第1讲 初等数论中的同余问题 复旦大学附属中学 万军
第一节 同余
初等数论 第二章 同 余同余的概念是高斯(Gauss )在1800年左右给出的.同余是数论中的一个基本概念。
本章除介绍同余的基础知识外,还要介绍它的一些应用。
第一节 同余的基本性质与应用(一)定义1 给定正整数m ,如果整数a 与b 之差被m 整除,则称a 与b 对于模m 同余,或称a与b 同余,模m ,记为a ≡b (mod m),此时也称b 是a 对模m 的同余。
如果整数a 与b 之差不能被m 整除,则称a 与b 对于模m 不同余,或称a 与b 不同余,模m ,记为a ≡/b (mod m)。
定理1 下面的三个叙述是等价的:(ⅰ) a ≡ b (mod m);(ⅱ) 存在整数q ,使得a = b + qm ;即mq b a =-,亦即)(|b a m -(ⅲ) 存在整数q 1,q 2,使得a = q 1m + r ,b = q 2m + r ,0 ≤ r < m 。
证明 留作习题。
定理2 同余具有下面的性质:(1) (反身性) a ≡ a (mod m);(2) (对称性) a ≡ b (mod m) ⇒ b ≡ a (mod m);(3) (传递性) a ≡ b ,b ≡ c (mod m) ⇒ a ≡ c (mod m)定理3 设a ,b ,c ,d 是整数,并且a ≡ b (mod m),c ≡ d (mod m), (1) 则(4) (同余式相加) a + c ≡ b + d (mod m);(5) (同余式相乘)ac ≡ bd (mod m)。
【证明】 (4) 由式(1)及定义1可知m ∣a - b ,m ∣c - d ,因此m ∣(a + c) - (b + d),此即结论(ⅰ);(5) 由式(1)及定理1可知,存在整数q 1与q 2使得a =b + q 1m ,c =d + q 2m ,因此ac = bd + (q 1q 2m + q 1d + q 2b)m ,再利用定理1,推出结论(ⅱ)。
同余的概念及其基本性质
学院学术论文题目: 同余的概念及其基本性质学号:学校:专业:班级:姓名:指导老师:时间:摘要:初等数论是研究数的规律,特别是整数性质的数学分支。
它以算术方法为主要研究方法,在日常生活中,我们所要注意的常常不是某些整数,而是这些数用某一固定的数去除所得的余数。
同余概念的产生可以说大大丰富了数学的内容。
同余是数论中的一个基本概念,同余的应用,一:检查因数的一些方法;二:弃九法。
在本专题的学习中,培养我分析推理解决问题的能力,理解问题的实质。
关键字:同余整数算术Summary:The number of elementary number theory is to study the law, in particularinteger nature of the branch of mathematics. It arithmetic method as the main research methods in their daily lives, we are often not to pay attention to some integer, but these numbers with a fixed a number of removal from the remainder. I created the concept of the same can be said to have greatly enriched the content of mathematics. Number theory congruence is a basic concept of the application with more than one: Check factor of some of the ways; 2: abandoned nine law. In the topic of study, training my analysis reasoning ability to solve problems, understand the essence of the problem.Keyword :Congruence Integer Arithmetic引言数论是研究整数性质的一门学科,它是数学中最古老的分支之一,内容极为丰富,曾被数学家说成是数学的皇后。
初等数论同余
初等数论同余
规律(7)的证明
证: 100 0 1 (0 m 7)o 1 , d 00 1 (0m 7)od
一般地有 10 i 0 ( 1 )0 i(m 7 )io , 0 d ,1 , n
两边同乘 a i 有并对n+1个式子相加得
初等数论同余
常见模m的完全剩余系(简称完系)
0,1,2,…m-1做模m的最小非负完全剩余系;
当m是双数时,m 2,1,0,1m 21
或 m1,1,0,1m
2
2
当是m单数时,m1 1,0,1 m1 ,
2
2
叫做模m的绝对最小完全剩余系
初等数论同余
定理1:设m是正整数,(a,m)=1,b是任意整数。 若x通过模m的一个完系,则ax+b也通过模m 的完系,即若a0,a1…am-1是模m的完系,则 aa0+b,aa1+b…aam-1+b也是模m的完系。 证:首先因x通过模m的一个完系,所以ax+b 有m个数,若 aixbajxb(mm o),d则有
8a77(m8o)d
两边不同余.所以不相等.即对任意整数 a,8a+7不可能是三个整数的平方.
初等数论同余
例2证明 x2 y2 2006没有整数解.
证:因为一个平方数除以4的余数能为0或者1 所以左边除以4的余数只能是0,1,或3,而右
边除以4的余数为2 不同余,所以不定方程无解.
初等数论同余
性质3、若 a1b1(mm o)d,a2b2(momd). 则有 a1b1b1b2(mm o)d .
