人教版九年级下册数学开学考试试卷A卷
陕西人教版九年级下学期开学数学试卷A卷
陕西人教版九年级下学期开学数学试卷A卷一、选择题 (共10题;共20分)1. (2分)如果a和b互为倒数,那么2ab+3的和是()A . 4B . 5C . 6D . 72. (2分)若a+b=﹣3,ab=1,则a2+b2=()A . -11B . 11C . -7D . 73. (2分)由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A .B .C .D .4. (2分)若两个相似三角形的面积之比为1:4,则它们的周长之比为()A . 1:2B . 1:4C . 1:5D . 1:165. (2分)用配方法解下列方程,其中应在方程的左右两边同时加上4的是()A . -2x=5B . +4x=5C . +2x=5D . 2 -4x=56. (2分)已知关于x的方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A . k>2B . k>0且k≠1C . k<2且k≠1D . k<27. (2分)面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()A .B .C .D .8. (2分)如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC =3:5,则AB的长是()A . 4cmB . 6cmC . 8cmD . 10cm9. (2分)在Rt△ABC中,已知∠C=90°,AC=12,BC=5,则cosA等于()A .B .C .D .10. (2分)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共8题;共8分)11. (1分)若函数是反比例函数,且它的图象在第二、四象限,则m 的值是________12. (1分)如果一个斜坡的坡度,那么该斜坡的坡角为________度.13. (1分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为________14. (1分)若反比例函数y= 的图象经过点(1,﹣6),则k的值为________.15. (1分)三角形的两边长分别是3和9,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为________.16. (1分)如图,在△ABC中,AB=AC,BC=12,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为________ .17. (1分)方程的根是________18. (1分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有________。
九年级(下)开学数学试卷(含答案解析)
九年级(下)开学数学试卷(典型题)姓名:得分:日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 在如图所示的花坛的图案中,圆形的内部有菊花组成的内接等边三角形,则这个图案()A.是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形C.是中心对称图形但不是轴对称图形D.既不是轴对称图形又不是中心对称图形2、(3分) 下列事件中发生的可能性为0的是()A.抛一枚均匀硬币,落地后正面朝上B.今天黄冈市最高气温为88℃C.路边抛掷一石头,石头终将落地(空中无任何遮拦)D.不透明袋子中放了大小相同的兵兵球和金属球,从中去摸取出兵兵球3、(3分) 对于抛物线y=(x-1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大4、(3分) OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为()A.80°B.40°C.50°D.20°5、(3分) 某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)B.50(1+x)C.50+50(1+x)+50(1+x)D.50(1+x)+50(1+x)2=60 2=120 2=120 2=1206、(3分) 已知抛物线y=(m-1)x2+4x-3(m为常数)与x轴有两个交点,则m的取值范围是()A.m>−13B.m<−13C.m≥−13D.m>−13,且m≠17、(3分) 一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8、(3分) 如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=-0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a-b=0;②当-2<x<1时,y>0;③四边形ACBD是菱形;④9a-3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③二、填空题(本大题共 8 小题,共 24 分)9、(3分) 点(-4,3)关于原点对称的点的坐标是______.10、(3分) 把方程x2+2x-5=0配方后的方程为______.11、(3分) 一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是______.12、(3分) 当宽为3cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm ),那么该圆的半径为______cm .13、(3分) 如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是______.14、(3分) 如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______.15、(3分) 点A 在双曲线y=3x 上,点B 在双曲线y=k x (k≠0)上,AB∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是6,则k 的值为______.16、(3分) 如图,已知A (2√3,2)、B (2√3,1),将△AOB 绕着点O 逆时针旋转,使点A旋转到点A′(-2,2√3)的位置,则图中阴影部分的面积为______.三、解答题(本大题共 9 小题,共 72 分)17、(8分) 用适当的方法解下列方程(1)x2-4x-5=0;(2)3x2+4x-1=0.18、(6分) 如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.19、(6分) 某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销量,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天可多售出4箱.(1)如果要使每天销售该饮料获利14000元,则每箱应降价多少元.(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应降价多少?若不能,请说明理由.20、(6分) 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.21、(6分) 已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22、(8分) 如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,3),B(n,-2)两x点.过点B作BC⊥x轴,垂足为C.(1)求一次函数与反比例函数的解析式;(2)请求出△ABC的面积;图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(-2,y2)是函数y=k2x23、(8分) 如图,AB为⊙O的直径,C为中点,CD⊥BE于D.(1)判断DC与⊙O的位置关系,并说明理由;(2)若DC=3,⊙O半径为5,求DE长.24、(10分) 某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润元,厂家如何生产可使每天获利最大?最大利润是多少?降低x10025、(14分) 如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.九年级(下)开学数学试卷【第 1 题】【答案】A【解析】解:所给图形是轴对称图形,但不是中心对称图形.故选:A.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【第 2 题】【答案】B【解析】解:A、抛一枚均匀硬币,落地后正面朝上,是随机事件;B、今天黄冈市最高气温为88℃是不可能事件,可能性为0;C、路边抛掷一石头,石头终将落地(空中无任何遮拦)是必然事件,可能性为1;D、不透明袋子中放了大小相同的乒乓球和金属球,从中去摸取出乒乓球是随机事件;故选:B.根据事件发生的可能性既不是0,也不是100%的事件就是可能发生也可能不发生的事件,即不确定事件,从而得出答案.此题考查了可能性的大小,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.【第 3 题】【答案】D【解析】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=(x-1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.根据二次函数的性质,二次函数的顶点式即可判断;此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k),解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 4 题】【答案】A【解析】解:∵∠C=40°,∴∠AOB=2∠C=80°.故选:A.直接根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,求解即可求得答案.此题考查了圆周角定理.注意熟记定理是解此题的关键.【第 5 题】【答案】D【 解析 】解:设二、三月份每月的平均增长率为x ,则二月份生产机器为:50(1+x ),三月份生产机器为:50(1+x )2;又知二、三月份共生产120台;所以,可列方程:50(1+x )+50(1+x )2=120.故选:D .主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x ,根据“计划二、三月份共生产120台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.【 第 6 题 】【 答 案 】D【 解析 】解:∵y=(m-1)x 2+4x-3(m 为常数)与x 轴有两个交点,∴△=16-4(m-1)(-3)>0,且m-1≠0 解得m >−13,且m≠1.故选:D .根据b 2-4ac 与0的关系即可判断出二次函数y=(m+1)x 2+4mx+4m-3的图象与x 轴交点的个数.本题考查了二次函数y=ax 2+bx+c 的图象与x 轴交点的个数的判断:(1)当b 2-4ac >0时,二次函数ax 2+bx+c+2=0的图象与x 轴有两个交点;(2)当b 2-4ac=0时,二次函数ax 2+bx+c+2=0的图象与x 轴有一个交点;(3)当b 2-4ac <时,二次函数ax 2+bx+c+2=0的图象与x 轴没有交点.【 第 7 题 】【 答 案 】B【 解析 】解:∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=12Rl ,即60π=12×R×10π,解得:R=12,∴S=60π=nπ×122360,解得:n=150°,故选:B .