 15.(本题4分)已知两条线段的长分别为 和 ,当第三条线段的长取 ______ 时,这三条线段能围成一个直角三角形.16.(本题4分)如图,尺规作图作AOB 的平分线,方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画孤,两弧交于点P ,作射线OP ,由作法得OCP ≌ODP 的根据是:__________;17.(本题4分)如图所示,I 是 ABC 三内角平分线的交点,IE ⊥BC 于E ,AI 延长线交BC 于D ,CI 的延长线交AB 于F ,下列结论:①∠BIE=∠CID ;②S ABC =12IE (AB+BC+AC );③BE=12(AB+BC ﹣AC );④AC=AF+DC .其中正确的结论是_____.18.(本题4分)如图,△ABC 中,AB=AD=DC ,设∠BAD=x ,∠C=y ,试求y 与x 的函数关系式,并写出x 的取值范围.三、解答题(计58分)19.(本题8分)计算:(﹣2)3×+(﹣1)2018+.………外……………订……※※内※※答※……○……20.(本题8分)一个正数 的平方根是 与 ,求 和 的值。
八年级数学上学期期中联考试题(1)word版本
江苏省盐城市大丰区2017-2018 学年八年级数学上学期期中联考试题注意事项:1 .本试卷考试时间为120 分钟,试卷满分150 分,考试形式闭卷.2.本试卷中全部试题一定作答在答题卡上规定的地点,不然不给分.3.答题前,务势必姓名、准考据号用 0.5 毫米黑色墨水署名笔填写在试卷及答题卡上.一、选择题(本大题共有 6 小题,每题 3 分,共 18 分)1.以下图形中,属于全等图形的是(▲ )A. B. C. D.2.的立方根是(▲)A. B. C. D. 43.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,时间是 (▲)由此你能够推测这时的实质A. B. C. D.(第 3 题)(第 5 题)(第 6 题)4.月日,新华社电讯:我国利用世界独一的“蓝鲸(即天然气水合物)的安全可控开采.据介绍,“蓝鲸号”,在南海实现了可燃冰号”拥有台设施,约根管路,约个 MCC报验点,电缆拉放长度预计千米,此中正确数是(▲)A. B. C. D.5.以下图,工人师傅砌门时,常用木条种做法的依据是(▲ )固定长方形门框,使其不变形,这A.两点之间线段最短B.长方形的对称性C. 长方形的四个角都是直角D. 三角形的稳固性6.如图,在四边形中,垂直均分,垂足为,以下结论不必定建立的是(▲ )A. B.均分C. D.二、填空题(本大题共7.近似数10 小题,每题精准到▲3 分,共位.30 分)8.如图,已知,,,则▲.9.如图,直线垂直均分线段,且垂足为,则图中全等的三角形有▲对.(第 8题)(第9 题)(第10题)10.如图,在中,是斜边的中点,若,则▲.11.如图,在中,、分别是和的均分线,过点作交于、交于,若,,则周长为▲.12.为等边三角形,、、分别在边、、上,且,则为▲三角形.(第 11 题)(第12题)(第13题)13.如图,中,,是中线,将沿折叠至,发现与折痕的夹角是,则点到的距离是▲.14.已知、是两个连续的整数,且,则▲.15.四边形ABCD中, AB=BC=CD=DA=4,点 E、 F分别在边BC、 CD上, CF= BE=3,且∠ B=∠ EAF.则 AF=▲.16.如图,中,,,认为边在外作正方形,连结、交于点.则线段的最大值是▲.三、解答题(本大题共有11 小题,共102 分.解答时应写出文字说明、推理过程或演算步骤)17.( 6 分)计算:( 1)(2)18.( 6 分)要使以下木架稳固,能够在随意两个点之间钉上木棍,各起码需要钉上多少根木棍 ?19.( 8 分)画出对于直线的对称图形,标明字母并简要说明.20.( 8分)如图,与交于点,连结、,若,,,,,求的长.21.( 8 分)以下图,中,是边上一点,是的中点,过点作的平行线交的延伸线于点,且,连结.( 1)求证:;( 2)求证:是的中点.22.( 10 分)如图,在的正方形网格中,每个小正方形的极点称为格点,左上角阴影部分是一个以格点为极点的正方形(简称格点正方形).若再作一个面积相等的格点正方形,并涂上暗影,使这两个格点正方形无重叠(能够有一个点或一条边重合),且与原正方形构成的图形是轴对称图形,请问这个格点正方形的作法共有几种?并在下边两图中分别画出一种.23.( 10 分)请先察看以下等式:,,,(1)请再举两个近似的例子;(2)经过察看,写出知足上述各式规则的一般公式.24.( 10 分)学校准备在旗杆邻近用石砖围一个面积为平方米的花坛.方案一:建成正方形;方案二:建成圆形.假如请你决议,从节俭工料的角度考虑,你选择哪个方案?请说明原因.(提示:花坛周长越小越节俭工料,取)25.( 10 分)以下图,、分别是的边、上的点,且,.( 1)若,则▲;( 2)若,则▲;( 3)设,,你能由( 1)( 2)中的结果找到、所知足的关系吗 ?请说明原因.26.( 12 分)如图,在中,,,.