苏科版苏州市初二数学上学期期末试卷
苏州市苏科版八年级数学上 期末测试题(Word版 含答案)
苏州市苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .2.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .5 3.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠ B .5x = C .5x > D .5x <4.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 5.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .6.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .47.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .158.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:50 9.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .2C .2.4D .3.510.一组不为零的数a ,b ,c ,d ,满足a cb d =,则以下等式不一定成立的是( ) A .a c =b d B .a b b +=cd d + C .9a b -=9c d - D .99a b a b -+=99c d c d-+ 二、填空题11.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.12.如果点P (m+1,m+3)在y 轴上,则m=_____.13.4的平方根是 .14.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;15.点()2,3A 关于y 轴对称点的坐标是______.16.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.17.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,那么a 1+a 2+a 3+a 4=_____.18.当x =_____时,分式22x x x-+值为0. 19.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.20.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。
苏州市苏科版八年级数学上 期末测试题(Word版 含答案)
苏州市苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1)2.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°3.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<324.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 5.下列长度的三条线段不能组成直角三角形的是( )A .1.5,2.5,3B .13 2C .6,8,10D .3,4,5 6.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是()A.B.C.D.7.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>08.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣19.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA10.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .265二、填空题11.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.12.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km )13.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.14.点A (3,-2)关于x 轴对称的点的坐标是________.15.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.16.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.17.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.18.4的平方根是 .19.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.20.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.三、解答题21.如图,ABC ∆中,90BAC ∠=,8AC cm =,DE 是BC 边上的垂直平分线,ABD ∆的周长为14cm ,求BC 的长.22.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?23.已知△ABC 中,AB =17,AC =10,BC 边上得高AD=8,则边BC 的长为________24.已知甲,乙两名自行车骑手均从P 地出发,骑车前往距P 地60千米的Q 地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q 地后立即又原路返回P 地甲,乙两名骑手距P 地的路程y (千米)与时间x (时)的函数图象如图所示.(其中折线O ﹣A ﹣B ﹣C ﹣D (实线)表示甲,折线O ﹣E ﹣F ﹣G (虚线)表示乙)(1)甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.25.计算:(1)2a b aa b b a ++--;(2)221(1)11xx x-÷+-.四、压轴题26.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.27.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.28.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点(3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.29.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点(1,1)A ,点(3,2)C -建立平面直角坐标系,再结合图形即可确定出点B 的坐标.【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.2.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.3.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx 时,(m ﹣2)x+1<mx ,解得x >12, ∴不等式组mx ﹣2<kx+1<mx 的解集为12<x <32, 故选B .【点睛】 本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.4.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b;∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.5.A解析:A【解析】【分析】根据勾股定理的逆定理,分别判断即可.【详解】解:A 、2221.5 2.5=8.53+≠,故A 不能构成直角三角形;B 、22212+=,故B 能构成直角三角形;C 、22268=10+,故C 能构成直角三角形;D 、22234=5+,故D 能构成直角三角形;故选:A.【点睛】本题考查的是勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.6.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.7.D解析:D【解析】画函数的图象,选项A, 点(1,0)代入函数,01=,错误.由图可知,B ,C 错误,D,正确. 选D.8.D解析:D【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.9.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.10.D解析:D【解析】【分析】如图,作点E 关于AD 的对称点E ′,连接CE ′交AD 于P ′,连接EP ′,此时EP ′+CP ′的值最小,作CH ⊥AB 于H .求出CE ′即可.【详解】如图,作点E 关于AD 的对称点E ′,连接CE ′交AD 于P ′,连接EP ′,此时EP ′+CP ′的值最小,作CH ⊥AB 于H .∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE22CH E H'+222425⎛⎫+⎪⎝⎭=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB 为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC 2=AC 2,即32+a 2=22+(4﹣a )2,化简得8a =11,解得a =118. 故OC =118, 故答案为:118. 【点睛】 本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km (精确到100km ).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km ≈6.4×103 km (精确到100km ).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.13.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.14.(3,2)【解析】试题分析:点A (3,﹣2)关于x 轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x 轴、y 轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A (3,﹣2)关于x 轴对称的点的坐标是(3,2).故答案为(3,2). 考点:关于x 轴、y 轴对称的点的坐标.15.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC 是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC 是等边三角形是解题的关键.16.【解析】【分析】由题意,可知点A 坐标为(1,),点B 坐标为(2,0),由直线与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解解析:231b -<<-【解析】【分析】由题意,可知点A 坐标为(1,3),点B 坐标为(2,0),由直线y x b =+与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解:如图,过点A 作AE ⊥x 轴,.∵△ABC 是等边三角形,且边长为2,∴OB=OA=2,OE=1,∴22213AE -=∴点A 为(13B 为(2,0);当直线y x b =+经过点A (13ABC 边界只有一个交点,则13b +=31b =,∴点D 的坐标为(31);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:21b -<<;故答案为:21b -<<.【点睛】 本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论.17.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 18.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2. 考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.19.8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF ⊥BC 于点F ,作解析:8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF ⊥BC 于点F ,作CP ⊥AB 于点P ,根据题意得此时CP 的值最小;解:作BC 边上的高AF ,∵AB =AC =5,BC =6,∴BF =CF =3,∴由勾股定理得:AF =4,∴S △ABC =12AB •PC =12BC •AF =12×5CP =12×6×4 得:CP =4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 20.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件.三、解答题BC=21.10【解析】【分析】由垂直平分线的性质得到BD=CD,则得到AB+AC=14,然后求出AB,由勾股定理即可求出BC的长度.【详解】解:∵DE是BC边上的垂直平分线,∴BD=CD,∆的周长为14cm,∵ABD∴AB+AD+DB=14,∴AB+AD+DC=AB+AC=14,∵8AC=,∴1486AB=-=,在Rt△ABC中,由勾股定理,得226810BC=+=.【点睛】本题考查了垂直平分线的性质定理,勾股定理,解题的关键是掌握由垂直平分线的性质定理,求出AB的长度.22.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x元,则每支圆珠笔(2)x+元.假设能买到相同数量的笔,则30452 x x=+.解这个方程,得4x=.经检验,4x=是原方程的解.但是,3047.5÷=,7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.23.21或9【解析】【分析】由题意得出∠ADB=∠ADC=90°,由勾股定理求出BD、CD,分两种情况,容易得出BC的长.【详解】分两种情况:①如图1所示:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,2222222217815,1086BD AB AD CD AC AD=-=-==-=-=∴BC=BD+CD=15+6=21;②如图2所示:同①得:BD=15,CD=6,∴BC=BD-CD=15-6=9;综上所述:BC的长为21或9.【点睛】本题考查了勾股定理、分类讨论思想;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.24.(1)1小时,30千米/时;(2)y=24x﹣24(1≤x≤3.5);(3)x=17 3 27【解析】【分析】(1)根据题意结合图象解答即可;(2)求出乙的速度,再利用待定系数法解答即可;(3)根据(2)的结论列方程解答即可.【详解】(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),故答案为:1;30.(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),60÷24=2.5(小时),设乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x+b,则24+b=0,解得b=﹣24.∴乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x﹣24(1≤x≤3.5).(3)根据题意得,30(x﹣4)+(24x﹣24)=60﹣8,解得x=17327.答:乙两人相遇前,当时间x=17327时,甲,乙两骑手相距8千米.【点睛】此题考查了一次函数与一元一次方程的综合运用,熟练掌握,即可解题.25.(1)1-;(2)1x x -. 【解析】【分析】(1)根据异分母分式的加减法法则计算即可;(2)先把括号里的通分,再根据分式的除法法则计算即可.【详解】解:(1)原式=2a b a a b a b +--- =2a b a a b +-- =b a a b-- a b a b-=-- =1-; (2)原式=211(1)(1)1x x x x x +-+-⋅+ =1x x-. 【点睛】本题考查了分式的混合运算,在运算过程中,分子、分母能进行因式分解的先因式分解,熟练掌握分式的加减乘除运算是解题的关键.四、压轴题26.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M 是AC 中点知AM=CM ,结合∠AMD=∠CMB 和DM=BM 即可得证; (2)①由点M ,N 分别是AC ,BC 的中点及AC=BC 可得CM=CN ,结合∠C=∠C 和BC=AC 即可得证;②取AD 中点F ,连接EF ,先证△EAF ≌△ANC 得∠NAC=∠AEF ,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE ≌△DFE 得∠EAD=∠EDA=∠ANC ,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM 即可得证.【详解】解:(1)∵点M 是AC 中点,∴AM=CM ,在△DAM 和△BCM 中,∵AM CM AMD CMB DM BM =⎧⎪∠=∠⎨⎪=⎩,∴△DAM ≌△BCM (SAS );(2)①∵点M 是AC 中点,点N 是BC 中点,∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形,∴AC=BC ,∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△BCM ≌△ACN (SAS );②证明:取AD 中点F ,连接EF ,则AD=2AF ,∵△BCM ≌△ACN ,∴AN=BM ,∠CBM=∠CAN ,∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN ,∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+,解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.(1)①);②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.29.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC+=,BF BP BC∴+=,BC BD=,BF BP BD∴+=;(3)如图③,BF BD BP=+,理由:90ACB∠=︒,30A∠=︒,60CBA∴∠=︒,12BC AB=,点D是AB的中点,BC BD∴=,DBC∴∆是等边三角形,60CDB∴∠=︒,DC DB=,线段DP绕点D逆时针旋转60︒,得到线段DF,60PDF∴∠=︒,DP DF=,CDB PDB PDF PDB∴∠+∠=∠+∠,CDP BDF∴∠=∠,在DCP∆和DBF∆中,DC DBCDP BDFDP DF=⎧⎪∠=∠⎨⎪=⎩,DCP DBF∴∆≅∆,CP BF∴=,CP BC BP=+,BF BC BP∴=+,BC BD=,BF BD BP∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF∆≅∆,是一道中等难度的中考常考题.30.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论; (3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。
苏科版数学八年级上册《期末测试题》含答案
苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.857.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)15.一个等腰三角形的顶角为80°,则它的一个底角为.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共10小题,满分96分)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为度时,点P到A,B两点的距离相等.23.如图,已知AB=AC,AD=AE.求证:BD=CE.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=时,PE=PF.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.[答案]C[解析]A.0是整数,属于有理数;B.1.010010001是有限小数,即分数,属于有理数;C.π是无理数;D.是分数,属于有理数;故选:C.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数以及像0.1010010001…,等有这样规律的数.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限[答案]D[解析]∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.[点睛]本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙[答案]B[解析]如图:在△ABC和△DEF中,,∴△ABC≌△EFD(SAS);在△ABC和△MNK中,,∴△ABC≌△MNK(AAS).∴甲、乙、丙三个三角形中和△ABC全等的图形是:乙或丙.故选:B.[点睛]此题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)[答案]A[解析]如图,∵正方形ABCD的边长为4,点C的坐标为(3,3),∴点D的纵坐标为3,点D的横坐标为3﹣4=﹣1,∴点D的坐标为(﹣1,3).故选:A.[点睛]本题考查了正方形的性质,坐标与图形的性质,根据图形明确正方形的边长与点的坐标的关系是解题的关键.5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个[答案]D[解析]①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y,k0;④y=(1)x,k=(1)<0.所以四函数都是y随x的增大而减小.故选:D.[点睛]本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.85[答案]A[解析]∠A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠D=∠A=30°,即x=30,故选:A.[点睛]本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.7.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.[答案]B[解析]①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选:B.[点睛]本题主要考查动点问题的函数图象,解决这类问题要考虑动点在不同的时间段所产生的函数意义,分情况讨论,动中找静是通用方法.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.[答案]C[解析]设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x,∴BC=DE=a,∴BD2=BC2+CD2=()2+()2,∴BD,故选:C.[点睛]本题考查了勾股定理,全等三角形的性质,正确的识别图形是解题的关键.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)[答案]C[解析]∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故选:C.[点睛]此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定[答案]A[解析]∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE BC,∴AD+AE=AB+AC BC BC,∴BD+CE+BC BC,L1BC+DE,L2BC+DE,即得L1=L2,故选:A.[点睛]本题考查了直角三角形中特殊角的正弦函数值,考查了等边三角形各边相等的性质,本题中求证L1BC+DE,L2BC+DE是解题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.[答案]1[解析]∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,故(x+y)2018=(﹣2+1)2018=1.故答案为:1.[点睛]此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.[答案]y=3x+2[解析]由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为y=3x+2.故答案为:y=3x+2.[点睛]本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.[答案]2.5[解析]∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB5,∵CD是△ABC中线,∴CD AB5=2.5,故答案为:2.5.[点睛]本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD AB是解此题的关键.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)[答案]AB=CD[解析]∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)[点睛]本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.15.一个等腰三角形的顶角为80°,则它的一个底角为.[解析]∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故填50°[点睛]此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.[答案]125[解析]∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,在△ABC与△AED中,∴△ABC≌△AED(SSS),∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故答案为:125[点睛]此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.[解析]∵直线y=2x与线段AB有公共点,∴2n≥4,∴n≥2故答案为:n≥2[点睛]本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.[答案]20[解析]∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,∴∠ADC=∠ADE=90°,DE=CD CE,∵BC=10,BE=2∴CE=8,∴CD=DE=4,BD=6,在Rt△ABD中,AB2=AD2+BD2,在Rt△ACD中,AC2=AD2+CD2,∴AB2﹣AC2=BD2﹣CD2=20,故答案为:20[点睛]本题考查了翻折变换,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共10小题)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.[解析](1)x+1=±8(2)8x3=﹣27x3x[点睛]本题考查立方根与平方根的定义,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.[解析]∵点P(﹣m,﹣2m+1)在第二象限,∴,解不等式①得,m>0,解不等式②得,m,所以,不等式组的解集是0<m.故m的取值范围为:0<m.[点睛]本题主要考查解一元一次不等式组,解题的关键是掌握各象限内点的坐标的符号特点及解一元一次不等式组的能力.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.[解答]证明:∵△ABD和△ACE是等腰直角三角形,∴AB=AD,AC=AE,∵AB=AC,∴AD=AE,在△ADB和△ACE中,∵,∴△ADB≌△ACE,∴BD=CE.[点睛]本题考查了全等三角形的判定和性质,解题的关键是找出SAS所需要的三个条件.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为60度时,点P到A,B两点的距离相等.[解析](1)如图所示,点P即为所求.(2)当∠CAB=60°时,P A=PB,∵∠C=90°,∠CAB=60°,∴∠B=30°,∵AP平分∠CAB,∴∠P AB=30°,∴∠P AB=∠B=30°,∴P A=PB.故答案为:60.[点睛]本题主要考查作图﹣复杂作图,解题的关键是掌握角平分线的尺规作图和性质及三角形的内角和定理.23.如图,已知AB=AC,AD=AE.求证:BD=CE.[解答]证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).[点睛]本题考查了等腰三角形的性质;做题中用到了等量减等量差相等得到答案.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.[解答]证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.[点睛]本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.[解析](1)∵长方形纸片ABCD,∴AD∥BC,∴∠GFE=∠FEC,∵∠FEC=∠GEF,∴∠GFE=∠GEF,∴△GEF是等腰三角形.(2)∵∠C=∠H=90°,HF=DF,GD=8,设HF长为x,则GF长为(8﹣x),在Rt△FGH中,x2+42=(8﹣x)2,解得x=3,∴HF的长为3.[点睛]本题主要考查的是翻折的性质、勾股定理的应用,掌握翻折的性质是解题的关键.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.[解析](1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:∴函数表达式为y=0.2x﹣2,(2)将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,(3)把y=2代入解析式,可得:x=20,把y=7代入解析式,可得:x=45,所以可携带行李的质量x(kg)的取值范围是20≤x≤45,故答案为:20≤x≤45.[点睛]本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)[解析](1)设线段BC所在直线的函数表达式为y=kx+b(k≠0),∵B(,0),C(,)在直线BC上,,得,即线段BC所在直线的函数表达式为y=20x;(2)设甲的速度为m km/h,乙的速度为n km/h,,得,∴点A的纵坐标是:3010,即点A的坐标为(,10),点A的实际意义是当甲骑电动车行驶h时,距离M地为10km;(3)由(2)可知,甲的速度为30km/h,乙的速度为50千米/小时,则乙从M地到达N地用的时间为:小时,∵,∴乙在图象中的时,停止运动,甲到达N地用的时间为:小时,补全的函数图象如右图所示.[点睛]本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=或时,PE=PF.[解析](1)令y=0,得A(3,0),令x=0,求得B(0,3),∴OA=3,OB=3,∵∠AOB=90°,∴AB6,(2)证明:取AB的中点C,连接OC,∵∠AOB=90°,C为AB的中点,∴OC=BC=CA=3,∵OA=3,∴OC=CA=OA,∴△OAC是等边三角形,∴∠OAB=60°,∵∠AOB=90°,∴∠ABO=30°;(3)由题意得t(t﹣3),解得:t所以当t时,点P与点E重合;(4)取EF的中点H,过点H作PP′∥y轴,此时,P(P′)E=P(P′)F,①当点P在线段OA时,EH=OP,∵∠OBA=30°,设:EF=m,则FB=2m,BE m,即EF BE,EH EF BE•(3t)OP=OA﹣AP=3﹣t,解得:t,②当点P(点P′)在线段AB时,作P′O′⊥OB于点O′,此时点P′运动的时间为t,其中在AO、OB运动时间均为3,则在AB上运动的时间为t﹣6,则BP′=2(t﹣6),同理O′P′B′P′=t﹣6,由①得:EH(3t)=O′P′=t﹣6,同理可得:t,故答案是:或.[点睛]本题考查的是一次函数综合运用,涉及到解直角三角形、勾股定理运用等知识点,难度不大.。