200001100200001100剩余类及完全剩余系若m是一个给定的正整数由带余数除法则对任意的整数aqmr则全部整数可分成m个集合k其中r012m1利用相等必同余同余未必相等不同余肯定不相等取模9可判断一些式子是否正确在出现9时可把9去掉这就是弃九法
初数论等教案(同余的概念及其基本性质)
汕头职业技术学院教师教案授课题目第三章同余一、同余的概念及其基本性质授课形式课堂教学授课时间节数章节第三章授课者授课系、班级函授班教学方法课堂教学教学条件无教学目标理解同余的概念,掌握判断同余的方法,理解同余的性质。
教学重点、难点重点:同余的概念,判断是否同余。
教学过程要点一、同余的概念P481、定义:给定一正整数m, 把它叫做模。
若用m去除任意两个整数a和b所得余数相同, 我们就称a,b为对模m同余, 记作a≡b(mod m); 若余数不同, 则称a,b为对模m不同余, 记作2、判别法:(mod)a b m≡⇔m a b-证明:设22b mq r=+,11a mq r=+,120,r r m≤<1212()()a b m q q r r-=++-""⇒若a≡b(mod m),12r r=则12()a b m q q-=+, 此时m|(a-b)""⇐若m a b-, 则1212()()m m q q r r++-,故12()m r r-但12,r r m-<故12r r=即(mod)a b m≡kα特别地,若(mod )i i a b m ≡,则0(mod )nnii i i i i a x b x m ==≡∑∑a aa⇔33、弃九法(只能判断错误的结论,不能判断结论是否正确)整除的一切正整数2条件作用:求余数,除所得的余数。
(mod )pa p ≡(mod )p ,p 为质数t a 叫循环节,真分数ab(1,(,)b a a b >>=6max{,}αβ=12999t =9933999000b b •=178171610.178-==。
初等数论同余式
72M ,1 1(mod7),63M , 2 1(mod8),56M ,3 1(mod9)
所以有x 72 4 1 63 (1) 2 56 5 3 498(mod504)
是原一次同余式组的解。
f ( x) 0(modmi ),i 1,2k 设 和 f ( x) 0(modmi ) f ( x) 0(mod m) 数为 则有
(2) 的解
T , Ti . 下面来看证明
T T1T2 Tk
证明:若 x0 是(1)的解,即 f ( x0 ) 0(modm) 则 m | f ( x0 ) 从而有 mi | f ( x0 ) ,即 f ( x0 ) 0(modmi ) 即(1)的解就是(2)的解, 反之若 x0 是(2)的解,则有 f ( x0 ) 0(modmi ),i 1,2k 即 mi | f ( x0 ) 从而有[m1, m2 ,mk ] | f ( x0 ) 由于 m1 , m2 ,mk 两两互素,所以
模m的一个完全剩余系中满足同余方程的个 数称为满足同余方程的解数。
.
注:对模m互相同余的解是同一个解。 例:同余式 x 2 x 1 0(mod3)
x 1(mod3) 是解, x 2(mod3)也 次数为2, 是解,因为 1 2(mod3)
所以为同一解,解数是1,
为了求方程的解经常有等价变形的问题, 对 于同余方程同样也有等价变形,即使原同余 方程和新的同余方程互相等价的若干变换。 常用的变换有
§3 一次同余方程组的解法
定义:如下(*)称为一次同余方程组
x≡b1(mod m1)
x≡b2(mod m2)
同余问题知识点讲解
同余问题知识点讲解数论中的同余问题同余问题是数论中的一个重要知识点,也是各大数学竞赛和小升初考试必考的奥数知识点。
因此,学好同余问题对学生来说非常重要。
许多孩子都接触过同余问题,但也有不少孩子说“遇到同余问题就基本晕菜了!”。
同余问题主要包括带余除法的定义,三大余数定理(加法余数定理、乘法余数定理和同余定理),以及中国剩余定理和弃九法原理的应用。
带余除法的定义及性质一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,且0≤r<b,我们称上面的除法算式为一个带余除法算式。
其中,当r=0时,我们称a可以被b整除,q称为a除以b的商或完全商;当r≠0时,我们称a不可以被b整除,q称为a除以b的商或不完全商。
一个完美的带余除法讲解模型可以将带余除法的概念用一个图形化的模型来解释。
假设有一堆书,共有a本,这个a可以理解为被除数。
现在要求按照b本一捆打包,那么b就是除数的角色。
经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系,并且可以看出余数一定要比除数小。
三大余数定理1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3.当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
数学竞赛精讲精练专题—初等数论中的同余问题_1
∴
(
pk k
)
pk k
[
pk k p
]
pk k
pk 1 k
∴
(m)
(
p1 1
)
(
p2 2
)
(
pk k
)
(
p1 1
p1 1
1
)(
p2 2
p2 2
1
)
(
pk k
pk k
1
)
p1 1
(1
p11
)
p2 2
(1
p21)
pk k
(1
又 p 为奇素数, p 1为偶数,∴ ( p 1)!1 0(mod p) ,得证.