点从点沿方向以的速度运动至点,点从点沿方向以的速度运动至点.、两点同时出发.( 1)求的长.( 2)若运动(3)、时,求、两点运动几秒时,两点之间的距离..27.( 14线段( 1)如图分)在数学研究课上,老师出示了这样的研究问题,请你一同来研究:已知所在平面内随意一点,分别以、为边,在同侧作等边,连结、交于点.1 ,当点在线段上挪动时,线段与的数目关系:▲.是和( 2)如图 2 ,当点在直线外,且的结论能否还建立?若建立请证明,不建立说明原因.此时的大小发生变化,若变化写出变化规律,若不变,请写出度数,不用说明原因.,上边( 1)中能否跟着的( 3)如图 3 ,在(2)的条件下,以为边在另一侧作等边三角形,连接、和交于点.求证:.若试求的值,只要直接写出结果.2017-2018 学年度第一学期期中学情调研八年级数学答案一、选择题(本大题共有 6 小题,每题 3 分,共 18分)1. B2. A3. B4. A5. D6. C二、填空题(本大题共10 小题,每题 3 分,共 30 分)7.十8.°9. 310.511. 712.等边13. 314. 915.16.三、解答题(本大题共有11 小题,共102 分.解答时应写出文字说明、推理过程或演算步骤)17.( 6 分)解:( 1)―――― 3 分( 2)―――― 3分18.( 6 分)解:图①四边形木架起码需要钉上根木棍;―――― 2 分图②五边形木架起码需要钉上根木棍;――――2分图③六边形木架起码需要钉上根木棍.――――2分19.( 8 分)解:以下图,即为所求.――――8 分20.( 8 分)解:,,,,,,,―――― 4 分,,在中,,,.―――― 4 分21.( 8 分)解:( 1),.―――― 3 分(2)点为的中点,.在和中,,―――― 3 分.又,.即是的中点.―――― 2 分22.( 10 分)解:如图,由图易知这个格点正方形的作法共有种.―――― 4 分(只要作出此中两个)―――― 6 分23.( 10 分)解:( 1).―――― 6 分( 2),且为整数.(不用说明条件)―― 4 分24.( 10 分)解:当形状为正方形时,则平方米的花坛的边长为米,米.―――― 3 分当形状为圆形时,则平方米的花坛半径米,米.―――― 3 分,∴>选择方案二.―――― 4 分25.( 10 分)解:(1)――――3 分( 2)―――― 3 分( 3).原因以下:―――― 2 分由于,,因此,.又,即,得.由于,因此,因此,即.―――― 2 分26.( 12 分)解:( 1)在中,,,,.―――― 4 分( 2)如图,连结,,,在直角中,由勾股定理获得:.――――4分(3)设秒时,.则,解得.答:,两点运动秒时,.―――― 4 分27.( 14 分)解:(1)―――― 2 分( 2)结论:建立.―――― 2分和是等边三角形,,,,,即.,.―――― 2 分结论:不跟着的大小发生变化,一直是.――――2分(以下过程不需要学生书写:,设与交于点.,,,即.)( 3)由( 2)同理可得在上截取,连结.,为等边三角形.,,.,,.,.结果:.――――.―――― 3 分3 分。
2018-2019学年江苏省盐城市盐都中学、解放路学校教育集团八年级(上)期中数学试卷
2018-2019学年江苏省盐城市盐都中学、解放路学校教育集团八年级(上)期中数学试卷一.选择题(本大题共6小题,每小题2分,共12分.)1.(2分)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.2.(2分)点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.(2分)下列各组数中,是勾股数的为()A.1,1,2B.1.5,2,2.5C.7,24,25D.6,12,13 4.(2分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA5.(2分)一次函数y=x+3的图象与x轴的交点坐标是()A.(﹣3,0)B.(3,0)C.(0,﹣3)D.(0,3)6.(2分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(本大题共10小题,每题3分,共30分)7.(3分)﹣8的立方根是.8.(3分)平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B的坐标是(,).9.(3分)将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为.10.(3分)比较大小:+14(填“>”、“<”或“=”).11.(3分)若三角形三边分别为6,8,10,那么它最长边上的中线长是.12.(3分)直线y=kx过点(x1,y1),(x2,y2),若x1﹣x2=1,y1﹣y2=﹣2,则k的值为.13.(3分)如图,△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,连接AE.