苏科版苏州市八年级上第一学期期末数学试卷
苏科版苏州市八年级上第一学期期末数学试卷 一、选择题 1.估计11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 3.某种鲸的体重约为,关于这个近似数,下列说法正确的是( ) A .精确到百分位B .精确到0.01C .精确到千分位D .精确到千位 4.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE5.满足下列条件的△ABC ,不是直角三角形的是( )A .a :b :3c =:4:5B .A ∠:B ∠:9C ∠=:12:15 C .C A B ∠=∠-∠D .222b a c -=6.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)7.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 8.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)-9.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( ) A .1- B .0 C .1D .2 10.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .411.下列标志中,不是轴对称图形的是( ) A . B . C . D .12.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( ) A .AC =2CD B .AD =2CD C .AD =3BD D .AB =2BC13.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C14.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm15.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6二、填空题16.若点(1,35)P m m +-在x 轴上,则m 的值为________.17.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.18.3.145精确到百分位的近似数是____.19.点()2,3A 关于y 轴对称点的坐标是______.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.21.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.22.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。
苏科版江苏省苏州市八年级上第一学期期末数学试卷
苏科版江苏省苏州市八年级上第一学期期末数学试卷一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2)2.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .13.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62° 4.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠ B .5x = C .5x > D .5x <5.下列实数中,无理数是( )A .0B .﹣4C .5D .17 6.某种鲸的体重约为,关于这个近似数,下列说法正确的是( ) A .精确到百分位 B .精确到0.01 C .精确到千分位 D .精确到千位7.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 8.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的129.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④ 10.4 的算术平方根是( )A .16B .2C .-2D .2± 11.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( )A .k <3B .k >3C .k <2D .k >212.下列式子中,属于最简二次根式的是( )A 12B 0.5C 5D 1213.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b 的图象大致是( )A .B .C .D .14.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M 是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )15.下列分式中,x 取任意实数总有意义的是( )A .21x x +B .221(2)x x -+C .211x x -+D .2x x + 二、填空题 16.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.17.写出一个比4大且比5小的无理数:__________.18.在311,2π,122-,0,0.454454445…,319中,无理数有______个. 19.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.20.计算222m m m+--的结果是___________21.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.22.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.23.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.24.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.25.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .三、解答题26.已知一次函数的图象经过点P (0,-2),且与两条坐标轴截得的直角三角形的面积为6,求这个一次函数的解析式.27.如图,点D 、B 、C 在一直线上,ABC ∆和ADE ∆都是等边三角形.试找出图中的一对全等三角形,并证明.a-+(b﹣8)2=0.28.若△ABC的三边分别为a,b,c,其中a,b满足6(1)求边长c的取值范围,(2)若△ABC是直角三角形,求△ABC的面积.y+与x成正比,当x=1时,y=﹣6.29.已知2(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.30.如图,己知,A(0, 4),B (t,0)分别在y轴,x轴上,连接AB,以AB为直角边分别作等腰Rt△ABD和等腰Rt△ABC.直线BC交y轴于点E. 点G(-2,3)、H(-2,1)在第二象限内.(1)当t =-3时,求点D的坐标.(2)若点G、H位于直线AB的异侧,确定t的取值范围.(3)①当t取何值时,△ABE与△ACE的面积相等.②在①的条件下,在x轴上是否存在点P,使△PCB为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.31.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.D解析:D【解析】【分析】图中直线y=x+b与x轴负半轴,y轴正半轴分别交于A,B两点,可以根据两点的坐标得出OA=OB,由此可证明△AOD≌△OBE,证出OC=AD,BE=OD,在Rt△OBE中,运用勾股定理可求出BE的长,再根据线段的差可求出DE的长.【详解】直线y=x+b(b>0)与x轴的交点坐标A为(-b,0)与y轴的交点坐标B为(0,-b),所以,OA=OB,又∵AD⊥OC,BE⊥OC,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB,在△DAO和△BOE中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 3.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B .【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.4.A解析:A【解析】【分析】根据分式的定义即可求解.【详解】依题意得50x -≠,解得5x ≠,故选A.【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.5.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 6.D解析:D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg =136000kg 的最后一位的6表示6千,即精确到千位.故选D .【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.7.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN ,即DN+BN=AB=9,可得△DNB 的周长.【详解】解:∵D 是BC 的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN ,∴△DNB 的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等8.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 9.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.10.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42=,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键. 11.A解析:A【解析】【分析】将点A,点B坐标代入解析式可求k−3=b da c--,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,∴b=ka﹣3a+2,d=kc﹣3c+2,且a≠c,∴k﹣3=b da c --.∵m=(a﹣c)(b﹣d)<0,∴k<3.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c --是关键,是一道基础题.12.C解析:C【解析】,被开方数含分母,不是最简二次根式,故本选项错误;D.故选C.13.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.14.C解析:C【解析】【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,∵直线y=﹣43x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB=223+4=5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.15.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A.x=0时,x2=0,A选项不符合题意;B.x=﹣2时,分母为0,B选项不符合题意;C.x取任意实数总有意义,C选项符号题意;D.x=﹣2时,分母为0.D选项不符合题意.故选:C.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.二、填空题16.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.17.答案不唯一,如:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25,∴到之间的无理数都符合条件,如:.故答案为答案不唯一,如:.【点睛】本题考查了无理数的解析:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25.故答案为.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2 ,0.4544544453个.故答案为:3.本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.19..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.20.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】原式变形后,利用同分母分式的减法法则计算即可得到结果. 【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.21.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.22.17【解析】【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.【详解】解:是的垂直平分线,,,的周长为11,,的周长,故答案为:17.【点睛】本题考解析:17【解析】【分析】根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案.【详解】解:PH 是AC 的垂直平分线,PA PC ∴=,26AC AH ==,ABP ∆的周长为11, 11AB BP PA AB BP BC AB BC ∴++=++=+=,ABC ∆∴的周长17AB BC AC =++=,故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.23.108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB解析:108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB=AC,∴∠B=∠C,∵AB的垂直平分线分别交边AB,BC于D,E点,∴AE=BE,∴∠B=∠BAE,∵AC=EC,∴∠EAC=∠AEC,设∠B=x°,则∠EAC=∠AEC=2x°,则∠BAC=3x°,在△AEC中,x+2x+2x=180,解得:x=36,∴∠BAC=3x°=108°,故答案为:108°.【点睛】此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.24.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.25.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题26.y=-13x-2或y=13x-2. 【解析】【分析】 分一次函数与x 轴交点Q 在正半轴与负半轴两种情况确定出Q 的坐标,即可确定出一次函数解析式.【详解】解:设一次函数与x 轴的交点为Q,则①当一次函数与x 轴交点Q 在x 轴负半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (-6,0),设一次函数解析式为y=kx+b ,将P 与Q 坐标代入得:2,60,b k b -⎧⎨-+⎩==解得1,32.k b ⎧=-⎪⎨⎪=-⎩ 此时一次函数解析式为y=-13x-2; ②当一次函数与x 轴交点在x 轴正半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (6,0),设一次函数解析式为y=mx+n ,将P 与Q 坐标代入得:2,60,n m n -⎧⎨+⎩==解得1,32.m b ⎧=⎪⎨⎪=-⎩ 此时一次函数解析式为y=13x-2. 故所求一次函数解析式为:y=-13x-2或y=13x-2. 【点睛】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.27.ABE ACD ∆≅∆,证明详见解析.【解析】【分析】根据等边三角形的性质证明ΔABE ≅ΔACD 即可.【详解】ΔABE ≅ΔACD .证明如下:∵ΔABC 、ΔADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∴∠BAC +∠BAD =∠DAE +∠BAD ,即∠CAD =∠BAE .在ΔABE 和ΔCAD .∵AB =AC ,∠BAE =∠CAD ,AE =AD ,∴ΔABE ≅ΔACD .【点睛】本题考查了等边三角形的性质和全等三角形的判定.掌握等边三角形的性质是解答本题的关键.28.(1)2<c <14;(2)△ABC 的面积为24或.【解析】【分析】(1)先根据非负数的性质求出a 、b 的值,再由三角形的三边关系即可得出结论;(2)分b 是直角边和斜边两种情况,利用勾股定理求出另一直角边,然后根据三角形的面积公式列式计算即可得解.【详解】解:(1)∵a ,b (b ﹣8)2=0,∴a ﹣6=0,b ﹣8=0,∴a =6,b =8,∴8﹣6<c <8+6,即2<c <14.故边长c 的取值范围为:2<c <14;(2)b =8是直角边时,6是直角边,△ABC 的面积=12×6×8=24;b =8,△ABC 的面积=12×6×.综上所述,△ABC 的面积为24或.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.同时考查了勾股定理,难点在于要分情况讨论.29.(1)y =-4x-2;(2)a =-1.【解析】【分析】(1)设y+2=kx ,将x=1、y=-6代入y+2=kx 可得k 的值;(2)将点(a ,2)的坐标代入函数的解析式求a 的值.【详解】解:(1)∵y+2与x 成正比,∴设y+2=kx ,将x=1、y=-6代入y+2=kx 得-6+2=k×1,∴k=-4,∴y=-4x-2(2)∵点(a ,2)在函数y=-4x-2图象上,∴2=-4a-2,∴a=-1.【点睛】本题主要考查函数解析式的求法.如果事先知道函数的形式,可先设函数的解析式,再采用待定系数法求解.30.(1)D (-7,3);(2)88-3t -<<;(3)①-2;②存在,P(6,0),P(12,0),P(-,0),,0)【解析】【分析】(1)当t=-3时,过点D 作DM ⊥x 轴于点M ,证明△ABO ≌△BDM ,得出DM=BO 和MB=OA ,从而得出点D 坐标.(2)设出AB 解析式y=kx+4,分别求出点G ,H 在线段AB 上的时点B 的坐标; (3)①假设△ABE 与△ACE 的面积相等,利用等底同高求出t 值;②根据等腰三角形的性质,分BP=BC 、CP=CB 、PC=PB 三种情况讨论.【详解】(1)当t=-3时,过点D 作DM ⊥x 轴于点M,∵△ABD 为等腰直角三角形,AB=BD ,∠ABD=90°∴∠ABO+∠DBM=180°-90°=90°又∵DM ⊥x 轴于点M∴∠DMB=90°∴∠DBM+∠MDB=90°∴∠MDB=∠ABO在△ABO 和△BDM 中 ABO BDM AB BDDMB BOA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABO ≌△BDM∴DM=BO=3,MB=OA=4∴MO=MB+BO=4+3=7∴D (-7,3)(2)∵A (0,4),B (t,0),设直线AB 的解析式为y=kx+4当点G (-2,3)在直线AB 上时 3=-2k+4,12k = 此时AB 的解析式142y x =+ 当y=0时,1042x =+,x=-8 此时B (-8,0) 当点H (-2,1)在直线AB 上时 1=-2k+4,32k 此时AB 的解析式243y x =+ 当y=0时,3042x =+,x=83- 此时B (83-,0)∵点G, H 位于直线AB 的异侧,∴由图像可知直线AB 与线段MN 相交,且点M ,N 不在直线AB 上∴88-3t -<< (3)①t=-2时,△ABE 与△ACE 的面积相等.如图,过点B 做x 轴垂线,构造直角三角形ARB 和直角三角形BQC ,∵∠RAB+∠ABR=90°,∠ABR+∠BCQ=90°∴∠ABR=∠BCQ ,在△ARB 和△BQC 中,=R Q ABR BCQ AB BC ∠=∠⎧⎪∠∠⎨⎪=⎩,∴△ARB≌△BQC(AAS)∴AR=BQ,BR=QC=4,若△ABE与△ACE的面积相等,则BE=EC,∴BO=CN=2,∴B(-2,0)②P(6,0),P(12,0),5,0),5,0)由②可得C(2,-2)当BP=BC时,224225∴BP=25∴5,0)或5,0)当CP=CB时,BP=8,∴P(6,0)当PC=PB时,如图,过E作BC的垂线,交x轴于点P,过C作x轴垂线于点S,设BP=m=PC,则PS=4-m,在△PSC中,PS2+SC2=PC2,即22+(4- m)2= m 2,解得m=52,∴OP=52-2=12,∴P(12,0).综上:P(6,0),P(12,0),5,0),5,0).【点睛】本题是一道综合性较强的题,难点在于等腰三角形的存在性问题,同时根据图像数形结合来得出t的取值范围.31.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到DA=DB,FA=FC,得到∠DAB=∠ABC=30︒,∠FAC=∠ACB=50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC=180︒﹣∠ABC﹣∠ACB=180︒﹣30︒﹣50︒=100︒,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30︒,∵FG是AC的垂直平分线,∴FA=FC,∴∠FAC=∠ACB=50︒,∴∠DAF=∠BAC﹣(∠DAB+∠FAC)=20︒;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
苏科版苏州市八年级期上册末数学试卷
苏科版苏州市八年级期上册末数学试卷一、选择题1.正方形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .四个角都是直角 2.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 3.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =-- 4.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( ) A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形 5.若分式12x x -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 6.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,8 7.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132-B .132C 132D .13-8.用科学记数法表示0.000031,结果是( )A .53.110-⨯B .63.110-⨯C .60.3110-⨯D .73110-⨯ 9.在下列分解因式的过程中,分解因式正确的是( )A .-xz +yz =-z(x +y)B .3a 2b -2ab 2+ab =ab(3a -2b)C .6xy 2-8y 3=2y 2(3x -4y)D .x 2+3x -4=(x +2)(x -2)+3x10.以下关于多边形内角和与外角和的表述,错误的是( )A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120︒,那么它是十边形.11.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限12.下列各点中,在函数y=-8x 图象上的是( ) A .(﹣2,4) B .(2,4)C .(﹣2,﹣4)D .(8,1) 13.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)14.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg15.下列各数中,无理数是( )A .πB .C .D .二、填空题16.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.17.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______. 18.若1712a +=,则352020a a -+=__________. 19.36的算术平方根是 . 20.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.21.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.22.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.23.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .24.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.25.如图,将一张三角形纸片折叠,使得点A 、点C 都与点B 重合,折痕分别为DE 、FG ,此时测得∠EBG =36°,则∠ABC =_____°.三、解答题26.已知函数y=(2m +1)x+m ﹣3.(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m 的取值范围.27.某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校. 如图是小明离家的距离()y m 与所用时间()min x 的函数图像.请结合图像回答下列问题:(1)小明家与学校距离为______m ,小明步行的速度为______/min m ;(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)在同一坐标系中画出爸爸离家的距离()y m 与所用时间()min x 的关系的图像.(标注..相关数据....) 28.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.29.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =.(1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.30.已知一次函数y kx b =+的图象经过点()3,3P ,()1,3Q -.(1)求这个一次函数表达式;(2)若函数y kx b =+的图象与x 轴的交点是A ,与y 轴交于点B ,求ABO ∆的面积(其中O 为坐标原点).31.如图,△ABC 中,∠ABC =30°,∠ACB =50°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1)求∠DAF 的度数;(2)若△DAF 的周长为10,求BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.考点:(1)、正方形的性质;(2)、矩形的性质2.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P (a ,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C .【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.3.