6、设 a 为整数, p 为正整数,若存在 x Z ,使得 x2 a(mod p) ,则称 a 为模 p 的二
次剩余,否则,称 a 为模 p 的二次非剩余.
p1
设 p 为奇素数,a Z 且 p a ,证明:a 是模 p 的二次剩余充要条件是 a 2 1(mod p) ;
若 a b(mod m) , c d(mod m) , n N* 则 a c b d(mod m) , a c b d(mod m) ac bd(mod m) , an bn (mod m) .
3)除法运算:
ac bc(mod m) ,则 a b(mod m ) . (c, m)
(1)k m p1 p2 pk
k
m(1
1
1 (1)k 1 )
p p p i1 i 1i jk i j
同余式的简单介绍
关于a x≡b(modm)的解法1.当(a,m)≡1时:(1)若a,b<m,(a,b)=1且模数较大,可取余,将a变小,然后求出解。
eg:121x≡87(m0d257) 因为(121,257)=1,所以有一个解,x=194(mod257)(2)若a,b<m,(a,b)= 1且模数较小,用欧拉公式;eg: 7x≡5(mod10) 因为(7,10)所以有一个解。
(3)若(a,b )=1,且a,b中至少有一个大于m,利用同余知识,将a,b化小再用(1)(2)式去解(4)若(a,b),≠约去两端的公因数;再用(1)(2)(3)式去解。
1Eg:58x≡87(mod47)2当(a,m)=d>1时:用d去除同于式,再用(a,m)=1去解<1>同余取倍法:(期刊-核心期刊和田师专科学校学报)JOURNAL OF HOTAN TEA CHERS COLLEGE 2009年第03期<2>一次同余式的初等变换解法:(山西大学学报:自然科学版)——袁虎延<3>一次同余式的逐级满足法<4>观察法解一次同余式<5>Euler定理解一次同余式<6>把同余式化为不定方程的解法<7>减少模数的方法解一次同余式<8>欧几里得法解一次同余式<9>分式法解一次同余式<10>威尔逊定理算法解一次同余式<下面仔细介绍>代数/数论/组合理论/《.黑龙江科技信息》2008年19期》摘要一次同余式解法的特点及其分析——作者:李婷只讨论(a,m )=1时,同余式ax ≡b(modm)有以下七种解法(一)(1)观察法:在模m 的完全剩余系0,1,、、、,m-1中考虑同余式的解1.,当m 较小时,可用观察法,直接快速的得出方程的解eg 2x ≡1(mod3) 因为(2,3)=1所以有一个解,x ≡2(mod3)为其解2.当系数较大时,可用同余性质 ,将同余式系数减小,而且用带余除法定理,保证系数在一个固定范围内作为模m 的系数,进而用观察法,可快速得到方程的解。
同余的基本概念和性质
第一节 同余的基本性质
定理3 设a,b,c,d是整数,并且
a b (mod m),c d (mod m),
(1)
则
(ⅰ) a c b d (mod m);
(ⅱ) ac bd (mod m)。
证明 (ⅰ) 由式(1)及定义1可知 ma b,mc d,
第一节 同余的基本性质
(ⅰ) 3|N
n
3 | ai;
i0
(ⅱ) 9|N
n
9| ai;
i0
(ⅲ) 11|N (ⅳ) 13|N
n
11|(1)i ai; i0
1|3 a2a1a0a5a4a3 .
第一节 同余的基本性质
证明 由 100 1,101 1,102 1, (mod 3)
及式(2)可知 N =(mod 3),
b = q2m r,0 r < m。 证明 留作习题。
第一节 同余的基本性质
定理2 同余具有下面的性质: (ⅰ) (自反性) a a (mod m); (ⅱ) (对称性) a b (mod m) b a (mod m);
(ⅲ) (传递性) a b,b c (mod m) a c (mod m)。
其中qZ,所以
a
2
k
1
=(1
q2k
+
2)2=1
q
2k
+
31(mod
2k
+
3),
其中q 是某个整数。这说明式(4)当n = k 1也
成立。
由归纳法知式(4)对所有正整数n成立。
第一节 同余的基本性质
例8 设p是素数,a是整数,则由a2 1(mod p) 可以推出 a 1或a 1 (mod p)。
初等数论同余式共43页文档
ห้องสมุดไป่ตู้
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
初等数论同余式
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
(5)-第三章-同余、剩余类、完全剩余系
第17页,共39页。
显 然 , a 对 模 m的 逆 c不 是 惟 一 的 .当c 是 a 对 模 m 的 逆 时 , 任 一 c ' c (mod m)也 一 定 是 a 对 模 m 的 逆;由 性 质 知 , a 对 模 m 的 任 意 两 个 逆 c1,c2必 有 c1 c2 ( mo d m) .