利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.【第 8 题】【答案】D【解析】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),∴该抛物线的对称轴为x=-b2a =-0.5,∴a=b,a-b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(-2,0)、B(1,0),∴当-2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=-3时,y<0,即y=9a-3b+c<0,④错误.综上可知:正确的结论为①②③.故选:D.①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=-b2a =-0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当-2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=-3时,y<0,即可得出9a-3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.【第 9 题】【答案】(4,-3)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-4,3)关于原点对称的点的坐标是(4,-3).故答案为(4,-3).平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.本题主要考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.【第 10 题】【答案】(x+1)2=6【解析】解:x2+2x-5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故答案为:(x+1)2=6.移项后配方,再变形,即可得出答案.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,有直接开平方法、因式分解法、配方法、公式法等.【第 11 题】【答案】45【解析】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360-135=225,∵0<n<180,∴此种情形不合题意,故答案为45分两种情形讨论,分别画出图形求解即可.本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【 第 12 题 】 【 答 案 】 25 【 解析 】解:连接OA ,过点O 作OD⊥AB 于点D ,∵OD⊥AB ,∴AD=12AB=12(9-1)=4cm ,设OA=r ,则OD=r-3, 在Rt△OAD 中,OA 2-OD 2=AD 2,即r 2-(r-3)2=42,解得r=256cm . 故答案为:256.连接OA ,过点O 作OD⊥AB 于点D ,由垂径定理可知,AD=12AB=12(9-1)=4,设OA=r ,则OD=r-3,在Rt△OAD 中利用勾股定理求出r 的值即可.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【 第 13 题 】 【 答 案 】16【 解析 】解:如图所示:连接OA ,∵正六边形内接于⊙O ,∴△OAB ,△OBC 都是等边三角形, ∴∠AOB=∠OBC=60°, ∴OC∥AB ,∴S △ABC =S △OBC , ∴S 阴=S 扇形OBC ,则飞镖落在阴影部分的概率是16; 故答案为:16.根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S 扇形OBC是解题关键.【 第 14 题 】 【 答 案 】(√6,2)或(-√6,2) 【 解析 】解:依题意,可设P (x ,2)或P (x ,-2).①当P 的坐标是(x ,2)时,将其代入y=12x 2-1,得 2=12x 2-1,解得x=±√6,此时P (√6,2)或(-√6,2);②当P 的坐标是(x ,-2)时,将其代入y=12x 2-1,得 -2=12x 2-1,即-1=12x 2无解.综上所述,符合条件的点P 的坐标是(√6,2)或(-√6,2); 故答案是:(√6,2)或(-√6,2).当⊙P 与x 轴相切时,点P 的纵坐标是2或-2,把点P 的坐标坐标代入函数解析式,即可求得相应的横坐标.本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.【 第 15 题 】 【 答 案 】 9 【 解析 】解:设A (a ,3a ),则B (ak3,3a )∴AB=ak3−a ∵S ABCD =AB×AD∴(ak 3−a )×3a =6 ∴k=9故答案为9设A (a ,3a ),则B (ak 3,3a ),可表示AB 的长.根据矩形ABCD 的面积是6,求得k 的值. 本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征.关键是灵活运用反比例函数系数k 的几何意义解决问题.【 第 16 题 】 【 答 案 】34π【 解析 】解:∵A (2√3,2)、B (2√3,1),∴OA=4,OB=√13,∵由A (2√3,2)使点A 旋转到点A′(-2,2√3), ∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S 【formula error 】=S OBC ,∴阴影部分的面积等于S 扇形A'OA -S 扇形C'OC =14π×42-14π×(√13)2=34π, 故答案为:34π.由A (2√3,2)使点A 旋转到点A′(-2,2√3)的位置易得旋转90°,根据旋转的性质可得,阴影部分的面积等于S 扇形A'OA -S 扇形C'OC ,从而根据A ,B 点坐标知OA=4,OC=OB=√13,可得出阴影部分的面积.此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC ,从而得到阴影部分的表达式.【 第 17 题 】 【 答 案 】解:(1)(x-5)(x+1)=0, x-5=0或x+1=0, ∴x 1=5,x 2=-1;(2)∵a=3,b=4,c=-1, ∴b 2-4ac=28>0, ∴x=−4±√282×3=−2±√73, ∴x 1=−2+√73,x 2=−2−√73.【 解析 】(1)利用因式分解法解方程;(2)先计算判别式的值,然后利用求根公式法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.【 第 18 题 】 【 答 案 】(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得, ∴DB=CB ,∠ABD=∠EBC ,∠ABE=60°, ∵AB⊥BC , ∴∠ABC=90°,∴∠DBE=∠CBE=30°, 在△BDE 和△BCE 中,∵{DB =CB∠DBE =∠CBE BE =BE,∴△BDE≌△BCE (SAS ); (2)四边形ABED 为菱形; 由(1)得△BDE≌△BCE , ∵△BAD 是由△BEC 旋转而得, ∴△BAD≌△BEC ,∴BA=BE ,AD=EC=ED , 又∵BE=CE ,∴四边形ABED 为菱形.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.【第 19 题】【答案】解:(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120-x)(100+2x)=14000,整理得x2-70x+1000=0,解得x1=20,x2=50;∵为了扩大销量,尽快减少库存,∴x=50.答:每箱应降价50元,可使每天销售饮料获利14000元.(2)由题意得:(120-x)(100+2x)=14500,整理得x2-70x+1250=0,∵△=702-4×1250<0,∴此方程无实数根,故该超市每天销售这种饮料的获利不可能达14500元.【解析】(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;(2)根据题意列出方程,然后用根的判别式去验证.本题考查了一元二次方程在实际生活中的应用.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,本题也可利用二次函数求最值.【第 20 题】【答案】解:列表得:1 2 3 4yx(x,y)1 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=-x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=-x+5图象上的概率为:P=412=13.【解析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【第 21 题】【答案】解:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴△=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【解析】(1)根据方程的系数结合根的判别式,即可得出△=20-4m≥0,解之即可得出结论; (2)由根与系数的关系可得x 1+x 2=6①、x 1•x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=-x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20-4m≥0;(2)分x 2≥0和x 2<0两种情况求出x 1、x 2的值.【 第 22 题 】 【 答 案 】解:(1)把A (2,3)代入y=k2x ,得k 2=6, ∴反比例函数的解析式是y=6x ;∵B (n ,-2)在反比例函数y=6x 的图象上,∴n=-3,即B 的坐标为(-3,-2),把A (2,3),B (-3,-2)代入y=k 1x+b ,得 {2k 1+b =3−3k 1+b =−2,解得{k 1=1b =1, 即一次函数的解析式为y=x+1;(2)∵BC⊥x 轴,B (-3,-2),A (2,3) ∴BC=2,∴S △ABC =12•BC•|2-(-3)|=12×2×5=5;(3)∵P (p ,y 1),Q (-2,y 2)是函数y=6x 图象上的两点,且y 1≥y 2, ∴当点P 在第三象限时,要使y 1≥y 2,实数p 的取值范围是p≤-2, 当点P 在第一象限时,要使y 1≥y 2,实数p 的取值范围是p >0, 即p 的取值范围是p≤-2或p >0. 【 解析 】(1)根据一次函数y=k 1x+b 与反比例函数y=k 2x 的图象交于A (2,3),B (n ,-2)两点,可以分别求得一次函数与反比例函数的解析式;(2)根据点A 和点B 的坐标可以求得△ABC 的面积; (3)根据反比例函数的性质可以求得p 的取值范围.本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.【 第 23 题 】 【 答 案 】解:(1)DC与⊙O相切.理由如下:连结AE、OC,它们相交于F点,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵CD⊥BE,∴∠D=90°,∴CD∥AE,又∵C为中点,∴OC⊥AE,AF=EF,∴OC⊥CD,∴CD为⊙O的切线;(2)∵∠D=∠DCF=∠CFE=90°,∴四边形CFED为矩形,∴EF=CD=3,DE=CF,∴AF=3,在Rt△OFA中,OA=5,∴OF=√OA2−AF2=4,∴CF=OC-OF=5-4=1,∴DE=1.【解析】(1)连结AE、OC,它们相交于F点,根据圆周角定理由AB为⊙O的直径得到∠AEB=90°,而CD⊥BE,则CD∥AE,由于C为中点,根据垂径定理的推论得到OC⊥AE,AF=EF,所以OC⊥CD,于是根据切线的判定定理得到CD为⊙O的切线;(2)易得EF=CD=3,DE=DF,则AF=3,再根据勾股定理计算出OF,然后计算出CF,从而可得到DE的长.