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.4.A解析:A【解析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.5.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.7.A解析:A【解析】 【分析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案.【详解】解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形,∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC -+=, ∴13AP AB ==∴132PC =,∵点P 在点C 的左边,点C 表示的数为0,∴点P 表示的数为:132)132-=;故选择:A.【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.8.A解析:A【解析】【分析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键.9.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误;6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C .【点睛】因式分解的意义.10.D解析:D【解析】【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解.【详解】A.四边形的内角和为360°,外角和也为360°,A 选项正确;B.根据四边形的内角和为360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为62180720()-⨯︒=︒,外角和为360°,C 选项正确;D.假设是n 边形,(2)180120n n -⨯︒=︒解得610n =≠,D 选项错误. 故选:D.【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键. 11.D解析:D【解析】试题分析:根据a >0,b <0和第四象限内的坐标符号特点可确定p 在第四象限. ∵a >0,b <0,∴点P (a ,b )在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.13.B解析:B【解析】【分析】根据平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.15.A解析:A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题16.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.17.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.18.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】【分析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()2211520205202022a a ⎡⎤⎛⎫⎢⎥-+=⨯-+ ⎪ ⎪⎢⎥⎝⎭⎣⎦=1185202024⎡⎤+⨯-+⎢⎥⎣⎦=2020 =4+2020=2024故答案为:2024【点睛】 考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.19.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6. 考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.20.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0 解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4, ∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.21.3;【解析】【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE ⊥AB 于E ,解析:3;【解析】【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.22.(2,).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为解析:(232019).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×12=2,点C到AB2221-3,∴C(23,把等边△ABC先沿y轴翻折,得C’(-2,再向下平移1个单位得C’’( -2故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,+1﹣﹣2019,所以,点C的对应点C'的坐标是(22019).故答案为:(22019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.23.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有(a+2)2-a2=24,(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.24.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.25.【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C=180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点解析:【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C =180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点C都与点B重合,∴∠ABE=∠A,∠CBG=∠C,∵∠A+∠C=180°﹣∠ABC,∵∠ABC=∠ABE+∠CBG+∠EBG,∴∠ABC=∠A+∠C+36°=180°﹣∠ABC+36°,∴∠ABC=108°,故答案为:108.【点睛】本题主要考查三角形的内角和定理与图形折叠的性质,根据角的和差关系,列出关于∠ABC的方程,是解题的关键.三、解答题26.(1)m=3;(2)m<-12;(3)m≥3【解析】试题分析:(1)根据待定系数法,只需把原点代入即可求解;(2)直线y=kx+b 中,y 随x 的增大而减小说明k <0;(3)根据图象不经过第四象限,说明图象经过第一、三象限或第一、二、三象限要分情况讨论.(1)把(0,0)代入,得m-3=0,m=3;(2)根据y 随x 的增大而减小说明k <0,即2m+1<0,m <-; (3)若图象经过第一、三象限,得m=3.若图象经过第一、二、三象限,则2m+1>0,m-3>0,解得m >3,综上所述:m≥3.考点:本题考查的是待定系数法求一次函数解析式,一次函数的性质点评:能够熟练运用待定系数法确定待定系数的值,还要熟悉在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.能够根据k ,b 的符号正确判断直线所经过的象限.27.(1)2500,100;(2)100500y x =+;(3)见解析【解析】【分析】(1)看图得到小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分,从而求出小明的步行速度;(2)用待定系数法求函数解析式;(3)由题意分析,爸爸在点(5,1000)处返回家中,再至爸爸到达学校共用时15分,行驶2500+1000=3500米,所以可以求出此时爸爸的速度为3500700153=米/分,然后求出爸爸返回家中时间为70030100037÷=分,所以爸爸于开始出发后的3065577+=分到达家中,从而画出爸爸离家的距离()ym 与所用时间()min x 的关系的图像.【详解】 解:(1)有图可知:小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分∴小明的步行速度为25001000100205-=-米/分 故答案为:2500;100 (2)设AB 的表达式为y kx b =+,将A 、B 分别代入AB 的表达式得到51000202500k b k b +=⎧⎨+=⎩,解得100500k b =⎧⎨=⎩. ∴表达式100500y x =+.(3)由题意,爸爸在点(5,1000)处返回家中,∵最后两人同时达到学校所以爸爸从开始返回家中至到达学校共用时15分,行驶2500+1000=3500米,所以此时爸爸的速度为3500700153=米/分,爸爸返回家中时间为70030100037÷=分, 所以爸爸于开始出发后的3065577+=分到达家中 即函数图像过点(657,0)(20,2500) 如图:【点睛】本题考查一次函数的实际应用,理清图中每个关键点的实际含义,利用数形结合思想解题是本题的解题关键.28.24m 2.【解析】【分析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形, 根据△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.29.(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【解析】【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.30.(1)36y x =-;(2)6.【解析】【分析】(1)将P 点和Q 点分别代入,直接利用待定系数法即可求得一次函数解析式;(2)先分别求得A 、B 的坐标,由坐标即可求得AO 和BO 的长度,继而求得ABO ∆的面积.【详解】解:(1)分别将()3,3P ,()1,3Q -代入y kx b =+得333k b k b =+⎧⎨-=+⎩,解得33k b =⎧⎨=-⎩, ∴一次函数的表达式为:36y x =-;(2)当y=0时,036x =-,解得2x =,故(2,0)A ,OA=2,当x=0时,066y =-=-,故(0,6)B -,OB=6,∴ABO ∆的面积为:1126 6.22OA OB ⋅=⨯⨯= 【点睛】本题考查待定系数法求一次函数解析式,熟知待定系数法求一次函数解析式一般步骤是解决此题的关键.31.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG 是AC 的垂直平分线,∴FA =FC ,∴∠FAC =∠ACB =50︒,∴∠DAF =∠BAC ﹣(∠DAB +∠FAC )=20︒;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)
《初二上学期期末试卷》(期末试卷)2(苏科版初二上)doc 初中数学八年级数学试题题号一二三四五总分1-1011-20 21-25 26 27 28 29 30 31 得分第一部分〔选择题,共 30 分〕本卷须知:答卷前将密封线内的项目填写清晰一、选择题:〔本大题共10小题,每题3分,共30分.在每题给出的4个选项中,只有1项是符合题目要求的,请正确答案的序号填写在下面的括号内〕.1.以下函数中,一次函数是A.x2y B.y=5x 2 C.y=1+5x D.y=x 2+x(x-1)2.假设x<-3,那么A .-2x>6B .2x>-6C .-2x<6D .2x<63.在坐标平面内有一点P(a ,b),且a 与b 的乘积为零,那么P 的位置一定在 A.原点 B.x 轴上 C.y 轴上 D.坐标轴上4.四边形ABCD 的对角线相交于O ,且OA=OB=OC=OD ,那么那个四边形 A.仅是轴对称图形 B.仅是中心对称图形C.即是轴对称图形又是中心对称图形 D.即不是轴对称图形,又不是中心对称图形 5.8的平方根是 A.22B.-22C.±22D.不存在6.在学校对学生进行的体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0,0.1,0.1,那么在这10天中该学生的体温波动数据中不正确的选项......是.A.平均数为0.12 B.众数为0.1 C.中位数为0.1 D.平均数为0.027.五根小木棒,其长度分不为7、15、20、24、25,现想把它们摆成两个直角三角形,以下图中题号 1 2 3 4 5 6 7 8 9 10答案2024正确的选项是8a =,那么以下结论正确的选项是A.4.5 5.0a << B.5.0 5.5a <<C.5.5 6.0a << D.6.0 6.5a <<9.如图,点阵中以相邻4个点为顶点的小正方形的面积为1, 那么△ABC 的面积为 A .3 B .3.5 C .4 D .4.510.一列火车从盐城站动身,加速行驶一段时刻后开始匀速行驶,过了一段时刻,火车到达下一个车站.乘客上、下车后,火车又加速,一段时刻后再次开始匀速行驶.下面哪幅图能够近似地刻画出火车在这段时刻内的速度变化情形.第二部分〔非选择题,共 120 分〕本卷须知:第二部分试题答案用钢笔或圆珠笔直截了当写在试卷上。
苏科版江苏省苏州市八年级(上)期末数学试卷
苏科版江苏省苏州市八年级(上)期末数学试卷 一、选择题 1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 2.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( )A .10B .8或10C .8D .以上都不对 3.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( ) A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形 4.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4 B .3,4,5 C .3,4,6 D .3,4,85.估计11的值应在( ) A .2和3之间 B .3和4之间 C .4和5之间 D .5和6之间 6.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 7.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1) 8.下列等式从左到右的变形,属于因式分解的是( ) A .()a x y ax ay -=-B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++ 9.若+1x 有意义,则x 的取值范围是( ).A .x >﹣1B .x ≥0C .x ≥﹣1D .任意实数10.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:50 11.4 的算术平方根是( )A .16B .2C .-2D .2± 12.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 13.若3n +3n +3n =19,则n =( ) A .﹣3B .﹣2C .﹣1D .0 14.到ABC ∆的三顶点距离相等的点是ABC ∆的是( ) A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点 15.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +12二、填空题16.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.17.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 18.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 19.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.20.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________.21.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.22.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.23.化简 2(0,0)3b a b a>≥结果是_______ . 24.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.25.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题26.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE .(1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.27.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t值为_______.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.28.分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边BC上找一点P,使P到AB和AC的距离相等;=.(2)在射线AP上找一点Q,使QA QC29.求下列各式中的x:x-=;(1)()2116x+=.(2)32130.如图,已知直线l1:y1=x+b经过点A(﹣5,0),交y轴于点B,直线l2:y2=﹣2x﹣4与直线l1:y1=x+b交于点C,交y轴于点D.(1)求b的值;(2)求△BCD的面积;(3)当0≤y2<y1时,则x的取值范围是.(直接写出结果)31.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y (km)与出发时间t(h)之间的函数关系如图1中线段AB所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.(1)小明骑自行车的速度为km/h、妈妈骑电动车的速度为km/h;(2)解释图中点E的实际意义,并求出点E的坐标;(3)求当t为多少时,两车之间的距离为18km.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.A解析:A【解析】【分析】先根据非负数的性质求出a 和b 的值,然后分两种情况求解即可.【详解】∵2|2|(4)0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4,当a 为腰时,2+2=4,不合题意,舍去;当b 为腰时,2+4>4,符合题意,∴周长=4+4+2=10.故选A.【点睛】此题主要考查了等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 3.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.4.B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.5.B解析:B【解析】【分析】直接利用32=9,42=16的取值范围.【详解】∵32=9,42=16,在3和4之间.故选:B .【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.6.A解析:A【解析】【分析】23a b a a b a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A .本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.7.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.8.B解析:B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.9.C解析:C【解析】【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x +1≥0,解得:x ≥﹣1,故选:C .【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.10.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h ,从而可得走后一半路程的速度为60km/h ,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h ,因为匀速行驶了一半的路程后将速度提高了20km/h ,所以以后的速度为20+40=60km/h ,时间为4060×60=40分钟, 故该车到达乙地的时间是当天上午10:40,故选B .【点睛】 本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.11.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42=,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.12.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+,此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.13.A解析:A【解析】【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【详解】 解:13339n n n ++=, 1233n +-∴=,则12n +=-,解得:3n =-.故选:A .【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.14.D解析:D【解析】【分析】根据垂直平分线的性质进行判断即可;【详解】∵到△ABC 的三个顶点的距离相等,∴这个点在这个三角形三条边的垂直平分线上,即这点是三条垂直平分线的交点.故答案选D .【点睛】本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.15.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=12x﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.二、填空题16.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般地形如y kx(k是常数,k≠0)的函数叫做正比例函数.17..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x 2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.18.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB ,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB 根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912 x所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键. 20.【解析】【分析】根据一次函数的性质,即可求出k的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,∴10k ->,∴1k >;故答案为:1k >.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.21.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100︒ ∴这个等腰三角形的底角为12(180°-100°)=40° 故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键. 22.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.23.【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=故答案为:3a. 【点睛】 本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.24.3【解析】【分析】由△ABC 为等边三角形,D 为AC 边上的中点可得∠DBE=30°,由DE=DB 得∠E =30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.25..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.解:∵DE 垂直平分AB 交BC 于点E ,∴EA =EB ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴△ACE 为等腰直角三角形,∴CA =CE =1,∴三角形ACE 的面积=12×1×1=12. 故答案为:12. 【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 三、解答题26.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =,BE BD ∴=,BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=,8BC ∴=BD 为ABC ∆中线,11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+,111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】 此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.27.(1)50;80;3(2)()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩(3)货车出发3小时或5小时后两车相距90千米【解析】【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【详解】解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩; (3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.28.(1)见解析;(2)见解析.【解析】【分析】(1)根据角平分线的性质可知,角平分线上的点到角两边的距离相等,故做角A 的角平分线交BC 于点P ,P 点即为所求.(2)根据垂直平分线的性质,垂直平分线上的点到线段两端点的距离相等,故作出线段AC 的垂直平分线,交射线AP 与点Q ,Q 点即为所求.【详解】1.以点A 为圆心,以任意长为半径画弧,两弧交角BAC 两边于点M ,N.2.分别以点M ,N 为圆心,以大于12MN 的长度为半径画弧,两弧交于点D. 3.作射线AD ,交BC 与点P ,如图所示,点P 即为所求.(2)作法:1.以线段的AC 两个端点为圆心,以大于AC 一半长度为半径分别在线段两边画相交弧; 2得出相交弧的两个交点F 、E ;3用直尺连接这两个交点,所画得的直线与射线AP 交与点Q ,如图所示,点Q 即为所求.【点睛】本题考查了角平分线的性质和垂直平分线的性质,根据角平分线和垂直平分线的作法即可解决问题,能够熟练掌握二者的作法是解决本题的关键.29.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.30.(1)b=5;(2)272;(3)﹣3<x≤﹣2【解析】【分析】(1)把点A的坐标代入直线l1:y1=x+b,列出方程并解答;(2)利用两直线相交求得点C的坐标,由直线l2、l1求得点B、D的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A(﹣5,0)代入y1=x+b,得﹣5+b=0解得b=5;(2)由(1)知,直线l1:y1=x+5,且B(0,5).根题意知,524 y xy x=+⎧⎨=--⎩.解得32xy=-⎧⎨=⎩,即C(﹣3,2).又由y2=﹣2x﹣4知,D(0,﹣4).所以BD=9.所以S△BCD=12BD•|x C|=1932⨯⨯=272;(3)由(2)知,C(﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.31.(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或3 2【解析】【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205,点E的纵坐标为:95×16=1445∴点E(95,1445);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=12或t=32,答:当t为12或32时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.。
苏州市苏科版八年级数学上 期末测试题(Word版 含答案)
A.(3,4)B.(-3,4)C.(-3,-4)D.(-4,3)
9.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A.作∠APB的平分线PC交AB于点C
B.过点P作PC⊥AB于点C且AC=BC
5.如图,已知△ABC的三条边和三个角,则甲、乙、丙三个丙C.乙和丙D.只有乙
6.在平面直角坐标系中,把直线 沿 轴向上平移2个单位后,所得直线的函数表达式为()
A. B. C. D.
7.下列说法正确的是( )
A.(﹣3)2的平方根是3B. =±4
C.1的平方根是1D.4的算术平方根是2
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
22.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:
C.取AB中点C,连接PC
D.过点P作PC⊥AB,垂足为C
10.点P(-2,3)关于x轴的对称点的坐标为()
A.(2,3)B.(-2,-3)C.(2,-3)D.(-3,2)
二、填空题
11.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC=__.