证 由 定 理 知 , 存 在 x0, y0,使 得 a x0 m y0 1 . 取 c x0 既 满 足 要 求 .
由 此 提 供 一 种 求 a1(mo d m)有 效 的 方 法 , 这是Euclid算法的又一重要应用.
116
第16页,共39页。
例 求模 p 11所有元的逆元. 解 由 1( - 1 0 ) + 1 1 = 1 得 11 (10) 1 (mod 11) 由 2 ( - 5 ) + 1 1 = 1 得 21 ( 5) 6 (mod 11); 同样计算得: a 1 2 3 4 5 6 7 8 9 10 a1 1 6 4 3 9 2 8 7 5 10
证 同余式( 7) 即m c(a b), 这等价于
m c (a b). (c,m) (c,m)
由 定 理 及 ( m / (c,m),c / (c,m)) = 1 知 ,
这等价于 m (a b).
115
(c, m)
第15页,共39页。
性 质 若 m 1,(a,m) 1,则 存 在 c 使 得 ca 1 (mod m),我 们 把 c 称 为 是 a 对 模 m 的 逆 , 记 作 a1 b ( mo d m)或 a1.
明年的今天(2016年4月8日)是星期五
4 第4页,共39页。
定 义 给 定 一 个 正 整 数 m,把 它 叫 做 模. 如 果 用 m去除任意两个整数a与b所得的余数相同, 我们 就 说 a ,b 对 模 m同 余,记 作 a b (mod m). 如 果 余 数 不 同,我 们 就 说 a ,b 对 模 m 不 同 余,记 作 a b (mod m).
第1讲初等数论中的同余问题复旦大学附属中学万军
第1讲初等数论中的同余问题复旦大学附属中学万军2011年协作体夏令营系列讲座(一)初等数论中的同余问题复旦附中万军同余的概念和性质:设为非零整数,如果整数满足,则称和对模同余,记为;否则称和对模不同余,记为.注意到,,故,所以我们总是可以假定为正整数.对于固定的模,同余有很多性质:1)同余是一种等价关系,即有①自反性:;②对称性:若,则;③传递性:若,,则.2)加法、减法、乘法和乘方运算:若,,则,,.3)除法运算:,则.特别地,若,则.4)同余组:同时成立的充要条件是剩余类与完全剩余系:设为一个给定的正整数,则全体整数可以分成个集,记为,其中,则称为模的剩余类.模的剩余类有下列性质:1)每个整数必属于且仅属于模的一个剩余类中;2)两个整数同在一个剩余类中的充要条件是这两个整数模同余.事实上,,0≤≤,有如果个整数中不存在两个数属于同一剩余类,则称为模的一个完全剩余系(或称完系).最常用的剩余系称为模的非负最小完全剩余系.此外也常用到绝对值最小完全剩余系,它们是:当为奇数时,当为偶数时,或完全剩余系有下列性质:1)个整数作为模的一个完全剩余系的充要条件是它们两两模不同余;2)若是模的一个完全剩余系,,那么也是模的一个完全剩余系;也常这样描述:设是正整数,,若通过模的一个完全剩余系,则也通过模的一个完全剩余系.3)若是互质的两个正整数,而分别通过的一个完全剩余系,则通过的一个完全剩余系.如果一个模的剩余类里面的数与互质,就把它叫做一个与模互质的剩余类,在与模互质的全部剩余类中,从每一类各任取一个代表元所组成的数集,叫做模的一个简化剩余类系(或缩系).定理1:模的剩余类是模互质的剩余类的充要条件是此类中有一个数与互质.因此与模互质的剩余类的个数是,模的每一个简化剩余类系是由与互质的个对模不同余的整数组成的.其中,(欧拉函数)是定义在正整数上的函数,它在正整数上的值是集合中与互质的数的个数.定理2:若是个与互质的数整,并且两两对模不同余,则是模的一个简化剩余类系.定理3:若,通过模的一个简化剩余系,则也通过模的一个完全剩余系.定理4:若是互质的两个正整数,而分别通过的一个简化剩余系,则通过的一个简化剩余系.推论:若是互质的两个正整数,则.下面的几个定理在处理数论问题时经常用到,并且它们本身的证明也是很好的例题.1、(欧拉函数)是定义在正整数上的函数,它在正整数上的值是集合中与互质的数的个数,求.2、(欧拉定理)设是正整数,且,则.3、(费尔马小定理)若是质数,是正整数,则.4、(拉格朗日定理)设为素数,多项式是一个模为次整系数多项式,则关于的同余方程(在模的意义下)至多有个不同的解.5、(威尔逊定理)设为素数,则.6、设为整数,为正整数,若存在,使得,则称为模的二次剩余,否则,称为模的二次非剩余.7、已知斐波那契数列,设为大于5的素数,证明:8、求所有满足下面两式的三元组,其中为奇素数,为大于1的整数.