三角函数解题方法总结

合集下载

求三角函数最值的四种常用解题方法

求三角函数最值的四种常用解题方法

求三角函数最值的常用解题方法
一. 转化为二次函数求解三角函数的最值,适用于题目中出现的三角函数分别为一次和二次时
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑的取值及的条件,才能正确求出最值。

二. 使用辅助角公式(化一法)求解三角函数的最值
适用于题目中出现的三角函数同次时
—1—
例2.求函数的值域。

分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。

解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。

—2—
三.利用函数值域的有界性,求解三角函数的最值
例3.求函数的值域
解:
—3—
四.使用换元法求解三角函数的最值
例4.求函数的最值。

分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。

解:
—4—。

高中数学三角函数解题技巧和思路的总结

高中数学三角函数解题技巧和思路的总结

高中数学三角函数解题技巧和思路的总结高中数学中,三角函数是一个重要的知识点。

掌握三角函数的解题技巧和思路,不仅可以帮助学生顺利完成学习任务,还可以帮助他们更好地理解数学知识,提高数学解题的能力。

下面就来总结一下高中数学中三角函数解题的技巧和思路。

一、基本概念的掌握在学习三角函数解题之前,首先要掌握基本的概念。

包括正弦、余弦、正切等三角函数的定义和性质,以及三角函数的周期性、奇偶性等基本特点。

只有掌握了这些基本概念,才能更好地理解和运用三角函数进行解题。

二、利用变换简化问题在解三角函数的题目时,有时候可以利用一些特定的变换来简化问题。

常见的变换包括令x=π-x、令x=π/2-y等等。

这样的变换可以将原问题转化为更简单的形式,有利于我们更好地解题。

三、观察周期性和对称性三角函数具有周期性和对称性,因此在解题时要善于观察这些特点。

对于周期函数,可以根据函数的周期性来简化问题,找到最小正周期内的解;对于奇偶函数,也可以根据对称性来简化问题,减少计算的复杂度。

四、利用三角函数的性质在解题过程中,要充分利用三角函数的性质。

比如利用正弦函数和余弦函数的和差化积公式,将复杂的三角函数问题化简为简单的形式;利用三倍角公式、半角公式等求解特殊角的数值;利用三角函数的导数和微分形式等等。

熟练掌握这些性质,可以帮助我们更好地解题。

五、构建方程求解在解三角函数的题目时,常常需要构建方程求解。

对于一些复杂的问题,可以通过构建方程的方法,将问题转化为代数方程,并利用代数方程的知识求解。

还可以利用三角函数的图像特点,通过图像直观地找到解。

六、多做练习、多思考在学习三角函数解题的过程中,多做练习是非常重要的。

只有通过大量的练习,才能更好地掌握解题的技巧和思路,熟练运用相关知识。

多思考也是解题的关键。

通过深入思考问题,分析问题的本质,可以更好地理解三角函数的知识,提高解题的能力。

在学习三角函数解题的过程中,要多和同学、老师进行交流,分享解题的方法和思路。

三角函数解题技巧

三角函数解题技巧

一、基本技巧:直接运用正、余弦定理解三角形1)运用余弦定理:已知三边; 已知两边+一角2)运用正弦定理:已知两角+一边;已知两边+一角3)涉及多个三角形,可以从公共边、公共角、互补角、互余角、角平分线找思路二、秒杀技巧1:利用a=2RsinA将边换成角思路:通过正弦定理、三角形内角性质、诱导公式等进行边角互化,即消元化成目标角三、秒杀技巧2:b+c、bc、b2+c2的关系四、与三角形面积有关的问题有边有角就统一三角关系消孤角三边平方用余弦正切变比或诱导若条件中有边也有角,那么常见的处理方式就是统一形式,就用“正弦定理”进行“边化角”或者“角化边”,即统一成角或者边的形式。