解:过点 作 交 于
所以 (两直线平行,同位角相等)
苏科版江苏省苏州市八年级上数学期末试卷
苏科版江苏省苏州市八年级上数学期末试卷 一、选择题 1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.下列实数中,无理数是( )A .227B .3πC .4-D .3273.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,61 4.某种鲸的体重约为,关于这个近似数,下列说法正确的是( )A .精确到百分位B .精确到0.01C .精确到千分位D .精确到千位 5.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)6.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .7.在2、0.3•、227-、38中,无理数的个数有( ) A .1个B .2个C .3个D .4个 8.如图,已知△ABC 的三条边和三个角,则甲、乙、丙三个三角形中和△ABC 全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙9.估计(130246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间 10.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 11.点P (3,﹣4)关于y 轴的对称点P′的坐标是( ) A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3) 12.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3) 13.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°14.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .212- D .2+1215.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定二、填空题16.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.17.1﹣π的相反数是_____.18.若点(1,35)P m m +-在x 轴上,则m 的值为________.19.如图,直线l 1:y =﹣12x +m 与x 轴交于点A ,直线l 2:y =2x +n 与y 轴交于点B ,与直线l 1交于点P (2,2),则△PAB 的面积为_____.20. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.21.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.22.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.23.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.24.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.25.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-.(1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.如图,在ABC ∆中,AB AC =,ABC ∆的高BH ,CM 交于点P .(1)求证:PB PC =.(2)若5PB =,3PH =,求AB .28.如图1,在直角坐标系xoy 中,点A 、B 分别在x 、y 轴的正半轴上,将线段AB 绕点B 顺时针旋转90°,点A 的对应点为点C .(1)若A (6,0),B (0,4),求点C 的坐标;(2)以B 为直角顶点,以AB 和OB 为直角边分别在第一、二象限作等腰Rt △ABD 和等腰Rt △OBE ,连DE 交y 轴于点M ,当点A 和点B 分别在x 、y 轴的正半轴上运动时,判断并证明AO 与MB 的数量关系.29.(1)计算:32216-(3)(3)8+--(2)化简:22x 9x 31-69x 4x x -+÷-++ 30.已知一次函数y=kx+b 的图象经过点A (—1,—5),且与正比例函数的图象相交于点B(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.31.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:()1在前2小时的挖掘中,甲队的挖掘速度为米/小时,乙队的挖掘速度为米/小时. ()2①当26x<<时,求出y乙与x之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差5米?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.3.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+222,故A选项能构成直角三角形;B、∵32+42=52,故B选项能构成直角三角形;C、∵32+62≠92,故C选项不能构成直角三角形;D、∵72+()22,故D选项能构成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg=136000kg的最后一位的6表示6千,即精确到千位.故选D.【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.5.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.6.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.7.A解析:A【解析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【详解】解:在实数2、•0.3、227-中,2是无理数; •0.3循环小数,是有理数;227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个.故选:A .【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.8.B解析:B【解析】【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.9.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,-<3,所以2<2所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.10.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.11.A解析:A【解析】试题解析:∵点P(3,-4)关于y轴对称点P′,∴P′的坐标是:(-3,-4).故选A.12.C解析:C【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(−x,y).【详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【点睛】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.13.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.14.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a=1,b﹣1,∵2<4<3∴c=2,d=4﹣2=2.∴b+d=1,ac=2.ac2故选:A.【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键. 15.B解析:B【解析】【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长=AB+BD+AD=16,∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.二、填空题16.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,2故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.17.π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是.故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是()11ππ=﹣﹣﹣. 故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.18.【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点在x 轴上,∴3m −5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】 本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.19.【解析】【分析】把点P (2,2)分别代入y =﹣x+m 和y =2x+n ,求得m =3,n =﹣2,解方程得到A (6,0),B (0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P (2,解析:【解析】【分析】把点P (2,2)分别代入y =﹣12x+m 和y =2x+n ,求得m =3,n =﹣2,解方程得到A (6,0),B (0,﹣2),根据三角形的面积公式即可得到结论.【详解】 解:把点P (2,2)分别代入y =﹣12x+m 和y =2x+n , 得,m =3,n =﹣2,∴直线l 1:y =﹣12x+3,直线l 2:y =2x ﹣2, 对于y =﹣12x+3,令y =0,得,x =6, 对于y =2x ﹣2,令x =0,得,y =﹣2,∴A (6,0),B (0,﹣2),∵直线l 1:y =﹣12x+3与y 轴的交点为(0,3), ∴△PAB 的面积=12×5×6﹣12×5×2=10, 故答案为:10.【点睛】本题考查了两直线相交与平行问题,三角形的面积的计算,正确的识别图形是解题的关键.20.30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC ,AD ⊥BC ,∴∠BAD=12∠BAC=30°, 故答案为30°.21.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.22.−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y 、y 的值都大于0的x 的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y 1>0,当x<2时,y 2>0,∴使y 1、y 2的值都大于0的x 的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于023.【解析】【分析】作AD ⊥OB 于D ,则∠ADB =90°,OD =1,AD =3,OB =3,得出BD =2,由勾股定理求出AB 即可;由题意得出AC+BC 最小,作A 关于y 轴的对称点,连接交y 轴于点C ,点C解析:5+【解析】【分析】作AD ⊥OB 于D ,则∠ADB =90°,OD =1,AD =3,OB =3,得出BD =2,由勾股定理求出AB 即可;由题意得出AC +BC 最小,作A 关于y 轴的对称点A ',连接A B '交y 轴于点C ,点C 即为使AC +BC 最小的点,作A E x '⊥轴于E ,由勾股定理求出A B ',即可得出结果.【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB222+3=13要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,点C即为使AC+BC最小的点,'⊥轴于E,作A E x由对称的性质得:AC=A C',则AC+BC=A B',A E'=3,OE=1,∴BE=4,由勾股定理得:A B'22345+=,∴△ABC13+5.13+5.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.24.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40︒【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.25.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题26.(1) 32m =,AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】 (1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯, ∴OQ =2,∴点Q 坐标为(0,2).【点睛】 考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.27.(1)证明见解析;(2)10【解析】【分析】(1)利用AAS 定理证明MBC HCB ∆∆≌,从而求得PBC PCB ∠=∠,使问题得解;(2)利用勾股定理求HC 的长度,然后在ABH ∆中,设设AB AC x ==,则()4AH x =-,利用勾股定理列方程求解.【详解】证明:(1)∵AB AC =∴A ABC CB =∠∠∵BH 、CM 为ABC ∆的高∴90BMC CHB ∠=∠=︒又∵BC CB =(公共边)∴MBC HCB ∆∆≌(AAS )∴PBC PCB ∠=∠,∴PB PC =(2)∵5PC PB ==,3PH =,∴在Rt △PCH 中,4HC =,8BH =设AB AC x ==,则()4AH x =-,ABH ∆中由勾股定理可得方程:222AB AH BH =+,即()22248x x =-+解方程得:10x =∴10AB =【点睛】本题考查全等三角形的判定及勾股定理的应用,数形结合思想解题,正确列出方程是本题的解题关键.28.(1)C (-4,-2);(2)AO = 2MB .证明见解析.【解析】【分析】(1)过C 点作y 轴的垂线段,垂足为H 点,证明△ABO ≌△BCH ,利用全等三角形的性质结合C 在第三象限即可求得C 点坐标;(2)过D 点作DN ⊥y 轴于点N ,证明△DBN ≌△BAO ,根据全等三角形对应边相等BN =AO ,DN =BO ,再证明△DMN ≌△EMB ,可得MN =MB ,于是可得AO =2MB.【详解】(1)解:过C 点作y 轴的垂线段,垂足为H 点.∴∠BHC=∠AOB=90°,∵A(6,0),B(0,4)∴OA=6,OB=4∵∠ABC=90°,∴∠ABO+∠OBC=90°,又∠ABO+∠OAB=90°,∴∠OBC=∠OAB,∵在△ABO和△BCH中BHC AOBOBC OABAB BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO≌△BCH,∴AO=BH=6,CH=BO=4,∴OH=2,∴C(-4,-2).(2)AO= 2MB.过D点作DN⊥y轴于点N,∴∠BND=∠AOB=90°,∵△ABD、△OBE为等腰直角三角形,∴∠ABD=∠OBE=90°,AB=BD,BO=BE,∴∠DBN+∠ABO=∠BAO+∠ABO=90°,∴∠DBN=∠BAO,∴△DBN≌△BAO,∴BN=AO,DN=BO,在△DMN和△EMB中,∵DN=BO=BE,∠DNM=∠EBM,∠DMN=∠EMB,∴△DMN≌△EMB,∴MN=MB=12BN=12AO∴AO=2MB.【点睛】本题考查坐标与图形,旋转的性质,全等三角形的性质与判定,等腰直角三角形的性质.能正确作出辅助线,并根据全等三角形的判定定理证明三角形全等是解决此题的关键.29.(1) 2; (2)73 x--【解析】【分析】(1)首先计算平方根和立方根,然后进行加减运算即可;(2)根据分式的除法和减法进行计算.【详解】解:(1)原式=4332-+-=2;(2)原式=()()()2334 133x x xxx+-+ -⨯+-=4 13xx+ --=343x xx----=73 x--【点睛】本题考查分式的混合运算和二次根式的混合运算,解题的关键是明确它们各自的计算方法.30.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a)代入正比例函数解析式求出a的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵ 正比例函数y=12x 的图象过点(2,a ) ∴ a=1 (2)∵一次函数y=kx+b 的图象经过两点(-1,-5)(2,1)∴521k b k b -+=-⎧⎨+=⎩解得23k b =⎧⎨=-⎩∴y=2x -3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象31.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.【解析】【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.【详解】()1甲队:60610÷=米/小时,乙队: 30215÷=米/小时:故答案为:10,15;()2①当26x <<时,设z y kx b =+,则230650k b k b +=⎧⎨+=⎩, 解得520k b =⎧⎨=⎩,∴当26x <<时,520z y x =+;②易求得:当02x ≤≤时,15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,由()10520x x =+解得4x =,1° 当02x ≤≤, 15105x x -=,解得:1x =,2°当24x <≤,()520105x x +-=解得:3x =,3°当46x <≤,()105205x x -+=,解得: 5x =答:挖掘1小时或3小时或5小时后,两工程队相距5米.【点睛】本题考查了一次函数的应用, 主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.。
苏科版苏州市苏科版八年级数学上 期末测试题(Word版 含答案)
苏科版苏州市苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4B .3,4,5C .3,4,6D .3,4,82.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .54.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒5.下列实数中,无理数是( ) A .0B .﹣4C .5D .176.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132--B .132-+C .132-D .13-7.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( )A .1个B .2个C .3个D .4个8.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4)C .(4,﹣1)D .(﹣1,4)9.下列运算正确的是( )A .236a a a ⋅=B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=-10.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( ) A .B .C .D .11.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( ) A .()3,2B .()2,3-C .()3,2-D .()3,2--12.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1513.对于函数y =2x ﹣1,下列说法正确的是( ) A .它的图象过点(1,0) B .y 值随着x 值增大而减小 C .它的图象经过第二象限D .当x >1时,y >014.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°15.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题16.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .17.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.18.在实数22,4π,227-,3.14,16中,无理数有______个.19.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.20.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”) 21.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .22.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x 、y 的二元一次方程组2x y a x y b-=⎧⎨+=⎩的解是________.23.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________ 24.若点(3,)P m -与(,6)Q n 关于x 轴对称,则m n +=__________.25.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.三、解答题26.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C - (1)作出三角形ABC 关于y 轴对称的三角形111A B C (2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .27.一次函数(0)y kx b k =+≠的图象经过点(3,1)A 和点(0,2)B -. (1)求一次函数的表达式;(2)若此一次函数的图像与x 轴交于点C ,求BOC ∆的面积.28.如图,四边形ABCD 中,AC=5,AB=4,CD=12,AD=13,∠B=90°. (1)求BC 边的长; (2)求四边形ABCD 的面积.29.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .30.如图,己知,A (0, 4),B (t ,0)分别在y 轴,x 轴上,连接AB ,以AB 为直角边分别作等腰Rt △ABD 和等腰Rt △ABC .直线BC 交y 轴于点E. 点G (-2,3)、H (-2,1)在第二象限内.(1)当t =-3时,求点D 的坐标.(2)若点G 、H 位于直线AB 的异侧,确定t 的取值范围. (3)①当t 取何值时,△ABE 与△ACE 的面积相等.②在①的条件下,在x 轴上是否存在点P ,使△PCB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.31.已知△ABC 中,AB =17,AC =10,BC 边上得高AD=8,则边BC 的长为________【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可. 【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误; B 、∵2223+4=5,∴三条线段能组成直角三角形,正确; C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D、∵222,∴∴三条线段不能组成直角三角形,错误;3+48故选:B.【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.2.B解析:B【解析】【分析】根据关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P(2,-3)关于x轴对称,∴对称点与点P横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,3.C解析:C【解析】试题分析:A1,故错误;B<﹣1,故错误;C.﹣1<2,故正确;2,故错误;故选C.【考点】估算无理数的大小.4.A解析:A【解析】【分析】由AB=AC,利用等边对等角得到一对角相等,再由BF=CD,BD=CE,利用SAS得到三角形FBD与三角形DEC全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF与∠A之间的等量关系,进而求解.【详解】解:∵AB=AC,∴∠B=∠C,在△BFD和△EDC中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ), ∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A . 【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.5.C解析:C 【解析】 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可. 【详解】解:0,﹣4是整数,属于有理数;17故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A 【解析】 【分析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案. 【详解】 解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形, ∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC =-=+=,∴13AP AB ==, ∴132PC =+,∵点P 在点C 的左边,点C 表示的数为0, ∴点P 表示的数为:(132)132-+=--; 故选择:A. 【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.7.D解析:D 【解析】分析:直接利用轴对称图形的性质画出对称轴得出答案. 详解:如图所示:直线l 即为各图形的对称轴.,故选:D .点睛:此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.8.A解析:A 【解析】 【分析】根据一次函数与二元一次方程组的关系进行解答即可. 【详解】解:∵二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.9.C解析:C【解析】【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【详解】A. a2 a3=a5,故A错误;B. (−a2)3=−a6,故B错误;C. a10÷a9=a(a≠0),故C正确;D. (−bc)4÷(−bc)2=b2c2,故D错误;故答案选C.【点睛】本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.10.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m、n的符合,从而得到mn的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A、由一次函数图象得m>0,n>0,所以mn>0,则正比例函数图象过第一、三象限,所以A选项错误;B、由一次函数图象得m>0,n<0,所以mn<0,则正比例函数图象过第二、四象限,所以B选项错误;C、由一次函数图象得m<0,n>0,所以mn<0,则正比例函数图象过第二、四象限,所以C选项正确;D、由一次函数图象得m<0,n>0,所以mn<0,则正比例函数图象过第二、四象限,所以D选项错误.故选:C.【点睛】本题考查了正比例函数图象:正比例函数y=kx经过原点,当k>0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.11.D解析:D 【解析】 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--. 故选:D . 【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.12.A解析:A 【解析】 【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可. 【详解】∵DE 是AC 的垂直平分线, ∴AE=CE ,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC ∵ABC 的周长为24,ABE 的周长为14 ∴AB+BC=14 ∴AC=24-14=10 故选:A 【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.13.D解析:D 【解析】画函数的图象,选项A, 点(1,0)代入函数,01=,错误. 由图可知,B ,C 错误,D,正确. 选D.14.B解析:B【解析】【分析】由平行线的性质可得∠BAD =122°,由折叠的性质可得∠BAD =∠BAD '=122°,即可求解.【详解】∵AD ∥BC ,∴∠ABC +∠BAD =180°,且∠ABC =58°,∴∠BAD =122°,∵将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',∴∠BAD =∠BAD '=122°,∴∠1=122°-58°=64°,故选:B .【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.15.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题16.70°或40°【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 17.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.18.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义2,4π属于无理数,所以无理数有2个. 故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键. 19.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4),=+得m=4,把(0,4)代入y x m故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11解析:y轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键. 21.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a 2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有(a+2)2-a 2=24,(a+2)2-a 2=(a+2+a )(a+2-a )=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.22.