①②练习题:1、设为素数,证明:存在无穷多个,使得.2、对,如果对任意,只要,就有,那么就称具有性质.1)证明:每个素数都具有性质;2)是否存在无穷多个合数具有性质?3、求所有满足的正整数和素数.(其中欧拉函数)4、求不定方程的整数解为.(其中表示最接近整数的5的倍数)5、对于正奇数,若存在正奇数,满足,求满足条件的正奇数的总和.6、设,,正整数数组满足:,如果不能将分为和相等的两组数,那么称数组为“优秀的”,求所有的“优秀的”数组.讲座一参考答案 2011-7-18例题答案:1.解:设,其中是质数,是正整数,由定理4的推论得,由欧拉函数的定义知等于减去集合中与不互质的元素个数,也就是减去集合中与不互质的元素个数,又是质数,∴∴另证:本定理也可以用容斥原理来证明.设,其中是质数,是正整数,记,∴由容斥原理得2.证明:设是模的一个简化剩余系,则由定理3知,也是模的一个简化剩余系.∴与且仅与中的一个数对模同余,∴即(*)又是模的一个简化剩余系,故.∴∴由(*)知:.3.证明:若,则,结论显然成立;若,由欧拉定理知,即.注:费尔马小定理的另一种形式:若是质数,是正整数,,则.另证:对进行归纳,当时,结论显然成立;假设时,结论也成立,即则.(其中用到了,当时,)∴对任意,有.4.证明:对进行归纳.当时,由于,则无解,∴定理成立.假设定理对所有次数小于的多项式都成立,现设存在一个次多项式,使得同余方程有个(在模的意义下)不同的解.利用因式定理,可设,则在模的意义下是一个至多次的多项式.由都是的解,知对≤≤,都有,而,故,从而至少有根,与归纳假设矛盾,所以,定理对次整系数多项式也成立.综上,定理成立.5.证明:当时,显然成立;当为奇素数时,考虑多项式可以看到的最高次数为又当时,,由费尔马小定理知,∴由拉格朗日定理知,的展开式中各项系数都是的倍数,∴又为奇素数,为偶数,∴,得证.6.设为奇素数,且,证明:是模的二次剩余充要条件是;是模的二次非剩余充要条件是.证明:若为模的二次剩余,即存在,使得.由,可知,由费尔马小定理知,.反过来,若,则是同余方程的解,由拉格朗日定理知,该方程至多有个解,而都是该同余方程的解,∴它们就是该方程的全部解,∴存在,使得.另一方面,若是模的二次非剩余,则但由费尔马小定理,,即∴,即反过来,,又是模的二次剩余,则∴与为奇素数矛盾.7.证明:知斐波那契数列的通项公式()对大于5的素数,由费尔马小定理可知,∴,又∴或如果(其中用到了,当时,,及费尔马小定理)∴如果,类似计算可得,则综上,8.解:显然是①的解,代入②解得,∴都是方程的解.另外,当或时,同样可以得出上述解.下设≥5,当时,由②知而∴或但是,∴上式不可能成立.∴≥3由①知同理可得,∴∴③又在≥4时,单调递增,∴≥∴③式≤≤矛盾.∴由于又,没有平方因数,∴∴≥7,≥11并且≤≤,∴≤与③式矛盾.∴本题的解只能是.练习题答案:1、设为素数,证明:存在无穷多个,使得.证明:当时,只需要取为偶数即可;当为奇素数时,由费尔马小定理知,,此时令,则.2、对,如果对任意,只要,就有,那么就称具有性质.1)证明:每个素数都具有性质;2)是否存在无穷多个合数具有性质?证明:对任意素数,由,可知,从而由费尔马小定理知,∴,可得,∴∴.2)存在无穷多个合数具有性质.例如:对奇素数,数都具有性质.事实上,,则为奇数,∴又,∴或若,由1)知;若,由费尔马小定理知,,这时,∴综上,总有,∴,即数都具有性质.3、求所有满足的正整数和素数.(其中欧拉函数)解:若时,,∴为偶数,且中所有的奇数均与互质,∴若为奇素数,设,其中是质数,是正整数,且∴,∴,又∴,但是,当时,,而∴,,∴∴综上:时,;时,;4、求不定方程的整数解为.(其中表示最接近整数的5的倍数)解:由,若,设,则,又,∴解得;若,设,则,又∴解得或.5、对于正奇数,若存在正奇数,满足,求满足条件的正奇数的总和.解:由为正奇数得:又由为正奇数得:∴另一方面:若,可以找到满足条件的正奇数当时,则;当时,∴共个正奇数的平方和.综上:,则其总和为.6、设,,正整数数组满足:,如果不能将分为和相等的两组数,那么称数组为“优秀的”,求所有的“优秀的”数组.解:设数组为“优秀的”,对1≤≤,考虑下面的个数:,其中由于不能将分为和相等的两组数,即其中没有若干个数之和等于,∴上面的个数中,除外,其余任意两项对模不同余,否则这两项之差等于.另外,上面的个数中,必有两个数模同余,∴对都成立∴又∴综上:当为奇数时,中有一个是,其余都是1,或;当为偶数时,中有一个是,其余都是1.。
同余-高中数学知识点讲解
同余
1.同余
0、初等数论基本概念:
①整除:设a,b 是整数,b≠0.如果存在一个整数q 使得等式:a=bq 成立,则称b 能整除a 或a 能被b 整除,
记作b|a;如果这样的q 不存在,则称b 不能整除a.
