高一数学函数专题复习

合集下载

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。

高一数学期末的复习知识点有哪些

高一数学期末的复习知识点有哪些

高一数学期末的复习知识点11、单调函数对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设x1、x2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(x)]的单调性若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.6、证明函数的单调性的方法(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论.(2)设函数y=f(x)在某区间内可导.如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.高一数学期末的复习知识点21、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。

高一函数知识点总结及例题

高一函数知识点总结及例题

高一函数知识点总结及例题高一函数知识点总结及例题:1. 函数的定义与性质:- 函数的定义:函数是一种对应关系,每个自变量对应唯一的因变量。

- 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能的因变量值的集合。

- 奇偶性:奇函数的图像以原点对称,即满足$f(-x)=-f(x)$;偶函数的图像以y轴对称,即满足$f(-x)=f(x)$。

- 单调性:递增函数的图像从左到右逐渐升高;递减函数的图像从左到右逐渐降低。

例题:给定函数$f(x)=2x^2+3x-1$,求其定义域和值域。

解答:由于函数是多项式函数,所以定义域为全体实数。

接下来求值域,可以求出函数的导函数$f'(x)=4x+3$,根据导函数的单调性可以判断函数的增减性。

导函数的系数为正数4,所以原函数是递增函数。

考虑到函数是二次函数,开口向上,所以函数的最小值就是导数的零点,即$x=-\frac{3}{4}$。

将$x=-\frac{3}{4}$代入函数中,得到最小值为$f(-\frac{3}{4}) = -\frac{7}{8}$。

所以值域为$[-\frac{7}{8},+\infty)$。

2. 基本初等函数:- 线性函数:$f(x)=kx+b$,k为斜率,b为截距。

- 幂函数:$f(x)=x^a$,a为常数,当a>0时,函数递增;当a<0时,函数递减。

- 指数函数:$f(x)=a^x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 对数函数:$f(x)=\log_a x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。

- 三角函数:正弦函数、余弦函数、正切函数等。

例题:已知函数$f(x)=2^x-3$,求解方程$f(x)=0$的解。

解答:将$f(x)$置0得到方程$2^x-3=0$,移项得$2^x=3$。

由指数函数的性质可知,$x=\log_2 3$。

高一数学函数专题(含答案)

高一数学函数专题(含答案)