注意:不到万不得已不建议用余弦定理进行边角互化!【分析】:已知条件中有边有角,所以利用正弦定理进行边角互化。

所以是“边化角”。

统一条件形式后,再进行化简即可。

三角关系消孤角若条件是三角关系,那么优先利用诱导公式对孤角进行消元!那么,什么是孤角呢?就是条件中,单独作为一项的角。

【分析】:已知条件是三角关系,且∠B是孤角,所以利用诱导公式消去∠B,进行化简,可求∠A,再利用正弦定理求∠C。

三边平方用余弦若已知条件中是三边平方或乘积形式,那么往余弦定理形式靠拢。

注意:若果是三角正弦的平方或乘积,可以优先进行“角化边”,再用余弦定理。

【分析】:已知条件有三边平方,所以变形后利用余弦定理进行求解。

根据条件形式,明显是利用有∠C的面积公式和余弦定理。

正切变比或诱导若条件中出现了正切,那么优先考虑利用切化弦,或者利用三角形内正切的诱导公式进行化简。

【分析】:已知条件有正切,优先考虑化为正弦比余弦,再进行化简。

初三数学三角函数知识点:解题思想方法总结

初三数学三角函数知识点:解题思想方法总结

初三数学三角函数知识点:解题思想方法总结1.转化思想
转化思想贯穿于本章的始终.例如,利用三角函数定义可以实现边与角的转化,利用互余两角三角函数关系可以实现“正”与“余”的互化;利用同角三角函数关系可以实现“异名”三角函数之间的互化.此外,利用解直角三角形的知识解决实际问题时,首先要把实际问题转化为数学问题.
2.数形结合思想
本章从概念的引出到公式的推导及直角三角形的解法和应用,无一不体现数形结合的思想方法.例如,在解直角三角形的问题时,常常先画出图形,使已知元素和未知元素更直观,有助于问题的顺利解决.
3.函数思想
锐角的正弦、余弦、正切、余切都是三角函数,其中都蕴含着函数的思想.例如,任意锐角a与它的正弦值是一一对应的关系.也就是说,对于锐角a任意确定的一个度数,sina都有惟一确定的值与之对应;反之,对于sina在(01)之间任意确定的一个值,锐角a都有惟一确定的一个度数与之对应.
4.方程思想
在解直角三角形时,若某个元素无法直接求出,往往设未知数,根据三角形中的边角关系列出方程,通过解方程求出所求的元素.
精心整理,仅供学习参考。

三角函数的计算

三角函数的计算

三角函数的计算一、锐角三角函数的概念与计算方法1.正弦(sine)函数:正弦函数是指在直角三角形中,锐角的对边与斜边的比值。

其计算公式为:sinθ = 对边 / 斜边。

2.余弦(cosine)函数:余弦函数是指在直角三角形中,锐角的邻边与斜边的比值。

其计算公式为:cosθ = 邻边 / 斜边。

3.正切(tangent)函数:正切函数是指在直角三角形中,锐角的对边与邻边的比值。

其计算公式为:tanθ = 对边 / 邻边。

二、钝角三角函数的概念与计算方法1.余切(cotangent)函数:余切函数是指在直角三角形中,钝角的对边与邻边的比值的倒数。

其计算公式为:cotθ = 邻边 / 对边。

2.余弦(secant)函数:余弦函数是指在直角三角形中,钝角的邻边与斜边的比值的倒数。

其计算公式为:secθ = 斜边 / 邻边。

3.正割(cosecant)函数:正割函数是指在直角三角形中,钝角的对边与斜边的比值的倒数。

其计算公式为:cscθ = 斜边 / 对边。

三、特殊角的三角函数值1.30°角的三角函数值:sin30°= 1/2,cos30° = √3/2,tan30°= 1/√3,cot30° = √3,sec30° = 2/√3,csc30° = 2。

2.45°角的三角函数值:sin45° = cos45° = tan45° = 1,cot45° = 1,sec45° = √2,csc45° = √2。

3.60°角的三角函数值:sin60° = √3/2,cos60° = 1/2,tan60° = √3,cot60° = 1/√3,sec60° = 2,csc60° = 2/√3。

四、三角函数的周期性1.正弦函数的周期性:正弦函数的周期为2π,即sin(θ + 2π) = sinθ。

解三角解题方法归纳总结

解三角解题方法归纳总结

解三角解题方法归纳总结在数学学科中,三角函数是一种重要的概念。

而解三角形问题,在中学数学中占据着重要的位置。

为了帮助学生更好地掌握解三角解题方法,本文将对解三角解题方法进行归纳总结。

一、正弦定理正弦定理是解决三角形中任意一角的问题时常用的方法之一。

正弦定理的表达式为:a/sinA=b/sinB=c/sinC,其中 a、b、c 代表三角形的三边的长度,A、B、C 代表对应的三个内角。

以解题中常见的“已知三边求三角形内角”问题为例,可以利用正弦定理进行求解。

首先,根据正弦定理的表达式,将已知数据代入,得到一个含有未知角度的等式。

然后,通过解等式,求得未知角度的数值。

二、余弦定理余弦定理也是解决三角形中任意一边的问题时常用的方法之一。

余弦定理的表达式为:c² = a² + b² - 2abcosC,其中 a、b、c 代表三角形的三边的长度,C 代表对应的夹角度数。

以解题中常见的“已知两边和夹角求第三边”问题为例,可以利用余弦定理进行求解。

首先,根据余弦定理的表达式,将已知数据代入,得到一个含有未知边长的等式。

然后,通过解等式,求得未知边长的数值。

三、正切函数正切函数是三角函数中的一种,解决三角形内角问题时,可以通过正切函数来求解。

正切函数的表达式为:tanθ = 对边/邻边。

以解题中常见的“已知一角和对边求邻边”问题为例,可以利用正切函数进行求解。

首先,根据正切函数的表达式,将已知数据代入,得到一个含有未知边长的等式。

然后,通过解等式,求得未知边长的数值。

四、角平分线定理角平分线定理是解决三角形内角问题时常用的方法之一。

角平分线定理指出,三角形内一条角平分线将对边分成两条线段,那么这两条线段的比等于另外两条边的比。

以解题中常见的“已知两边和其夹角,求夹角的平分线”问题为例,可以利用角平分线定理进行求解。

首先,根据角平分线定理的表达式,将已知的两边和夹角的数据代入,得到一个含有未知角度的等式。

导数与三角函数的综合的解题技巧

导数与三角函数的综合的解题技巧

导数与三角函数的综合的解题技巧
1.使用导数公式:对于三角函数,有 sin'x=cosx, cos'x=-sinx, tan'x=sec^2x, cot'x=-csc^2x。