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理以及垂径定理的推论.【第 24 题】【答案】解:(1)根据题意可得:y=20x+15(600-x)=5x+9000.∴y关于x的函数关系式为y=5x+9000;(2)根据题意,得:50 x+35(600-x)≥26400,解得:x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3)根据题意可得:y=(20-x100)x+15(600-x)=-1100(x-250)2+9625,∵−1100<0,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【解析】(1)根据题意,即可得y关于x的函数关系式为:y=20x+15(600-x),然后化简即可求得答案;(2)首先根据题意可得不等式:50x+35(600-x)≥26400,即可求得x的取值范围,又由一次函数的增减性,即可求得该酒厂每天至少获利多少元;(3)首先表示出获利与x之间的关系进而得出函数最值.此题考查了一次函数与不等式的实际应用、二次函数的应用.解题的关键是理解题意,根据题意列得一次函数解析式与不等式.【第 25 题】【答案】解:(1)由抛物线y=-x 2+bx+c 过点A (-1,0)及C (2,3)得,{−1−b +c =0−4+2b +c =3, 解得{b =2c =3, 故抛物线为y=-x 2+2x+3;又设直线为y=kx+n 过点A (-1,0)及C (2,3),得{−k +n =02k +n =3, 解得{k =1n =1, 故直线AC 为y=x+1;(2)∵y=-x 2+2x+3=-(x-1)2+4,∴D (1,4),当x=1时,y=x+1=2,∴B (1,2),∵点E 在直线AC 上,设E (x ,x+1).①如图2,当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3),∵F 在抛物线上,∴x+3=-x 2+2x+3,解得,x=0或x=1(舍去),∴E (0,1);②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),∵F 在抛物线上,∴x -1=-x 2+2x+3, 解得x=1−√172或x=1+√172, ∴E (1−√172,3−√172)或(1+√172,3+√172),综上,满足条件的点E 的坐标为(0,1)或(1−√172,3−√172)或(1+√172,3+√172);(3)方法一:如图3,过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,设Q (x ,x+1),则P (x ,-x 2+2x+3)∴PQ=(-x 2+2x+3)-(x+1)=-x 2+x+2又∵S △APC =S △APQ+S △CPQ=12PQ•AG=12(-x 2+x+2)×3=-32(x-12)2+278, ∴面积的最大值为278;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图3, 设Q (x ,x+1),则P (x ,-x 2+2x+3)又∵S △APC =S △APH +S 直角梯形PHGC -S △AGC=12(x+1)(-x 2+2x+3)+12(-x 2+2x+3+3)(2-x )-12×3×3=-32x 2+32x+3=-32(x-12)2+278,∴△APC 的面积的最大值为278. 【 解析 】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)需要分类讨论:①当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3)和②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),然后利用二次函数图象上点的坐标特征可以求得点E 的坐标;(3)方法一:过点P 作PQ⊥x 轴交AC 于点Q ;过点C 作CG⊥x 轴于点G ,如图1.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据两点间的距离公式可以求得线段PQ=-x 2+x+2;最后由图示以及三角形的面积公式知S △APC =-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图2.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据图示以及三角形的面积公式知S △APC =S △APH +S 直角梯形PHGC -S △AGC ═-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值. 本题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数解析式,平行四边形的性质,二次函数的性质,三角形的面积,有一定难度.解答(2)题时,要对点E 所在的位置进行分类讨论,以防漏解.。
人教版九年级下学期开学数学试卷A卷
人教版九年级下学期开学数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)二次函数y=x2﹣2的图象的顶点是()A . (2,﹣2)B . (﹣1,0)C . (1,9)D . (0,﹣2)2. (2分)一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为()A . 9㎝B . 12㎝C . 15㎝D . 18㎝3. (2分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A . 3步B . 5步C . 6步D . 8步4. (2分)如图,菱形ABCD的对角线BD、AC分别为2、2 ,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()A . 2 ﹣πB . 4 ﹣πC . 4 ﹣πD . 25. (2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=3,AC=4,则sin∠DCB 的值为()A .B .C .D .6. (2分)如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()A . 1B .C .D .7. (2分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中符合题意的个数是()①点D到∠BAC的两边距离相等;②点D在AB的中垂线上;③AD=2CD④AB=2 CDA . 1B . 2C . 3D . 48. (2分)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是C . 当时,y的最大值为4D . 抛物线与x轴的交点为,9. (2分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为A . 8B . 9.5C . 10D . 510. (2分)如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF :S△BAF=4:25,则DE:AB =().A . 2∶5B . 2∶3C . 3∶5D . 3∶2二、填空题 (共8题;共8分)11. (1分)“任意打开一本200页的数学书,正好是第50页”,这是________事件(选填“随机”,“必然”或“不可能”).12. (1分)如图,△AOB和△ACD均为正三角形,顶点B、D在双曲线y= (x>0)上,线段BC、AD交于点P,则S△OBP=________.13. (1分)抛物线y=﹣x2+3x+4在x轴上截得的线段长度是________.14. (1分)在中,,点为平面内一点,且,若,则 ________.(请用含的代数式来表示)15. (1分)如图,在△ABC中,AD⊥BC于D,如果BD=9,DC=5,cosB=, E为AC 的中点,那么sin∠EDC的值为________ .16. (1分)如图,将边长为2m的正六边形铁丝框ABCDEF変形为以点A为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积________.17. (1分)一个正方形的面积是5,那么这个正方形的对角线的长度为________.18. (1分)已知点A为双曲线y= 图象上的点,点O为坐标原点,过点A作AB⊥x 轴于点B,连接OA.若△AOB的面积为5,则k的值为________.三、解答题 (共10题;共117分)19. (10分)计算:(1)sin45°﹣2﹣1+(3.14﹣π)0(2).20. (5分)如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?21. (5分)如图,已知△ABC.只用直尺(没有刻度的尺)和圆规,求作一个△DEF,使得△DEF∽△ABC,且EF=BC.(要求保留作图痕迹,不必写出作法)22. (30分)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)画出位似中心点O;(3)直接写出△ABC与△A′B′C′的位似比;(4)直接写出△ABC与△A′B′C′的位似比;(5)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.(6)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.23. (8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1) ________, ________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24. (7分)如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)填空:已知∠P=40°,AB=12cm,点Q在上,从点A开始以πcm/s的速度逆时针运动到点C停止,设运动时间为ts.①当t=________时,以点A、Q、B、C为顶点的四边形面积最大;②当t=________时,四边形AQBC是矩形.25. (10分)如图,已知反比例函数y= 的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.(1)求反比例函数和直线的解析式;(2)求△AOB的面积.26. (12分)将一块a×b×c的长方体铁块(如图1所示,a<b<c,单位:cm)放入一长方体(如图2所示)水槽中,并以速度20cm3/s匀速向水槽注水,直至注满为止.若将铁块a×c面放至水槽的底面,则注水全过程中水槽的水深y (cm)与注水时间t (s)的函数图象如图3所示(水槽各面的厚度忽略不计).已知a为5cm.(1)填空:水槽的深度为________cm,b=________cm;(2)求水槽的底面积S和c的值;(3)若将铁块的b×c面放至水槽的底面,求注水全过程中水槽的水深y(cm)与注水时间t(s)的函数关系,写出t的取值范围,并画出图象.27. (15分)在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC= ,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.28. (15分)已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共117分) 19-1、19-2、20-1、21-1、22-1、22-2、22-3、22-4、22-5、22-6、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。