②最大公因数:设a1,a2,…,a n 是n 个不全为零的整数,若整数d 是它们之中每一个的因数,那么d 就叫做a1,a2,…,a n 的一个公因数.整数的公因数中最大的一个叫做它们的最大公因数,记作(a1,a2,…,an).
③互质:设a1,a2,…,a n 是n 个不全为零的整数,若(a1,a2,…,a n)=1,则称a1,a2,…,an 是互质的.
1、同余:
设m 为正整数,称为模.若用m 去除两个整数a 和b 所得的余数相同,则称a 和b 对模m 同余,记作
a≡b(modm).
读作a 同余于b 模m.
2、性质:
①a≡a(modm),
②如果a≡b(modm),那么b≡a(modm),
③如果a≡b(modm)且b≡c(modm),那么a≡c(modm),
④若a≡b(modm),c≡d(modm),则ac≡bd(modm),
⑤若a≡b(modm),则a n≡b n(modm).
1/ 1。
【最新整理】初等数论同余
例2:证明5y+3=x2无解 证明:若5y+3=x2有解,则两边关于模5同余 有5y+3≡x2(mod 5) 即3≡x2(mod 5)
而任一个平方数x2≡0,1,4(mod 5) ∴ 3 ≡ 0,1,4(mod 5),不可能 ∴ 即得矛盾,即5y+3=x2无解 注:在证明方程无解时,经常用不同余就不相等的 方法。
性质7 a b(modm).d|(a,b),(d,m)=1 则
a b (modm). dd
证: 因为 m | d( a b ) ,(d,m)=1 ,所以有
dd
m| a b dd
性质8 若a b(modm).则 (a,m)=(b,m) 证:由已知a=b+mt,故 (a,m)|a, (a,m)|m, 有(a,m)|b,所以有 (a,m)|(b,m), 同理可证(b,m)|(a,m), 即(a,m)=(b,m).
因为0 X,Y 9,所以有
21 21+X+Y 39,4 X-Y+13 22,由此
可知 21+X+Y=27,X-Y+13=11 或21+X+Y=36,X-Y+13=22 X+Y=6,X-Y=-2,或X+Y=15,X-Y=9, 解得X=2,Y=4。
例3 :求111 被7除的余数。
50
解:∵111111被7整除,
(2)若 a b c(modm). 则 a c b(modm).
证:由(1)因为 b b(modm), 即得。
注4:性质2相当于等式中的两个等式相加和 移项. 结合前二条性质,我们来看几个例子.
例1:对任意整数a,8a+7不可能 是三个整数的平方.
基础知识——数论函数中同余
同余同余式性质应用非常广泛,在处理某些整除性、进位制、对整数分类、解不定方程等方面的问题中有着不可替代的功能,与之密切相关的的数论定理有欧拉定理、费尔马定理和中国剩余定理。
基础知识三个数论函数对于任何正整数均有定义的函数,称为数论函数。
在初等数论中,所能用到的无非也就有三个,分别为:高斯(Gauss)取整函数[x ]及其性质,除数函数d (n )和欧拉(Euler)函数)(x ϕ和它的计算公式。
1. 高斯(Gauss)取整函数[x ]设x 是实数,不大于x 的最大整数称为x 的整数部分,记为[x ];][x x -称为x 的小数部分,记为{x }。
例如:[0.5]=0,7.0}3.0{,1415.0}{,4][,3]3[,7]50[=-=-=--=-=Λππ等等。
由}{],[x x 的定义可得如下性质:性质1.1}{0};{][<≤=-x x x x ;性质2.1][][1+<≤<-x x x x ;性质3.设Z a ∈,则][][x a x a +=+;性质4.][][][y x y x +≥+;}{}{}{y x y x +≤+;性质5.⎩⎨⎧---=-1][][][x x x Zx Z x ∉∈;性质6.对于任意的正整数n ,都有如下的埃米特恒等式成立:][]1[]2[]1[][nx nn x n x n x x =-+++++++Λ; 为了描述性质7,我们给出如下记号:若a b |α,且1+αb a ,则称为αb 恰好整除a ,记为a b ||α。
例如:我们有2000||5,2000||234等等,其实,由整数唯一分解定理:任何大于1的整数a 能唯一地写成k i p p p a k a k a a ,,,2,1,2121ΛΛ==的形式,其中i p 为质(素)数()(j i p p j i <<)。
我们还可以得到:k i a p i a i ,,2,1,||Λ=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年协作体夏令营系列讲座(一)
初等数论中的同余问题
复旦附中万军
同余的概念和性质:
设为非零整数,如果整数满足,则称和对模同余,记为;否则称和对模不同余,记为.