根据公式,可以快速求导数。

2.化简式子:如果要求导数的式子比较复杂,可以先把式子化简,再使用导数公式。

3.注意多项式函数:如果式子包含多项式函数,可以先对多项式函数求导,再根据导数公式求出整个式子的导数。

二、解题技巧
1.化简式子:对于一些比较复杂的题目,可以先把式子化简,减少计算难度。

2.注意特殊点:三角函数的周期性很强,要注意特殊点,如0度、90度、180度、270度、360度等,这些点的函数值会有特殊的表现。

3.使用变形公式:有些题目可以使用三角函数的变形公式,如和角公式、差角公式、倍角公式等,将原式化简成已知的函数形式,再进行计算。

4.备选法:如果在计算中出现不确定的式子,可以先把各种可能的取值列出来,再逐一验证。

综上所述,求导数和解题技巧是解决导数与三角函数综合题目的关键。

在解题过程中,要善于化简式子,注意特殊点,灵活运用三角函数的变形公式和备选法,从而提高解题的效率和准确性。

数学解决三角函数问题的六种方法

数学解决三角函数问题的六种方法

数学解决三角函数问题的六种方法在数学学习中,三角函数是一项基础而重要的内容。

解决三角函数问题,需要掌握不同的解题方法和技巧。

本文将介绍六种常用的数学解决三角函数问题的方法,以帮助读者更好地理解和应用三角函数。

方法一:利用定义和基本公式三角函数的定义和基本公式对于解决问题非常重要。

例如,正弦函数的定义是一个直角三角形的斜边与对边之比,可以表示为sinθ = a/c。

利用这个定义和基本公式,我们可以求解一些基本的三角函数值,如sin(30°) = 1/2。

方法二:利用三角函数图像特征三角函数的图像特征可以帮助我们更好地理解和应用它们。

例如,正弦函数的图像是一条连续的波形,取值范围在[-1, 1]之间。

利用这个特征,我们可以根据给定的角度,通过观察三角函数图像来确定函数值。

方法三:利用三角函数的周期性质三角函数具有周期性的特点,即sin(θ + 2π) = sinθ,cos(θ + 2π) =cosθ。

利用这个周期性质,我们可以将任意角度转换成特定区间范围内的角度,从而简化计算。

方法四:利用三角函数的恒等变换三角函数的恒等变换是一种将一个三角函数表示为其他三角函数的等价形式。

例如,sin(θ) = cos(π/2 - θ)。

利用这种恒等变换,我们可以将复杂的三角函数问题转化为简单的形式,从而更便于求解。

方法五:利用特殊角的三角函数值特殊角(如0°、30°、45°、60°、90°等)具有特殊的三角函数值,这些值是我们在计算过程中常常用到的。

例如,sin(0°) = 0,cos(90°) = 0,tan(45°) = 1等。

熟记这些特殊角的三角函数值,可以大大简化计算过程。

方法六:利用三角函数的性质和定理三角函数具有一系列的性质和定理,如和差化积公式、倍角公式、半角公式等。

利用这些性质和定理,我们可以根据已知条件,推导出新的关系式,从而求解三角函数问题。

高中三角函数解题技巧

高中三角函数解题技巧

高中三角函数解题技巧
一、了解基本概念
在解题过程中,首先需要了解三角函数的基本概念,包括正弦、余弦、正切等。

熟悉三角函数的定义和性质,能够帮助我们理解和
解决相关的问题。

二、掌握基本公式
掌握三角函数的基本公式对于解题非常重要。

例如,正弦函数
的基本公式是sinθ = 对边/斜边,余弦函数的基本公式是cosθ = 邻
边/斜边。

熟练运用这些公式,可以更快速地求解三角函数的值。

三、利用特殊关系
在解题过程中,有时可以利用三角函数的特殊关系简化问题。

例如,利用正弦函数和余弦函数的关系sin(π/2-θ)= cosθ,可以将一
个三角函数转换为另一个三角函数,从而简化计算过程。

四、利用三角函数的周期性
三角函数具有周期性,即在一定范围内的值是重复的。

例如,
正弦函数和余弦函数的周期都是2π。

利用这一特性,我们可以根
据给定角度的范围,将角度转化为对应周期内的角度,便于计算和
比较。

五、解三角方程
解三角方程是高中三角函数解题的重要内容。

通过对方程两边
进行一系列变换和化简,可得到与角度相关的等式。

掌握解三角方
程的一般方法和技巧,能够解答各种类型的问题。

六、练和总结
要掌握三角函数解题技巧,需要进行大量的练。

通过多做题目,积累经验,总结规律,逐步提高解题能力。

总结:
通过了解基本概念、掌握基本公式、利用特殊关系和周期性、
解三角方程以及进行练习和总结,我们能够提高在高中数学中解决
三角函数相关问题的能力。

希望这些技巧能对你有所帮助!。

求三角函数最值的四种常用解题方法

求三角函数最值的四种常用解题方法

求三角函数最值的四种常用解题方法
求三角函数最值的常用解题方法
一. 使用配方法求解三角函数的最值
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转变为二次函数也是求最值的通法之一,应该注意,整理成时,要考虑的取值及的条件,才能正确求出最值。

二. 使用化一法求解三角函数的最值
例2.求函数的值域。

剖析:降幂后发现式中出现了和,这时再化成一个角的三角函数即可求得。

—2—
解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分构成,此中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,所以需要大家娴熟掌握有关公式并灵巧运用。