2020届九年级下学期开学数学试卷A卷
2020届九年级下学期开学数学试卷A卷一、选择题: (共10题;共20分)1. (2分)二次函数y=x2﹣2x+2的顶点坐标是()A . (1,1)B . (2,2)C . (1,2)D . (1,3)2. (2分)已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A . 3B . 4C . 5D . 73. (2分)如图,已知△ABC与△ACD都是直角三角形,∠B=∠ACD=90°,AB=4,BC=3,CD=12。
则△ABC的内切圆与△ACD的内切圆的位置关系是()A . 内切B . 相交C . 外切D . 外离4. (2分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A . πB . πC .D .5. (2分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A .B .C .D .6. (2分)(2016•温州)一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .B .C .D .7. (2分)在Rt△ABC中,∠C=90°,sinA= ,BC=6,则AB=()A . 4B . 6C . 8D . 108. (2分)二次函数y=ax2+bx+c的图象如图所示,则点Q(a ,)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)正方形ABCD、正方形BEFG和正方形DMNK的位置如图所示,点A在线段NF 上,AE=8,则△NFP的面积为().A . 30B . 32C . 34D . 3610. (2分)如图,已知矩形的顶点分别落在轴、轴,则点的坐标是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)12. (1分)如图,点A是反比例函数y=﹣的图象上一点,过点A作AB⊥y轴于点B,点P是x轴上的一个动点,则△ABP的面积为________.13. (1分)(2017•青岛)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是________.14. (1分)如图,量角器的直径与直角三角尺ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3°的速度旋转,CP 与量角器的半圆弧交于点E,则第20秒点E在量角器上对应的读数是________°.15. (1分)如图,正方形ABCD中,E为CD上一点,以AE为对称轴将△ADE翻折得到△AFE,延长EF交BC于G,若BG=CG,则sin∠EGC=________.16. (1分)如图,在平行四边形ABCD中,AB=5,AD=2,∠B=60°,以点B为圆心,BC为半径的圆弧交AB于点E,连接DE,则图中阴影部分的面积为________.(结果保留π)17. (1分)如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于________.18. (1分)如图,▱AOBC中,对角线交于点E,双曲线经过A、E两点,若▱AOBC的面积为12,则k=________.三、解答题 (共10题;共96分)19. (5分)计算:()﹣1+16÷(﹣2)3+(2016﹣)0﹣tan60°.20. (5分)(2017•荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)21. (5分)网格中每个小正方形的边长都是1.(1)将图1中画一个格点三角形DEF,使得△DEF≌△ABC(2)将图2中画一个格点三角形MNL,使得△MNL∽△ABC,且相似比为2:1(3)将图3中画一个格点三角形OPQ,使得△OPQ∽△ABC,且相似比为:122. (6分)如图,在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系,请按要求完成下面的问题:(1)以图中的点O为位似中心,将△ABC作位似变换且同向放大到原来的两倍,得到△A1B1C1;(2)若△ABC内一点P的坐标为(a,b),则位似变化后对应的点P′的坐标是________.23. (8分)我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)李老师采取的调查方式是________(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共________件,其中B班征集到作品________,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)24. (15分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.25. (10分)如图,反比例函数y= 的图象与过两点A(0,﹣2),B(﹣1,0)的一次函数的图象在第二象限内相交于点M(m,4).(1)求反比例函数与一次函数的表达式;(2)在双曲线(x<0)上是否存在点N,使MN⊥MB,若存在,请求出N点坐标,若不存在,说明理由.26. (12分)(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是________件,日销售利润是________元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?27. (15分)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),t an∠DBA= .(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.28. (15分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A(﹣1,0)、B(3,0),与y轴负半轴交于点C.(1)若△ABD为等腰直角三角形,求此时抛物线的解析式;(2)a为何值时△ABC为等腰三角形?(3)在(1)的条件下,抛物线与直线y= x﹣4交于M、N两点(点M在点N的左侧),动点P从M点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点N,若使点P运动的总路径最短,求点P运动的总路径的长.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共96分) 19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。
2023-2024学年人教版九年级下册数学开学测试试题
2023-2024学年人教版九年级下册数学开学测试试题一、单选题1.下面四个实数,你认为是无理数的是( )A .13 B C .3 D .0.32.甲、乙两位学生各进行5次一分钟跳绳训练,经统计两人的平均成绩相同,方差分别为223.2 1. 8S S ==甲乙,,则成绩更为稳定的是( )A .甲B .乙C .甲、乙成绩一样稳定D .无法确定 3.()1,2-关于原点对称的点的坐标为( )A .()1,2--B .()1,2C .()1,2-D .()1,2- 4.下列计算正确的是( )A .2a •a 2=2a 3B .3a 3÷2a =a 2C .(2a 2)3=6a 5D .5a 2﹣2a =3a 5.如图,A ,B ,C 是O e 上的三点,20OAB ∠=︒,则C ∠的度数是( )A .40︒B .70︒C .110︒D .140︒6.甲、乙两位同学去图书馆参加整理书籍的志愿活动,已知甲每小时比乙多整理5本,甲整理80本书所用的时间与乙整理70本书所用的时间相同,设乙每小时整理x 本书,根据题意列方程得( )A .80705x x =+B .80705x x =-C .80705x x =-D .80705x x =+二、填空题7x 的取值范围是.8.计算:32-=.9.因式分解:39mx my -=.10.一次函数2(1)1y k x k =-+-的图象经过原点,则y 随x 的增大而 .(填“增大”或“减小”)三、解答题11.已知()2211202a ab b H a b b a ab -+⎛⎫=-÷≠≠ ⎪⎝⎭. (1)化简H ;(2)若点(),P a b 在直线2y x =-上,求H 的值.12.已知二次函数的图象的顶点是()1,2--,且经过点30,2⎛⎫- ⎪⎝⎭ (1)求二次函数的解析式;(2)直接写出图象位于x 轴下方时,自变量x 的取值范围.13.如图,在ABCD Y 中,对角线AC ,BD 交于点O ,AB AC ⊥,AH BD ⊥于点H ,若2AB =,BC =AO 与AH 的长.14.如图已知AB 是O e 的直径,ACD ∠是»AD 所对的圆周角,30ACD ∠=︒.(1)求DAB ∠的度数;(2)过点D 作DE AB ⊥,垂足位E ,DE 的延长线交O e 于点F ,若4AB =,求AD ,DF 的长.15.如图,在ABC V 中,90ABC ∠=︒,12cm AB =,2BC AB =,动点P 从点A 开始沿边AB 向点B 以2cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以4cm/s 的速度移动,如果P ,Q 两点分别从A ,B 两点同时出发,那么BPQ V 的面积S 随出发时间t 而变化.(1)求出S关于t的函数解析式,写出t的取值范围;(2)当t取何值时,S最大?最大值是多少?。
九年级(下)开学数学试卷(含答案解析)
九年级(下)开学数学试卷姓名:得分:日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 在如图所示的花坛的图案中,圆形的内部有菊花组成的内接等边三角形,则这个图案()A.是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形C.是中心对称图形但不是轴对称图形D.既不是轴对称图形又不是中心对称图形2、(3分) 下列事件中发生的可能性为0的是()A.抛一枚均匀硬币,落地后正面朝上B.今天黄冈市最高气温为88℃C.路边抛掷一石头,石头终将落地(空中无任何遮拦)D.不透明袋子中放了大小相同的兵兵球和金属球,从中去摸取出兵兵球3、(3分) 对于抛物线y=(x-1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大4、(3分) OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为()A.80°B.40°C.50°D.20°5、(3分) 某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)B.50(1+x)C.50+50(1+x)+50(1+x)D.50(1+x)+50(1+x)2=60 2=120 2=120 2=1206、(3分) 已知抛物线y=(m-1)x2+4x-3(m为常数)与x轴有两个交点,则m的取值范围是()A.m>−13B.m<−13C.m≥−13D.m>−13,且m≠17、(3分) 一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8、(3分) 如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=-0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a-b=0;②当-2<x<1时,y>0;③四边形ACBD是菱形;④9a-3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③二、填空题(本大题共 8 小题,共 24 分)9、(3分) 点(-4,3)关于原点对称的点的坐标是______.10、(3分) 把方程x2+2x-5=0配方后的方程为______.11、(3分) 一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是______.12、(3分) 当宽为3cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm ),那么该圆的半径为______cm .13、(3分) 如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是______.14、(3分) 如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______.15、(3分) 点A 在双曲线y=3x 上,点B 在双曲线y=k x (k≠0)上,AB∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是6,则k 的值为______.16、(3分) 如图,已知A (2√3,2)、B (2√3,1),将△AOB 绕着点O 逆时针旋转,使点A旋转到点A′(-2,2√3)的位置,则图中阴影部分的面积为______.