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学复习考点题型专题讲解14 单调性与最大(小)值

高一数学复习考点题型专题讲解14 单调性与最大(小)值

高一数学复习考点题型专题讲解第14讲 单调性与最大(小)值一、单选题1.下列四个函数在(),0∞-是增函数的为( )A .()24f x x =+B .()12f x x =-C .()21f x x x =--+D .()32f x x=- 【答案】D【分析】根据各个函数的性质逐个判断即可【解析】对A ,()24f x x =+二次函数开口向上,对称轴为y 轴,在(),0∞-是减函数,故A 不对.对B ,()12f x x =-为一次函数,0k <,在(),0∞-是减函数,故B 不对.对C ,()21f x x x =--+,二次函数,开口向下,对称轴为12x =-,在1,2⎛⎫-∞- ⎪⎝⎭是增函数,故C 不对.对D ,()32f x x=-为反比例类型,0k <,在(),0∞-是增函数,故D 对. 故选:D2.函数1()f x x=的单调递减区间是( )A .(,0),(0,)-∞+∞B .(0,)+∞C .(,0)(0,)-∞+∞D .(,0)-∞ 【答案】A【分析】根据反比例函数的性质得解;【解析】解:因为1()f x x=定义域为(,0)(0,)-∞+∞,函数在(,0)-∞和(0,)+∞上单调递减, 故函数的单调递减区间为(,0)-∞和(0,)+∞; 故选:A3.定义域为R 的函数()f x 满足:对任意的12,R x x ∈,有1212()(()())0x x f x f x -⋅->,则有( )A .(2)(1)(3)f f f -<<B .(1)(2)(3)f f f <-<C .(3)(2)(1)f f f <-<D .(3)(1)(2)f f f <<- 【答案】A【分析】利用函数的单调性,判断选项即可.【解析】定义域在R 上的函数()f x 满足:对任意的1x ,2x R ∈,有1212()(()())0x x f x f x -⋅->, 可得函数()f x 是定义域在R 上的增函数, 所以(2)f f -<(1)f <(3). 故选:A .4.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【解析】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B5.若函数()f x 在[],a b 上是增函数,对于任意的1x ,[]2,x a b ∈(12x x ≠),则下列结论不正确的是( )A .()()12120f x f x x x ->-B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()()()12f a f x f x f b ≤<≤D .()()12f x f x ≠ 【答案】C【分析】根据函数单调性的等价条件进行判断即可.【解析】解:由函数的单调性定义知,若函数()f x 在给定的区间上是增函数,则12x x -,与()()12f x f x -同号,由此可知,选项A ,B ,D 都正确. 若12x x >,则()()12f x f x >,故选项C 不正确. 故选:C.6.若()f x 是R 上的严格增函数,令()()13F x f x =++,则()F x 是R 上的( ) A .严格增函数B .严格减函数C .先是严格减函数后是严格增函数D .先是严格增函数后是严格减函数 【答案】A【分析】由函数的单调性的定义判断可得选项.【解析】解:因为()f x 是R 上的严格增函数,所以由复合函数单调性法则可得,()+1f x 也是R 上的严格增函数,所以()()13F x f x =++是R 上的严格增函数.故选:A.7.若函数()()2318f x x mx m =-+∈R 在()0,3上不单调,则m 的取值范围为( )A .02m ≤≤B .02m <<C .0m ≤D .2m ≥ 【答案】B【分析】要想在()0,3上不单调,则对称轴在()0,3内【解析】()()2318f x x mx m =-+∈R 的对称轴为32mx =,则要想在()0,3上不单调,则()30,32m∈,解得:()0,2m ∈ 故选:B8.若函数2()21f x x mx =+-在区间(1,)-+∞上是增函数,则实数m 的取值范围是( ) A .(,4]-∞-B .[4,)+∞C .[2,)+∞D .(,2]-∞- 【答案】B【分析】根据二次函数的性质可知,(1,),4m ⎡⎫-+∞⊆-+∞⎪⎢⎣⎭,即可解出.【解析】依题意可知,(1,),4m ⎡⎫-+∞⊆-+∞⎪⎢⎣⎭,所以14m-≤-,解得4m ≥. 故选:B .9.函数s ) A .3,2⎛⎤-∞ ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D【分析】首先求出函数的定义域,再由二次函数的性质以及复合函数的单调性即可求解.【解析】由230x x +≥得3x ≤-或0x ≥,即函数s (][),30,-∞-⋃+∞,又二次函数23t x x =+的图象的对称轴方程为32x =-,所以函数23t x x =+(x ∈(][),30,-∞-⋃+∞)在区间(],3-∞-上单调递减,在区间[)0,+∞上单调递增,又函数0)y t =≥为增函数,所以s (],3-∞-. 故选:D10.函数()41f x x x =++在区间1,22⎡⎤-⎢⎥⎣⎦上的最大值为( )A .103B .152C .3D .4 【答案】B【分析】利用换元法以及对勾函数的单调性求解即可.【解析】设1t x =+,则问题转化为求函数()41g t t t =+-在区间1,32⎡⎤⎢⎥⎣⎦上的最大值.根据对勾函数的性质,得函数()g t 在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,在区间[]2,3上单调递增,所以()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭.故选:B11.已知函数()f x 在[]0,1上单调递减,则实数a 的取值范围是( )A .(](,01,2022)-∞⋃B .(](,00,2022)-∞⋃C .(,0)(1,)-∞⋃+∞D .()(),00,1-∞⋃ 【答案】A【分析】利用换元法以及复合函数的单调性的法则进行处理.【解析】当a =0时,()f x =.当a >0时,设2022t ax =-,则函数y =2022t ax =-在区间[]0,1上单调递减,要使函数()f x =在[]0,1上单调递减,则10? 20220a a ->⎧⎨-≥⎩,解得12022a <≤.当a <0时,2022t ax =-在区间[]0,1上为增函数,要使函数()f x =在[]0,1上单调递减,则10?202200a a -<⎧⎨-⨯≥⎩,解得a <0.综上,a 的取值范围为(](,01,2022)-∞⋃.故B ,C ,D 错误. 故选:A.12.若函数()()2,12225,1a x ax x f x a x x ⎧-+≥⎪=⎨⎪+-<⎩在R 上单调递增,则实数的取值范围为( )A .81,5⎛⎫- ⎪⎝⎭B .81,5⎛⎤- ⎥⎝⎦C .(]1,2-D .()1,2-【答案】B【分析】根据分段函数、二次函数、一次函数的单调性可建立不等式求解.【解析】由题意122201232a a aa ⎧≤⎪⎪+>⎨⎪⎪-≥-⎩,解得815a -<≤,故选:B二、多选题13.(多选)下列函数中,满足“1x ∀,()20x ∞∈+,,都有1212()()0f x f x x x -<-”的有( )A .()1f x x =-B .()31f x x =-+C .()243f x x x =++D .()2f x x=【答案】BD【解析】由题设条件可得()f x 应为()0,∞+上的增函数,逐项判断后可得正确的选项. 【解析】因为1x ∀,()20,x ∈+∞,都有1212()()0f x f x x x -<-,故()f x 应为()0,∞+上的减函数.对于A ,当1x > ,()1f x x =-,则()f x 在()1,+∞上为增函数,故A 错误. 对于B ,()31f x x =-+在()0,∞+上为减函数,故B 正确.对于C ,对称轴20x =-<,故()243f x x x =++在()0,∞+上为增函数,故C 错误.对于D ,()2f x x=在()0,∞+上为减函数,故D 正确. 故选:BD .14.(多选)若函数1y ax =+在[]1,2上的最大值与最小值的差为2,则实数a 的值可以是( )A .2B .2-C .1D .0 【答案】AB【分析】根据一次函数的单调性分0a >和0a <两种情况分别求解最大值和最小值,列出方程得解.【解析】依题意,当0a >时,1y ax =+在2x =取得最大值,在1x =取得最小值,所以()2112a a +-+=,即2a =;当0a <时,1y ax =+在1x =取得最大值,在2x =取得最小值,所以()1212a a +-+=,即2a =-.故选AB .【点睛】本题考查一次函数的单调性和最值求解,属于基础题.15.(多选)已知函数()()22101x x f x x x -+=≥+,则( )A .()f x 最小值为12B .()f x 在[]0,1上是增函数C .()f x 的最大值为1D .()f x 无最大值 【答案】AC【分析】分0x =和0x ≠两种情况,把函数转化为()111f x x x=-+,利用对勾函数的性质和基本不等式求函数的最值与值域即可.【解析】()2221111x x xf x x x -+==-++, 当0x =时,()1f x =;当0x >时,()111f x x x=-+,此时()f x 在()0,1是减函数,在[)1,+∞上是增函数, 所以()()min 112f x f ==,故A 正确,B 错误; 当0x >时,12x x+≥,当且仅当1x =时取等号,所以11012x x<≤+,所以11112x x≤-<1+,此时()112f x ≤<,又0x =时,()1f x =,所以()f x 的值域为1,12⎡⎤⎢⎥⎣⎦,故C 正确,D 错误.故选:AC . 16.设函数()21,21,ax x af x x ax x a-<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( ) A .2B .-1C .0D .1 【答案】BC【分析】分0a =,0a >和0a <三种情况讨论,结合二次函数的性质,从而可得出答案.【解析】解:当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.三、填空题17.若函数()22f x x x =-,则()1f 、()1f -、f 之间的大小关系为______.【答案】()()11f f f <<-##()()11f f f ->>【分析】结合二次函数开口和对称轴,判断自变量与对称轴距离,进而判断大小.【解析】因为()()22211f x x x x =---=,因为()f x 开口向上,所以()1f 最小,又()1110,1--=∈,所以()1f f->,所以()()11f f f <<-.故答案为:()()11f f f <<-18.已知函数()23f x x =-,[]1,2x ∈-,实数a ,b 满足()()10f a f b +-=,则()1a b -的最大值为______.【答案】94##214##2.25【分析】依题意可得4a b +=,再根据函数的定义域求出a ,b 的取值范围,则()239124a b a ⎛⎫- ⎪⎭-=-+⎝,[]1,2a ∈,根据二次函数的性质计算可得.【解析】解:∵函数()23f x x =-,[]1,2x ∈-,实数a ,b 满足()()10f a f b +-=, ∴()232130a b -+--=,可得4a b +=,[]1,2a ∈-,[]0,3b ∈,又4b a =-,∴[]1,2a ∈,则()()2391324a b a a a -=-=--⎫ ⎪⎭+⎛⎝,[]1,2a ∈, 所以当32a =时,()max 914a b ⎡⎤⎣⎦-=,即32a =,52b =时,()1a b -取得最大值94. 故答案为:9419.已知函数()3f x x a =-+的增区间是[)2,+∞,则实数a 的值为___________. 【答案】6【分析】去绝对值将()3f x x a =-+转化为分段函数,再根据单调性求解a 的值即可.【解析】因为函数()3,33,3a x a x f x a x a x ⎧-+≤⎪⎪=⎨⎪->⎪⎩,故当3a x ≤时,()f x 单调递减,当3a x >时,()f x 单调递增. 因为函数()3f x x a =-+的增区间是[)2,+∞, 所以23a =,所以6a =. 故答案为:6.20.已知∈a R ,函数()4f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是__________【答案】9-,2⎛⎤∞ ⎥⎝⎦【解析】[][]41,4,4,5x x x ∈+∈,分类讨论: ①当5a ≥时,()442f x a x a a x x x=--+=--, 函数的最大值9245,2a a -=∴=,舍去;②当4a ≤时,()445f x x a a x xx=+-+=+≤,此时命题成立; ③当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题利用基本不等式,由[]1,4x ∈,得[]44,5x x+∈,通过对解析式中绝对值符号的处理,进行有效的分类讨论:①5a ≥;②4a ≤;③45a <<,问题的难点在于对分界点的确认及讨论上,属于难题.解题时,应仔细对各种情况逐一进行讨论.四、解答题21.指出下列函数的单调区间: (1)13y x =-; (2)12y x=+; (3)21y x =+; (4)21y x x =-+-.【答案】(1)单调递减区间为()-∞+∞,,没有单调递增区间;(2)单调递减区间为()0-∞,和()0+∞,,没有单调递增区间;(3)单调递减区间为()0-∞,,单调递增区间为()0+∞,;(4)单调递减区间为12⎛⎫+∞ ⎪⎝⎭,,单调递增区间为12⎛⎫-∞ ⎪⎝⎭,. 【分析】(1)根据一次函数的单调性,由30-<,可得出函数的单调区间; (2)根据反比例函数的单调性可得出函数的单调区间; (3)由二次函数的图象和其对称轴可得出函数的单调区间; (4)由二次函数的图象和其对称轴可得出函数的单调区间.【解析】解:(1)函数13y x =-的定义域为()-∞+∞,,因为30-<,所以13y x =-在()-∞+∞,上单调递减,所以13y x =-单调递减区间为()-∞+∞,,没有单调递增区间; (2)函数12y x=+的定义域为()()00-∞∞,,+,因反比例函数1y x=在()0-∞,和()0+∞,上单调递减,所以12y x=+单调递减区间为()0-∞,和()0+∞,,没有单调递增区间; (3)因为函数21y x =+的定义域为()-∞+∞,,它的图象是开口向上的抛物线,对称轴为0x =,所以21y x =+的单调递减区间为()0-∞,,单调递增区间为()0+∞,; (4)函数21y x x =-+-的定义域为()-∞+∞,,它的图象是开口向下的抛物线,对称轴为12x =,所以21y x x =-+-的单调递减区间为12⎛⎫+∞ ⎪⎝⎭,,单调递增区间为12⎛⎫-∞ ⎪⎝⎭,. 22.(1)在定义域[],a b 上单调递减的函数()f x ,最大值是多少? (2)若()f x 在[],a u 上单调递减而在[],u b 上单调递增,最小值是多少? 【答案】(1)()()max f x f a =;(2)()()min f x f u =. 【分析】(1)根据单调递减函数的性质进行求解即可;(2)根据函数的单调性进行求解即可.【解析】(1)因为()f x 是定义域[],a b 上单调递减的函数, 所以()()max f x f a =;(2)因为()f x 在[],a u 上单调递减而在[],u b 上单调递增, 所以()()min f x f u =.23.设a 为实数,已知函数()y f x =在定义域R 上是减函数,且(1)(2)f a f a +>,求a 的取值范围. 【答案】()1,+∞【分析】直接根据函数的单调性可得12a a +<,从而可得出答案.【解析】解:因为函数()y f x =在定义域R 上是减函数,且(1)(2)f a f a +>, 所以12a a +<,解得1a >, 所以a 的取值范围()1,+∞. 24.已知函数f (x )=12x x ++,证明函数在(-2,+∞)上单调递增. 【答案】证明见解析.【分析】∀x 1,x 2∈(-2,+∞),利用作差法和0比可得函数值大小进而可证得. 【解析】证明:∀x 1,x 2∈(-2,+∞),且x 1>x 2>-2, f (x )=11122x x x +=-++ 则f (x 1)-f (x 2)=212x -+112x + =1212-(2)(2)x x x x ++,因为x 1>x 2>-2,所以x 1-x 2>0,x 1+2>0,x 2+2>0,所以1212-(2)(2)x x x x ++>0,所以f (x 1)>f (x 2),所以f (x )在(-2,+∞)上单调递增.25.设函数()f x 的定义域为()4,5-,如果()f x 在()4,0-上是减函数,在()0,5上也是减函数,能不能断定它在()4,5-上是减函数?如果()f x 在()4,0-上是增函数,在[)0,5上也是增函数,能不能断定它在()4,5-上是增函数? 【答案】见解析【分析】根据反例可判断两个结论的正误.【解析】取()3,405,05x x f x x x -+-<≤⎧=⎨-<<⎩,则()f x 在()4,-0上是减函数,在()0,5上也是减函数, 但()()0.2 3.2,0.01 4.99f f -==,()()0.20.01f f -<, 因此不能断定()f x 在()4,5-上是减函数. 若取()5,403,05x x f x x x +-<<⎧=⎨+≤<⎩,则()f x 在()4,-0上是增函数,在[)0,5上也是增函数,但()()0.2 4.8,0.01 3.01f f -==,()()0.20.01f f ->, 因此不能断定()f x 在()4,5-上是增函数.26.已知函数f (x )=[](],0,24,2,4x x x x ⎧∈⎪⎨∈⎪⎩;(1)在图中画出函数f (x )的大致图象.(2)写出函数f (x )的单调递减区间. 【答案】(1)答案见解析;(2)[2,4].【分析】(1)根据分段函数的解析式可画出图象; (2)根据图象观察可得答案.【解析】(1)函数f (x )的大致图象如图所示.(2)由函数f (x )的图象得出,函数的单调递减区间为[2,4].27.函数()f x ,()(),,x a b b c ∈⋃的图像如图所示,有三位同学对此函数的单调性作出如下的判断:甲说函数()f x 在定义域上是增函数;乙说函数()f x 在定义域上不是增函数,但有增区间;丙说函数()f x 的增区间有两个,分别为(),a b 和(),b c .请你判断他们的说法是否正确. 【答案】甲的说法是错误的;乙的说法是正确的,丙的说法是正确的.【分析】根据函数图象,应用数形结合的思想直接判断甲、乙、丙说法的正误. 【解析】甲的说法是不正确的,乙的说法是正确的,丙的说法是正确的.若取120x b x c <<<<(如上图),则12y y >,与甲的说法矛盾, 故甲的说法是错误的;由甲的说法的错误可知:乙的说法是正确的,这两个增区间分别是(),a b 和(),b c , ∴丙的说法是正确的.28.画出函数2()1f x x x =-++(11x -剟)的图象,并根据图象回答下列问题: (1)当12112x x -<剟时,比较()1f x 与()2f x 的大小; (2)是否存在0[1,1]x ∈-,使得()0 2f x =-? 【答案】(1)()1f x <()2f x ;(2)不存在.【分析】(1)根据图象得到函数的单调性,即得解; (2)根据函数的最小值判断得解. 【解析】(1)函数的图象如图所示,当12112x x -<剟时,由于函数单调递增,所以()1f x <()2f x ; (2)由图得当1x =-时,函数取到最小值1-, 所以不存在0[1,1]x ∈-,使得()0 2f x =-.29.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【答案】(1)f (x )=x 2-x +1;(2)m <-1.【分析】(1)设f (x )=ax 2+bx +c (a ≠0),则由f (0)=1可求出c ,由f (x +1)-f (x )=2x 可求出,a b ,从而可求出函数的解析式,(2)将问题转化为x 2-3x +1-m >0在[-1,1]上恒成立,构造函数g (x )=x 2-3x +1-m ,然后利用二次函数的性质求出其最小值,使其最小值大于零即可求出实数m 的取值范围【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1, ∴c =1,∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴220a a b =⎧⎨+=⎩,∴11a b =⎧⎨=-⎩,∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =3()2x -2-54-m ,其对称轴为x =32, ∴g (x )在区间[-1,1]上是减函数,∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.30.已知函数()()a f x x a R x=+∈(1)当1a =,证明函数在()0,1上单调递减;(2)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()371,12f x ⎡⎤∈⎢⎥⎣⎦,求a 的值. 【答案】(1)证明见解析 (2)14a =【分析】(1)利用证明函数单调性的定义()12,0,1x x ∀∈,由1201x x <<<,()()120f x f x ->,可证明函数在()0,1上单调递减.(2)通过讨论参数a ,分别求出0a =,0a <,0a >时()f x 的值即可. (1)证明:若1a =,则()1f x x x=+()12,0,1x x ∀∈,1201x x <<<()()12121212121111f x f x x x x x x x x x -=+--=-+- ()()1212211212121x x x x x x x x x x x x ---=-+= 当()120,1x x ∈时,1201x x <<,所以()()12121210x x x x x x -->所以,函数在()0,1上单调递减. (2)①当0a =时,()f x x =,不满足条件;②当0a <时,易知函数()f x 在定义域内单调递增,则满足:112f ⎛⎫= ⎪⎝⎭,()37312f =联立()11237312f f ⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,即11122373312a a ⎧+=⎪⎪⎨⎪+=⎪⎩解得14136a a ⎧=⎪⎪⎨⎪=⎪⎩,不满足条件;③当0a >时,令120x x <<<()()()()121212121212x x a a af x f x x x x x x x x x --=+--=- 所以()()12f x f x >,函数在(上单调递减;同理可证,函数在)+∞上单调递增, 所以,函数()f x最小值应在x =当102<时,函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为12f ⎛⎫⎪⎝⎭,所以112f ⎛⎫= ⎪⎝⎭,解得14a =,符合条件;当3<函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为()3f ,所以()31f =,解得6a =-,不符合条件;当132≤时,函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为f,所以1f =,解得:14a =,不符合条件; 综上,14a =.31.已知函数()f x 的定义域是(0,)+∞,对定义域的任意12,x x 都有1212()()()f x x f x f x =+,且当1x >时,()0f x >,(4)1f =;(1)求证:1()()f x f x =-;(2)试判断()f x 在(0,)+∞的单调性并用定义证明你的结论; (3)解不等式1(1)(1)2f x f x -++<- 【答案】(1)证明见解析 (2)增函数;证明见解析(3)【分析】(1)使用赋值法,先令121x x ==求得(1)f ,然后再令121,x x x x==可证;(2)先设120x x >>,然后用21x 代换1212()()()f x x f x f x =+中的2x ,结合1x >时,()0f x >可证;(3)先用赋值法求得11()22f =-,然后将不等式转化为21(1)()2f x f -<,利用单调性去掉函数符号,结合定义域可解. (1)令121x x ==,得(1)(1)(1)f f f =+,解得(1)0f = 再令121,x x x x ==,则1()()(1)0f x f f x+== 所以1()()f x f x =- (2)()f x 在(0,)+∞上为增函数,证明如下:设120x x >>,则121x x >,因为1x >时,()0f x > 所以11221()()()0xf x f f x x +=>由(1)知221()()f x f x =- 所以1221()()()f x f f x x >-= 所以()f x 在(0,)+∞上为增函数.(3)因为(4)1f =,所以(2)(2)(4)1f f f +==,得1(2)2f =, 又因为11(2)()22f f =-=, 所以11()22f =-, 所以1(1)(1)2f x f x -++<-⇔21(1)()21010f x f x x ⎧-<⎪⎪->⎨⎪+>⎪⎩由上可知,()f x 是定义在(0,)+∞上为增函数所以,原不等式⇔21121010x x x ⎧-<⎪⎪->⎨⎪+>⎪⎩,解得1x <<. 32.已知函数ty x x=+有如下性质:若常数0t >,则该函数在(上单调递减,在)+∞上单调递增.(1)已知()2412321--=+x x f x x ,[]0,1x ∈,利用上述性质,求函数()f x 的单调区间和值域; (2)对于(1)中的函数()f x 和函数()2g x x a =--,[]0,1x ∈,若对任意[]10,1x ∈,总存在[]20,1x ∈,使得()()21g x f x =成立,求实数a 的值.【答案】(1)()f x 的单调递减区间为10,2⎡⎤⎢⎥⎣⎦,单调递增区间为1,12⎡⎤⎢⎥⎣⎦,值域为[]4,3--. (2)32a =【分析】(1)令21t x =+,[]1,3t ∈,将()f x 化为()48h t t t =+-,由对勾函数的单调性可得()f x 的单调区间和值域(2)由题意可得()f x 的值域是()g x 的值域的子集,结合(1)的值域和一次函数的单调性可得()g x 的值域,可得a 的不等式,解不等式可得所求范围 (1)()2412342182121x x y f x x x x --===++-++. 设21u x =+,[]0,1x ∈,则48y u u =+-,[]1,3u ∈.由已知性质,得当12u ≤≤,即102x ≤≤时,()f x 单调递减,所以()f x 的单调递减区间为10,2⎡⎤⎢⎥⎣⎦; 当23u ≤≤,即112x ≤≤时,()f x 单调递增,所以()f x 的单调递增区间为1,12⎡⎤⎢⎥⎣⎦. 由()03f =-,142f ⎛⎫=- ⎪⎝⎭,()1113f =-,得()f x 的值域为[]4,3--. (2)因为()2g x x a =--在[]0,1上单调递减, 所以()[]12,2g x a a ∈---.由题意,得()f x 的值域是()g x 的值域的子集, 所以12423a a --≤-⎧⎨-≥-⎩,所以32a =.。