三. 使用基本不等式法求解三角函数的最值
例3. 求函数的值域
—3—
解:
解:
四. 使用换元法求解三角函数的最值
例4.求函数的最值。

剖析:解本题的门路是用逆求将函数式变形,用 y 表示与 x 有关的三角函数,利用三角函数的有界性求最值。

—4—
解:
—5—。

三角函数最全知识点总结

三角函数最全知识点总结

三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。

下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。

一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。

正弦函数的定义域为实数集,值域为[-1,1]。

2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。

其中π为圆周率。

3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。

4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。

5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。

二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。

余弦函数的定义域为实数集,值域为[-1,1]。

2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。

3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。

4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。

5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。

三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。

正切函数的定义域为实数集,值域为实数集。

2. 周期性:tan(θ+π)=tanθ。

3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。

4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。

四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。

记作arcsin x或sin⁻¹x。

2. 反余弦函数:定义域为[-1,1],值域为[0,π]。

三角函数求值的八种常用方法

三角函数求值的八种常用方法

ʏ摆扬虎三角函数求值的常用方法有:巧用三角函数的定义,弦切互化,和积转换, 1 的变换,巧用三角公式,以及利用三角函数的图像等㊂下面举例分析,供同学们学习与参考㊂方法一:巧用三角函数的定义例1 已知角α的终边经过点(3,-4),则s i n α+1c o s α=㊂因为角α的终边经过点(3,-4),所以r =5㊂由三角函数的定义得s i n α=-45,c o s α=35,所以s i n α+1c o s α=-45+53=1315㊂评注:已知角α终边上一点P (x ,y ),且P (x ,y )不是单位圆上的点,可先求r =x 2+y 2,再求s i n α=y r ,c o s α=x r的值㊂方法二:巧用弦切互化例2 若s i n θ+2c o s θs i n θ-c o s θ=2,则s i n θ㊃c os θ=㊂由s i n θ+2c o s θs i n θ-c o s θ=2,整理可得t a n θ=4,所以s i n θc o s θ=s i n θc o s θs i n 2θ+c o s 2θ=t a n θ1+t a n 2θ=417㊂评注:解答本题的关键是利用公式t a n α=s i n αc o s α进行弦切互化㊂方法三:巧用和积转换例3 如果s i n x +c o s x =15,且0<x <π,那么ta n x 的值是㊂由已知等式两边平方得s i n x c o s x =-1225㊂因为0<x <π,所以s i n x >0,c o s x <0㊂结合s i n 2x +c o s 2x =1解得s i n x =45,c o s x =-35,所以t a n x =-43㊂评注:解答本题的关键是利用(s i n x ʃc o s x )2=1ʃ2s i n x c o s x 和s i n 2x +c o s 2x =1的关系进行变形和转化㊂方法四:巧用 1 的变换例4 化简s i n 2α+c o s 4α+s i n 2αc o s 2α的结果是㊂原式=s i n 2α+c o s 2α(c o s 2α+s i n 2α)=s i