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),所以解析:21x y =⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1), 所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩ . 故答案为21x y =⎧⎨=⎩. 【点睛】 本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.23.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.24.-9【解析】【分析】先根据关于轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点与关于轴对称,∴m=-6,n=-3,∴m+n=-6-3=-解析:-9【解析】【分析】先根据关于x 轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点(3,)P m 与(,6)Q n 关于x 轴对称,∴m=-6,n=-3,∴m+n=-6-3=-9.故答案为:-9.【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.25.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴331k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x =0时,y =52, ∴点C 的坐标为(0,52), 故答案为:(0,52). 【点睛】 此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式.三、解答题26.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析②20.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.27.(1)2y x =-;(2)2.【解析】【分析】(1)根据待定系数法将A 、B 两点的坐标代入求出k 、b 的值即可解决;(2)根据求出C 点坐标,由B 、C 两点的坐标即可求出△BOC 的面积.【详解】解:(1)将(3,1)A 和点(0,2)B -代入(0)y kx b k =+≠,得:312k b b +=⎧⎨=-⎩解得:21b k =-⎧⎨=⎩故一次函数解析式为:2y x =-.(2)令y=0得:0=x-2,x=2,所以C 点坐标为(2,0),OC=2所以三角形OBC 的面积=22222OC OB ⋅⨯== 【点睛】本题考查了待定系数法求函数解析式,利用点的坐标求三角形面积,解决本题的关键是熟练掌握待定系数法.28.(1)3;(2)36.【解析】【分析】(1)先根据勾股定理求出BC 的长度;(2)根据勾股定理的逆定理判断出△ACD 是直角三角形,四边形ABCD 的面积等于△ABC 和△ACD 的面积和,再利用三角形的面积公式求解即可.【详解】解:(1)∵∠ABC=90°,AC=5,AB=4∴3=,(2)在△ACD 中,AC 2+CD 2= 52+122=169AD 2 =132=169,∴AC 2+CD 2= AD 2,∴△ACD 是直角三角形,∴∠ACD=90°;由图形可知:S 四边形ABCD =S △ABC +S △ACD = 12AB•BC+ 12AC•CD , =12×3×4+ 12×5×12, =36.【点睛】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.29.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定.30.(1)D (-7,3);(2)88-3t -<<;(3)①-2;②存在,P(6,0),P(12,0),P(-,0),,0)【解析】【分析】(1)当t=-3时,过点D 作DM ⊥x 轴于点M ,证明△ABO ≌△BDM ,得出DM=BO 和MB=OA ,从而得出点D 坐标.(2)设出AB 解析式y=kx+4,分别求出点G ,H 在线段AB 上的时点B 的坐标; (3)①假设△ABE 与△ACE 的面积相等,利用等底同高求出t 值;②根据等腰三角形的性质,分BP=BC 、CP=CB 、PC=PB 三种情况讨论.【详解】(1)当t=-3时,过点D 作DM ⊥x 轴于点M,∵△ABD 为等腰直角三角形,AB=BD ,∠ABD=90°∴∠ABO+∠DBM=180°-90°=90°又∵DM ⊥x 轴于点M∴∠DMB=90°∴∠DBM+∠MDB=90°∴∠MDB=∠ABO在△ABO 和△BDM 中 ABO BDM AB BDDMB BOA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABO ≌△BDM∴DM=BO=3,MB=OA=4∴MO=MB+BO=4+3=7∴D (-7,3)(2)∵A (0,4),B (t,0),设直线AB 的解析式为y=kx+4当点G (-2,3)在直线AB 上时 3=-2k+4,12k = 此时AB 的解析式142y x =+ 当y=0时,1042x =+,x=-8 此时B (-8,0) 当点H (-2,1)在直线AB 上时 1=-2k+4,32k 此时AB 的解析式243y x =+ 当y=0时,3042x =+,x=83- 此时B (83-,0)∵点G, H 位于直线AB 的异侧,∴由图像可知直线AB 与线段MN 相交,且点M ,N 不在直线AB 上∴88-3t -<< (3)①t=-2时,△ABE 与△ACE 的面积相等.如图,过点B 做x 轴垂线,构造直角三角形ARB 和直角三角形BQC ,∵∠RAB+∠ABR=90°,∠ABR+∠BCQ=90°∴∠ABR=∠BCQ ,在△ARB 和△BQC 中,=R Q ABR BCQ AB BC ∠=∠⎧⎪∠∠⎨⎪=⎩,∴△ARB≌△BQC(AAS)∴AR=BQ,BR=QC=4,若△ABE与△ACE的面积相等,则BE=EC,∴BO=CN=2,∴B(-2,0)②P(6,0),P(12,0),5,0),5,0)由②可得C(2,-2)当BP=BC时,224225∴BP=25∴5,0)或5,0)当CP=CB时,BP=8,∴P(6,0)当PC=PB时,如图,过E作BC的垂线,交x轴于点P,过C作x轴垂线于点S,设BP=m=PC,则PS=4-m,在△PSC中,PS2+SC2=PC2,即22+(4- m)2= m 2,解得m=52,∴OP=52-2=12,∴P(12,0).综上:P(6,0),P(12,0),5,0),5,0).【点睛】本题是一道综合性较强的题,难点在于等腰三角形的存在性问题,同时根据图像数形结合来得出t的取值范围.31.21或9【解析】【分析】由题意得出∠ADB=∠ADC=90°,由勾股定理求出BD、CD,分两种情况,容易得出BC的长.【详解】分两种情况:①如图1所示:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,22222222=-=-==-=-=17815,1086BD AB AD CD AC AD∴BC=BD+CD=15+6=21;②如图2所示:同①得:BD=15,CD=6,∴BC=BD-CD=15-6=9;综上所述:BC的长为21或9.【点睛】本题考查了勾股定理、分类讨论思想;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.。
苏科版江苏省苏州市八年级上第一学期期末数学试卷
苏科版江苏省苏州市八年级上第一学期期末数学试卷一、选择题1.下列各组数中互为相反数的是( ) A .2-与2B .2-与38-C .2-与12-D .2-与()22-2.4的平方根是( ) A .2 B .2±C .2D .2±3.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠B .5x =C .5x >D .5x <4.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒5.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)6.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .7.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =,5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( ) A .0条 B .1条 C .2条 D .3条 8.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .9.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限B .第二象限C .第三象限D .第四象限 10. 4的平方根是( ) A .2B .±2C .16D .±1611.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA12.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .313.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 14.在下列黑体大写英文字母中,不是轴对称图形的是( )A .B .C .D .15.下列分式中,x 取任意实数总有意义的是( )A .21x x+B .221(2)x x -+ C .211xx -+ D .2x x + 二、填空题16.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”). 17.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 18.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.19.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.20.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.21.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.22.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.23.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)24.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.25.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.三、解答题26.(13168-;(2)求x 的值:2(2)90x .27.(1)04(51) (2)解方程:23(1)120x --=28.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用四种方法分别在如图方格内再填涂2个小正方形,使这7个小正方形组成的图形是轴对称图29.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题: (1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.30.求下列各式中的x : (1)2x 2=8(2)(x ﹣1)3﹣27=0 31.计算:(1)323395)()4--+- (212436122.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D【解析】 【分析】根据相反数的性质判断即可; 【详解】A 中-2=2,不是互为相反数;B 2=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数; 故选:D . 【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.D解析:D 【解析】 【分析】根据平方根的定义直接作答. 【详解】解:4的平方根是2± 故选:D 【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键.3.A解析:A 【解析】 【分析】根据分式的定义即可求解. 【详解】依题意得50x -≠,解得5x ≠, 故选A. 【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.4.C解析:C 【解析】 【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=, 180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C 【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.5.D解析:D 【解析】 【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标. 【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2). 【点睛】本题考察点的坐标的变换及平移.6.B解析:B 【解析】 【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误; B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确; C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;=过原点,而图中两条直线都不过原点,故错误.D .y kx故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.7.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD⊥BC,根据勾股定理可得:AC2-CD2=AB2-BD2所以设CD=x,则BD=7-x所以52-x2=(32)2-(7-x)2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC中AD=2222AC CD-=-=543所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.8.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,9.C解析:C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像10.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.11.B解析:B 【解析】试题分析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案. 解:A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意; D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合题意. 故选B .考点:全等三角形的判定.12.D解析:D 【解析】 【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度. 【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm ===.由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm , 在Rt △BDE 中,由勾股定理得, DE 2+BE 2=BD 2 即CD 2+42=(8-CD)2, 解得:CD=3cm . 故选:D . 【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE 是直角三角形,并计算(或用CD 表示)它的三边是解决此题的关键.13.B解析:B 【解析】 【分析】延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA ,从而不难求得∠BOC 的度数. 【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.14.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.15.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.A.x=0时,x2=0,A选项不符合题意;B.x=﹣2时,分母为0,B选项不符合题意;C.x取任意实数总有意义,C选项符号题意;D.x=﹣2时,分母为0.D选项不符合题意.故选:C.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.二、填空题16.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.17.【解析】【分析】首先把两边同时乘以,可得,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时, 解析:34【解析】【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】 解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab bab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.18.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函解析:4【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.19.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.20.16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.21.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.22.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.23.或或【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2解析:()2,4或()2,0-或()2,4-【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A ,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C (2,0),C (2,4),C (2,4)-- 故答案为:()2,4或()2,0-或()2,4- 【点睛】本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键 24.12cm .【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 25.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B (﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C的坐标为(0,52),故答案为:(0,52).【点睛】此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式.三、解答题26.(1)6;(2)x=1或x=5-.【解析】【分析】(1)本题涉及算术平方根、立方根2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)移项后,两边直接开平方即可得到x+2=3,x+2=﹣3,求解即可.【详解】(1)原式=4-(-2)=4+2=6;(2)x+2=±3.x+2=3,x+2=-3.x=1或x=-5.【点睛】本题考查了实数运算和直接开平方法解一元二次方程,关键是掌握算术平方根、立方根各知识点.27.(1)3;(2)3x =或1x =-.【解析】【分析】(1)根据实数的运算法则将每一项进行化简然后计算求解即可.(2)根据一元二次方程的解法步骤,将12移到等号右边,然后进行开平方运算求出方程的解即可.【详解】解:(1)计算:04(51)+-原式21=+3=(2)解方程:23(1)120x --=2(1)4x -=12x -=±3x =或1x =-【点睛】本题考查了实数的运算和一元二次方程的解法,解决本题的关键是熟练掌握实数的运算法则,掌握一元二次方程的解法步骤,在选择解法时要注意灵活选择合适的方法.28.详见解析.【解析】【分析】根据轴对称的性质画出图形即可.【详解】解:如图所示:.【点睛】本题考查的利用轴对称设计图案,用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.29.(1)y 1=50x ﹣50,y 2=﹣40x +200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米;(3)①160;②当1≤x ≤259时,s =250﹣90x ;当259<x ≤5时,s =90x ﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P 表达的意义可求m 的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y 1=kx+b ,∴02005k b k b =+⎧⎨=+⎩解得:5050k b =⎧⎨=-⎩∴甲的函数表达式为:y 1=50x ﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y 2=mx+200,∴0=5m+200∴m =﹣40,∴乙的函数表达式为:y 2=﹣40x+200,(2)由题意可得:505040200y x y x =-⎧⎨=-+⎩解得:2598009x y ⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米. (3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m =200﹣40×1=160, 故答案为160;②当1≤x ≤259时,s =200﹣40×1﹣(40+50)(x ﹣1)=250﹣90x ; 当259<x ≤5时,s =90x ﹣250; 图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.30.(1)x =±2;(2)x =4【解析】【分析】(1)先将方程化系数为1,然后两边同时开平方即可求解;(2)先移项,再两边同时开立方即可求解.【详解】解:(1)∵2x 2=8,∴x 2=4,∴x =±2;(2)∵(x ﹣1)3﹣27=0∴(x ﹣1)3=27,∴x ﹣1=3,∴x =4.【点睛】本题考查的知识点是平方根与立方根,熟记平方根与立方根的定义是解此题的关键.31.(1)114;(2)2+3. 【解析】【分析】(1)先开方,再依次计算即可;(2)运用二次根式的乘除法法则计算,再根据二次根式的性质化简,最后合并即可.【详解】解:(1)323395)()4-+-=﹣3﹣(﹣5)+34 =114(2==【点睛】本题主要考查了实数的运算及二次根式的运算,熟练掌握开方运算及二次根式的乘除法法则是解题的关键.。
江苏省苏州市苏科版八年级数学上 期末测试题(Word版 含答案)
江苏省苏州市苏科版八年级数学上期末测试题(Word版含答案)一、选择题1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A,则点A表示的数为()A.12+B.21-C.2D.3 22.若一个数的平方等于4,则这个数等于()A.2±B.2C.16±D.163.计算3329a ba ba b a-(a>0,b>0)的结果是()A.53ab B.23ab C.179ab D.89ab4.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是()A.B.C.D.5.下列根式中是最简二次根式的是()A.23B.3C.9D.126.如图,在△ABC中,分别以点A,B为圆心,大于12AB长为半径画弧,两弧相交于点E,F,连接AE,BE,作直线EF交AB于点M,连接CM,则下列判断不正确...的是A.AM=BM B.AE=BE C.EF⊥AB D.AB=2CM 7.下列图案属于轴对称图形的是()A .B .C .D .8.下列图案中,属于轴对称图形的是( )A .B .C .D .9.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=10.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查二、填空题11.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.12.已知22139273m ⨯⨯=,求m =__________.13.点(−1,3)关于x 轴对称的点的坐标为____.14.已知直角三角形的两边长分别为3、4.则第三边长为________.15.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.16.化简:|32|-=__________.17.若正比例函数y=kx 的图象经过点(2,4),则k=_____.18.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.19.某人一天饮水1679mL ,精确到100mL 是_____.20.如图,将一张三角形纸片折叠,使得点A 、点C 都与点B 重合,折痕分别为DE 、FG ,此时测得∠EBG =36°,则∠ABC =_____°.三、解答题21.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.22.如图,在△ABC 中,AC=BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,当△PCD 的周长最小时,在图中画出点P 的位置,并求点P 的坐标.23.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC 的外心时,只作出两边BC ,AC 的垂直平分线得到交点O ,就认定点O 是△ABC 的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC 的三边上,分别取点D ,E ,F ,使AD =BE =CF ,连接DE ,EF ,DF ,得到△DEF .若点O 为△ABC 的外心,求证:点O 也是△DEF 的外心.24.某商店准备购进,A B 两种商品,A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m(1020m <<)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.25.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示(1)根据图象信息,当t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段AB 所表示的函数表达式(3)甲、乙两人何时相距400米?四、压轴题26.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.27.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.28.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为轴和轴建立平面直角坐标系,点A (0,a ),C (b ,0a 6b 80--=.(1)a = ;b = ;直角三角形AOC 的面积为 .(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发以每秒2个单位长度的速度向点O 匀速移动,Q 点从O 点出发以每秒1个单位长度的速度向点A 匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC =∠D CO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOD ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180).29.如图,已知等腰△ABC 中,AB=AC,∠A<90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与BE 交于点P.当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A=44°时,求∠BPD 的度数;(2)设∠A=x°,∠EPC=y°,求变量y 与x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.30.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】,∴点A .故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.A解析:A【解析】【分析】平方为4,由此可得出答案.【详解】±2.所以这个数是:±2.故选:A .【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.3.A解析:A【解析】【分析】23a b a ab a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a ab a ⨯⨯=故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.4.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.5.B解析:B【解析】【分析】【详解】A 236B3C9,故此选项错误;D12=23故选B.考点:最简二次根式.6.D解析:D【解析】【分析】由作图可知EF是AB的垂直平分线,据此对各项进行分析可得答案.【详解】解:由作图可知EF是AB的垂直平分线,所以AM=BM,AE=BE,EF⊥AB,即选项A,B,C均正确,CM是AB边上的中线,AB=2CM错误.故选:D【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.7.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.8.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项不是轴对称图形,故本选项不符合题意;D选项是轴对称图形,故本选项符合题意;故选D.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.9.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.解:A3=,所以A选项错误;B B选项错误;C3=,所以C选项错误;D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.10.