若BC=7,AC=4,则△ACE的周长为.14.(3分)已知点P(2m﹣1,﹣m+3)关于原点的对称点在第三象限,则m的取值范围是.15.(3分)如图,在平面直角坐标系中,OA=OB=,AB=.若点A坐标为(1,2),则点B的坐标为.16.(3分)如图,在直角△ABC中,∠ACB=90°,∠ABC=30°,△ABD、△BCE均是等边三角形,DE、AB交于点F,AF=1.5,则CE=.三.解答题(本大题共10题,共78分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)求下列等式中x的值:(1)16x2﹣9=0(2)8(x+1)3=2718.(6分)计算:(1)﹣12018+()﹣2﹣(2)+(2﹣)019.(7分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.20.(6分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.21.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.22.(7分)如图,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,求(1)FC的长.(2)EF的长.23.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.24.(8分)在平面直角坐标系xOy中,对于点P(x,y),我们把P’(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点.(1)当点A1的坐标为(2,1),则点A3的坐标为,点A2016的坐标为;(2)若A2016的坐标为(﹣3,2),则设A1(x,y),求x+y的值;(3)设点A1的坐标为(a,b),若A1,A2,A3,…A n,点A n均在y轴左侧,求a、b的取值范围.25.(10分)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x(h),货车的路程为y1(km),小轿车的路程为y2(km),图中的线段OA与折线OBCD分别表示y1,y2与x之间的函数关系.(1)甲乙两地相距km,m=;(2)求线段CD所在直线的函数表达式;(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?26.(12分)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.2018-2019学年江苏省盐城市盐都中学、解放路学校教育集团八年级(上)期中数学试卷参考答案一.选择题(本大题共6小题,每小题2分,共12分.)1.A;2.A;3.C;4.B;5.A;6.C;二.填空题(本大题共10小题,每题3分,共30分)7.﹣2;8.1;﹣1;9.y=3x﹣1;10.<;11.5;12.﹣2;13.11;14.<m<3;15.(﹣2,1);16.;三.解答题(本大题共10题,共78分.解答应写出文字说明、证明过程或演算步骤.)17.;18.;19.(a+4,﹣b);20.;21.;22.;23.;24.(﹣4,﹣1);(﹣2,3);25.420;5;26.60°;AD =BE;。
江苏大丰区第一共同体初二上期中考试数学卷(解析版)(初二)期中考试.doc
江苏大丰区第一共同体初二上期中考试数学卷(解析版)(初二)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】A【解析】试题分析:轴对称图形是指将图形沿着某条直线折叠,图形的两边能够完全重合的图形.本题中只有A是轴对称图形.考点:轴对称图形【题文】下列三条线段,能组成三角形的是()A、3,3,3B、3,3,6C、3,2,5D、3,2,6【答案】A【解析】试题分析:三角形三边必须满足任意两边之和大于第三边,任意两边之差小于第三边.本题中A符合条件,B、3+3=6,不能构成三角形;C、3+2=5,不能构成三角形;D、3+2<6,不能构成三角形.考点:三角形三边关系【题文】若等腰三角形底角为72°,则顶角为()A.108° B.72° C.54° D.36°【答案】D【解析】试题分析:根据三角形内角和以及等腰三角形的性质可得:顶角的度数为:180-72×2=36°.考点:等腰三角形【题文】如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是().A.SSS B.SAS C.AAS D.ASA【答案】D【解析】试题分析:这个三角形现在还存在两个角以及两角的夹边,可以根据ASA来得到全等三角形.考点:三角形全等的应用【题文】如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不正确的是()A.Al【解析】试题分析:根据已知条件可得:BC=BE=5,则AB=DB=17-5=12,根据三角形三边关系可得:12-5<AC<12+5 即7<AC<17,根据直角三角形的性质可得:AC>AB=12,即12<AC<17.