n 2α+c o s 2α=1㊂评注:解题时要灵活应用 1的变换,常见的 1 的变换有1=s i n 2θ+c o s 2θ=c o s 2θ㊃(1+t a n 2θ)=t a nπ4等㊂方法五:巧用诱导公式例5c o s (-585ʎ)s i n 495ʎ+s i n (-570)ʎ的值等于;s i n 585ʎc o s 1290ʎ+c o s (-30ʎ)s i n 210ʎ+t a n 135ʎ的值等于㊂结合诱导公式求值㊂原式=c o s (360ʎ+225ʎ)s i n (360ʎ+135ʎ)-s i n (360ʎ+210ʎ)=c o s (180ʎ+45ʎ)s i n (180ʎ-45ʎ)-s i n (180ʎ+30ʎ)=-c o s 45ʎs i n 45ʎ-(-s i n 30ʎ)=-2222+12=2-2㊂原式=s i n585ʎc o s1290ʎ+c o s30ʎ㊃s i n 210ʎ+t a n 135ʎ=s i n (360ʎ+225ʎ)c o s (3ˑ360ʎ+210ʎ)+c o s 30ʎs i n210ʎ+t a n (180ʎ-45ʎ)=s i n225ʎc o s 210ʎ+c o s 30ʎs i n210ʎ-t a n 45ʎ=s i n (180ʎ+45ʎ)c o s (180ʎ+30ʎ)+c o s 30ʎs i n (180ʎ+30ʎ)-t a n45ʎ=s i n45ʎ㊃c o s 30ʎ-c o s 30ʎs i n 30ʎ-t a n 45ʎ=22ˑ32-32ˑ12-1=6-3-44㊂评注:利用诱导公式求任意角的三角函数值的四个步骤: 负化正 ,即用三角公式转31知识结构与拓展高一数学 2022年12月Copyright ©博看网. All Rights Reserved.化; 大化小 ,即用三角公式将角化为0ʎ到360ʎ间的角; 小化锐 ,即用三角公式将大于90ʎ的角转化为锐角; 锐求值 ,即得到锐角三角函数后求值㊂方法六:巧用和差公式例6 若s i n 2α=55,s i n (β-α)=1010,且αɪπ4,π,βɪπ,3π2,则α+β的值是㊂因为αɪπ4,π,所以2αɪπ2,2π ㊂因为si n2α=55>0,所以2αɪπ2,π ,所以αɪπ4,π2 ,且c o s2α=-255㊂又因为s i n (β-α)=1010,βɪπ,3π2,所以β-αɪπ2,5π4,c o s (β-α)=-31010㊂故c o s (α+β)=c o s [(β-α)+2α]=c o s (β-α)c o s2α-s i n (β-α)s i n2α=-31010ˑ-255-1010ˑ55=22㊂又α+βɪ5π4,2π,所以α+β=7π4㊂评注:三角函数常见的角变换有:α=(α-β)+β,α=α+β2+α-β2,2α=(α+β)+(α-β),2β=(α+β)-(α-β)等㊂方法七:巧用倍角公式例7 已知函数f (x )=s i n2x -c o s 2x -23s i n x c o s x (x ɪR ),则f 2π3的值为㊂因为f (x )=s i n 2x -c o s 2x-23s i n x c o s x =-c o s 2x -3s i n 2x =-2s i n 2x +π6 ,所以f 2π3=-2s i n4π3+π6=-2s i n 3π2=2㊂评注:三角函数的角变换的常见公式有:1ʃs i n2α=s i n 2α+c o s 2αʃ2s i n αc o s α=(s i n αʃc o s α)2,1+c o s2α=2c o s 2α,1-c o s 2α=2s i n 2α,c o s 2α=1+c o s 2α2,s i n 2α=1-c o s 2α2等㊂方法八:巧用三角函数的图像例8 图1是函数f (x )=A s i n (ωx +φ)A >0,ω>0,|φ|<π2的图像的一部分,对任意的x 1,x 2ɪ[a ,b ],且x 1ʂx 2,若f (x 1)=f (x 2),都有f (x1+x 2)=1,则φ的值为( )㊂图1A .π12B .π6C .π4D .π3由图得A =2㊂由题意知x 1,x 2关于函数f (x )图像的对称轴对称,直线x =x 1+x 22是函数f (x )图像的一条对称轴,且fx 1+x 22=2,所以2s i n ω㊃x 1+x 22+φ =2,所以ωx 1+x22 +φ=π2+2k π(k ɪZ )㊂因为f (x 1+x 2)=1,所以2s i n [ω(x 1+x 2)+φ]=1,所以ω(x 1+x 2)+φ=π6+2k π(k ɪZ )或ω(x 1+x 2)+φ=5π6+2k π(k ɪZ )㊂令k =0,据上消去ω(x 1+x 2),可得φ=π6或φ=5π6㊂又因为|φ|<π2,所以φ=π6㊂应选B ㊂评注:解答本题的关键是熟练掌握正弦函数和余弦函数的图像与性质㊂作者单位:甘肃省临夏州积石山县积石中学(责任编辑 郭正华)41 知识结构与拓展 高一数学 2022年12月Copyright ©博看网. All Rights Reserved.。