高一数学复习知识点讲解专题训练21---函数的单调性

高一数学复习知识点讲解专题训练21---函数的单调性

A.f(a)>f(2a)
B.f(a2)<f(a)
C.f(a2+a)<f(a)
D.f(a2+1)<f(a2)
答案 D
解析 因为 f(x)是区间(-∞,+∞)上的减函数, 且 a2+1>a2, 所以 f(a2+1)<f(a2).故选 D.
b 5.已知函数 y=ax 和 y=-x在(0,+∞)上都是减函数,则函数 f(x)=bx+a 在 R 上是
数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用
“和”来表示;在单调区间 D 上函数要么是增函数,要么是减函数,不能二者兼有.
1 跟踪训练 2 (1)函数 y=x-1的单调递减区间是________.
答案 (-∞,1),(1,+∞)
1
1
解析 方法一 y=x-1的图象可由 y=x的图象向右平移一个单位得到,如图,
ax1(x2-1)-ax2(x1-1) = (x1-1)(x2-1)
a(x2-x1) =(x1-1)(x2-1) 因为 x1,x2∈(-1,1)且 x1<x2, 所以 x2-x1>0,x1-1<0,x2-1<0,
2 / 15
所以(x1-x21-)(xx21-1)>0, 当 a>0 时,f(x1)-f(x2)>0,即 f(x1)>f(x2), 所以 f(x)在(-1,1)上单调递减, 当 a<0 时,f(x1)-f(x2)<0, 即 f(x1)<f(x2), 所以 f(x)在(-1,1)上单调递增. 综上,当 a=0 时,f(x)在(-1,1)上不具有单调性; 当 a>0 时,f(x)在(-1,1)上单调递减; 当 a<0 时,f(x)在(-1,1)上单调递增. 反思感悟 利用定义判断或证明函数单调性的步骤

高一数学函数知识点总结(5篇)

高一数学函数知识点总结(5篇)

高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一数学必修一函数知识点

高一数学必修一函数知识点

【导语】考试是检测学⽣学习效果的重要⼿段和⽅法,考前需要做好各⽅⾯的知识储备,对于数学更加要进⾏复习归纳。

下⾯就让给⼤家分享⼀些⾼⼀数学必修⼀函数知识点总结吧,希望能对你有帮助!⾼⼀数学必修⼀函数知识点总结篇⼀1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可⽤于求参数);(3)判断函数奇偶性可⽤定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题⼀定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或⽅程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中⼼(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中⼼(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的⽅程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2⽅程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成⽴,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成⽴,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像⼜关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像⼜关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.⽅程k=f(x)有解 k∈D(D为f(x)的值域);6.a≥f(x) 恒成⽴ a≥[f(x)]max,; a≤f(x) 恒成⽴ a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由⼝诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不⼀定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地⽤定义证明函数的单调性,求反函数,判断函数的奇偶性。