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.【解析】【分析】过点C作直线AB的垂线段CD,利用三角形的面积即可求出CD的长.【详解】连接AC,过点C作CD⊥AB,则CD的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:16 5【解析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长. 【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1), ∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.12.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.13.(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标变化规律.14.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5或7【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:22437-=;②长为3、4的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或5.考点:1.勾股定理;2.分类思想的应用.15.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD 的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴5,CD===∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.16.【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】解:∵,∴原式,故答案为:.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小解析:2【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】<,2=-∴原式2)=-2故答案为:2.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小是解题关键.17.2【解析】解析:2【解析】⇒=4=22k k18.22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【解析:22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.19.7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.故答案为:1.解析:7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.故答案为:1.7×103mL.【点睛】本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.20.【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C=180°﹣∠ABC,列方程即可得到结论.∵把一张三角形纸片折叠,使点A 、点解析:【解析】【分析】根据折叠的性质得到∠ABE =∠A ,∠CBG =∠C ,根据三角形的内角和定理,得到∠A +∠C =180°﹣∠ABC ,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A 、点C 都与点B 重合,∴∠ABE =∠A ,∠CBG =∠C ,∵∠A +∠C =180°﹣∠ABC ,∵∠ABC =∠ABE +∠CBG +∠EBG ,∴∠ABC =∠A +∠C +36°=180°﹣∠ABC +36°,∴∠ABC =108°,故答案为:108.【点睛】本题主要考查三角形的内角和定理与图形折叠的性质,根据角的和差关系,列出关于∠ABC 的方程,是解题的关键.三、解答题21.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.22.图见详解;P (197,127) 【解析】【分析】过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ,DP CP DP EP ED +=+=的值最小,即可得到P 点;通过A 和B 点的坐标,运用待定系数法求出直线AB 的函数表达式,再通过D 和E 点的坐标,运用待定系数法求出直线DE 的函数表达式,联合两个表达式解方程组求出交点坐标即可.【详解】解:如图所示,过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ;∵△PCD 的周长=CD DP CP ++∴DP CP DP EP ED +=+=时,可取最小值,图中P 点即为所求;又∵BD =3,DC =1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4) 设直线AB 的解析式为AB AB AB y k x b =+,代入点A 和B 得:540AB AB k b k b +=⎧⎨+=⎩解得:11AB ABk b =⎧⎨=-⎩ ∴1AB y x =-设直线DE 的解析式为DE DE DE y k x b =+,代入点D 和E 得:404DE DE DE DE k b k b +=⎧⎨+=⎩解得:43163DE DE k b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴416+33DE y x =- ∴联合两个一次函数可得: ∴1416+33y x y x =-⎧⎪⎨=-⎪⎩解得197127x y ⎧=⎪⎪⎨⎪=⎪⎩∴P (197,127) 【点睛】 本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.23.(1)定点O 是△ABC 的外心有道理,理由见解析;(2)见解析【解析】【分析】(1)连接OA 、OB 、OC ,如图①,根据线段垂直平分线的性质得到OB OC =,OC OA=,则OA OB OC==,从而根据三角形的外心的定义判断点O是ABC∆的外心;(2)连接OA、OD、OC、OF,如图②,利用等边三角形的性质得到OA OC=,2120AOC B∠=∠=︒,再计算出30OAD OCF OAD∠=∠=∠=︒,接着证明AOD COF∆≅∆得到OD OC=,同理可得OD OE=,所以OD OE OF==,然后根据三角形外心的定义得到点O是DEF∆的外心.【详解】(1)解:定点O是ABC∆的外心有道理.理由如下:连接OA、OB、OC,如图①,BC,AC的垂直平分线得到交点O,OB OC∴=,OC OA=,OA OB OC∴==,∴点O是ABC∆的外心;(2)证明:连接OA、OD、OC、OF,如图②,点O为等边ABC∆的外心,OA OC∴=,2120AOC B∠=∠=︒,30OAD OCF∴∠=∠=︒,30OAD∴∠=︒,在AOD∆和COF∆中OA OCOAD OCFAD CF=⎧⎪∠=∠⎨⎪=⎩,()AOD COF SAS∴∆≅∆,OD OC ∴=,同理可得OD OE =,OD OE OF ∴==,∴点O 是DEF ∆的外心.【点睛】本题考查了线段垂直平分线性质和全等三角形的判定、等边三角形的性质.掌握线段垂直平分线性质和构造三角形全等是解题关键.24.(1A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)商店共有5种进货方案;(3)①当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,(2)问中所有进货方案获利相同,③当14a =时,获利最大,即买14件A 商品,26件B 商品.【解析】【分析】(1)设A 商品每件进价为x 元,B 商品每件的进价为(x-20)元,根据A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同,列方程求解;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,根据商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,列出不等式组即可(3)先设销售,A B 两种商品共获利y 元,然后分析求解新的进货方案【详解】(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是()20x -元, 由题意得:3000180020x x =-, 解得:50x =,经检验,50x =是原方程的解,且符合题意,502030-=,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,由题意得:()5030401560402a a a a ⎧+-⎪⎨-≥⎪⎩, 解得:40183a ≤≤, ∵a 为正整数,∴a =14、15、16、17、18,∴商店共有5种进货方案;(3)设销售,A B 两种商品共获利y 元,由题意得:()()()8050453040y m a a =--+--()15600m a =-+,①当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,即买14件A 商品,26件B 商品.【点睛】此题考查一元一次不等式组的应用,分式方程的应用,解题关键在于根据题意列出方程25.(1)24,40;(2)y =40t (40≤t≤60);(3)出发20分钟或28分钟后,甲、乙两人何时相距400米【解析】【分析】(1)根据图象信息,当t =24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t =24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A 点的横坐标,用A 点的横坐标乘以甲的速度得出A 点的纵坐标,再将A 、B 两点的坐标代入,利用待定系数法即可求出线段AB 所表示的函数表达式;(3)分相遇前后两种情况列方程解答即可.【详解】解:(1)根据图象信息,当t =24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t =24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A 点的坐标为(40,1600).设线段AB 所表示的函数表达式为y =kt+b ,∵A (40,1600),B (60,2400),∴401600602400k b k b +=⎧⎨+=⎩,解得k 40b 0=⎧⎨=⎩, ∴线段AB 所表示的函数表达式为y =40t (40≤t≤60);(3)设出发t 分钟后两人相距400米,根据题意得(40+60)t =2400﹣400或(40+60)t =2400+400,解得t =20或t =28,答:出发20分钟或28分钟后,甲、乙两人何时相距400米.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.四、压轴题26.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点;(2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD =90°时,∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t)∴t=8,∴点E(8,21);当∠HTD=90°时,由于EH与x轴不平行,故∠HTD不可能为90°;故点E的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.27.(1) (3,-2);(2) (n,m);(3)图见解析,点Q到E、F点的距离之和最小值为10【解析】【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答.【详解】(1)如图,C '的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为10【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.28.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.【详解】解:(1) 解:(1)∵a 6b 80--=, ∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24 (2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y 轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD ,∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.29.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y , 而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.30.(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,。
苏科版江苏省苏州市八年级期上册末数学试卷
苏科版江苏省苏州市八年级期上册末数学试卷一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1) 3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<4.分式221x x -+的值为0,则x 的值为( ) A .0B .2C .﹣2D .125.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<326.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .7.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3) B .(1,﹣3) C .(2,2) D .(5,﹣1) 8.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( ) A .10cm B .7cm C .6cm D .6cm 或7cm 9.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为( ) A .21B .22或27C .27D .21或2710.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =ADC 2B ∠=∠,则BC 的长为( )A .51-B .51+C .31-D .31+11.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:312.估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间13.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( ) A .k <3B .k >3C .k <2D .k >2 14.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( ) A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4)15.下列四个图案中,不是轴对称图案的是( ) A .B .C .D .二、填空题16.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____. 17.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.18.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.19.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.20.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.21.当a =_______时,分式2123a a a +--的值为1.22.若等腰三角形的一个角为70゜,则其顶角的度数为_____ . 23.3的平方根是_________.24.在第二象限内的点P 到x 轴的距离是1,到y 轴的距离是4,则点P 的坐标是_________.25.某人一天饮水1679mL ,精确到100mL 是_____.三、解答题26.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长25米,求木杆断裂处离地面多少米?27.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题: (1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.28.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润. 29.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C - (1)作出三角形ABC 关于y 轴对称的三角形111A B C (2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .30.小江利用计算器计算15×15,25×25,…,95×95,有如下发现: 15×15=225=1×2×100+25, 25×25=625=2×3×100+25 35×35=1225=3×4×100+25,小江观察后猜测:如果用字母a 代表一个正整数,则有如下规律:(a×10+5)2=a (a+1)×100+25.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明. 31.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:()1在前2小时的挖掘中,甲队的挖掘速度为 米/小时,乙队的挖掘速度为 米/小时. ()2①当26x <<时,求出y 乙与x 之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差5米?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可. 【详解】∵点P (a ,2a-1)在一、三象限的角平分线上, ∴a=2a-1, 解得a=1. 故选:C . 【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.C解析:C 【解析】 【分析】根据点(1,1)A ,点(3,2)C -建立平面直角坐标系,再结合图形即可确定出点B 的坐标. 【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2), ∴点B 的坐标是:(2,0). 故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.3.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小.4.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.5.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.7.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.8.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.9.C解析:C【解析】【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=27.故选C.【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.10.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠ ∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1 故选B 【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.11.B解析:B 【解析】 【分析】A 、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B 、根据角的比值求出各角的度数,便可判断出三角形的形状;C 、根据三角形的内角和为180度,即可计算出∠C 的值;D 、根据比值结合勾股定理的逆定理即可判断出三角形的形状. 【详解】A 、因为a :b :c=3:4:5,所以设a=3x ,b=4x ,c=5x ,则(3x )2+(4x )2=(5x )2,故为直角三角形,故A 选项不符合题意;B 、因为∠A :∠B :∠C=3:4:5,所以设∠A=3x ,则∠B=4x ,∠C=5x ,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B 选项符合题意;C 、因为∠A+∠B=∠C ,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C 选项不符合题意;D 、因为a :b :c=1:2,所以设a=x ,b=2x ,x ,则x 2+x )2=(2x )2,故为直角三角形,故D 选项不符合题意, 故选B. 【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.12.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2-<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.13.A解析:A【解析】【分析】将点A,点B坐标代入解析式可求k−3=b da c--,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,∴b=ka﹣3a+2,d=kc﹣3c+2,且a≠c,∴k﹣3=b da c --.∵m=(a﹣c)(b﹣d)<0,∴k<3.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c --是关键,是一道基础题.14.B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.15.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题16.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.17.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.18..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.19.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC 是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC 是等边三角形是解题的关键.20.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).21.-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:=1,即可得到解得 :根据中 得到舍弃所以故答案为:-3.【点睛】此题主要考查了可化为一元解析:-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:2123a a a +--=1, 即可得到 2123a a a +-=-解得 :3a =± 根据2123a a a +--中 30a -≠ 得到3a ≠ 舍弃3a =所以3a =-故答案为:-3.【点睛】此题主要考查了可化为一元二次方程的分式方程,关键是根据题意列出分式方程. 22.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 23.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为24.(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,解析:(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,∴点P的横坐标是-4,纵坐标是1,∴点P的坐标为(-4,1).故答案为:(-4,1).【点睛】此题考查点的坐标,解题关键在于熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度.25.7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.故答案为:1.解析:7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.故答案为:1.7×103mL.【点睛】本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.三、解答题26.木杆断裂处离地面12米.【解析】【分析】设木杆断裂处离地面x米,根据勾股定理列出方程求解即可.【详解】解:设木杆断裂处离地面x米,由题意得:x2+52=(25−x)2,解得x=12,答:木杆断裂处离地面12米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合思想的应用.27.(1)y1=50x﹣50,y2=﹣40x+200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米;(3)①160;②当1≤x≤259时,s=250﹣90x;当259<x≤5时,s=90x﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P表达的意义可求m的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y1=kx+b,∴2005k bk b =+⎧⎨=+⎩解得:5050 kb=⎧⎨=-⎩∴甲的函数表达式为:y1=50x﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y2=mx+200,∴0=5m+200∴m=﹣40,∴乙的函数表达式为:y2=﹣40x+200,(2)由题意可得:505040200y xy x=-⎧⎨=-+⎩解得:2598009xy⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米.(3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m=200﹣40×1=160,故答案为160;②当1≤x≤259时,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;当259<x≤5时,s=90x﹣250;图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.28.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x)得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150由y=-0.1x+100得到y 随x 的增大而减小所以当利润最大时,x 值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.29.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析②20.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.30.见解析【解析】根据完全平方公式将左边展开,再将前两项分解因式即可得证.【详解】解:左边2(105)a =+210010025a a =++(1)10025a a =+⨯+=右边,2(105)(1)10025a a a ∴⨯+=+⨯+.【点睛】本题主要考查了完全平方公式的运用,解题的关键是掌握完全平方公式和因式分解的能力.31.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.【解析】【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.【详解】()1甲队:60610÷=米/小时,乙队: 30215÷=米/小时:故答案为:10,15;()2①当26x <<时,设z y kx b =+,则230650k b k b +=⎧⎨+=⎩, 解得520k b =⎧⎨=⎩, ∴当26x <<时,520z y x =+;②易求得:当02x ≤≤时,15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,由()10520x x =+解得4x =,1° 当02x ≤≤, 15105x x -=,解得:1x =,2°当24x <≤,()520105x x +-=解得:3x =,3°当46x <≤,()105205x x -+=,解得: 5x =答:挖掘1小时或3小时或5小时后,两工程队相距5米.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.。
苏科版八年级上册数学《期末考试试卷》及答案
若L1⊥L2,则有k1•k2=﹣1,根据以上结论解答下列各题:
(1)已知直线y=2x+1与直线y=kx﹣1垂直,求k的值;
(2)若一条直线经过A(2,3),且与y=﹣ x+3垂直,求这条直线所对应的一次函数的关系式.
24.已知一次函数y=x﹣2的图象与y轴交于点A,且与正比例函数y= x的图象相交于点M
故选D.
[点睛]本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
2.点P(1,﹣2)关于y轴对称的点的坐标是()
A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)
考点:本题考查了勾股定理的逆定理.
点评:本题属于中等难度试题,此类试题考生可以很快解答出答案,实际上本题考查了勾股定理的逆定理,勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法.若c为最长边,且 ,则△ABC是直角三角形.如果 ,则△ABC是锐角三角形.如果 ,则△ABC是钝角三角形.
8.如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线B C D作匀速运动,那么△ABP的面积 与点P运动的路程 之间的函数图象大致是().
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定
[答案]B
[解析]
试题分析:勾股定理是指把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理.若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形,此为勾股定理的逆定理.本题中, ,故为直角三角形.故选B.