三角函数解题技巧求解析式

三角函数解题技巧求解析式

三角函数解题技巧求解析式三角函数是数学中重要的一部分,解题时经常会遇到需要求解三角函数的值或等式的问题。

在解题过程中,我们可以运用一些技巧来简化计算并得到解析式。

1. 利用特殊角的值:我们可以通过记忆特殊角的正弦、余弦和正切的值,来简化计算。

一些常见的特殊角包括:0度、30度、45度、60度和90度。

比如,sin(30°)=1/2,cos(45°)=√2/2, tan(60°)=√3。

2. 多角和差公式:三角函数的多角和差公式可以帮助我们将一个角的三角函数转化为两个角的三角函数,从而更容易进行计算。

常用的公式包括:- sin(A±B) = sin A cos B ± cos A sin B- cos(A±B) = cos A cos B ∓ sin A sin B- tan(A±B) = (tan A ± tan B) / (1 ∓ tan A tan B)3. 三角函数的平方和差公式:三角函数的平方和差公式可以将一个三角函数的平方转化为两个三角函数的和或差。

常用的公式如下:- sin²A = (1 - cos 2A) / 2- cos²A = (1 + cos 2A) / 2- tan²A = (1 - cos 2A) / (1 + cos 2A)4. 倍角公式:倍角公式可以将一个角的三角函数转化为另一个角的三角函数。

常用的公式包括:- sin 2A = 2 sin A cos A- cos 2A = cos²A - sin²A = 2 cos²A - 1 = 1 - 2 sin²A- tan 2A = (2 tan A) / (1 - tan²A)5. 半角公式:半角公式可以将一个角的三角函数转化为另一个角的三角函数。

常用的公式如下:- sin (A/2) = ±√[(1 - cos A) / 2]- cos (A/2) = ±√[(1 + cos A) / 2]- tan (A/2) = ±√[(1 - cos A) / (1 + cos A)]6. 和差化积公式:和差化积公式可以将两个三角函数的和或差转化为一个三角函数的积。

高中三角函数常见题型与解法

高中三角函数常见题型与解法

三角函数的题型和方法一、思想方法1、三角函数恒等变形的基本策略。

( 1)常值代换:特别是用“ 1”的代换,如 1=cos 2θ +sin 2 θ=tanx · cotx=tan45 °等。

( 2)项的分拆与角的配凑。

如分拆项: sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α =(α + β)-β,β =-等。

2 2( 3)降次与升次。

即倍角公式降次与半角公式升次。

( 4)化弦(切)法。

将三角函数利用同角三角函数基本关系化成弦(切)。

( 5)引入协助角。

asin θ +bcos θ = a 2 b 2 sin(θ + ),这里协助角 所在象限由 a 、b 的符号确立,角的值由 tan = b确立。

a( 6)全能代换法。

巧用全能公式可将三角函数化成 tan的有理式。

22、证明三角等式的思路和方法。

( 1)思路:利用三角公式进行假名,化角,改变运算结构,使等式两边化为同一形式。

( 2)证明方法:综合法、剖析法、比较法、代换法、相消法、数学概括法。

3、证明三角不等式的方法:比较法、配方法、反证法、剖析法,利用函数的单一性,利用正、余弦函数的有界性,利用单位圆三角函数线及鉴别法等。

4、解答三角高考题的策略。

( 1)发现差别:察看角、函数运算间的差别,即进行所谓的“差别剖析”。

( 2)找寻联系:运用有关公式,找出差别之间的内在联系。

( 3)合理转变:选择适合的公式,促进差别的转变。

二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目种类多样,变化仿佛复杂,办理这种问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。

2、三角变换的一般思想与常用方法。

注意角的关系的研究,既注意到和、差、倍、半的相对性,如1() ( ) 22 .也要注意题目中所给的各角之间的关系。

三角函数【概念、方法、题型、易误点与应试技巧总结】

三角函数【概念、方法、题型、易误点与应试技巧总结】

――概念、方法、题型、易误点及应试技巧总结三角函数1、角的概念的推广 :平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为 终边。

2、象限角的概念 :在直角坐标系中,使角的顶点与原点重合,角的始边与负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

3. 终边相同的角的表示 : ( 1) 终边与 终边相同 ( 的终边在 终边所在射线上 ) 2 k ( kZ ) ,注意: 相等的角的终边一定相同, 终边相同的角不一定相等 . 如与角 1825 的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25;5)36( 2) 终边与 终边共线 ( 的终边在 ( 3) 终边与 终边关于 x 轴对称 ( 4) 终边与 终边关于 y 轴对称 ( 5) 终边与 终边关于原点对称( 6) 终边在 x 轴上的角可表示为:终边所在直线上 ) k ( kZ ) .2 k ( kZ ) .2 k ( k Z ) . 2k (kZ ) .k , kZ ;终边在 y 轴上的角可表示为:k, k Z ;终边在坐标轴上的角可表示为:k , kZ . 如的终边与的226终边关于直线 yx 对称,则=____________。

(答: 2 k, kZ )34、 与的终边关系 :由“两等分各象限、一二三四”确定 . 如若是第二象限角,2则 是第 _____象限角2(答:一、三)5. 弧长公式 :l || R ,扇形面积公式: S1lR1| |R2,弧度 (1rad) 57.3 . 如221已知扇形 AOB 的周长是 6cm ,该扇形的中心角是1 弧度,求该扇形的面积。