注意到,,故,所以我们总是可以假定为正整数.
对于固定的模,同余有很多性质:
1)同余是一种等价关系,即有
①自反性:;
②对称性:若,则;
③传递性:若,,则.
2)加法、减法、乘法和乘方运算:
若,,
则,
,.
3)除法运算:
,则.
特别地,若,则.
4)同余组:
同时成立的充要条件是
剩余类与完全剩余系:
设为一个给定的正整数,则全体整数可以分成个集,记为,
其中,则称为模的剩余类.模的剩余类有下列性质:
1)每个整数必属于且仅属于模的一个剩余类中;
2)两个整数同在一个剩余类中的充要条件是这两个整数模同余.
事实上,,0≤≤,有
如果个整数中不存在两个数属于同一剩余类,则称为模的一个完全剩余系(或称完系).
最常用的剩余系称为模的非负最小完全剩余系.
此外也常用到绝对值最小完全剩余系,它们是:
当为奇数时,
当为偶数时,或
完全剩余系有下列性质:
1)个整数作为模的一个完全剩余系的充要条件是它们两两模
不同余;
2)若是模的一个完全剩余系,,
那么也是模的一个完全剩余系;
也常这样描述:设是正整数,,若通过模的一个完全剩余系,
则也通过模的一个完全剩余系.
3)若是互质的两个正整数,而分别通过的一个完全剩余系,
则通过的一个完全剩余系.
如果一个模的剩余类里面的数与互质,就把它叫做一个与模互质的剩余类,在与模互质的全部剩余类中,从每一类各任取一个代表元所组成的数集,叫做模的一个简化剩余类系(或缩系).
定理1:模的剩余类是模互质的剩余类的充要条件是此类中有一个数与互质.因此与模互质的剩余类的个数是,模的每一个简化剩余类系是由与互质的个对模不同余的整数组成的.
其中,(欧拉函数)是定义在正整数上的函数,它在正整数上的值是集合中与互质的数的个数.
定理2:若是个与互质的数整,并且两两对模不同余,
则是模的一个简化剩余类系.
定理3:若,通过模的一个简化剩余系,则也通过模的一个完全剩余系.
定理4:若是互质的两个正整数,而分别通过的一个简化剩余系,
则通过的一个简化剩余系.
推论:若是互质的两个正整数,则.
下面的几个定理在处理数论问题时经常用到,并且它们本身的证明也是很好的例题.
1、(欧拉函数)是定义在正整数上的函数,它在正整数上的值是集合
中与互质的数的个数,求.
2、(欧拉定理)设是正整数,且,则.
3、(费尔马小定理)若是质数,是正整数,则.
4、(拉格朗日定理)设为素数,多项式
是一个模为次整系数多项式,则关于的同余方程(在模的意义下)至多有个不同的解.
5、(威尔逊定理)设为素数,则.
6、设为整数,为正整数,若存在,使得,则称为模的二次剩余,否则,称为模的二次非剩余.
7、已知斐波那契数列,
设为大于5的素数,证明:
8、求所有满足下面两式的三元组,其中为奇素数,为大于1的整数.
①
②
练习题:
1、设为素数,证明:存在无穷多个,使得.
2、对,如果对任意,只要,就有,那么就称具有性质.1)证明:每个素数都具有性质;
2)是否存在无穷多个合数具有性质?
3、求所有满足的正整数和素数.(其中欧拉函数)
4、求不定方程的整数解为.
(其中表示最接近整数的5的倍数)
5、对于正奇数,若存在正奇数,满足
,求满足条件的正奇数的总和.
6、设,,正整数数组满足:,
如果不能将分为和相等的两组数,那么称数组为“优秀的”,求所有的“优秀的”数组.
讲座一参考答案 2011-7-18
例题答案:
1.解:设,其中是质数,是正整数,
由定理4的推论得,
由欧拉函数的定义知等于减去集合中与不互质的元素个数,
也就是减去集合中与不互质的元素个数,又是质数,
∴
∴
另证:本定理也可以用容斥原理来证明.