三、解答题(本大题共 9 小题,共 72 分)17、(8分) 用适当的方法解下列方程(1)x2-4x-5=0;(2)3x2+4x-1=0.18、(6分) 如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.19、(6分) 某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销量,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天可多售出4箱.(1)如果要使每天销售该饮料获利14000元,则每箱应降价多少元.(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应降价多少?若不能,请说明理由.20、(6分) 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.21、(6分) 已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22、(8分) 如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,3),B(n,-2)两x点.过点B作BC⊥x轴,垂足为C.(1)求一次函数与反比例函数的解析式;(2)请求出△ABC的面积;图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(-2,y2)是函数y=k2x23、(8分) 如图,AB为⊙O的直径,C为中点,CD⊥BE于D.(1)判断DC与⊙O的位置关系,并说明理由;(2)若DC=3,⊙O半径为5,求DE长.24、(10分) 某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润元,厂家如何生产可使每天获利最大?最大利润是多少?降低x10025、(14分) 如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.九年级(下)开学数学试卷【第 1 题】【答案】A【解析】解:所给图形是轴对称图形,但不是中心对称图形.故选:A.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【第 2 题】【答案】B【解析】解:A、抛一枚均匀硬币,落地后正面朝上,是随机事件;B、今天黄冈市最高气温为88℃是不可能事件,可能性为0;C、路边抛掷一石头,石头终将落地(空中无任何遮拦)是必然事件,可能性为1;D、不透明袋子中放了大小相同的乒乓球和金属球,从中去摸取出乒乓球是随机事件;故选:B.根据事件发生的可能性既不是0,也不是100%的事件就是可能发生也可能不发生的事件,即不确定事件,从而得出答案.此题考查了可能性的大小,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.【第 3 题】【答案】D【解析】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=(x-1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.根据二次函数的性质,二次函数的顶点式即可判断;此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k),解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 4 题】【答案】A【解析】解:∵∠C=40°,∴∠AOB=2∠C=80°.故选:A.直接根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,求解即可求得答案.此题考查了圆周角定理.注意熟记定理是解此题的关键.【第 5 题】【答案】D【 解析 】解:设二、三月份每月的平均增长率为x ,则二月份生产机器为:50(1+x ),三月份生产机器为:50(1+x )2;又知二、三月份共生产120台;所以,可列方程:50(1+x )+50(1+x )2=120.故选:D .主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x ,根据“计划二、三月份共生产120台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.【 第 6 题 】【 答 案 】D【 解析 】解:∵y=(m-1)x 2+4x-3(m 为常数)与x 轴有两个交点,∴△=16-4(m-1)(-3)>0,且m-1≠0 解得m >−13,且m≠1.故选:D .根据b 2-4ac 与0的关系即可判断出二次函数y=(m+1)x 2+4mx+4m-3的图象与x 轴交点的个数.本题考查了二次函数y=ax 2+bx+c 的图象与x 轴交点的个数的判断:(1)当b 2-4ac >0时,二次函数ax 2+bx+c+2=0的图象与x 轴有两个交点;(2)当b 2-4ac=0时,二次函数ax 2+bx+c+2=0的图象与x 轴有一个交点;(3)当b 2-4ac <时,二次函数ax 2+bx+c+2=0的图象与x 轴没有交点.【 第 7 题 】【 答 案 】B【 解析 】解:∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=12Rl ,即60π=12×R×10π,解得:R=12,∴S=60π=nπ×122360,解得:n=150°,故选:B .利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.【第 8 题】【答案】D【解析】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),∴该抛物线的对称轴为x=-b2a =-0.5,∴a=b,a-b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(-2,0)、B(1,0),∴当-2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=-3时,y<0,即y=9a-3b+c<0,④错误.综上可知:正确的结论为①②③.故选:D.①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=-b2a =-0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当-2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=-3时,y<0,即可得出9a-3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.【第 9 题】【答案】(4,-3)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-4,3)关于原点对称的点的坐标是(4,-3).故答案为(4,-3).平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.本题主要考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.【第 10 题】【答案】(x+1)2=6【解析】解:x2+2x-5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故答案为:(x+1)2=6.移项后配方,再变形,即可得出答案.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,有直接开平方法、因式分解法、配方法、公式法等.【第 11 题】【答案】45【解析】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360-135=225,∵0<n<180,∴此种情形不合题意,故答案为45分两种情形讨论,分别画出图形求解即可.本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【 第 12 题 】 【 答 案 】 25 【 解析 】解:连接OA ,过点O 作OD⊥AB 于点D ,∵OD⊥AB ,∴AD=12AB=12(9-1)=4cm ,设OA=r ,则OD=r-3, 在Rt△OAD 中,OA 2-OD 2=AD 2,即r 2-(r-3)2=42,解得r=256cm . 故答案为:256.连接OA ,过点O 作OD⊥AB 于点D ,由垂径定理可知,AD=12AB=12(9-1)=4,设OA=r ,则OD=r-3,在Rt△OAD 中利用勾股定理求出r 的值即可.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【 第 13 题 】 【 答 案 】16【 解析 】解:如图所示:连接OA ,∵正六边形内接于⊙O ,∴△OAB ,△OBC 都是等边三角形, ∴∠AOB=∠OBC=60°, ∴OC∥AB ,∴S △ABC =S △OBC , ∴S 阴=S 扇形OBC ,则飞镖落在阴影部分的概率是16; 故答案为:16.根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S 扇形OBC是解题关键.【 第 14 题 】 【 答 案 】(√6,2)或(-√6,2) 【 解析 】解:依题意,可设P (x ,2)或P (x ,-2).①当P 的坐标是(x ,2)时,将其代入y=12x 2-1,得 2=12x 2-1,解得x=±√6,此时P (√6,2)或(-√6,2);②当P 的坐标是(x ,-2)时,将其代入y=12x 2-1,得 -2=12x 2-1,即-1=12x 2无解.综上所述,符合条件的点P 的坐标是(√6,2)或(-√6,2); 故答案是:(√6,2)或(-√6,2).当⊙P 与x 轴相切时,点P 的纵坐标是2或-2,把点P 的坐标坐标代入函数解析式,即可求得相应的横坐标.本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.【 第 15 题 】 【 答 案 】 9 【 解析 】解:设A (a ,3a ),则B (ak3,3a )∴AB=ak3−a ∵S ABCD =AB×AD∴(ak 3−a )×3a =6 ∴k=9故答案为9设A (a ,3a ),则B (ak 3,3a ),可表示AB 的长.根据矩形ABCD 的面积是6,求得k 的值. 本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征.关键是灵活运用反比例函数系数k 的几何意义解决问题.