高一数学复习考点题型专题讲解9 二次函数与一元二次方程、不等式

高一数学复习考点题型专题讲解9 二次函数与一元二次方程、不等式

高一数学复习考点题型专题讲解 第9讲 二次函数与一元二次方程不等式一、单选题1.已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥ 【答案】A【分析】由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 【解析】由二次函数图象知:20ax bx c ++>有21x -<<. 故选:A2.已知关于x 的不等式2243x x a a -+≥-在R 上有解,则实数a 的取值范围是( ) A .{}14a a -≤≤B .{}14a a -<< C .{4a a ≥或}1a ≤-D .{}41a a -≤≤ 【答案】A【分析】由题意知22430x x a a -+-≤在R 上有解,等价于0∆≥,解不等式即可求实数a 的取值范围.【解析】因为关于x 的不等式2243x x a a -+≥-在R 上有解, 即22430x x a a -+-≤在R 上有解,只需2243y x x a a =-+-的图象与x 轴有公共点, 所以()()224430a a ∆=--⨯-≥,即2340a a --≤,所以()()410a a -+≤, 解得:14a -≤≤,所以实数a 的取值范围是{}14a a -≤≤, 故选:A.3.设x ∈R ,则“(1)(2)0x x -+≥”是“|2|1x -<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【分析】根据充分必要条件的定义判断.【解析】(1)(2)0x x -+≥,则2x -≤或1≥x ,不满足21x -<,如2x =-,不充分,21x -<时,13x <<,满足(1)(2)0x x -+≥,必要性满足.应为必要不充分条件. 故选:B .4.不等式()()222240a x a x -+--≥的解集为∅,则实数a 的取值范围是( )A .{2|a a <-或2}a ≥B .{}22a a -<<C .{}22a a -<≤D .{}2a a <【答案】C【分析】根据一元二次不等式的解集,讨论2a =、2a <结合判别式求a 的范围.【解析】因为不等式()()222240a x a x -+--≥的解集为∅,所以不等式()()222240a x a x -+--<的解集为R .当20a -=,即2a =时,40-<,符合题意.当20a -<,即2a <时,()()2224420a a ⎡⎤∆=-+⨯⨯-<⎣⎦,解得22a -<<. 综上,实数a 的取值范围是{}22a a -<≤. 故选:C5.关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是( )A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭, C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭, 【答案】C【分析】由题知210mx mx m ++-<对R x ∈恒成立,进而分0m =和0m ≠两种情况讨论求解即可.【解析】解:因为不等式22(11)m x mx m x +<+++对R x ∈恒成立, 所以210mx mx m ++-<对R x ∈恒成立, 所以,当0m =时,10-<对R x ∈恒成立. 当0m ≠时,由题意,得2Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <, 综上,m 的取值范围为(]0-∞,. 故选:C6.若存在x 使得21y x mx =-+-有正值,则m 的取值范围是( ) A .2m <-或2m >B .22m -<<C .2m ≠±D .13m << 【答案】A【分析】根据二次函数的图象,结合判别式,即可求解. 【解析】21y x mx =-+-是开口向下的抛物线,若存在x 使0y >,则()()24110m ∆=-⨯-⨯->,解得:2m >或2m <-.故选:A7.已知22280x ax a --≤(0a >)的解集为A ,且{}11x x A -<<⊆,则实数a 的取值范围是( )A .12a a ⎧⎫≥⎨⎬⎩⎭B .14a a ⎧⎫≥⎨⎬⎩⎭C .1142aa ⎧⎫<<⎨⎬⎩⎭D .1142a a ⎧⎫≤≤⎨⎬⎩⎭【答案】A【分析】根据题意,先求出集合A ,再根据包含关系,即可求解.【解析】由()()2228240x ax a x a x a --=+-≤且0a >,得2280ax a x -≤-(0a >)的解集{}24A x a x a =-≤≤.因为{}11x x A -<<⊆,所以2141a a -≤-⎧⎨≥⎩,解得12a ≥.故选:A .8.若对任意实数0,0x y >>,不等式()x a x y +恒成立,则实数a 的最小值为( )A1C 1D【答案】D【分析】分离变量将问题转化为a ≥0,0x y >>恒成立,进而求出(0)t t >及1(1)t m m +=>,然后通过基本不等式求得答案. 【解析】由题意可得,a ≥0,0x y >>1x=+(0)t t >2111t t x+=++,再设1(1)t m m +=>,则22111(1)1t m t m x+===++-+212222m m m m m =-++-12≤==,当且仅当21m m ==时取得“=”.所以a ≥a故选:D.9.已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为() A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+ C .(-∞,1)(3⋃,)∞+D .(1,3) 【答案】C【分析】把不等式看作是关于a 的一元一次不等式,然后构造函数()2(2)44f a x a x x =-+-+,由不等式在[1-,1]上恒成立,得到(1)0(1)0f f ->⎧⎨>⎩,求解关于a 的不等式组得x 得取值范围.【解析】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x \的取值范围为()(),13,-∞⋃+∞.故选:C .10.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( )A .1-B .4-C .4-或1D .1-或4 【答案】A【分析】()2222βαααββ=+-⋅+,利用韦达定理可得答案.【解析】关于x 的方程()22210x m x m m +-+-=有两个实数根,()()222141440∴∆=--⨯⨯-=-+⎡⎤⎣⎦m m m m …, 解得:1m …,关于x 的方程()22210x m x m m +-+-=有两个实数根α,β,2(1)m αβ∴+=--,2m m αβ⋅=-,()()()22222221212αβαβαβ∴+=+-⋅=----=⎡⎤⎣⎦m m m ,即2340m m --=,解得:1m =-或4(m =舍去). 故选:A.11.已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是( ) A .(5,4)(4,)--+∞B .(5,)-+∞ C .(5,4)--D .(4,2)(4,)--+∞ 【答案】C【分析】令()2(2)5m f x m x x =+-+-,根据二次方程根的分布可得式子()Δ022220m f >⎧⎪-⎪>⎨⎪>⎪⎩,计算即可.【解析】令()2(2)5m f x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或 则54m -<<-,即(5,4)m ∈-- 故选:C12.已知不等式220x bx c -++>的解集是{}|13x x -<<,若对于任意{}|10x x x ∈-≤≤,不等式224x bx c t -+++≤恒成立,则t 的取值范围是( ) A .{}|2t t ≤B .{}|2t t ≤-C .{}|4t t ≤-D .{}|4t t ≤ 【答案】B【分析】先根据220x bx c -++>的解集是{}|13x x -<<可得b ,c 的值,然后不等式224x bx c t -+++≤恒成立,分离参数转化最值问题即可求解.【解析】由题意得1-和3是关于x 的方程220x bx c -++=的两个实数根,则201830b c b c --+=⎧⎨-++=⎩,解得46b c =⎧⎨=⎩,则222246x bx c x x -++=-++,由224x bx c t -+++≤得2242t x x ≤--,当10x -≤≤时,()2min2422xx --=-,故2t ≤-.故选:B.二、多选题13.下列结论错误的是( )A .若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为RB .不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0C .若关于x 的不等式ax 2+x -1≤0的解集为R ,则a ≤-14D .不等式1x>1的解集为x <1 【答案】ABD【分析】根据不等式性质对选项一一判断即可. 【解析】A 选项中,只有a >0时才成立; B 选项当a =b =0,c ≤0时也成立;C 选项x 的不等式ax 2+x -1≤0的解集为R ,则0,140a a <∆=+≤,得a ≤-14,正确; D 选项1x>1的解集为01x <<. 故选:ABD14.关于x 的不等式22280x ax a --<的解集为{}12x x x x <<,且2115x x -=,则=a ( )A .52-B .154-C .52D .152【答案】AC【分析】由题意知1x ,2x 是方程22280x ax a --=的两根,利用韦达定理可求得12x x +,12x x ,再根据()()222112124x x x x x x -=+-即可得出答案.【解析】解:由题意知1x ,2x 是方程22280x ax a --=的两根,所以122x x a +=,2128x x a =-, 则()()22222211212443236x x x x x x a a a -=+-=+=. 又2115x x -=,所以236225a =,所以52a =±. 故选:AC.15.已知关于x 的一元二次方程(3a 2+4)x 2-18ax +15=0有两个实根x 1,x 2,则下列结论正确的有( )A.a ≥a ≤.121165a x x += C.12x x -=.12212155ax x x ax x x -=-- 【答案】ABD【分析】利用判别式和韦达定理可判断各选项中的等式或不等式是否成立,从而可得正确的选项.【解析】因为()223418150a x ax +-+=有两个不等式的实根,所以()2232460340a a ∆=-⨯+>,故253a ≥,所以a ≥a ≤故A 正确.由韦达定理可得1212221815,3434a x x x x a a +==++,所以12121211186155x x a a x x x x ++===,故B 正确.12x x -==,故C 错误. 因为121165a x x +=,所以1212556x x ax x +=,故112122555x ax x ax x x -=-, 若10x =,则()22340180150a a +-⨯+=即150=,矛盾,故10x ≠.若1210ax x x -=,则210ax -=,故21x a =,即223418150a a +-+=, 故22343a a +=,矛盾.所以12212155ax x x ax x x -=--,故D 成立.故选:ABD.【点睛】本题考查一元二次方程的有解问题,此类问题一般利用判别式和韦达定理来处理,本题属于中档题.16.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下列选项中结论正确的是( ) A .224a b -≤ B .214a b+≥C .若不等式20x ax b +-<的解集为{}12x x x x <<,则120x x >D .若不等式2x ax b c ++<的解集为{}12x x x x <<,且124x x -=,则1c = 【答案】AB【分析】由题意,方程20(0)x ax b a ++=>有且只有一个根,所以240a b ∆=-=,即240a b =>,再利用基本不等式和不等式的性质,即可求解.【解析】解:由题意,方程20(0)x ax b a ++=>有且只有一个根,所以240a b ∆=-=,即240a b =>,对A :224a b -≤等价于2440b b -+≥,显然2(2)0b -≥,所以A 选项正确;对B :21144a b b b +=+≥,故B 选项正确;对C :因为不等式20x ax b +-<的解集为()12,x x ,所以120x x b =-<,所以C 选项错误; 对D :因为不等式2x ax b c ++<的解集为()12,x x ,且124x x -=, 则方程20x ax b c ++-=的两根为12,x x ,所以124x x =====-, 所以4c =,故D 选项错误. 故选:AB.17.已知关于x 的不等式23344a x xb ≤-+≤,下列结论正确的是( )A .当1a b <<时,不等式23344a x x b ≤-+≤的解集为∅B .当2a =时,不等式23344a x xb ≤-+≤的解集可以为{|}xc xd ≤≤的形式 C .不等式23344a x x b ≤-+≤的解集恰好为{|}x a x b ≤≤,那么43b = D .不等式23344a x xb ≤-+≤的解集恰好为{|}x a x b ≤≤,那么4b a -= 【答案】AD【分析】A :分析函数23()344f x x x =-+的最值与a ,b 进行比较即可;B :在同一直角坐标系中,作出函数23344y x x =-+的图象以及直线y a =和直线y b =,由图象分析,即可判断选项BCD :利用23()(2)14f x x =-+的图象与对应不等式的关系解答即可; 【解析】解:设23()344f x x x =-+,x ∈R ,则23()(2)14f x x =-+;对于A :∵()1f x …,∴当1a b <<时,不等式23344a x xb -+剟的解集为∅,所以A 正确;对于B :在同一平面直角坐标系中作出函数y =34x 2-3x +4=34(x -2)2+1的图象及直线y =a 和y =b ,如图所示:由图知,当a =2时,不等式23344a x xb ≤-+≤的解集为{}{}A C D B xx x x x x x x ≤≤⋃≤≤∣∣的形式,故B 错误;对于CD :由()f x 的图象知,若不等式的解集为连续不间断的区间,则1a …,且1b >;若解集为[a ,]b ,则f (a )f =(b )b =,且2b …, 因为23()(2)14f x x =-+,所以f (b )23(2)14b b =-+=,解得4b =或43b =,因为2b …,所以4b =,所以0a =,所以4b a -=, 所以C 错误、D 正确. 故选:AD18.早在古巴比伦时期,人们就会解一元二次方程.16世纪上半叶,数学家们得到了一元三次方程、一元四次方程的解法.研究过程中得到一个代数基本定理:任何一元n ()*n N ∈次复系数多项式方程()0f x =至少有一个复数根请借助代数基本定理解决下面问题:设实系数一元四次方程4320ax bx cx dx e ++++=(0)a ≠,在复数集C 内的根为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .1234bx x x x a+++=-B .123124134234c x x x x x x x x x x x x a+++=- C .1234e x x x x a=D .121314232434d x x x x x x x x x x x x a+++++= 【答案】AC【分析】由2341243()()()()a x x ax bx cx dx e x x x x x x ---++-++=,并展开右式即可判断各选项的正误.【解析】由题设知:2341243()()()()a x x ax bx cx dx e x x x x x x ---++-++=,∴2212432123434[()][()]a x x x x ax bx cx dx x x x x x e x x x -+++++=+-++, ∴432ax bx cx dx e ++++=43212341213231424341231241342341234[()()()]a x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -+++++++++-++++,∴1234b x x x x a +++=-,121323142434c x x x x x x x x x x x x a +++++=,123124134234d x x x x x x x x x x x x a+++=-,1234ex x x x a=. 故选:AC三、填空题19.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围是__________.【答案】{m |m ≥9或m ≤1}【分析】根据一元二次方程根的判别式,结合解一元二次不等式的方法进行求解即可. 【解析】由方程x 2+(m -3)x +m =0有实数解, ∴Δ=(m -3)2-4m ≥0, 即m 2-10m +9≥0, ∴(m -9)(m -1)≥0, ∴m ≥9或m ≤1.故答案为:{m |m ≥9或m ≤1}20.若“对于一切实数x ,()2110x a x +-+>”是“对于一切实数x ,2204mmx ax ++>”的充分条件,则实数m 的取值范围是______. 【答案】{}6m m ≥【分析】根据题意,结合不等式恒成立,分别表示出a 的范围,在结合充分条件的集合方法,即可处理.【解析】∵()2110x a x +-+>对x ∈R 恒成立,∴()2Δ140a =--<,解得13a -<<.又2204mmx ax ++>对x ∈R 恒成立,当0m ≤时不可能恒成立, ∴220Δ40m a m >⎧⎨=-<⎩,解得22m ma -<<. ∵“对于一切实数x ,()2110x a x +-+>”是“对于一切实数x ,2204mmx ax ++>”的充分条件,∴12320mmm ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得6m ≥.故答案为:{}6m m ≥.21.若存在实数[]1,2x ∈满足22x a x >-,则实数a 的取值范围是________. 【答案】(),8-∞【分析】先分离参数将不等式化为()22max a x x <+,再结合二次函数求最值即可.