苏科版苏州市八年级上学期期末数学试卷 (解析版)
苏科版苏州市八年级上学期期末数学试卷 (解析版) 一、选择题1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22- 2.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-23.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .54.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒5.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒6.在平面直角坐标系中,点(1,2)P 到原点的距离是( ) A .1 B .3 C .2D .5 7.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 8.下列各组数不是勾股数的是( ) A .3,4,5B .6,8,10C .4,6,8D .5,12,13 9.如图,已知△ABC 的三条边和三个角,则甲、乙、丙三个三角形中和△ABC 全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙 10.64的立方根是( )A .4B .±4C .8D .±8 11.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =,3c =12.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .113.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .414.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)15.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .12二、填空题16.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 17.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____. 18.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.19.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____.20.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.21.计算:8的平方根______,-8的立方根是_____.22.点A (2,-3)关于x 轴对称的点的坐标是______.23.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.24.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.25.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-.(1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离(km)y 与小丽的行驶时间(h)x 之间的函数关系.请你根据图像进行探究:(1)小丽的速度是______km/h ,小明的速度是_________km/h ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若两人相距20km ,试求小丽的行驶时间?28.计算:(1)23(5)427-(212426(8)18. 29.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t =______时,两点停止运动;(2)当t 为何值时,BPQ ∆是等腰三角形?30.如图,平面直角坐标系中,ABC ∆的顶点都在网格点上,其中C 点坐标为()3,2.(1)填空:点A 的坐标是__________,点B 的坐标是________;(2)将ABC ∆先向左平移3个单位长度,再向上平移1个单位长度,画出平移后的111A B C ∆;(3)求ABC ∆的面积.31.解方程:32322x x x -=+-【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】 A 中-2=2,不是互为相反数;B 382-=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数;故选:D.【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.3.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE为中线,∴CE=AE=BE=12.5 2AB=,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE , ∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,245==, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 4.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.5.A解析:A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 6.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P=故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.7.B解析:B【解析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.8.C解析:C【解析】【分析】根据勾股数的定义:有a 、b 、c 三个正整数,满足a 2+b 2=c 2,称为勾股数.由此判定即可.【详解】解:A 、32+42=52,能构成勾股数,故选项错误;B 、62+82=102,能构成勾股数,故选项错误C 、42+62≠82,不能构成勾股数,故选项正确;D 、52+122=132,能构成勾股数,故选项错误.故选:C .【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.9.B解析:B【解析】【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙,故选:B .本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.10.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.11.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键. 12.D解析:D【解析】【分析】图中直线y=x+b与x轴负半轴,y轴正半轴分别交于A,B两点,可以根据两点的坐标得出OA=OB,由此可证明△AOD≌△OBE,证出OC=AD,BE=OD,在Rt△OBE中,运用勾股定理可求出BE的长,再根据线段的差可求出DE的长.【详解】直线y=x+b(b>0)与x轴的交点坐标A为(-b,0)与y轴的交点坐标B为(0,-b),所以,OA=OB,又∵AD⊥OC,BE⊥OC,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB,在△DAO和△BOE中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 13.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A 、(1,2)在第一象限,故本选项错误;B 、(﹣1,2)在第二象限,故本选项错误;C 、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.二、填空题16.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析17.1【解析】∵点P (a ,b )在一次函数y=x+1的图象上,∴b=a+1,∴b -a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数解析:1【解析】∵点P (a ,b )在一次函数y=x +1的图象上,∴b=a+1,∴b -a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数的解析式.18.-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴=(-3+2)2019=(-1)2019=解析:-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可. 【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1. 故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.19.<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴,解不等式①得,m<2,解不等式解析:12<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴20210mm-<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).20.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.21.-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±2)2=8,∴8的平方根是:±2;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±2,解析:-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±)2=8,∴8的平方根是:±;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±,-2.【点睛】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a (x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.22.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.23.15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分解析:15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.24.108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB解析:108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB=AC,∴∠B=∠C,∵AB的垂直平分线分别交边AB,BC于D,E点,∴AE=BE,∴∠B=∠BAE,∵AC=EC,∴∠EAC=∠AEC,设∠B =x °,则∠EAC =∠AEC =2x °,则∠BAC =3x °,在△AEC 中,x +2x +2x =180,解得:x =36,∴∠BAC =3x °=108°,故答案为:108°.【点睛】此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.25.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50. 故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题26.(1) 32m =,AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯, ∴OQ =2,∴点Q 坐标为(0,2).【点睛】 考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.27.(1)10;20;(2)3030y x =-(1 1.5)x ≤≤;(3)13小时或2小时 【解析】【分析】(1)根据题意和函数图象中的数据可以分别求得小丽和小明的速度;(2)根据(1)中的结果和图象中的数据可以求得点C 的坐标,从而可以解答本题 (3)根据题意分情况讨论即可求解.【详解】(1)从AB 可以看出:两人从相距30千米的两地相遇用了1个小时时间,则30V V +=小丽小明千米/时,小丽用了3个小时走完了30千米的全程,∴10V =小丽千米/时,∴20V =小明千米/时;故答案为:10;20;(2)C 点的意义是小明骑车从乙地到甲地用了3020 1.5÷=小时,此时小丽和小明的距离是()1.513015-⨯=∴C 点坐标是(1.5,15).设BC 对应的函数表达式为y kx b =+,则将点()10B ,,()1.5,15C 分别代入表达式得01.515k b k b +=⎧⎨+=⎩, 解得:3030k b =⎧⎨=-⎩, ∴BC 解析式为3030y x =-,(1 1.5)x ≤≤ (3)①当两人相遇前:1(3020)(2010)3-÷+=(小时); ②当两人相遇后:1.55102+÷=(小时). 答:小丽出发13小时或2小时时,两人相距20公里. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.(1)6;(2)3. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式的乘除法则计算,合并即可得到结果.【详解】解:(1)原式=5﹣2+3=6;(2)原式=3 =3. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动;(2)①当t ≤4时,P 点在线段AB 上,Q 点在线段BC 上时,若Rt BPQ ∆是等腰三角形,则BP=BQ,即6-t=2t ,解得t=2秒;②当P 点在线段AB 上,Q 点在线段CD 上时,此时4<t≤6,如下图,若BPQ ∆是等腰三角形,则PQ=BQ,此时作PE ⊥DC,∵四边形ABCD 为矩形,∴∠C=∠ABC=90°,∴四边形BCEP 为矩形,∴EC=PB=6-t ,EP=BC ,∵PQ=BQ ,∴Rt △EPQ ≌Rt △CBQ (HL ),∴EQ=QC ,即6282t t -=-,解得225t =, ③当P 点在线段BC 上,Q 点在线段CD 上时,此时6<t≤7如下图,BP=t-6,QC=2t-8, ∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP ,BPQ ∆不可能是等腰三角形,综上所述,当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【点睛】本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.30.(1)()41-,,()5,3;(2)画图见解析;(3)72【解析】【分析】(1)利用点的坐标的表示方法写出A 点和B 点坐标;(2)利用点的坐标平移规律写出点1A 、1B 、1C 的坐标,然后描点得到111A B C ∆; (3)用一个矩形的面积分别减去三个三角形的面积可得到△ABC 的面积.【详解】解:(1)()41-,;()5,3(2)如图所示:111A B C ∆即为所求;(3)37S 421222ABC ∆=⨯---=. 【点睛】 此题考查坐标与图形变化——平移,解题关键在于掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.31.x=1【解析】试题分析:按照解分式方程的步骤求解即可.试题解析:去分母得,3x(x-2)-2(x+2)=3(x+2)(x-2)去括号得,3x2-6x-2x-4=3x2-12移项,合并同类项得:-8x=-8∴x=1经检验:x=1是原方程的根,考点:解分式方程.。
苏科版江苏省苏州市苏科版八年级数学上 期末测试题(Word版 含答案)
苏科版江苏省苏州市苏科版八年级数学上期末测试题(Word 版含答案)一、选择题1.如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B度数为()A.30B.60︒C.90︒D.120︒2.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩3.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P表示的数是()A.132--B.132-+C.132-D.13-4.把分式22xyx y-中的x、y的值都扩大到原来的2倍,则分式的值…()A.不变B.扩大到原来的2倍C.扩大到原来的4倍D.缩小到原来的125.下列标志中属于轴对称图形的是()A.B.C.D.6.在下列分解因式的过程中,分解因式正确的是( ) A .-xz +yz =-z(x +y) B .3a 2b -2ab 2+ab =ab(3a -2b) C .6xy 2-8y 3=2y 2(3x -4y) D .x 2+3x -4=(x +2)(x -2)+3x 7.如图,正方形OACB 的边长是2,反比例函数ky x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-8.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( ) A .()3,2B .()2,3-C .()3,2-D .()3,2--9.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100 km ; ②前半个小时,货车的平均速度是40 km/h ; ③8∶00时,货车已行驶的路程是60 km ; ④最后40 km 货车行驶的平均速度是100 km/h ; ⑤货车到达乙地的时间是8∶24, 其中,正确的结论是( )A .①②③④B .①③⑤C .①③④D .①③④⑤ 10.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,012.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M 是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )13.下列计算正确的是( ) A .5151+22=5B .512﹣512=2 C .515122⨯=1 D .515122⨯=3﹣514.9的平方根是( ) A .3 B .81C .3±D .81±15.下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查二、填空题16.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km ) 17.3x -有意义的x 的取值范围是__________. 18.若x +2y =2xy ,则21+x y的值为_____.19.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是___.20.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.21.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________. 22.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.23.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .24.若某个正数的两个平方根分别是21a +与25a -,则a =_______.25.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____.三、解答题26.计算:()03420121-- (21383322++. 27.解方程:(1)22(1)8x -= (2)214111x x x +-=-- 28.如图,A (4,3)是反比例函数y=kx在第一象限图象上一点,连接OA ,过A 作AB ∥x轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=kx的图象于点P . (1)求反比例函数y=kx的表达式; (2)求点B 的坐标; (3)求△OAP 的面积.29.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表: x/元 … 15 20 25 … y/件…252015…已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式; (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元? 30.(阅读·领会)(0)a a ≥的式子叫做二次根式,其中a 叫做被开方数.其中,被开方数相同的二次根式叫做同类二次根式.像同类项一样,同类二次根式也可以合并,合并方法类似合并同类项,是把几个同类二次根式前的系数相加,作为结果的系数,即((0).x x m n x x =+≥利用这个式子可以化简一些含根式的代数式..(0,0)a b ab a b =≥≥我们可以利用以下方法证明这个公式:一般地,当0,0a b ≥≥时, 根据积的乘方运算法则,可得222()(()a b a b ab =⨯=,∵2)(0)a a a =≥,∴2()ab ab =a b ab ab 的算术平方根, ∴.(0,0)a b ab a b =≥≥利用这个式子,可以进行一些二次根式的乘法运算..(0,0)ab a b a b =≥≥它可以用来化简一些二次根式.材料三:一般地,化简二次根式就是使二次根式: (I )被开方数中不含能开得尽方的因数或因式; (II )被开方数中不含分母;(III )分母中不含有根号.这样化简完后的二次根式叫做最简二次根式.(积累·运用)(1)仿照材料二中证明二次根式乘法公式那样,试推导二次根式的除法公式. (2)化简:2325(2)(0,0,0)a b c a b c -≥≥≥=______.(3)当0a b <<时,化简2232232,a b b ab a a b a b a b +-+-+并求当7,9a b =⎧⎨=⎩时它的值. 31.(模型建立)(1)如图1,等腰直角三角形ABC 中,90ACB ∠=,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆≅∆; (模型应用) (2)已知直线1l :443y x =+与坐标轴交于点A 、B ,将直线1l 绕点A 逆时针旋转45至直线2l ,如图2,求直线2l 的函数表达式;(3)如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为()8,6-,点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线26y x =-+上的动点且在第四象限.若APD ∆是以点D 为直角顶点的等腰直角三角形,请直接..写出点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案. 【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称, ∴∠A =∠A ′=30°,∠C =∠C ′=60°;∴∠B =180°−30°-60°=90°. 故选:C . 【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.2.A解析:A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4), ∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.3.A解析:A 【解析】 【分析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案. 【详解】 解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形, ∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC -+=,∴13AP AB ==∴2PC =,∵点P 在点C 的左边,点C 表示的数为0,∴点P 表示的数为:2)2-=; 故选择:A. 【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.4.A解析:A 【解析】 把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xyx y x y x y ⋅==---,由此可得分式的值不变,故选A.5.C解析:C 【解析】 【分析】根据对称轴的定义,关键是找出对称轴即可得出答案. 【详解】解:根据对称轴定义 A 、没有对称轴,所以错误 B 、没有对称轴,所以错误 C 、有一条对称轴,所以正确 D 、没有对称轴,所以错误 故选 C 【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.6.C解析:C 【解析】 【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误; 6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误. 故选:C . 【点睛】 因式分解的意义.7.C解析:C 【解析】 【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可. 【详解】解:∵正方形OACB 的边长是2, ∴点C 的坐标为(2,2) 将点C 的坐标代入ky x=中,得 22k =解得:4k = 故选C . 【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.8.D解析:D 【解析】 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--. 故选:D . 【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.9.D解析:D 【解析】 【分析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断. 【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误; ③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟 ∴货车走完全程所花时间为:1小时24分钟, ∴货车到达乙地的时间是8∶24,⑤正确; 综上:①③④⑤正确; 故选:D 【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.10.D解析:D 【解析】 【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论. 【详解】解:当三边是2cm ,2cm ,5cm 时,不符合三角形的三边关系; 当三角形的三边是5cm ,5cm ,2cm 时,符合三角形的三边关系, 此时周长是5+5+2=12cm . 故选:D . 【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.11.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.C解析:C【解析】【分析】设沿直线AM 将△ABM 折叠,点B 正好落在x 轴上的C 点,则有AB =AC ,而AB 的长度根据已知可以求出,所以C 点的坐标由此求出;又由于折叠得到CM =BM ,在直角△CMO 中根据勾股定理可以求出OM ,也就求出M 的坐标.【详解】设沿直线AM 将△ABM 折叠,点B 正好落在x 轴上的C 点,∵直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B , ∴A (3,0),B (0,4), ∴AB =223+4=5,设OM =m ,由折叠知,AC =AB =5,CM =BM =OB +OM =4+m ,∴OC =8,CM =4+m ,根据勾股定理得,64+m 2=(4+m )2,解得:m =6,∴M (0,﹣6),故选:C .【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.13.C解析:C【解析】【分析】利用二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A ==A 选项错误;B 212==,所以B 选项错误; C 1515114--==,所以C 选项正确;D 、151-=,所以D 选项错误. 故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.15.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A .对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B .对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C .对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题16.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.17.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的x解析:3【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为3x≥【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;18.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式=22x y xyxy xy+==2,故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.10【解析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D 的面积和为S2,S1+S2=S3,∵正方形A、B、C、D的面积分别为2,5,1,2,∵最大的正方形E的面【解析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,∵正方形A、B、C、D的面积分别为2,5,1,2,∵最大的正方形E的面积S3=S1+S2=2+5+1+2=10.20.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912 x所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.21.26【解析】【分析】根据题意,令,进而整理得到a ,b 的值即可得解.【详解】根据题意,令整理得:∴,解得:,∴,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的解析:26【解析】【分析】根据题意,令3222()(31)ax bx ax k x x +-=++-,进而整理得到a ,b 的值即可得解.【详解】根据题意,令3222()(31)ax bx ax k x x +-=++-整理得:3232(3)(3)2ax k a x k a x k ax bx +++--=+- ∴3302k a b k a k +=⎧⎪-=⎨⎪=⎩,解得:6202a b k =⎧⎪=⎨⎪=⎩,∴26a b +=,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的乘法运算方法及技巧是解决本题的关键. 22.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.23.y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2解析:y=32x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y=6x=3,∴A(2,3),B(2,0),∵y=kx过点 A(2,3),∴3=2k,∴k=32,∴y=32 x,∵直线y=32x平移后经过点B,∴设平移后的解析式为y=32x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=32x-3,故答案为:y=32x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.24.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x +2的图象向下平移2个单位长度后,所得图象的函数关系式为y =2x +2﹣2=2x .故答案为:y =2x .【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x 左加右减;上下平移,b 上加下减”是解此题的关键.三、解答题26.(1)4;(2)2. 【解析】【分析】(1)先进行开平方,0次幂以及开立方运算,再进行加减运算即可;(2)先化简各个含根号的式子,再合并即可得出结果【详解】解:(1)原式=2+1+1=4;(2)原式2=2. 【点睛】本题考查实数的相关运算,掌握基本运算法则是解题的关键.27.(1) x 1=3, x 2=-1 ;(2)无解.【解析】【分析】(1)利用直接开平方法求解即可;(2)方程两边都乘以最简公分母(x+1)(x-1),可把分式方程转化为整式方程求解.【详解】解:(1)22(1)8x -=2(1)4x -=,12x -=±,1=3x ,2=1-x(2)214111x x x +-=-- ()()()214=11x x x +-+-,2223=1x x x +--,2=2x=1x ,检验:将x=1代入()()11x x +-中,()()11=0x x +-x=1是增根,∴原方程无解.【点睛】本题考查解一元二次方程和解分式方程.注意:(1)利用直接开平方法;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要验根.28.(1)反比例函数解析式为y=12x ;(2)点B 的坐标为(9,3);(3)△OAP 的面积=5.【解析】【分析】(1)将点A 的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB ∥x 轴即可得点B 的坐标;(3)先根据点B 坐标得出OB 所在直线解析式,从而求得直线与双曲线交点P 的坐标,再利用割补法求解可得.【详解】(1)将点A (4,3)代入y=k x ,得:k=12, 则反比例函数解析式为y=12x; (2)如图,过点A 作AC ⊥x 轴于点C ,则OC=4、AC=3,∴,∵AB ∥x 轴,且AB=OA=5,∴点B 的坐标为(9,3);(3)∵点B 坐标为(9,3),∴OB 所在直线解析式为y=13x , 由1312y x y x ⎧=⎪⎪⎨⎪=⎪⎩可得点P 坐标为(6,2),(负值舍去), 过点P 作PD ⊥x 轴,延长DP 交AB 于点E ,则点E 坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP 的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=5. 【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.29.(1)40y x =-+;(2)此时每天利润为125元.【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得. 试题解析:(1)设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩, ∴40y x =-+;(2)将35x =代入(1)中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.30.(1)见解析;(2)2abc ;(3)ab-,463- 【解析】【分析】(1)仿照材料二中证明二次根式乘法公式的方法,推导二次根式的除法公式(2)根据二次根式乘法公式进行计算即可(3)先根据二次根式除法公式进行化简,再把a 和b 的值代入即可【详解】解:(10,0)a b=≥> 证明如下:一般地,当0,0a b ≥>时,根据商的乘方运算法则,可得2a b==∵2(0)a a =≥,∴2ab =a b 的算术平方根,∴0,0)a b=≥>利用这个式子,可以进行一些二次根式的除法运算.0,0)a b =≥>它可以用来化简一些二次根式.(20,0,0)2a b c abc ≥≥≥==故答案为:2abc (3)当0a b <<时,1a b b a a b ab a +-===-+当79a b =⎧⎨=⎩时,原式=46363-=- 【点睛】本题考查二次根式的乘法和除法法则,,解题的关键是熟练运用公式以及二次根式的性质,本题属于中等题型.31.(1)见解析;(2)y =−7x−21;(3)D (4,−2)或(203,223-). 【解析】【分析】(1)根据△ABC 为等腰直角三角形,AD ⊥ED ,BE ⊥ED ,可判定BEC CDA ∆≅∆; (2)①过点B 作BC ⊥AB ,交l 2于C ,过C 作CD ⊥y 轴于D ,根据△CBD ≌△BAO ,得出BD =AO =3,CD =OB =4,求得C (−4,7),最后运用待定系数法求直线l 2的函数表达式; (3)根据△APD 是以点D 为直角顶点的等腰直角三角形,当点D 是直线y =−2x +6上的动点且在第四象限时,分两种情况:当点D 在矩形AOCB 的内部时,当点D 在矩形AOCB 的外部时,设D (x ,−2x +6),分别根据△ADE ≌△DPF ,得出AE =DF ,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC 为等腰直角三角形,∴CB =CA ,∠ACD +∠BCE =90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,D EACD EBCCA CB∠∠⎧⎪∠∠⎨⎪⎩===,∴BEC CDA∆≅∆(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=43x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则7403k bk b=-+⎧⎨=-+⎩,解得:721kb=-⎧⎨=-⎩,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(203,223-).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=203,∴−2x+6=223 -,∴D(203,223-),此时,ED=PF=203,AE=BF=43,BP=PF−BF=163<6,符合题意,综上所述,D点坐标为:(4,−2)或(203,223-)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.。