【 第 16 题 】 【 答 案 】34π【 解析 】解:∵A (2√3,2)、B (2√3,1),∴OA=4,OB=√13,∵由A (2√3,2)使点A 旋转到点A′(-2,2√3), ∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S 【formula error 】=S OBC ,∴阴影部分的面积等于S 扇形A'OA -S 扇形C'OC =14π×42-14π×(√13)2=34π, 故答案为:34π.由A (2√3,2)使点A 旋转到点A′(-2,2√3)的位置易得旋转90°,根据旋转的性质可得,阴影部分的面积等于S 扇形A'OA -S 扇形C'OC ,从而根据A ,B 点坐标知OA=4,OC=OB=√13,可得出阴影部分的面积.此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC ,从而得到阴影部分的表达式.【 第 17 题 】 【 答 案 】解:(1)(x-5)(x+1)=0, x-5=0或x+1=0, ∴x 1=5,x 2=-1;(2)∵a=3,b=4,c=-1, ∴b 2-4ac=28>0, ∴x=−4±√282×3=−2±√73, ∴x 1=−2+√73,x 2=−2−√73.【 解析 】(1)利用因式分解法解方程;(2)先计算判别式的值,然后利用求根公式法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.【 第 18 题 】 【 答 案 】(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得, ∴DB=CB ,∠ABD=∠EBC ,∠ABE=60°, ∵AB⊥BC , ∴∠ABC=90°,∴∠DBE=∠CBE=30°, 在△BDE 和△BCE 中,∵{DB =CB∠DBE =∠CBE BE =BE,∴△BDE≌△BC E (SAS ); (2)四边形ABED 为菱形; 由(1)得△BDE≌△BCE , ∵△BAD 是由△BEC 旋转而得, ∴△BAD≌△BEC ,∴BA=BE ,AD=EC=ED , 又∵BE=CE ,∴四边形ABED 为菱形.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.【第 19 题】【答案】解:(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120-x)(100+2x)=14000,整理得x2-70x+1000=0,解得x1=20,x2=50;∵为了扩大销量,尽快减少库存,∴x=50.答:每箱应降价50元,可使每天销售饮料获利14000元.(2)由题意得:(120-x)(100+2x)=14500,整理得x2-70x+1250=0,∵△=702-4×1250<0,∴此方程无实数根,故该超市每天销售这种饮料的获利不可能达14500元.【解析】(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;(2)根据题意列出方程,然后用根的判别式去验证.本题考查了一元二次方程在实际生活中的应用.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,本题也可利用二次函数求最值.【第 20 题】【答案】解:列表得:1 2 3 4yx(x,y)1 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=-x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=-x+5图象上的概率为:P=412=13.【解析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【第 21 题】【答案】解:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴△=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【解析】(1)根据方程的系数结合根的判别式,即可得出△=20-4m≥0,解之即可得出结论; (2)由根与系数的关系可得x 1+x 2=6①、x 1•x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=-x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20-4m≥0;(2)分x 2≥0和x 2<0两种情况求出x 1、x 2的值.【 第 22 题 】 【 答 案 】解:(1)把A (2,3)代入y=k2x ,得k 2=6, ∴反比例函数的解析式是y=6x ;∵B (n ,-2)在反比例函数y=6x 的图象上,∴n=-3,即B 的坐标为(-3,-2),把A (2,3),B (-3,-2)代入y=k 1x+b ,得 {2k 1+b =3−3k 1+b =−2,解得{k 1=1b =1, 即一次函数的解析式为y=x+1;(2)∵BC⊥x 轴,B (-3,-2),A (2,3) ∴BC=2,∴S △ABC =12•BC•|2-(-3)|=12×2×5=5;(3)∵P (p ,y 1),Q (-2,y 2)是函数y=6x 图象上的两点,且y 1≥y 2, ∴当点P 在第三象限时,要使y 1≥y 2,实数p 的取值范围是p≤-2, 当点P 在第一象限时,要使y 1≥y 2,实数p 的取值范围是p >0, 即p 的取值范围是p≤-2或p >0. 【 解析 】(1)根据一次函数y=k 1x+b 与反比例函数y=k 2x 的图象交于A (2,3),B (n ,-2)两点,可以分别求得一次函数与反比例函数的解析式;(2)根据点A 和点B 的坐标可以求得△ABC 的面积; (3)根据反比例函数的性质可以求得p 的取值范围.本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.【 第 23 题 】 【 答 案 】解:(1)DC与⊙O相切.理由如下:连结AE、OC,它们相交于F点,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵CD⊥BE,∴∠D=90°,∴CD∥AE,又∵C为中点,∴OC⊥AE,AF=EF,∴OC⊥CD,∴CD为⊙O的切线;(2)∵∠D=∠DCF=∠CFE=90°,∴四边形CFED为矩形,∴EF=CD=3,DE=CF,∴AF=3,在Rt△OFA中,OA=5,∴OF=√OA2−AF2=4,∴CF=OC-OF=5-4=1,∴DE=1.【解析】(1)连结AE、OC,它们相交于F点,根据圆周角定理由AB为⊙O的直径得到∠AEB=90°,而CD⊥BE,则CD∥AE,由于C为中点,根据垂径定理的推论得到OC⊥AE,AF=EF,所以OC⊥CD,于是根据切线的判定定理得到CD为⊙O的切线;(2)易得EF=CD=3,DE=DF,则AF=3,再根据勾股定理计算出OF,然后计算出CF,从而可得到DE的长.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理以及垂径定理的推论.【第 24 题】【答案】解:(1)根据题意可得:y=20x+15(600-x)=5x+9000.∴y关于x的函数关系式为y=5x+9000;(2)根据题意,得:50 x+35(600-x)≥26400,解得:x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3)根据题意可得:y=(20-x100)x+15(600-x)=-1100(x-250)2+9625,∵−1100<0,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【解析】(1)根据题意,即可得y关于x的函数关系式为:y=20x+15(600-x),然后化简即可求得答案;(2)首先根据题意可得不等式:50x+35(600-x)≥26400,即可求得x的取值范围,又由一次函数的增减性,即可求得该酒厂每天至少获利多少元;(3)首先表示出获利与x之间的关系进而得出函数最值.此题考查了一次函数与不等式的实际应用、二次函数的应用.解题的关键是理解题意,根据题意列得一次函数解析式与不等式.【第 25 题】【答案】解:(1)由抛物线y=-x 2+bx+c 过点A (-1,0)及C (2,3)得,{−1−b +c =0−4+2b +c =3, 解得{b =2c =3, 故抛物线为y=-x 2+2x+3;又设直线为y=kx+n 过点A (-1,0)及C (2,3),得{−k +n =02k +n =3, 解得{k =1n =1, 故直线AC 为y=x+1;(2)∵y=-x 2+2x+3=-(x-1)2+4,∴D (1,4),当x=1时,y=x+1=2,∴B (1,2),∵点E 在直线AC 上,设E (x ,x+1).①如图2,当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3),∵F 在抛物线上,∴x+3=-x 2+2x+3,解得,x=0或x=1(舍去),∴E (0,1);②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),∵F 在抛物线上,∴x -1=-x 2+2x+3, 解得x=1−√172或x=1+√172, ∴E (1−√172,3−√172)或(1+√172,3+√172),综上,满足条件的点E 的坐标为(0,1)或(1−√172,3−√172)或(1+√172,3+√172);(3)方法一:如图3,过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,设Q (x ,x+1),则P (x ,-x 2+2x+3)∴PQ=(-x 2+2x+3)-(x+1)=-x 2+x+2又∵S △APC =S △APQ+S △CPQ=12PQ•AG=12(-x 2+x+2)×3=-32(x-12)2+278, ∴面积的最大值为278;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图3, 设Q (x ,x+1),则P (x ,-x 2+2x+3)又∵S △APC =S △APH +S 直角梯形PHGC -S △AGC=12(x+1)(-x 2+2x+3)+12(-x 2+2x+3+3)(2-x )-12×3×3=-32x 2+32x+3=-32(x-12)2+278,∴△APC 的面积的最大值为278. 【 解析 】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)需要分类讨论:①当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3)和②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),然后利用二次函数图象上点的坐标特征可以求得点E 的坐标;(3)方法一:过点P 作PQ⊥x 轴交AC 于点Q ;过点C 作CG⊥x 轴于点G ,如图1.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据两点间的距离公式可以求得线段PQ=-x 2+x+2;最后由图示以及三角形的面积公式知S △APC =-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图2.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据图示以及三角形的面积公式知S △APC =S △APH +S 直角梯形PHGC -S △AGC ═-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值. 本题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数解析式,平行四边形的性质,二次函数的性质,三角形的面积,有一定难度.解答(2)题时,要对点E 所在的位置进行分类讨论,以防漏解.。