【解析】解:由题意可得,存在实数[]1,2x ∈时,22a x x <+令()22f x x x =+, []1,2x ∈即()max a f x <()22f x x x =+,对称轴为:212x =-=- 所以()22f x x x =+在[]1,2x ∈单调递增故()()222228max f x f ==+⨯=即8a <所以实数a 的取值范围为:(),8-∞ 故答案为:(),8-∞22.命题甲:集合{}2210,R M x kx kx x =-+=∈为空集;命题乙:关于x 的不等式()2140x k x +-+>的解集为R .若命题甲、乙中有且只有一个是真命题,则实数k 的取值范围是______. 【答案】()[)3,01,5-【分析】按照命题甲为真,命题乙为真,得到对应的k 的取值范围,然后由命题甲、乙中有且只有一个是真命题,分为甲真乙假和甲假乙真两种情况进行讨论,得到答案.【解析】命题甲:集合{}2210,R M x kx kx x =-+=∈为空集,即方程2210kx kx -+=没有实数解,当0k =时,方程变为10=,故无解,符合题意 当0k ≠时,2440k k ∆=-<,即01k <<, 综上命题甲为真,则01k ≤<.命题乙:关于x 的不等式()2140x k x +-+>的解集为R则()21160k ∆=--<,解得35k -<<, 所以命题乙为真,则35k -<<,因为命题甲、乙中有且只有一个是真命题, 所以当甲真乙假时,得013,k 5k k ≤<⎧⎨≤-≥⎩或,此时k ∈∅,当甲假乙真时,得0135k k k <≥⎧⎨-<<⎩或,即()[)3,01,5k ∈-综上所述,k 的取值范围为()[)3,01,5-.【点睛】本题考查复合命题的真假,二次函数的性质和分类讨论的思想,属于中档题. 23.研究问题:“已知关于x 的不等式ax 2-bx +c >0的解集为(1,2),解关于x 的不等式cx 2-bx +a >0”,有如下解法:由ax 2-bx +c >0⇒a -b 1x ⎛⎫⎪⎝⎭+c 21()x >0.令y =1x,则y ∈1,12⎛⎫ ⎪⎝⎭,所以不等式cx 2-bx +a >0的解集为1,12⎛⎫⎪⎝⎭.类比上述解法,已知关于x 的不等式k x a ++x b x c ++<0的解集为(-2,-1)∪(2,3),则关于x 的不等式1kx ax -+11bx cx --<0的解集为________.【答案】111,,1232⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭【分析】根据题意,将1x -替换x 可得所求的方程,并且可知1x-∈(-2,-1)∪(2,3),从而求出x 的解集.【解析】关于x 的不等式kx a ++x b x c++<0的解集为(-2,-1)∪(2,3), 用-1x 替换x ,不等式可以化为1k a x ⎛⎫-+ ⎪⎝⎭+11b x cx ⎛⎫-+ ⎪⎝⎭⎛⎫-+ ⎪⎝⎭=1kx ax -+11bx cx --<0,因为-1x∈(-2,-1)∪(2,3),所以12<x <1或-12<x <-13, 即不等式1kx ax -+11bx cx --<0的解集为11,23⎛⎫-- ⎪⎝⎭∪1,12⎛⎫ ⎪⎝⎭故答案为: 11,23⎛⎫-- ⎪⎝⎭∪1,12⎛⎫⎪⎝⎭【点睛】本题考查整体代换的思想,理解题意,将方程问题和不等式问题进行转化是解题的关键,本题属于中档题.24.已知a >b ,关于x 的不等式220ax x b ++≥对于一切实数x 恒成立,又存在实数0x ,使得20020ax x b ++=成立,则22a b a b+-最小值为_________.【答案】【分析】由220ax x b ++≥对于一切实数x 恒成立,可得0a >,且0∆≤;再由0x R ∃∈,使20020ax x b ++=成立,可得0∆≥,进而可得ab 的值为1,将22a b a b+-可化为()222a b a b a b a b+=-+--,利用基本不等式可得结果. 【解析】因为220ax x b ++≥对于一切实数x 恒成立, 所以0a >,且440ab ∆=-≤,所以1≥ab ;再由0x R ∃∈,使20020ax x b ++=成立,可得440ab ∆=-≥,所以1ab ≤, 所以1ab =,因为a b >,即0a b ->,所以()()22222a b ab a b a b a b a b a b-++==-+≥--- 当且仅当2a b a b-=-,即a b - 所以22a b a b+-的最小值为故答案为:四、解答题25.利用函数与不等式的关系,若不等式20ax bx c ++>的解集为()1,2,求不等式20cx bx a -+>的解集.【答案】11,2⎛⎫-- ⎪⎝⎭【分析】根据题意可得1和2是方程20ax bx c ++=的两个根,且0a <,则可得3,2b a c a =-=,代入不等式即可求出.【解析】因为不等式20ax bx c ++>的解集为()1,2, 所以1和2是方程20ax bx c ++=的两个根,且0a <,则1212b a c a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩,所以3,2b a c a =-=,不等式20cx bx a -+>化为2230ax ax a ++>, 即22310x x ++<,解得112x -<<-,所以不等式的解集为11,2⎛⎫-- ⎪⎝⎭.26.已知关于x 的不等式244x mx x m +>+-.(1)若对任意实数x ,不等式恒成立,求实数m 的取值范围; (2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围. 【答案】(1)(0,4) (2)()()(),00,22,-∞⋃⋃+∞【分析】(1)不等式整理成标准的一元二次不等式,由判别式∆<0可得参数范围; (2)不等式换成以m 为主元,为一次不等式,这样只要0m =和4m =时不等式都成立即可得x 的范围. (1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立 则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<, 即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4). (2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤,所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.27.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0. 【答案】(1)a =﹣1,b =2 (2)见解析【分析】(1)根据一元二次不等式的解集性质进行求解即可; (2)根据一元二次不等式的解法进行求解即可. (1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b aa a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0, 即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭, 当21a a-=-即1a =时,解集为{}1x x ≠-; 当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.28.已知不等式234ax x b -+>的解集为()(),12,-∞⋃+∞ (1)求a ,b 的值;(2)解不等式()2220ax ac x c -++<.【答案】(1)1a =,6b = (2)答案见解析【分析】(1)依题意可得1x =或2x =是方程2340ax x b -+-=的根,利用韦达定理得到方程组,解得即可;(2)由(1)可得原不等式可化为()(2)0x c x --<,再对参数c 分类讨论,即可得解; (1)解:因为不等式234ax x b -+>的解集为{|1x x <或}2x >, 所以1x =或2x =是方程2340ax x b -+-=的根,根据韦达定理312412ab a⎧=+⎪⎪⎨-⎪=⨯⎪⎩,解得1a =,6b = (2)解:由(1)可知不等式化为()2220x c x c -++<,即()(2)0x c x --<当2>c 时,不等式的解集为{}2x x c <<, 当2c =时,不等式的解集为∅, 当2c <时,不等式的解集为{}2x c x <<29.(1)若关于x 的不等式2210kx kx +-<的解集为312x x ⎧⎫-<<⎨⎬⎩⎭,求实数k 的值; (2)若当12x ≤≤时,关于x 的方程2210kx kx +-<有解,求实数k 的取值范围. 【答案】(1)13k =(2)1,3⎛⎫-∞ ⎪⎝⎭【分析】(1)根据一元二次不等式与一元二次方程的关系即可求解; (2)原问题等价于2max12k x x ⎛⎫<⎪+⎝⎭,[]1,2x ∈,然后利用二次函数的性质即可求解.(1)解:因为2210kx kx +-<的解集是312x x ⎧⎫-<<⎨⎬⎩⎭,所以32-,1是关于x 的方程2210kx kx +-=的两个根, 所以221110k k ⨯+⨯-=,解得13k =; (2)解:因为当12x ≤≤时,关于x 的方程2210kx kx +-<有解, 所以当12x ≤≤时,212k x x <+有解,即2max12k x x ⎛⎫< ⎪+⎝⎭因为二次函数22y x x =+在[]1,2上单调递增,所以()22min 22113x x +=⨯+=,所以2max 1132x x ⎛⎫=⎪+⎝⎭, 所以13k <,所以实数k 的取值范围为1,3⎛⎫-∞ ⎪⎝⎭.30.(1)若对于一切实数x ,210mx mx --<恒成立,求实数m 的取值范围; (2)若对于13x ≤≤,215mx mx m --<-+恒成立,求实数m 的取值范围. 【答案】(1){}40m m -<≤;(2)67m m ⎧⎫<⎨⎬⎩⎭.【分析】(1)根据题意,分0m =和0m ≠两种情况讨论,结合二次函数的图象与性质,即可求解;(2)将215mx mx m --<-+恒成立,转化为261m x x <-+对13x ≤≤恒成立,结合二次函数的图象与性质,即可求解.【解析】(1)当0m =时,不等式10-<恒成立;当0m ≠时,要使得对于一切实数x ,210mx mx --<恒成立,则满足240m m m <⎧⎨∆=+<⎩,解得40m -<<, 综上可得,实数m 的取值范围为{}40m m -<≤.(2)由不等式215mx mx m --<-+,可得()2160m x x -+-<,因为22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,所以261m x x <-+对13x ≤≤恒成立,令()21,[1,3]g x x x x =-+∈,可得()22131()24g x x x x =-+=-+,当3x =时,可得()max 7g x =,所以26617x x ≥-+,所以67m <,所以实数m 的取值范围为67m m ⎧⎫<⎨⎬⎩⎭.31.在x ∃∈R ①,2220x x a ++-=,②存在集合{24}A x x =<<,非空集合{}3B x a x a =<<,使得A B =∅这两个条件中任选一个,补充在下面问题中,并解答.问题:求解实数a ,使得命题{}:12p x x x ∀∈≤≤,20x a -≥,命题q :______都是真命题. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案不唯一,具体见解析【分析】若选条件①由命题p 为真,可得20x a -≥在12x ≤≤上恒成立,求出a 的范围,通过命题q 为真,求出a 的范围,然后列出不等式组求解即可.若选条件②由命题p 为真,可得20x a -≥在12x ≤≤上恒成立,求出a 的范围,通过命题q 为真,求出a 的范围,然后列出不等式组求解即可.【解析】若选条件①,由命题p 为真,可得20x a -≥在12x ≤≤上恒成立. 因为12{|}x x x ∈≤≤,所以214x ≤≤,所以1a ≤.由命题q 为真,则方程2220x x a ++-=有解. 所以()4420a ∆=--≥,所以1a ≥.又因为,p q 都为真命题,所以11a a ≤⎧⎨≥⎩,所以1a =.所以实数a 的值为1.若选条件②,由命题p 为真,可得20x a -≥在12x ≤≤上恒成立. 因为{}12x x x ∈≤≤,所以214x ≤≤.所以1a ≤.由命题q 为真,可得4a ≥或32a ≤,因为非空集合{|3}B x a x a =<<,所以必有0a >, 所以203a <≤或4a ≥,又因为,p q 都为真命题,所以12043a a a ≤⎧⎪⎨<≤≥⎪⎩或,解得203a <≤. 所以实数a 的取值范围是2|03a a ⎧⎫<≤⎨⎬⎩⎭.32.已知关于x 的不等式()22237320x a x a a +-++-<的解集为M .(1)若()2,5M =,求不等式()22237320x a x a a -----+≤的解集;(2)若M 中的一个元素是0,求实数a 的取值范围. 【答案】(1)(][),25,-∞⋃+∞(2)()3,1,2a ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭【分析】(1)根据()2,5M =是不等式()22237320x a x a a +-++-<的解集,得到25x <<,再根据两个不等式的关系求解;(2)将不等式()22237320x a x a a +-++-<转化为()()21230x a x a --+-< ,再根据M 中的一个元素是0,将x =0代入求解.(1)解:因为()2,5M =是不等式()22237320x a x a a +-++-<的解集,所以25x <<,不等式()22237320x a x a a -----+≤,即为()22237320x a x a a +-++-≥,所以2x ≤或5x ≥,所以不等式()22237320x a x a a -----+≤的解集是(][),25,-∞⋃+∞;(2)不等式()22237320x a x a a +-++-<转化为: ()()21230x a x a --+-< ,因为M 中的一个元素是0, 所以()()1230a a +->, 解得1a <-或 32a >, 所以实数a 的取值范围是 ()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭.33.为发展空间互联网,抢占6G 技术制高点,某企业计划加大对空间卫星网络研发的投入.据了解,该企业研发部原有100人,年人均投入a (0a >)万元,现把研发部人员分成两类:技术人员和研发人员,其中技术人员有x 名(x +∈N 且4575x ≤≤),调整后研发人员的年人均投入增加4x %,技术人员的年人均投入为225x a m ⎛⎫-⎪⎝⎭万元. (1)要使调整后的研发人员的年总投入不低于调整前的100人的年总投入,则调整后的技术人员最多有多少人?(2)是否存在实数m ,同时满足两个条件:①技术人员的年人均投入始终不减少;②调整后研发人员的年总投入始终不低于调整后技术人员的年总投入?若存在,求出m 的值;若不存在,说明理由.【答案】(1)75人 (2)存在,7【分析】(1)根据题意直接列出不等式可求解; (2)由条件可得2125x m ≥+,100325xm x ≤++,分别利用函数单调性和基本不等式即可求解. (1)依题意可得调整后研发人员人数为100x -,年人均投入为()14%x a +万元, 则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >) 解得075x ≤≤,又4575x ≤≤,x +∈N ,所以调整后的技术人员的人数最多75人; (2)假设存在实数m 满足条件.由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. 由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭, 两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭,整理得100325xm x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤,又因为4575x ≤≤,x +∈N ,所以当75x =时,2+125x取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,其范围为{}7.34.已知关于x 的不等式()2211x m x ->-.(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于[]2,2m ∈-,不等式恒成立,求实数x 的取值范围. 【答案】(1)不存在(2)⎝⎭【分析】(1)根据一元二次不等式的性质可得0m <且∆<0,解不等式即可; (2)更换主元,将m 看成自变量,转化成一次不等式恒成立问题,得到答案. (1)原不等式等价于2210mx x m -+-<,若对于任意实数x 恒成立,当且仅当0m <且()4410m m ∆=--<,即2010m m m <⎧⎨-+<⎩,此不等式组的解集为∅, 所以不存在实数m ,使不等式对任意实数x 恒成立. (2)设()()2121y x m x =---,当[]2,2m ∈-时,()()2121y x m x =---可看作关于m 的一次函数,其图象是线段,所以若对于[]2,2m ∈-,0y <恒成立,则当2m =或2m =-时,0y <恒成立,即2222102230x x x x ⎧--<⎨--+<⎩①②,由①x <<,由②,得x 或x >x <<所以实数x 的取值范围是⎝⎭. 35.(1)若关于x 的不等式23x ax a ->-的解集为R ,求实数a 的取值范围;(2)设0x y >>,且2xy =,若不等式220x ax y ay -++≥恒成立,求实数a 的取值范围. 【答案】(1)()6,2-;(2)(],4-∞.【分析】(1)根据题意得到()2430a a ∆=+-<,解得答案.(2)化简得到22x y a x y +≤-,根据题意得到()224x y x y x y x y+=-+--,利用均值不等式得到答案.【解析】(1)由题意知关于x 的不等式230x ax a --+>的解集为R ,所以()2430a a ∆=+-<,即24120a a +-<,所以62a -<<,即实数a 的取值范围是()6,2-.(2)由题意知不等式220x ax y ay -++≥恒成立,即 ()22x y a x y +≥-恒成立.因为0x y >>,22x y a x y +≤-,因为()()222244x y xy x yx y x y x y x y-++==-+≥---当且仅当4x y x y -=-,即1x =1y =- 所以实数a 的取值范围是(],4-∞.()f x a ≥ 有解,则max ()f x a ≥。