考点:(1)、三角形三边关系;(2)、等腰三角形的性质【题文】如图,在△ABC中,AB=AC,∠A=40°.如果P为三角形内一点,且∠PBC=∠PCA,那么∠BPC等于()A.110° B.125° C.130° D.65°【答案】A【解析】试题分析:根据三角形内角和定义以及角度之间的关系可得:∠BPC=90°+40°÷2=110°.考点:三角形内角和定理【题文】4的平方根是_______.【答案】±2【解析】试题分析:一个正数的平方根有两个,且他们互为相反数.根据=4可得:4的平方根为±2.考点:平方根的计算【题文】在-,,-,,2.121231234,中,无理数有_______个.【答案】2【解析】试题分析:无理数是指无限不循环小数,本题中无理数有-和,本题需要注意的就是-=-2,为有理数.考点:无理数的定义【题文】设x、y满足则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年江苏省盐城市大丰区八年级(上)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.在下列黑体大写英文字母中,不是轴对称图形的是()A. AB. MC. ND. E2.下列各组数是勾股数的是()A. 2,3,4B. 3,4,5C. 4,5,6D. 5,6,73.下列各条件中,能判定两个三角形全等的是()A. 两角一边对应相等B. 两边一角对应相等C. 两个直角三角形的锐角都对应相等D. 两边对应相等4.64的算术平方根是()A. B. 8 C. D.5.如果一个三角形的一条边的平方等于另外两条边的平方差,则此三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法判断6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是()A. 250mB.C.D.二、填空题(本大题共10小题,共30.0分)7.小红从旗台出发向正北方向走6米,接着向正东方向走8米,现在她离旗台的距离是______米.8.1的立方根是______.9.角是轴对称图形,______是它的对称轴.10.小刚的体重为43.05kg,将43.05kg精确到0.1kg是______kg.11.如图,数轴上的点A、B、O、C、D分别表示数-2、-1、0、1、2,则表示数2-<“m“:mathxm ln s:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer;DISPLAY:inline-block'>5的点应落在相邻两点______之间.12.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=______度.13.已知直角三角形的两直角边的长分别为5和12,则斜边中线长为______.14.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数=______°.15.如图,在△ABC中,DE是BC的垂直平分线.若AB+AC=8cm,则△ACE的周长是______.16.已知等边△ABC的高为6,在这个三角形所在的平面内有一点P,若点P到直线AB的距离是1,点P到直线AC的距离是3,则点P到直线BC的距离可能是______.三、解答题(本大题共11小题,共102.0分)17.(1)求x的值:8x3=27(2)计算:18.利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等.然后,在射线AP上找一点Q,使QB=QC.19.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米35元,试问铺满这块空地共需花费多少元?20.正数x的两个平方根分别为3-a和2a+7.(1)求a的值;(2)求44-x这个数的立方根.21.如图,点A、F、C、D在一条直线上,AB∥DE,AB=DE,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.22.如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.(1)若△BCD的周长为8,求BC的长;(2)若∠A=40°,求∠DBC的度数.23.在△ABC中,AB=AC,D为AC的中点,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.(1)求证:△ADE≌△CDF;(2)求证:△ABC是等边三角形.24.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠EDC的度数.25.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.26.