人教版2020届九年级下册数学开学考试试卷A卷
人教版2020届九年级下册数学开学考试试卷A卷一、单选题 (共10题;共20分)1. (2分)tan60°的值等于A . 1B .C .D . 22. (2分)二次函数y=x2+5x+4,下列说法正确的是()A . 抛物线的开口向下B . 当x>﹣3时,y随x的增大而增大C . 二次函数的最小值是﹣2D . 抛物线的对称轴是x=﹣3. (2分)下列说法中正确的是()A . “任意画出一个等边三角形,它是轴对称图形”是必然事件B . 任意掷一枚质地均匀的硬币20次,正面向上的一定是10次C . “概率为0.00001的事件”是不可能事件D . “任意画出一个平行四边形,它是中心对称图形”是随机事件4. (2分)若2x=3y,则的值为()A .B .C .D .5. (2分)在同一平面直角坐标系中,有两条抛物线y1=a(x+1)(x﹣5)和y2=mx2+2mx+1,其中am<0,要使得两条抛物线构成轴对称图形,下列变换正确的是()A . 将抛物线y1向右平移3个单位B . 将抛物线y1向左平移3个单位C . 将抛物线y1向右平移1个单位D . 将抛物线y1向左平移1个单位6. (2分)已知正六边形的边长为2,则它的内切圆的半径为()A . 1B .C . 2D . 27. (2分)已知二次函数y=ax2+bx+c的y与c的部分对应值如下表则下列判断中正确的是().A . 抛物线开口向上B . 抛物线与y轴交于负半轴C . 当x=3时,y<0D . 方程ax2+bx+c=0有两个相等实数根8. (2分)对于锐角α,sinα的值不可能为()A .B .C .D . 29. (2分)如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()个.A . 25B . 66C . 91D . 12010. (2分)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第13个“口”字需用棋子颗数为()A . 52B . 50C . 48D . 46二、填空题 (共6题;共7分)11. (1分)计算:(4x2y﹣2xy2)÷2xy=________.12. (1分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为________度.13. (1分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=98°,∠C′=42°,则∠B的度数为________.14. (2分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1 ,A2A3=3OA1 ,A3A4=4OA1 ,….那么A2B2=________,AnBn=________.(n为正整数)15. (1分)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=________.16. (1分)如图,抛物线y=ax2﹣2与y轴交于点A,过点A与x轴平行的直线交抛物线y=﹣ x2于点B,C,则S△BOC=________.三、解答题 (共7题;共70分)17. (20分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.18. (5分)画图:(1)如图,已知△ABC和点O.将△ABC绕点O顺时针旋转90°得到△A1B1C1 ,在网格中画出△A1B1C1;(2)如图,AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺(只能画线)按要求画图.(ⅰ)在图1中,画出△ABC的三条高的交点;(ⅱ)在图2中,画出△ABC中AB边上的高.19. (5分)小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.20. (15分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于A,B两点,与x轴交于C点,与y轴交于D点;点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)求△AOB的面积.21. (5分)已知关于x的一元二次方程mx2﹣3(m+1)x+2m+3=0.(1)如果该方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,当关于x的抛物线y=mx2﹣3(m+1)x+2m+3与x轴交点的横坐标都是整数,且|x|<4时,求m的整数值.22. (10分)如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB延长线于点E,垂足为点F.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径R=5,tanC= ,求EF的长.23. (10分)已知抛物线y=﹣x2+2x+3交x轴于A、B两点,与y轴交于C点.A在B 的左侧,点M是直线BC上方的抛物线上一动点.(1)当点M运动到什么位置时,四边形ABMC的面积最大?并求出此时M点的坐标和四边形ABMC的最大面积.(2)点P(1,﹣3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,过点M作MH∥BC,交x轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、17-3、17-4、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、。
人教版2019年九年级下学期开学考试数学试题A卷
人教版2019年九年级下学期开学考试数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 已知抛物线经过E(4,5),F(2,-3),G(-2,5),H(1,-4)四个点,选取其中两点用待定系数法能求出该抛物线解析式的是()A.E,F B.F,G C.F,H D.E,G2 . 若二次函数(,为常数)的图象如图,则的值为()A.1B.C.D.-23 . 如图,∠D=∠B,补充下列条件之一,不一定能判定△ABC和△ADE相似的是()A.∠ACB=∠AED B.∠CAE=∠BAD C.∠BED=∠EACD.4 . 在⊙O中,弦AB所对的圆心角的度数为80°,则弦AB所对的圆周角的度数为()A.B.C.或D.或5 . 两个实根之和为的一元二次方程是()A.B.C.D.6 . 如图是一个几何体的三视图,则这个几何体的全面积是A.B.C.D.7 . 若反比例函数y=的图象位于第二、四象限,则k的取值可以是()A.0B.1C.2D.以上都不是8 . 如图是二次函数的图象,对于下列结论:①;②;③;④;⑤若点,在二次函数的图象上,则,其中正确的是()A.①②④B.①③④C.②③④D.③④⑤9 . 图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束,在整个运动过程中,点C运动的路径长是()B.2πC.4-2D.10-4A.π二、填空题10 . 如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为__________.11 . 如图,平行四边形OABC的顶点O,B在y轴上,顶点A在反比例函数y=上,顶点C在反比例函数y=上,则平行四边形OABC的面积是____________.12 . 方程的解是______.13 . 如图,为的直径,为延长线上的一点,切于点,,则的直径等于____________.14 . 如图,点、、在一条直线上,与相交于点,,若,则________.15 . 如图,于,交于点,,则___________________.16 . 如图,已知反比例函数y=(x>0)与正比例函数y=x(x≥0)的图象,点A(1,4),点A'(4,b)与点B'均在反比例函数的图象上,点B在直线y=x上,四边形AA'B'B是平行四边形,则B点的坐标为______.17 . 已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)18 . 已知关于的方程的两个根分别是和,则________.三、解答题19 . 如图,点C是以AB为直径的圆O上一点,直线AC与过点B的切线相交于点D,D点E是BD的中点,直线CE交直线AB与点.(1)求证:CF是⊙O的切线;(2)若ED=,tanF=,求⊙O的半径.20 . (1)解方程:;(2)解不等式组:21 . 解方程:.22 . 2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?23 . 在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CA.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).24 . 空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.25 . 已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取何值时,方程有两个相等的实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个根.26 . 关于x的方程x2-2x+k-1=0有两个不相等的实数根.(1)求k的取值范围;(2)若k-1是方程x2-2x+k-1=0的一个解,求k的值.27 . 如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)用2B铅笔画AD∥BC(D为格点),连接CD;(2)线段CD的长为;(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是,则它所对应的正弦函数值是;(4)若E为BC中点,则tan∠CAE的值是.28 . 如图所示,港口A位于灯塔C的正南方向,港口B位于灯塔C的南偏东60°方向,且港口B在港口A的正东方向的135公里处.一艘货轮在上午8时从港口A出发,匀速向港口B航行.当航行到位于灯塔C的南偏东30°方向的D处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B,顺利完成交货.求货轮原来的速度是多少?参考答案一、单选题1、2、3、4、5、6、7、8、9、二、填空题1、2、3、4、5、6、7、8、9、三、解答题1、2、3、4、5、6、7、8、9、10、。
人教版九年级下学期开学考试数学试卷(含答案)