高一数学函数知识总结及例题

高一数学函数知识总结及例题

高一数学函数知识总结及例题高一数学函数知识总结及例题第一篇、复合函数问题一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、复合函数定义域问题:(一)例题剖析:(1)、已知f(x)的定义域,求fg(x)的定义域思路:设函数f(x)的定义域为D,即xD,所以f的作用范围为D,又f 对g(x)作用,作用范围不变,所以g(x)D,解得xE,E为fg(x)的定义域。

例1.设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为_____________。

解析:函数f(u)的定义域为(0,1)即u(0,1),所以f 的作用范围为(0,1)又f对lnx作用,作用范围不变,所以0lnx1解得x(1,e),故函数f(lnx)的定义域为(1,e)1,则函数ff(x)的定义域为______________。

x11解析:先求f的作用范围,由f(x),知x1x1例2.若函数f(x)即f的作用范围为xR|x1,又f对f(x)作用所以f(x)R且f(x)1,即ff(x)中x应满足x1f(x)1x1即1,解得x1且x21x1故函数ff(x)的定义域为xR|x1且x2(2)、已知fg(x)的定义域,求f(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,所以f的作用范围为E,又f对x作用,作用范围不变,所以xE,E为f(x)的定义域。

例3.已知f(32x)的定义域为x1,2,则函数f(x)的定义域为_________。

解析:f(32x)的定义域为1,2,即x1,2,由此得32x1,5所以f的作用范围为1,5,又f对x作用,作用范围不变,所以x1,5 即函数f(x)的定义域为1,5x2例4.已知f(x4)lg2,则函数f(x)的定义域为______________。

x82x2x20解析:先求f的作用范围,由f(x4)lg2,知2x8x82解得x44,f的作用范围为(4,),又f对x作用,作用范围不变,所以2x(4,),即f(x)的定义域为(4,)(3)、已知fg(x)的定义域,求fh(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,f的作用范围为E,又f对h(x)作用,作用范围不变,所以h(x)E,解得xF,F为fh(x)的定义域。

高一数学《函数》全章知识点整理

高一数学《函数》全章知识点整理

△情况 △ =b2-4ac
一元二次不等式解集
ax2+bx+c>0
ax2+bx+c<0
(a>0)
(a>0)
△ >0
x x x1或x x2
x x1 x x2


△ =0
x x x0


△ <0
R
1、已知函数 f ( x) 4x 2 mx 5 在区间 [ 2, ) 上是增函数,则 f (1) 的范围是(

、 1个
C 、 2个
D 、3个
()
y
y
2
2
1
1
O 12 x
O 1 2x
y 3 2 1
O 1 x
y
2 1 O 12 x
二、函数的解析式与定义域
1、求函数定义域的主要依据:
(1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义;
(3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于
与 g(x) 的单调性相同,则 y f g x 在 M 上是增函数。
1 判断函数 f ( x) x3 (x R) 的单调性。
2 例 函数 f (x) 对任意的 m, n R ,都有 f (m n) f ( m) f (n) 1 ,并且当 x 0时, f ( x) 1,
⑴求证: f ( x) 在 R 上是增函数;
注意点:(1)对映射定义的理解。 ( 2)判断一个对应是映射的方法。一对多不是映射,多对一是映射
2、函数 构成函数概念的三要素
①定义域②对应法则③值域
两个函数是同一个函数的条件:三要素有两个相同

高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)

高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)

高中数学必修第一册《一元二次函数、方程和不等式》期末复习专项训练一、单选题l. (2022·四川绵阳·高一期末〉下列结论正确的是(〉A.若的b,则。

c>bc c.若。

>b,则。

+c>b+cl I B.若α>b,则-〉-a D D.着。

>b,则。

2> b22.(2022·辽宁·新民市第一高级中学高一期末〉已知α<b<O,则(〉A.a2 <abB.ab<b2C.a1 <b1D.a2 >b i3.(2022·陕西汉中·高一期末〉若关于工的不等式,咐2+2x+m>O的解集是R,则m的取值范围是(〉A.(I, +oo)B.(0, I〕C.( -J, I)D.(J, +oo)4.(2022·广东珠海高一期末〉不等式。