△ABC和△ECD都是等边三角形(1)如图1,若B、C、D三点在一条直线上,求证:BE=AD;(2)保持△ABC不动,将△ECD绕点C顺时针旋转,使∠ACE=90°(如图2),BC 与DE有怎样的位置关系?说明理由.27.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=______cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD 向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v 的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A、是轴对称图形.故选项错误;B、是轴对称图形.故选项错误;C、不是轴对称图形.故选项正确;D、是轴对称图形.故选项错误.故选:C.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】B【解析】解:A、不是,因为22+32≠42;B、是,因为32+42=52;C、不是,因为42+52≠62;D、不是,因为52+62≠72.故选:B.根据勾股定理的逆定理进行分析,从而得到答案.考查了勾股数,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.3.【答案】A【解析】解:A、有两角及一边对应相等可判断全等,符合AAS或ASA,故本选项正确;B、有两边及一角对应相等不能判定全等,只有该角是两边的夹角时方可判定全等,故本选项错误;C、两个直角三角形的锐角都对应相等不能判定全等,必须有边的参与方可判定全等,故本选项错误;D、两边对应相等,缺少条件不能判定全等,故本选项错误;故选:A.熟练运用判定方法判断.做题时要按判定全等的方法逐个验证.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.【答案】B【解析】解:64的算术平方根是8.故选:B.依据算术平方根的定义求解即可.本题主要考查的是算术平方根的定义,熟练掌握相关概念是解题的关键.5.【答案】B【解析】解:该三角形的三边分别为a、b、c其中c是斜边,若b2=c2-a2或a2=c2-b2,则c2=a2+b2,所以该三角形是直角三角形.故选:B.根据勾股定理的逆定理:两小边的平方和等于最长边的平方.考查了勾股定理,平方差公式和三角形,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.【答案】A【解析】解:由已知得,∠AOB=30°,OA=500m.则AB=OA=250m.故选A.由已知可得,∠AOB=30°,OA=500m,根据三角函数定义即可求得AB的长.本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.7.【答案】10【解析】解:如图:OA=6米,AB=8米,根据勾股定理得:OB==10(米).故答案为:10根据题意画出图形,利用勾股定理进行计算即可.此题考查的是勾股定理在实际生活中的运用,解答此题的关键是根据题意画出图形,再根据勾股定理进行计算.8.【答案】1【解析】解:∵1的立方等于1,∴1的立方根等于1.故答案为1.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.9.【答案】角平分线所在的直线【解析】解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.根据角的对称性解答.本题考查了角的对称轴,需要注意轴对称图形的对称轴是直线,此题容易说成是“角平分线”而导致出错.10.【答案】43.1【解析】解:43.05kg≈43.1kg(精确到0.1kg).故答案为43.1.根据近似数的精确度求解.本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.11.【答案】B、O【解析】解:∵4<5<9,∴2<<3,∴-2>->-3,∴0>2->-1.∴2-落在B、O之间.故答案为:B、O.先估算出2-的大小,然后再进行判断即可.本题主要考查的是估算无理数的大小,依据夹逼法以及不等式的基本性质得到2-的取值范围是解题的关键.12.【答案】135【解析】解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.根据对称性可得∠1+∠3=90°,∠2=45°.主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.13.【答案】6.5【解析】解:由勾股定理得,斜边==13,所以,斜边中线长=×13=6.5.故答案为:6.5.利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.14.