6、任意角的三角函数的定义 :设 是任意一个角, P ( x ,(答: 2 cm 2 ) y ) 是的终边上的任意一点( 异 于 原点 ), 它 与 原 点的 距 离 是 rx 2 y 20 , 那 么 s i ny , c o s x ,rry , x 0,cotx 0) , secr 0 ,cscr y 0。

三角函数解题技巧

三角函数解题技巧

三角函数是中考必不可少的的考点,也是初中数学学习的重难点。

下面小编整理了三角函数解题技巧,赶快收藏吧!数学三角函数解题方法1.直接法顾名思义,就是直接进行正确的运算和公式变形,结合已知条件,得到正确的答案。

三角函数中大量的题型都是根据该方法求值解答的,它要求我们对三角函数的基本公式要牢牢掌握。

2.换元法换元法就是用一个量替代另一个量,发现题设中(隐含)条件,进行带式替换,从而将三角函数求值转变成代数式求值。

3.比例法对三角等式变形,找出与之有关的函数值,利用比例性质,对三角函数值进行计算。

三角函数解题思路求三角函数值的问题,可依循三种途径:1、先化简再求值,将式子化成能够利用题设已知条件的最简形式;2、从已知条件出发,选择合适的三角公式进行变换,推出要求式的值;3、将已知条件与求值式同时化简再求值。

三角函数公式特殊三角度数的特殊值sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan60°=√3cot30°=√3cot45°=1cot60°=√3/3两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2 tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))。

三角函数解题方法总结

三角函数解题方法总结
cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ=-2 sin[(θ+φ)/2] sin[(θ-φ)/2]
积化和差
sinαsinβ=-[cos(α+β)-cos(α-β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ= [sin(α+β)+sin(α-β)]/2
cosαsinβ= [sin(α+β)-sin(α-β)]/2
两角和公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ–cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
九、万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
三角函数解题方法总结
大题,
第一步;
普通函数化简;通过以上公式化简f(x)=。。。。化成
f(x)=Asin(ωx+θ)+a/cos
其他(向量,模,未知变量A,ω,θ,a求解)
最后为已知变量的三角函数f(x)=Asin(ωx+θ)+a/cos

高考中常见的三角函数题型和解题方法-数学秘诀

高考中常见的三角函数题型和解题方法-数学秘诀

第12讲 三角函数一、方法技巧1.三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

(4)化弦(切)法。

(4)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

2.证明三角等式的思路和方法。

(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

4.解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

三角函数解析式求解题技巧

三角函数解析式求解题技巧

三角函数解析式求解题技巧解析式是指通过公式的方式将一个数学问题的解表示出来。

在三角函数的求解中,解析式是非常常用和重要的工具。

下面将介绍一些解三角函数问题时常用的技巧和方法。

1. 利用基本三角函数的性质:三角函数有一些基本的性质,比如正弦函数的值在[-1, 1]之间,余弦函数的值也在[-1, 1]之间。

利用这些性质可以对一些特殊的三角函数方程进行求解。

例如,对于sin(x) = 1/2这样的方程,我们可以利用sin的周期性,找出所有满足条件的x的范围,并将其写成解析式。

2. 利用三角函数的角和差公式:三角函数的角和差公式是非常有用的工具。

通过利用这些公式,可以将复杂的三角函数方程转化为简单的方程,从而更容易求解。

例如sin(x+y) = sin(x)cos(y) + cos(x)sin(y),通过利用这个公式,可以将一些复杂的三角函数方程转化为简单的方程。

3. 利用三角函数的倍角公式:三角函数的倍角公式也是非常有用的工具。

通过利用这些公式,可以将一个角的三角函数表示转化为另一个角的三角函数表示,从而更容易求解。

例如sin(2x) = 2sin(x)cos(x),通过利用这个公式,可以将一个包含sin(2x)的方程转化为一个只包含sin(x)和cos(x)的方程。

4. 利用三角函数的倒数关系:三角函数之间有一些倒数关系。

例如sin(x)的倒数是cosec(x),cos(x)的倒数是sec(x),tan(x)的倒数是cot(x)。

通过利用这些倒数关系,可以将一个三角函数方程转化为一个简单的方程。

例如,对于sin(x) = 1/2这样的方程,我们可以利用sin(x)和cosec(x)的倒数关系,将方程转化为cosec(x) = 2,然后再求解cosec(x) = 2的解析式。