设,其中是质数,是正整数,
记,
∴由容斥原理得
2.证明:设是模的一个简化剩余系,
则由定理3知,也是模的一个简化剩余系.
∴与且仅与中的一个数对模同余,
∴
即(*)
又是模的一个简化剩余系,故.
∴
∴由(*)知:.
3.证明:若,则,结论显然成立;
若,由欧拉定理知,即.
注:费尔马小定理的另一种形式:若是质数,是正整数,,则.
另证:对进行归纳,
当时,结论显然成立;
假设时,结论也成立,即
则
.
(其中用到了,当时,)
∴对任意,有.
4.证明:对进行归纳.
当时,由于,则无解,∴定理成立.
假设定理对所有次数小于的多项式都成立,现设存在一个次多项式,使得同余方程有个(在模的意义下)不同的解.
利用因式定理,可设,则在模的意义下是一个至多
次的多项式.由都是的解,知对≤≤,都有
,
而,故,从而至少有根,与归纳假设矛盾,所以,定理对次整系数多项式也成立.
综上,定理成立.
5.证明:当时,显然成立;
当为奇素数时,考虑多项式
可以看到的最高次数为
又当时,,由费尔马小定理知,
∴
由拉格朗日定理知,的展开式中各项系数都是的倍数,
∴
又为奇素数,为偶数,∴,得证.
6.设为奇素数,且,证明:是模的二次剩余充要条件是
;是模的二次非剩余充要条件是.
证明:若为模的二次剩余,即存在,使得.
由,可知,由费尔马小定理知,.
反过来,若,则是同余方程的解,
由拉格朗日定理知,该方程至多有个解,而都是该同余方程的解,
∴它们就是该方程的全部解,
∴存在,使得.
另一方面,若是模的二次非剩余,则
但由费尔马小定理,,即
∴,即
反过来,,又是模的二次剩余,则
∴与为奇素数矛盾.
7.证明:知斐波那契数列的通项公式()
对大于5的素数,由费尔马小定理可知,
∴,又
∴或
如果
(其中用到了,当时,,及费尔马小定理)
∴
如果,类似计算可得,则
综上,
8.解:显然是①的解,代入②解得,∴都是方程的解.
另外,当或时,同样可以得出上述解.
下设≥5,
当时,由②知
而
∴或
但是,∴上式不可能成立.∴≥3
由①知
同理可得,
∴
∴③
又
在≥4时,单调递增,∴≥
∴③式≤≤矛盾.
∴
由于
又,没有平方因数,∴
∴≥7,≥11并且≤≤,
∴≤与③式矛盾.
∴本题的解只能是.
练习题答案:
1、设为素数,证明:存在无穷多个,使得.
证明:当时,只需要取为偶数即可;
当为奇素数时,由费尔马小定理知,,
此时令,则.
2、对,如果对任意,只要,就有,那么就称具有性质.1)证明:每个素数都具有性质;
2)是否存在无穷多个合数具有性质?
证明:对任意素数,由,可知,
从而由费尔马小定理知,
∴,可得,
∴
∴.
2)存在无穷多个合数具有性质.例如:对奇素数,数都具有性质.事实上,,则为奇数,∴
又,∴或
若,由1)知;
若,由费尔马小定理知,,
这时,
∴
综上,总有,∴,即数都具有性质.
3、求所有满足的正整数和素数.(其中欧拉函数)
解:若时,,
∴为偶数,且中所有的奇数均与互质,
∴
若为奇素数,设,其中是质数,是正整数,且
∴,∴,又
∴,但是,当时,,而
∴,,∴
∴综上:时,;时,;
4、求不定方程的整数解为.
(其中表示最接近整数的5的倍数)
解:
由,
若,设,则,
又
,
∴
解得;
若,设,则,
又
∴
解得或.
5、对于正奇数,若存在正奇数,满足
,求满足条件的正奇数的总和.
解:由为正奇数得:
又由为正奇数得:
∴
另一方面:若,可以找到满足条件的正奇数
当时,则;
当时,
∴共个正奇数的平方和.
综上:,则其总和为.
6、设,,正整数数组满足:,
如果不能将分为和相等的两组数,那么称数组为“优秀的”,求所有的“优秀的”数组.
解:设数组为“优秀的”,对1≤≤,考虑下面的个数:
,其中
由于不能将分为和相等的两组数,即其中没有若干个数之和等于,
∴上面的个数中,除外,其余任意两项对模不同余,否则这两项之差等于.
另外,上面的个数中,必有两个数模同余,
∴对都成立
∴又
∴
综上:当为奇数时,中有一个是,其余都是1,或;
当为偶数时,中有一个是,其余都是1.。