苏科版苏州市八年级上学期期末数学试卷 (解析版)
苏科版苏州市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .92.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===3.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )A .3B 7C .4D 114.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,5.分式221x x -+的值为0,则x 的值为( )A .0B .2C .﹣2D .126.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<327.+1x x 的取值范围是( ). A .x >﹣1 B .x ≥0C .x ≥﹣1D .任意实数8.在22、0.3•、227-38( )A .1个B .2个C .3个D .4个9.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .10.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x-+=2 C .1000100030x x --=2 D .1000100030x x--=2 12.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .313.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .4 14.下列一次函数中,y 随x 增大而增大的是( ) A .y=﹣3x B .y=x ﹣2 C .y=﹣2x+3 D .y=3﹣x 15.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题16.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.17.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.18.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______. 19.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;20.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.21. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.22.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.23.如图,在△ABC 中,∠B=40°,BC 边的垂直平分线交BC 于D ,交AB 于E ,若CE 平分∠ACB,则∠A=______°.24.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)25.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-. (1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ; (2)解释点P (16,0)的实际意义; (3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米?28.已知a 、b 为实数,且满足23440a b b -+-+=. (1)求a ,b 的值;(2)若a ,b 为ABC 的两边,第三边c 为5,求ABC 的面积.29.人教版教材指出:等边三角形是三边都相等的特殊的等腰三角形.请证明:有一个角是60︒的等腰三角形是等边三角形.30.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由. (2)求四边形ABCD 的面积.31.已知直线AB :y=kx+b 经过点B (1,4)、A (5,0)两点,且与直线y=2x-4交于点C .(1)求直线AB 的解析式并求出点C 的坐标;(2)求出直线y=kx+b 、直线y=2x-4及与y 轴所围成的三角形面积;(3)现有一点P 在直线AB 上,过点P 作PQ ∥y 轴交直线y=2x-4于点Q ,若线段PQ 的长为3,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 【详解】解:意,得+2 ∴0<m <1, ∴|m-1|+(m+6) =1-m+m+6 =7, 故选C . 【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m 的值,确定m 的范围.2.D解析:D 【解析】 【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.3.C解析:C 【解析】 【分析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB =DC 12=CB ,AD ⊥BC ,再利用勾股定理求出AD的长.【详解】∵AB=AC,AD是边BC上的中线,∴DB=DC12=CB=3,AD⊥BC,在Rt△ABD中,∵AD2+BD2=AB2,∴AD==4.故选:C.【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB是直角三角形.4.B解析:B【解析】【分析】根据关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P(2,-3)关于x轴对称,∴对称点与点P横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,5.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.6.B解析:B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.C解析:C【解析】【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.8.A解析:A 【解析】 【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可. 【详解】解:在实数2、•0.3、227-中,2是无理数; •0.3循环小数,是有理数; 227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个. 故选:A . 【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.9.C解析:C 【解析】 【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确. 【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误. 故选:C . 【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.10.B解析:B 【解析】 【分析】 【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限, 故选B .11.A解析:A 【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.D解析:D 【解析】 【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度. 【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =, ∴由勾股定理得,22226810AB AC BC cm =+=+=.由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm , 在Rt △BDE 中,由勾股定理得, DE 2+BE 2=BD 2 即CD 2+42=(8-CD)2, 解得:CD=3cm . 故选:D . 【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE是直角三角形,并计算(或用CD表示)它的三边是解决此题的关键.13.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.B解析:B【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选B.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.15.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.二、填空题16.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.17..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:118. 【解析】【分析】 设C 点坐标为(0,a ),由勾股定理可表示出BC 2和AC 2,由△ABC 是以AB 为底的等腰三角形可知BC =AC ,据此可列出关于a 的方程,求解即可.【详解】解:设C 点坐标为(0,a ),当△ABC 是以AB 为底的等腰三角形时,BC =AC ,平方得BC 2=AC 2,即32+a 2=22+(4﹣a )2,化简得8a =11,解得a =118. 故OC =118, 故答案为:118. 【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.18.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x轴对称的点的坐标特征,要与关于y轴对称的点的坐标特征相区别.19.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 20.150【解析】【分析】连接OP,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案. 【详解】解:如图,连接OP,E,F分别为点P关于OA,OB的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.21.30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC ,AD ⊥BC ,∴∠BAD=12∠BAC=30°, 故答案为30°.22.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到 解析:0【解析】【分析】根据题意,由36x =时,代入3y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴3330y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.23.60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.24.>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小. 【详解】解:如下图所示,是等腰直角三角形,∴,∴.故答案为另:此题也可直接测量得到结果.【点解析:>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.25.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC , ∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质. 三、解答题 26.(1) 32m =,213AB =;(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯,∴OQ =2,∴点Q 坐标为(0,2).【点睛】考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.27.(1)甲步行的速度为60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲);(3)乙步行的速度为80 m/min ;乙走完全程用的时间为30min ;(4)乙到达终点时,甲离终点距离是360米.【解析】【分析】(1)根据甲先出发4 min ,结合图象可知4 min 他们的距离为240,即可求甲的速度; (2)结合函数图象可知,当t=16分钟时,y 为0,据此可答;(3)根据t=16分钟时,甲乙所走的路程相等求得乙步行的速度,再用总路程÷乙步行的速度即可得解;(4)甲的速度×(乙走完全程的时间+4)=乙到达终点时甲的路程.再用总路程-甲的路程即可.【详解】(1)甲步行的速度为:240÷4=60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲); (3)乙步行的速度为:16×60÷12=80 m/min ;乙走完全程用的时间为:2400÷80=30min ;(4)乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.28.(1)3a =,2b =;(2【解析】【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;(2)利用勾股定理逆定理判断出△ABC 是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【详解】解:(12440b b -+=整理得:()220b -=∴3a =,2b =;(2)∵2222529c b ,2239a ==∴222c b a +=,∴△ABC 是直角三角形,90A ∠=︒,∴△ABC 的面积1122255bc .【点睛】本题考查了二次根式的应用和非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.29.详见解析【解析】【分析】根据题意,给出已知和求证,加以证明即可得解.【详解】已知:如下图,ABC ∆是等腰三角形,∠A =60°,证明:ABC ∆是等边三角形.证明:∵ABC ∆是等腰三角形∴AB=AC∴∠B=∠C∵∠A =60°∴∠B=∠C=18060602︒-︒=︒ ∴ABC ∆是等边三角形.【点睛】本题主要考查了等边三角形的判定,熟练掌握等边三角形的判定证明是解决本题的关键.30.(1)∠D 是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC ,先根据勾股定理求得AC 的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD 和△ACB 的面积之和等于四边形ABCD 的面积,进行计算即可.【详解】(1)∠D 是直角.理由如下:连接AC .∵AB =20,BC =15,∠B =90°,∴由勾股定理得AC 2=202+152=625.又∵CD =7,AD =24,∴CD 2+AD 2=625,∴AC 2=CD 2+AD 2,∴∠D =90°.(2)四边形ABCD 的面积=12AD •DC +12AB •BC =12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.31.(1)y=-x+5;点C (3,2);(2)S=272;(3)P 点坐标为(2,3)或(4,1). 【解析】【分析】(1)根据待定系数法求出直线AB 解析式,再联立两函数解出C 点坐标;(2)依次求出y=-x+5和y=2x-4与y 轴交点坐标,根据三角形的面积公式即可求解;(3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4),根据线段PQ 的长为3,分情况即可求解.【详解】(1)∵直线y=kx+b 经过点A (5,0),B (1,4),∴ 504k b k b +⎧⎨+⎩== 解得 15k b =-⎧⎨=⎩∴直线AB 的解析式为:y=-x+5;∵若直线y=2x-4与直线AB 相交于点C ,∴ 524y x y x =-+⎧⎨-⎩= 解得 32x y =⎧⎨=⎩ ∴点C (3,2);(2)∵y=-x+5与y 轴交点坐标为(0,5),y=2x-4与y 轴交点坐标为(0,-4) ,C 点坐标为(3,2)∴S=932722⨯= (3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4)则-m+5-(2m-4)=3 或者2m-4-(-m+5)=3解得m= 2 或m=4∴P点坐标为(2,3)或(4,1).【点睛】此题主要考查一次函数图像与几何综合,解题的关键是熟知一次函数的图像与性质、待定系数法的应用.。
苏科版江苏省苏州市八年级(上)期末数学试卷(含答案)
苏科版江苏省苏州市八年级(上)期末数学试卷(含答案)一、选择题 1.若a 满足3a a =,则a 的值为( ) A .1B .0C .0或1D .0或1或1- 2.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( )A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 3.下列四个图形中,不是轴对称图案的是( )A .B .C .D .4.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A .甲的速度保持不变B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人不相遇D .在起跑后第50秒时,乙在甲的前面 5.分式221x x -+的值为0,则x 的值为( ) A .0 B .2 C .﹣2 D .126.在下列分解因式的过程中,分解因式正确的是( )A .-xz +yz =-z(x +y)B .3a 2b -2ab 2+ab =ab(3a -2b)C .6xy 2-8y 3=2y 2(3x -4y)D .x 2+3x -4=(x +2)(x -2)+3x7.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( )A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1)9.在平面直角坐标系中,把直线23y x =-沿y 轴向上平移2个单位后,所得直线的函数表达式为( )A .22y x =+B .25y x =-C .21y x =+D .21y x =-10.下列实数中,无理数是( )A .227B .3πC .4-D .32711.如果m 是任意实数,则点()P m 4m 1-+,一定不在A .第一象限B .第二象限C .第三象限D .第四象限12.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)13.以下问题,不适合用普查的是( )A .旅客上飞机前的安检B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命 14.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( ) A .(﹣2,﹣3) B .(2,﹣3) C .(﹣4,3) D .(3,﹣4) 15.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .265二、填空题16.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.17.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.18.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.19.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.20.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版苏州市初二数学上学期期末试卷 一、选择题 1.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个 2.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 3.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .24.下列四个实数中,属于无理数的是( )A .0B .9C .23D .12 5.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 6.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .7.下列图案属于轴对称图形的是( )A .B .C .D .8.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .49.在下列黑体大写英文字母中,不是轴对称图形的是( )A .B .C .D .10.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 11.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( )A .AC =2CDB .AD =2CDC .AD =3BD D .AB =2BC 12.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=13.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠= D .ACB ACD ∠=∠14.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6 15.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题16.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.17.矩形ABCD 中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.18.1x -在实数范围内有意义的条件是__________. 19.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 20.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.21.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.22.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.23.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .24.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.25.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题26.如图,一次函数的图像经过点P (1,3),Q (0,4).(1)求该函数的表达式;(2)该图像怎样平移后经过原点?27.观察下列等式: 112()(2)()(2)22⨯---=-⨯-;4422233⨯-=⨯;111123232⨯-=⨯;…… 根据上面等式反映的规律,解答下列问题:(1)请根据上述等式的特征,在括号内填上同一个实数: 2⨯( )-5=( )5⨯; (2)小明将上述等式的特征用字母表示为:2x y xy -=(x 、y 为任意实数).①小明和同学讨论后发现:x 、y 的取值范围不能是任意实数.请你直接写出x 、y 不能取哪些实数.②是否存在x 、y 两个实数都是整数的情况?若存在,请求出x 、y 的值;若不存在,请说明理由.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE≌△BEC;(2)若AD=3,AB=9,求△ECD的面积.30.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.31.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)△A2B2C2中顶点B2坐标为.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据无理数的定义解答即可.227,0.101001是有理数;3.故选B.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3等;②③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.3.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.解析:D【解析】【分析】根据无理数的定义,即可得到答案.【详解】=D正确;03=,23是有理数,故ABC错误;故选择:D.【点睛】本题考查了无理数的定义,解题的关键是熟记定义.5.C解析:C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:kx=±2•2x•13,解得k=±43.故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b)2=a2±2ab+b2是关键.6.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,7.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.8.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重10.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A中,例如42,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.11.B解析:B【解析】【分析】在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC;∵CD⊥AB,∴AC=2CD,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,CD3,在Rt△ABC中,∠A=30°,AD3=3BD,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】=,所以A选项错误;解:A3B B选项错误;=,所以C选项错误;C3D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.13.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【详解】解:A、AB=AD,BC=DC,再加上公共边AC=AC可利用SSS判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC可利用HL判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.15.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题16.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.17.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.18.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意x解析:1【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0, 解得:x >1.故答案为:1x >.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.19.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】 此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.20.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912 x所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.21.4【解析】【分析】先求出直线与y轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.22.3;【解析】【分析】过D 作DE⊥AB 于E ,D F⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE⊥AB 于E ,解析:3;【解析】【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵S △ABD =2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.23..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,解析:(21),.【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).24.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB ,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=解析:42【解析】 试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3, ∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .25..【解析】【分析】由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=12×1×1=12.故答案为:12.【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键.三、解答题26.(1)y=-x+4;(2)向下平移4个单位长度(或向上平移-4个单位长度);向左平移4个单位长度;或先向左平移1个单位长度,再向下平移3个单位长度;或先向下平移3个单位长度,再向左平移1个单位长度(此问答案不唯一).【解析】【分析】(1)设y=kx+b(k≠0),直接将P(1,3),Q(0,4)代入,即可用待定系数法求得函数解析式;(2)平移后经过原点,则平移之后解析式为y=-x,根据函数y=-x+4变形为y=-x的过程,结合函数的平移符合“左加右减,上加下减”即可得出平移方式(答案不唯一).【详解】(1)设y=kx+b(k≠0),所以43bk b=⎧⎨=+⎩,解得14k b =-⎧⎨=⎩所以函数表达式为y =-x +4.(2)若平移后经过原点,则平移后函数的解析式为y=-x.∵y =-x +4-4=-x ,∴可向下平移4个单位长度(或向上平移-4个单位长度); ∵y=-( x+4)+4=- x,∴可向左平移4个单位长度;∵y =-(x+1)+4-3,∴可先向左平移1个单位长度,再向下平移3个单位长度或先向下平移3个单位长度,再向左平移1个单位长度.【点睛】本题考查用待定系数法求一次函数解析式,一次函数的平移问题.(1)熟练掌握用待定系数法求一次函数解析式是解题关键;(2)中函数的平移满足“左加右减,上加下减”. 27.(1) 53-;(2)①x 不能取-1,y 不能取2;②x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4; 【解析】【分析】(1)设所填数为x,则2x-5=5x ;(2)①假如2x y xy -=,则2,12x y y x x y ==+-,根据分式定义可得;②由①可知21x y x =+或2y x y =-,x≠-1,y≠2,代入尝试可得. 【详解】(1)设所填数为x,则2x-5=5x解得x=53- 所以所填数是53-(2)①假如2x y xy -= 则2,12x y y x x y==+- 所以x≠-1,y≠2即:x 不能取-1,y 不能取2;②存在, 由①可知21x y x =+或2y x y =-,x≠-1,y≠2 所以x,y 可取的整数是:x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;【点睛】考核知识点:分式的值.理解分式定义是关键.28.(1)证明见解析;(2)21.【解析】【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC 平分∠BAD ,∴D′点落在AB 上,∵BC=10,∴D′C=BC ,过点C 作CE ⊥AB 于点E ,则D′E=BE ,设D′E=BE=x ,在Rt △CEB 中,CE 2=CB 2-BE 2=102-x 2,在Rt △CEA 中,CE 2=AC 2-AE 2=172-(9+x )2.∴102-x 2=172-(9+x )2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B 不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.29.(1)见解析;(2)452【解析】【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由已知我们可求得BE 、AE 的长,再利用勾股定理求得ED 的长,利用三角形面积公式解答即可.【详解】(1)∵AD ∥BC ,∠A =90°,∠1=∠2,∴∠A =∠B =90°,DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中 AD BE DE CE=⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.又∵AD =3,AB =9,∴BE =AD =3,AE =9﹣3=6.∵∠1=∠2,∴ED =EC∴△CDE 的面积=14522⨯=. 【点睛】 此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.30.用ASA 证明△EAC ≌△FBD 即可.【解析】【分析】首先利用平行线的性质得出,∠A=∠FBD ,∠D=∠ECA ,根据AB=CD 即可得出AC=BD ,进而得出△EAC ≌△FBD .【详解】证明:∵EA ∥FB ,∴∠A =∠FBD ,∵EC ∥FD ,∴∠D =∠ECA ,∵AB =CD ,∴AC =BD ,在△EAC 和△FBD 中,ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EAC ≌△FBD (AAS),∴EA =FB .【点睛】考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.31.(1)①详见解析;②详见解析;(2)(1,﹣1).【解析】【分析】(1)①分别作出点A 、B 、C 关于x 轴的对称点,再首尾顺次连接即可;②分别作出△A 1B 1C 1的3个顶点向右平移7个单位所得对应点,再首尾顺次连接即可得;(2)由所作图形可得.【详解】(1)①如图所示,△A 1B 1C 1即为所求;②如图所示,△A 2B 2C 2即为所求;(2)由图知,△A 2B 2C 2中顶点B 2坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要考查作图-平移变换和轴对称变换,解题的关键是掌握平移变换和轴对称变换的定义和性质,并据此得出变换后的对应点.。