+l)(x+3)<0的解集是(〉A.RB.②c.{对-3<x<-I} D.{xi x<-3,或x>-l}5. (2022·四川甘孜·高一期末〉若不等式似2+bx-2<0的解集为{xl-2<x<I},则。

÷b=( )A.-2B.OC.ID.26. (2022·湖北黄石·商一期末〉若关于X的不等式x2-ax’+7>。

在(2,7)上有实数解,则α的取值范围是(〉A.(唱,8)B.(叫8] c.(叫2./7) D.(斗)7.(2022·新疆乌市一中高一期末〉已知y=(x-m)(x-n)+2022(n> m),且α,β(α〈别是方程y=O的两实数根,则α,β,111,n的大小关系是(〉A.α<m<n<βC.m<α〈β<nB.m<α<n<βD.α<m<β<n8.(2022·浙江·杭州四中高一期末〉已失11函数y=κ-4+...2....(x>-1),当x=a时,y取得最小值b,则。

高一数学函数知识点归纳

高一数学函数知识点归纳

高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。

2. 定义域:能够输入到函数中的所有可能的x值的集合。

3. 值域:函数输出的所有可能的y值的集合。

4. 函数图像:函数在坐标系中的图形表示。

二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。

2. 表格法:用表格列出x与y的对应值。

3. 图像法:通过函数图像直观表示函数关系。

三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。

2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。

3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。

4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。

四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。

2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。

3. 幂函数:y=x^n,其中n为实数。

4. 指数函数:y=a^x(a>0,a≠1)。

5. 对数函数:y=log_a(x)(a>0,a≠1)。

6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。

五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。

2. 函数的乘积:(f*g)(x)=f(x)g(x)。

3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。

六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。

2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。

七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。

数学高一专题 函数的定义域、值域

数学高一专题      函数的定义域、值域

数学高一专题函数的定义域、值域一、概念定义域:其中x叫作自变量,y叫因变量,集合A叫做函数的定义域。

二、求法求定义域:1、分母不等于02、偶次方根的被开方数大于等于03、0次方的底数不等于04、对数的底数大于0且不等于1,真数大于0求值域:1、直接法(观察法)2、配方法:适用于二次函数及能通过换元法等转化为二次函数的题型3、换元法:其题型特征是函数解析式含有根式或三角函数公式模型,当根式里是一次式时,用代数换元;当根式里是二次式时,用三角换元4、反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域适用类型:分子、分母只含有一次项的函数(即有理分式一次型),也可用于其它易反解出自变量的函数类型题型一:基本函数例题精讲1、函数f(x)=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1) D.[0,1]例2、(0)=+≠的值域是.y kx b k1、函数f (x )=+的定义域为( ) A .(2,+∞) B .(﹣∞,0) C .(0,2)D .[0,2]2235y x x =+-的值域是 .3、2(0)y ax bx c a =++≠的值域是:当0a >时,值域为 ;当0a <时,值域为 .题型二:抽象函数例题精讲例1、已知f (x )=2x+3,g (x+2)=f (x ),则g (x )等于( )A .2x+1B .2x ﹣1C .2x ﹣3D .2x+7 变式练习1、已知函数()=⎪⎭⎫ ⎝⎛=a f x x f 1,3则( ) A.a 1 B.a3 C.a D.a 3 2、函数y=f(x+1)定义域为[0,1],则y=f(x-1)定义域为____________3、 函数f (x)为R 上的减函数,且f (xy) = f (x) + f (y) .(1) 求f (1).(2)解不等式f (2x -3) < 0题型三:已知求参数例题精讲例1、已知函数()xx f +=11且()6=t f ,则t= 。

高一数学必修一函数专题:定义域

高一数学必修一函数专题:定义域

例题二:已知:函数 f (x) (2x2 5x 2)0 。计算:函数 f (x) 的定义域。
解答:根据一个式子的零次方,这个式子不等于零得到: 2x2 5x 2 0 x 2 且 x 1 。 2
所以:函数 f (x) 的定义域: x (, 1 ) ( 1 ,2) (2,) 。 22
x2 2x 3 0 代表 x 轴下方的图像 x (,1) (3,) 。 (Ⅲ)二次函数 y 2x2 2x 1开口向上, (2)2 4 2 1 4 8 4 0 与 x 轴无交点。如下图所示:
2x2 2x 1 0 代表 x 轴上方和 x 轴上的图像 x R 。 (Ⅳ)二次函数 y x2 3x 4 开口向下, 32 4 (1) (4) 9 16 7 0 与 x 轴无交点。
第二部分:不等式解法
第一种不等式:一元一次不等式
例题:解下列一元一次不等式。
(Ⅰ) 2x 1 0
(Ⅱ) 2 3x 0
解答:(Ⅰ) 2x 1 0 2x 1 x 1 。 2
(Ⅱ) 2 3x 0 3x 2 x 2 。 3
(Ⅲ) 1 x 3 x 3 (2) x 6 。 2
x2 2x 0 代表 x 轴上方图像 x: x (0,2) 。
限制条件四:一个式子的零次方,这个式子不等于零
例题一:已知:函数 f (x) (x 2)0 。计算:函数 f (x) 的定义域。
解答:根据一个式子的零次方,这个式子不等于零得到: x 2 0 x 2 x 2 。 所以:函数 f (x) 的定义域: x (,2) (2,) 。
例题二:已知:函数
f
(x)
1 x 2x 1
。计算:函数
f
(x)
的定义域。
解答:根据分母不等于零得到: 2x 1 0 2x 1 ,1 20 2x 20 x 0 。

(word完整版)高一数学必修一函数专题

(word完整版)高一数学必修一函数专题

高一数学必修一函数专题(教师版)一.函数的奇偶性.(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称•(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法;f(x) f( x) 0②利用函数奇偶性定义的等价形式:f( x) 1( f(x) 0).f (x)③图像法:奇函数的图象关于原点对称;偶函数的图象关于y轴对称.(3)函数奇偶性的性质:①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反•②若f (x)为偶函数,贝U f( x) f (x) f (| x |).③若奇函数f(x)定义域中含有0,则必有f(0) 0.④奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数的单调性1. 函数单调性的定义:(1)如果函数f x对区间D内的任意x-! ,x2,当x1 x2时都有f % f x2,则f x在D内是增函数;当x1 x2时都有f为f x2,则f x在D内是减函数.(2)设函数y f (x)在某区间D内可导,若f X 0,则y f (x)在D内是增函数;若f x 0,则y f (x)在D内是减函数.2•单调性的定义的等价形式:(1)设x1 ,x2 a,b,那么匚勺——^-x^ 0 f x在a,b上是增函数;x1 x2(2) --------------------------------------- 设x1 ,x2 a,b,那么f x2 0 f x 在a,b 上是减函数;x1 x23.证明或判断函数单调性的方法:(1) 定义法:设元作差变形判断符号给出结论•其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘积、平方和等形式,再结合变量的范围,假设的两个变量的大小关系及不等式的性质作出判断;⑵复合函数单调性的判断方法:即“同增异减”法,即内层函数和外层函数的单调性相同,则复合函数为增函数;若相反,则复合函数为减函数•解决问题的关键是区分好内外层函数,掌握常用基本函数的单调性;(3)图象法:利用数形结合思想,画出函数的草图,直接得到函数的单调性;(4)导数法:利用导函数的正负来确定原函数的单调性,是最常用的方法.(5)利用常用结论判断:①奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;②互为反函数的两个函数具有相同的单调性;③在公共定义域内,增函数f(x)增函数g(x)是增函数;减函数f(x)减函数g(x)是减函数;增函数f (x)减函数g(x)是增函数;减函数f (x)增函数g(x)是减函数;④复合函数法:复合函数单调性的特点是同增异减,特别提醒:求单调区间时,勿忘定义域,三.函数的周期性.(1)类比“三角函数图像”得:①若y f (x)图像有两条对称轴x a,x b(a b),则y f (x)必是周期函数,且一周期为T 2|a b| ;②若y f (x)图像有两个对称中心A(a,O), B(b,O)(a b),则y f(x)是周期函数,且一周期为T 2|a b| ;③如果函数y f (x)的图像有一个对称中心A(a,O)和一条对称轴x b(a b),则函数y f(x)必是周期函数,且一周期为T 4|a b| ;(2)由周期函数的定义“函数f(x)满足f x f a x (a 0),则f(x)是周期为a的周期函数”得:函数f (x)满足 f x f a x,则f(x)是周期为2a的周期函数。