【答案】45【解析】解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°.∵△ABC≌△ADE,∴∠DAE=∠BAC=70°.∴∠EAC=∠DAE-∠DAC=70°-25°=45°.故答案是:45.根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE-∠DAC代入数据进行计算即可得解.本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应角相等,对应边相等.15.【答案】8cm【解析】解:∵DE是BC的垂直平分线,∴BE=EC,∴AE+EC=BE+AE=AB.∵AB+AC=8cm,∴△ACE的周长=AB+AC=8cm.故答案为:8cm.根据题意可得出BE=CE,进而可得出结论.本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.【答案】10,8,4,2【解析】解:到AB的距离是1的点P在与AB平行且与AB的距离为1的两条直线a,b上,到AC的距离是3的点P在与AC平行且与AC的距离为3的直线c,d上,直线a,b,c,d的交点即为满足条件的点P,这样的点有4个,如图所示.根据题意,可知:△P1DM,△P2EM,△P3DF,△P4EF都为等边三角形,∴BD=BE==,CM=CF==2,BC==4,∴DM=BD+BC+CM=+4+2=,EM=BC-BE+CM=4-+2=,DF=BD+BC-CF=+4-2=,EF=BC-BE-CF=4--2=.又∵DM=10,EM=8,DF=4,EF=2,∴点P到直线BC的距离可能是10,8,4,2.故答案为:10,8,4,2.依照题意画出图形,由△ABC为等边三角形可得出△P1DM,△P2EM,△P3DF,△P4EF都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出BD,CM,BC的长,进而可得出等边三角形的底边DM,EM,DF,EF的长,再利用等边三角形的性质可求出各等边三角形的高,此题得解.本题考查了等边三角形的性质、平行线间的距离以及特殊角的三角函数值,依照题意画出图形,利用数形结合解决问题是解本题的关键.17.【答案】解:(1)8x3=27则x3=,解得:x=;(2)=3-4-(-1)=-1-+1=-.【解析】(1)直接利用立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根和绝对值的性质进而得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:如图,点P就是所要求作的到AB和AC的距离相等的点,点Q就是所要求作的使QB=QC的点.【解析】根据网格特点先作出∠A的角平分线与BC的交点就是点P,再作BC的垂直平分线与AP的交点就是点Q.本题主要考查了利用网格结构作角的平分线,线段的垂直平分线,找出相应的点是解题的关键.19.【答案】解:连接AC,则由勾股定理得AC=5m,∵AC2+DC2=AD2,∴∠ACD=90°.这块草坪的面积=S Rt△ABC+S Rt△ACD=AB•BC+AC•DC=(3×4+5×12)=36m2.故需要的费用为36×35=1260元.答:铺满这块空地共需花费1260元.【解析】连接AC,先根据勾股定理求出AC的长,然后利用勾股定理的逆定理证明△ACD为直角三角形.从而用求和的方法求面积,也可得出需要的费用.此题考查勾股定理、勾股定理的逆定理的应用、三角形的面积公式,解答本题的关键是作出辅助线,求出图形的总面积,难度一般.20.【答案】解:(1)∵正数x的两个平方根是3-a和2a+7,∴3-a+(2a+7)=0,解得:a=-10(2)∵a=-10,∴3-a=13,2a+7=-13.∴这个正数的两个平方根是±13,∴这个正数是169.44-x=44-169=-125,-125的立方根是-5.【解析】(1)根据一个正数有两个平方根,它们互为相反数,求出a的值;(2)根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x 的值,再根据立方根的定义即可解答.此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.21.【答案】解:(1)∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF,又∵AB=DE,∴△ABC≌△DEF(SAS).(2)∵△ABC≌△DEF,∴∠BCA=∠EFD,∴BC∥EF.【解析】(1)根据SAS即可判断,△ABC≌△DEF(SAS);(2)利用全等三角形的性质即可证明;本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】解:(1)∵D在AB垂直平分线上,∴AD=BD,∵△BCD的周长为8cm,∴BC+CD+BD=8cm,∴AD+DC+BC=8cm,∴AC+BC=8cm,∵AB=AC=5cm,∴BC=8cm-5cm=3cm;(2)∵∠A=40°,AB=AC,∴∠ABC=∠ACB=70°,又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC-∠ABD=70°-40°=30°.