5. 利用三角函数的周期性:三角函数的周期性也是一个重要的特性。

例如sin(x)的周期是2π,cos(x)的周期是2π,tan(x)的周期是π。

解三角函数方程的一般方法与技巧

解三角函数方程的一般方法与技巧

解三角函数方程的一般方法与技巧解三角函数方程是高中数学中的重要内容,它涉及到三角函数的性质和特点,需要我们掌握一些基本的解题方法和技巧。

本文将介绍解三角函数方程的一般方法和一些常用的技巧,帮助读者更好地理解和应用。

一、一般方法解三角函数方程的一般方法是通过观察方程的特点,将其转化为已知的三角函数方程,然后利用三角函数的性质和等价关系进行求解。

1. 观察方程的特点:首先,我们需要观察方程的形式和条件,判断它是什么类型的三角函数方程,例如是正弦函数、余弦函数还是其他类型的三角函数方程。

同时,还需要注意方程中是否存在特殊角度的限制条件,如角度的定义域或周期性等。

2. 转化为已知的三角函数方程:根据观察到的特点,我们可以将原方程转化为已知的三角函数方程。

例如,如果原方程是sin(x) = a的形式,我们可以通过等价关系sin(x) = sin(arcsin(a))将其转化为sin(x) = sin(arcsin(a))的形式。

3. 利用三角函数的性质和等价关系求解:一旦将方程转化为已知的三角函数方程,我们就可以利用三角函数的性质和等价关系进行求解。

例如,利用sin(x) =sin(arcsin(a))的等价关系,我们可以得到x = arcsin(a)或x = π - arcsin(a)等解。

二、常用技巧除了一般方法外,还有一些常用的技巧可以帮助我们更快地解决三角函数方程。

1. 利用三角函数的周期性:三角函数具有周期性的特点,例如sin(x)和cos(x)的周期都是2π。

当我们遇到方程中存在周期性限制条件时,可以利用三角函数的周期性简化方程。

例如,对于sin(x) = sin(a)的方程,我们可以根据周期性得到x =a + 2kπ或x = π - a + 2kπ的解。

2. 利用三角函数的奇偶性:三角函数具有奇偶性的特点,例如sin(x)是奇函数,cos(x)是偶函数。

当我们遇到方程中存在奇偶性限制条件时,可以利用三角函数的奇偶性简化方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、函数的单调区间:第一种,用整体法,(ωx+θ)为一个整体M,sinM的单调区间…….第二种求导法(sinx)′=cosx,,,(cosx)′=-sinx,,,,令导数为零,,,求出单调区间,,,例题(1)
3、五点作图法:列表,(0,π/2,π,3π/2,2π)计算x,f(x),画图、
4、求未知数a或者其他特定值(例题),如x∈[0,π/2],且f(x)最大值/最小值为b,求实数的值,,,,这实际上就是求区间[0,π/2]里函数的单调区间,
f(x)=Asin(ωx+θ)+a/cos
其他(向量,模,未知变量A,ω,θ,a求解)
最后为已知变量的三角函数f(x)=Asin(ωx+θ)+a/cos
想尽一切公式将函数变成这个······Asin(ωx+θ)+a/cos
第二步,有关问题求解
1、最小正周期T=2π/ω,,,x=0时的θ为初相,,,A为振幅,,,(ωx+θ)称为相位,,,,有时候有频率f=1/T
cosαsinβ= [sin(α+β)-sin(α-β)]/2
两角和公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ–cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
5、以上是普通三角函数的基本问题,方法是重点,题型千变万化,基础扎实,随机应变,举一反三,运算是要保证正确率的,
第三、三角函数与三角形结合
1、无非是,余弦定理,(知道一角和两个领边,可求第三边,知道三边可求任意角,,,,)看到有平方的,首先想到余弦
2、正弦定理,有关周长与边长,角的关系,看到周长的首先想到正弦,
3、面积公式:S=1/2·ab·sinx,可与正弦定理结合
第四、三角函数与平面向量结合,,a=(x,y),b=(x',y').
1、向量的的数量积
两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=±∣a∣∣b∣.
数量积的坐标表示:a•b=x•x'+y•y'.
首先一定要记住的公式
一、
诱导公式、图记法
二、
当然、正弦、余弦、正切、余切、是哪个角比哪个角是基础
三、
倒数关系:不常用sinα=1/secα…cos—csc….tan—cot
四、
平方关系:sin²+cos²=1(重点)这个可以推导二倍角公式
五、
商关系:就是sin/cos=tan都会的六、余弦定理(重点):a²=b²+c²-2bc·cosA cosA=(b²+c²-a²)/2bc
正弦定理(大题一般不考,可能出现选择题)
七、
二倍角公式(重点):sin2α=2sinα·cosα
cos2α=2cos²α-1=1-2sin²α=cos²α-sin²α
tan2α=
八、
和差化积
sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
2、向量中带有sin/cos,,,,,向量的垂直平行条件,,,
第四、其让较难化简,没有规律的,可使用辅助角公式
asinθ+bcosθ=√a²+b²sin(θ+Φ)
(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
九、万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
三角函数解题方法总结
大题,
第一步;
普通函数化简;通过以上公式化简f(x)=。。。。化成
cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ=-2 sin[(θ+φ)/2] sin[(θ-φ)/2]
积化和差
sinαsinβ=-[cos(α+β)-cos(α-β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ= [sin(α+β)+sin(α-β)]/2
相关文档
最新文档