高一数学新高考复习重点知识点

高一数学新高考复习重点知识点

高一数学新高考复习重点知识点一、函数及其应用1. 函数的定义与性质函数的定义、定义域、值域、单调性、奇偶性、周期性等概念及性质。

2. 函数的图像与性质根据函数的定义和性质,绘制函数的图像,了解图像的特点,如零点、极值点、拐点等。

3. 函数的运算函数的四则运算、复合函数的概念及计算方法。

4. 一次函数和二次函数了解一次函数和二次函数的定义、性质、图像、方程等,掌握它们的计算方法及应用。

5. 指数函数和对数函数掌握指数函数和对数函数的定义、性质、图像、方程等,了解常用的指数函数和对数函数变形及应用。

6. 三角函数及其应用理解三角函数的定义、性质、图像,掌握三角函数的计算、方程的解法,了解三角函数在几何、物理等领域的应用。

7. 复数及其运算复数的概念、加减乘除法则、共轭复数、复数的模、辐角等概念及运算。

二、平面几何1. 向量及其运算向量的概念、加减乘除法则、数量积及性质、向量的模和方向角等基础知识。

2. 点、直线和平面点与直线的位置关系、直线的斜率、直线的方程和平面的方程等概念及计算方法。

3. 圆及其相关性质圆的相关概念,如圆心、半径、弦、弧、切线等,掌握圆的方程及性质,以及圆与直线的位置关系。

4. 三角形三角形的内角和、外角和、中线、垂心、重心、外心等概念及性质,掌握三角形的面积计算及重要定理,如正弦定理、余弦定理等。

5. 相似三角形和正方形相似三角形的判定、性质及应用,正方形的性质和计算,如周长、面积等。

三、立体几何1. 空间几何体的认识立体几何体的定义、特点和分类,如三棱柱、四棱柱、棱锥、棱台、球等。

2. 空间几何体的体积和表面积掌握求解空间几何体的体积和表面积的方法,并能灵活运用于实际问题中。

3. 空间中的位置关系掌握点、直线、平面在空间中的位置关系,了解空间几何体的位置关系,如垂直、平行、相交等概念。

四、概率与统计1. 概率的基本概念了解随机事件、样本空间、试验、事件的概率等基本概念,掌握概率的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 映射与函数、函数的解析式一、选择题:1.设集合}21|{≤≤=x x A ,}41|{≤≤=y y B ,则下述对应法则f 中,不能构成A 到B 的映射的是( )A .2:x y x f =→ B .23:-=→x y x f C .4:+-=→x y x f D .24:x y x f -=→2.若函数)23(x f -的定义域为[-1,2],则函数)(x f 的定义域是( )A .]1,25[--B .[-1,2]C .[-1,5]D .]2,21[3,设函数⎩⎨⎧<≥-=)1(1)1(1)(x x x x f ,则)))2(((f f f =( )A .0B .1C .2D .24.下面各组函数中为相同函数的是( ) A .1)(,)1()(2-=-=x x g x x fB .11)(,1)(2-+=-=x x x g x x f C .22)1()(,)1()(-=-=x x g x x f D .21)(,21)(22+-=+-=x x x g x x x f5. 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A 集合B 中的元素都是A 中元素在映射f 下的象,且对任意的,A a ∈在B 中和它对应的元素是a ,则集合B 中元素的个数是( )(A) 4 (B) 5 (C) 6 (D) 7 7.已知定义在),0[+∞的函数⎩⎨⎧<≤≥+=)20()2( 2)(2x xx x x f 若425)))(((=k f f f ,则实数=k2函数的定义域和值域1.已知函数xxx f -+=11)(的定义域为M ,f[f(x)]的定义域为N ,则M ∩N= . 2.如果f(x)的定义域为(0,1),021<<-a ,那么函数g(x)=f(x+a)+f(x-a)的定义域为 .3. 函数y=x 2-2x+a 在[0,3]上的最小值是4,则a= ;若最大值是4,则a= .4.已知函数f(x)=3-4x-2x 2,则下列结论不正确的是( )A .在(-∞,+∞)内有最大值5,无最小值,B .在[-3,2]内的最大值是5,最小值是-13C .在[1,2)内有最大值-3,最小值-13,D .在[0,+∞)内有最大值3,无最小值5.已知函数1279,4322+--=-+=x x x y x x y 的值域分别是集合P 、Q ,则( )A .p ⊂QB .P=QC .P ⊃QD .以上答案都不对6.若函数3412++-=mx mx mx y 的定义域为R ,则实数m 的取值范围是( ) A .]43,0( B .)43,0( C .]43,0[ D .)43,0[7.函数])4,0[(422∈+--=x x x y 的值域是( )A .[0,2]B .[1,2]C .[-2,2]D .[-2,2]8.若函数)(},4|{}0|{113)(x f y y y y x x x f 则的值域是≥⋃≤--=的定义域是( ) A .]3,31[ B .]3,1()1,31[⋃ C .),3[]31,(+∞-∞或 D .[3,+∞)9.求下列函数的定义域:①12122---=x x x y10.求下列函数的值域: ①)1(3553>-+=x x x y ②y=|x+5|+|x-6| ③242++--=x x y11.设函数41)(2-+=x x x f . (Ⅰ)若定义域限制为[0,3],求)(x f 的值域; (Ⅱ)若定义域限制为]1,[+a a 时,)(x f 的值域为]161,21[-,求a 的值.1.下述函数中,在)0,(-∞上为增函数的是( )A .y=x 2-2B .y=x3 C .y=x --21 D .2)2(+-=x y2.下述函数中,单调递增区间是]0,(-∞的是( )A .y=-x1 B .y=-(x -1) C .y=x 2-2D .y=-|x |3.函数)(2∞+-∞-=,在x y 上是( )A .增函数B .既不是增函数也不是减函数C .减函数D .既是减函数也是增函数 4.若函数f(x)是区间[a,b]上的增函数,也是区间[b,c]上的增函数,则函数f(x)在区间[a,b]上是( )A .增函数B .是增函数或减函数C .是减函数D .未必是增函数或减函数5.已知函数f(x)=8+2x-x 2,如果g(x)=f(2-x 2),那么g(x) ( ) A.在区间(-1,0)上单调递减 B.在区间(0,1)上单调递减 C.在区间(-2,0)上单调递减 D 在区间(0,2)上单调递减 6.设函数),2(21)(+∞-++=在区间x ax x f 上是单调递增函数,那么a 的取值范围是( )A .210<<aB .21>a C .a<-1或a>1 D .a>-27.函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是( )A . [-8,+∞)B .[8,+∞)C .(-∞,- 8]D .(-∞,8] 8.如果函数f(x)=x 2+bx+c 对任意实数t 都有f(4-t)=f(t),那么( )A .f(2)<f(1)<f(4)B .f(1)<f(2)<f(4)C .f(2)<f(4)<f(1)D .f(4)<f(2)<f(1)9.若函数34)(3+-=ax x x f 的单调递减区间是)21,21(-,则实数a 的值为 . 10.(理科)若a >0,求函数)),0()(ln()(+∞∈+-=x a x x x f 的单调区间.1.若)(),()(12x f N n x x f n n则∈=++是( )A .奇函数B .偶函数C .奇函数或偶函数D .非奇非偶函数2.设f(x)为定义域在R 上的偶函数,且f(x)在)3(),(),2(,)0[f f f π--∞+则为增函数的大小顺序为( )A .)2()3()(->>-f f f πB .)3()2()(f f f >->-πC .)2()3()(-<<-f f f πD .)3()2()(f f f <-<-π3.如果f (x )是定义在R 上的偶函数,且在),0[+∞上是减函数,那么下述式子中正确的是( ) A .)1()43(2+-≥-a a f fB .)1()43(2+-≤-a a f fC .)1()43(2+-=-a a f fD .以上关系均不成立5.下列4个函数中:①y=3x -1,②);10(11log ≠>+-=a a xxy a 且 ③123++=x x x y , ④).10)(2111(≠>+-=-a a a x y x 且 其中既不是奇函数,又不是偶函数的是( )A .①B .②③C .①③D .①④6.已知f (x )是定义在R 上的偶函数,并满足:)(1)2(x f x f -=+,当2≤x ≤3,f (x )=x ,则f (5.5)=( )A .5.5B .-5.5C .-2.5D .2.57.设偶函数f (x )在),0[+∞上为减函数,则不等式f (x )> f (2x+1) 的解集是 8.已知f (x )与g (x )的定义域都是{x|x ∈R ,且x ≠±1},若f (x )是偶函数,g(x )是奇函 数,且f (x )+ g(x )=x-11,则f (x )= ,g(x )= . 9.已知定义域为(-∞,0)∪(0,+∞)的函数f (x )是偶函数,并且在(-∞,0)上是增函数,若f (-3)=0,则不等式)(x f x<0的解集是 . 11.设f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足f (-a 2+2a -5)<f (2a 2+a +1), 求实数a 的取值范围.7 .指数函数与对数函数1.当10<<a 时,aa aaa a ,,的大小关系是( )A .a a aaa a >> B .a aa aa a >>C .aa a a aa>>D .aa aaa a>>2.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是( )A .11()(2)()43f f f >>B .11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >>3.函数)2(xf y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]4.若函数)2,3()(log )(321---=在ax x x f 上单调递减,则实数a 的取值范围是( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]6.若定义在(—1,0)内的函数)1(log )(2+=x x f a 满足)(x f >0,则a 的取值范围是 7.若1)1(log )1(<-+k k ,则实数k 的取值范围是 . 8.已知函数)1,0)(4(log )(≠>-+=a a xax x f a 且的值域为R ,则实数a 的取值范围是 . 10.求函数)(log )1(log 11log )(222x p x x x x f -+-+-+=的值域.12.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且 (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|<x f 的解集为a x x 求},2121|{<<-的值;8 .二次函数1.设函数∈++=a x a ax x x f ,(232)(2R )的最小值为m (a ),当m (a )有最大值时a 的值为( )A .34B .43 C .98 D .89 2.已知0)53()2(,2221=+++--k k x k x x x 是方程(k 为实数)的两个实数根,则2221x x +的最大值为( )A .19B .18C .955D .不存在3.设函数)0()(2≠++=a c bx ax x f ,对任意实数t 都有)2()2(t f t f -=+成立,则函数值)5(),2(),1(),1(f f f f -中,最小的一个不可能是( )A .f (-1)B .f (1)C .f (2)D .f (5)4.设二次函数f (x ),对x ∈R 有)21()(f x f ≤=25,其图象与x 轴交于两点,且这两点的横坐标的立方和为19,则f (x )的解析式为5.已知二次函数12)(2++=ax ax x f 在区间[-3,2]上的最大值为4,则a 的值为 6.一元二次方程02)1(22=-+-+a x a x的一根比1大,另一根比-1小,则实数a的取值范围是7.已知二次函数∈++=c b a c bx ax x f ,,()(2R )满足,1)1(,0)1(==-f f 且对任意实数x 都有)(,0)(x f x x f 求≥-的解析式. 8.a >0,当]1,1[-∈x 时,函数b ax x x f +--=2)(的最小值是-1,最大值是1. 求使函数取得最大值和最小值时相应的x 的值. 9.已知22444)(a a ax x x f --+-=在区间[0,1]上的最大值是-5,求a 的值.10.函数)(x f y=是定义在R 上的奇函数,当22)(,0x x x f x -=≥时,(Ⅰ)求x <0时)(x f 的解析式;(Ⅱ)问是否存在这样的正数a ,b ,当)(,],[x f b a x 时∈的值域为]1,1[ab ?若存在,求出所有的a ,b 的值;若不存在,说明理由.9 .函数的图象1.函数)32(-x f 的图象,可由)32(+x f 的图象经过下述变换得到( ) A .向左平移6个单位 B .向右平移6个单位 C .向左平移3个单位 D .向右平移3个单位 2.设函数)(x f y =与函数)(x g y =的图象如右图所示,则函数)()(x g x f y⋅=的图象可能是下面的( )4.如图,点P 在边长的1的正方形的边上运动,设M 是CD 边的中点,当P 沿A →B →C →M 运动时,以点P 经过的路程x 为自变量,APM ∆的面积为y ,则函数)(x f y=的图象大致是( )6.设函数)(x f 的定义域为R ,则下列命题中:①若)(x f y =为偶函数,则)2(+=x f y 的图象关于y 轴对称; ②若)2(+=x f y 为偶函数,则)(x f y =的图象关于直线2=x 对称;③若)2()2(x f x f -=-,则)(x f y =的图象关于直线2=x 对称;④函数)2(-=x f y与函数)2(x f y -=的图象关于直线2=x 对称.则其中正确命题的序号是10.m 为何值时,直线m x y l +-=:与曲线182+-=x y 有两个公共点?有一个公共点?无公共点?。

相关文档
最新文档