【解析】(1)根据线段垂直平分线定理得出AD=BD,根据BC+CD+BD=8cm求出AC+BC=8cm,把AC的长代入求出即可;(2)已知∠A=40°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.本题考查了等腰三角形性质和线段垂直平分线定理,关键是求出AC+BC的值,注意:线段垂直平分线上的点到线段的两端点的距离相等.23.【答案】证明:(1)∵DE⊥AB于点E,DF⊥BC于点F,∴∠AED=∠DFC=90°,∵AD=DC,DE=DF,∴Rt△ADE≌Rt△CDF(HL).(2)∵△ADE≌△CDF,∴∠A=∠C,又AB=AC,∴∠B=∠C,∴∠A=∠B=∠C,∴△ABC是等边三角形.【解析】(1)根据HL即可证明;(2)想办法证明∠A=∠B=∠C即可;本题考查全等三角形的判定和性质,角平分线的性质,等边三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】证明:(1)∵∠ABC=90°,D为AB延长线上一点,∴∠ABE=∠CBD=90°.在△ABE和△CBD中,∴△ABE≌△CBD;(2)解:∵AB=CB,∠ABC=90°,∴∠CAB=45°,又∵∠CAE=30°,∴∠BAE=15°.∵△ABE≌△CBD,∴∠BCD=∠BAE=15°,∴∠BDC=90°-15°=75°,又∵BE=BD,∠DBE=90°,∴∠BDE=45°,∴∠EDC=75°-45°=30°.【解析】(1)利用SAS证明三角形全等即可得证;(2)由全等三角形对应角相等得到∠BCD=∠BAE,利用等腰直角三角形的性质求出∠BDE的度数,即可确定出∠EDC的度数.此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.25.【答案】解:(1)若∠A为顶角,则∠B=(180°-∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°-2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180-2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180-2x且180-2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.【解析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.26.【答案】(1)证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE;(2)BC垂直平分DE,理由:延长BC交DE于M,∵∠ACB=60°,∠ACE=90°,∴∠ECM=180°-∠ACB-∠ACE=30°,∵∠DCM=∠ECD-∠ECM=30°∴∠ECM=∠DCM,∵△ECD是等边三角形∴CM垂直平分DE即BC垂直平分DE.【解析】(1)利用等边三角形的性质和已知条件证明△ACD≌△BCE即可,(2)BC垂直平分DE,延长BC交DE于M,证明∠ECM=∠DCM,利用三线合一证明即可.本题考查了等边三角形的性质、全等三角形的判定和性质,解题的关键是正确做出辅助线.27.【答案】10-2t【解析】解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,则PC=10-2t;(2)当t=2.5时,△ABP≌△DCP,∵当t=2.5时,BP=2.5×2=5,∴PC=10-5=5,∵在△ABP和△DCP中,,∴△ABP≌△DCP(SAS);(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6,∴PC=6,∴BP=10-6=4,2t=4,解得:t=2,CQ=BP=4,v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=BC=5,2t=5,解得:t=2.5,CQ=BP=6,v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.(1)根据P点的运动速度可得BP的长,再利用BC-BP即可得到CP的长;(2)当t=2.5时,△ABP≌△DCP,根据三角形全等的条件可得当BP=CP时,再加上AB=DC,∠B=∠C可证明△ABP≌△DCP;(3)此题主要分两种情况①当BP=CQ,AB=PC时,△ABP≌△PCQ;当BA=CQ,PB=PC时,△ABP≌△QCP,然后分别计算出t的值,进而得到v的值.此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.。