九年级下学期开学考试数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.抛物线y=﹣(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC3.在4×4网格中,∠α的位置如图所示,则tanα的值为()A.B.C.2D.4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=5.在下列y关于x的函数中,一定是二次函数的是()A.y=x2B.y=C.y=kx2D.y=k2x6.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.8.点P是线段AB的黄金分割点(AP>BP),则=.9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=.10.如果α是锐角,且tanα=cot20°,那么α=度.11.计算:2sin60°+tan45°=.12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是.(请写成1:m的形式)13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:(填“是”或“否”).16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA=.17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有对相似三角形.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).三、解答题(本大题共7题,满分78分)19.解方程:﹣=2.20.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.21.已知抛物线y=﹣x2+bx+c的对称轴是直线x=﹣1,且经过点(2,﹣3),求这个二次函数的表达式.22.如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23.如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D 的坐标.25.如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.九年级下学期开学考试数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.抛物线y=﹣(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】直接根据二次函数的顶点式进行解答即可.【解答】解:∵抛物线的解析式为:y=﹣(x﹣2)2+3,∴其顶点坐标为(2,3).故选B.【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC【考点】平行线分线段成比例.【分析】根据已知选项只要能推出=或=,再根据相似三角形的判定推出△ADE∽△ABC,推出∠ADE=∠B,根据平行线的判定推出DE∥BC,即可得出选项.【解答】解:A、∵BD:AB=CE:AC,∴=,∴=,∴1﹣=1﹣,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;B、∵根据DE:BC=AB:AD不能推出△ADE∽△ABC,∴不能推出∠ADE=∠B,∴不能推出DE∥BC,错误,故本选项正确;C、∵AB:AC=AD:AE,∴=,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;D、∵AD:DB=AE:EC,∴=,∴=,∴=,∴﹣1=﹣1,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;故选B.【点评】本题考查了平行线分线段成比例定理和相似三角形的性质和判定,平行线的判定的应用,解此题的关键是能推出△ADE≌△ABC,题目比较好,难度适中.3.在4×4网格中,∠α的位置如图所示,则tanα的值为()A.B.C.2D.【考点】锐角三角函数的定义.【专题】网格型.【分析】根据“角的正切值=对边÷邻边”求解即可.【解答】解:由图可得,tanα=2÷1=2.故选C.【点评】本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=【考点】锐角三角函数的定义.【分析】根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.【解答】解:在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.【点评】此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.5.在下列y关于x的函数中,一定是二次函数的是()A.y=x2B.y=C.y=kx2D.y=k2x【考点】二次函数的定义.【分析】根据二次函数的定义形如y=ax2+bx+c(a≠0)是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是分式方程,故B错误;C、k=0时,不是函数,故C错误;D、k=0是常数函数,故D错误;故选:A.【点评】本题考查二次函数的定义,形如y=ax2+bx+c(a≠0)是二次函数.6.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用;中心投影.【专题】计算题.【分析】由MC∥AB可判断△DCM∽△DAB,根据相似三角形的性质得=,同理可得=,然后解关于AB和BC的方程组即可得到AB的长.【解答】解:∵MC∥AB,∴△DCM∽△DAB,∴=,即=①,∵NE∥AB,∴△FNE∽△FAB,∴=,即=②,∴=,解得BC=3,∴=,解得AB=6,即路灯A的高度AB为6m.故选B.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.【考点】比例的性质.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用了分比性质:=⇒=.8.点P是线段AB的黄金分割点(AP>BP),则=.【考点】黄金分割.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.【解答】解:∵点P是线段AB的黄金分割点(AP>BP),∴==.故答案为.【点评】本题考查了黄金分割的定义,牢记黄金分割比是解题的关键.9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=4.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】推理填空题.【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE:BC=2:3,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE:BC=2:3,∴△AFD∽△CFE,且它们的相似比为3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=4.故答案为:4.【点评】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.10.如果α是锐角,且tanα=cot20°,那么α=70度.【考点】互余两角三角函数的关系.【分析】根据一个角的正切值等于它的余角的余切值即可求解.【解答】解:∵tanα=cot20°,∴∠α+20°=90°,即∠α=90°﹣20°=70°.故答案为70.【点评】本题考查了互为余角的锐角三角函数关系:一个角的正切值等于它的余角的余切值.11.计算:2sin60°+tan45°=+1.【考点】特殊角的三角函数值.【分析】根据特殊三角函数值,可得答案.【解答】解:原式=2×+1=+1,故答案为:+1.【点评】本题考查了特殊角的三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是1:.(请写成1:m的形式)【考点】解直角三角形的应用-坡度坡角问题.【分析】坡比等于坡角的正切值,据此即可求解.【解答】解:i=tanα=tan30°==1:,故答案是:1:.【点评】本题主要考查了坡比与坡角的关系,注意坡比一般表示成1:a的形式.13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.【点评】解答此题要掌握二次函数图象的特点.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为(3,﹣1).【考点】二次函数图象与几何变换.【专题】计算题.【分析】根据二次函数的性质得抛物线y=﹣(x﹣3)2+5的顶点坐标为(3,5),然后根据点平移的规律,点(3,5)经过平移后得到对应点的坐标为(3,﹣1),从而得到新抛物线的顶点坐标.【解答】解:抛物线y=﹣(x﹣3)2+5的顶点坐标为(3,5),点(3,5)向下平移6个单位得到对应点的坐标为(3,﹣1),所以新抛物线的顶点坐标为(3,﹣1).故答案为(3,﹣1).【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:是(填“是”或“否”).【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】利用点A与点B的坐标特征得到抛物线的对称轴为直线x=1,然后根据抛物线的对称性可判断点C(4,5与点D(﹣2,5)是抛物线上的对称点.【解答】解:∵抛物线经过A(0,﹣3)、B(2,﹣3),而点A与点B关于直线x=1对称,∴抛物线的对称轴为直线x=1,∴点C(4,5)关于直线x=1的对称点D(﹣2,5)在抛物线上.故答案为:是.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA=.【考点】相似三角形的判定与性质;锐角三角函数的定义.【分析】根据条件可证明△ADE∽△GFB,利用相似三角形的性质可求得DE,在Rt△ADE中,由正切函数的定义可求得tanA.【解答】解:∵四边形DEFG为正方形,∴∠DEA=∠GFB=90°,DE=GF,∵∠C=90°,∴∠A+∠B=∠A+∠ADE=90°,∴∠ADE=∠B,∴△ADE∽△GFB,∴=,即=,解得DE=6,∴tanA===,故答案为:.【点评】本题主要考查相似三角形的判定和性质,由条件证明三角形相似求得DE的长是解题的关键.17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有3对相似三角形.【考点】相似三角形的判定.【分析】由AD∥BC,AB=DC可判断梯形ABCD为等腰梯形,则∠A=∠D,由AB2=AP•PD得AB•CD=AP•PD,于是根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABP∽△DPC,由相似的性质得∠ABP=∠DPC,接着利用AD∥BC得到∠DPC=∠PCB,∠APB=∠PBC,则∠PCB=∠ABP,于是根据有两组角对应相等的两个三角形相似得到△ABP∽△PCB,所以△DPC∽△DPC.【解答】解:∵AD∥BC,AB=DC,∴梯形ABCD为等腰梯形,∴∠A=∠D,∵AB2=AP•PD,∴AB•CD=AP•PD,即=,∴△ABP∽△DPC,∴∠ABP=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∠APB=∠PBC,∴∠PCB=∠ABP,∴△ABP∽△PCB,∴△DPC∽△DPC.故答案为3.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=2n+1(用含n的代数式表示m).【考点】平行线分线段成比例;旋转的性质.【专题】计算题.【分析】作DH⊥AC于H,如图,根据旋转的性质得DE=DC,则利用等腰三角形的性质得EH=CH,由=n可得AE=2nEH=2nCH,再根据平行线分线段成比例,由DH∥BC得到=,所以m=,然后用等线段代换后约分即可.【解答】解:作DH⊥AC于H,如图,∵线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处,∴DE=DC,∴EH=CH,∵=n,即AE=nEC,∴AE=2nEH=2nCH,∵∠C=90°,∴DH∥BC,∴=,即m===2n+1.故答案为:2n+1.【点评】本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式,注意:一组平行线截两条直线,所截得的线段对应成比例.也考查了旋转的性质和等腰三角形的性质.三、解答题(本大题共7题,满分78分)19.解方程:﹣=2.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣3x+x+2=2x2﹣8,整理得:x2+x﹣6=0,即(x﹣2)(x+3)=0,解得:x=2或x=﹣3,经检验x=2是增根,分式方程的解为x=﹣3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.【考点】二次函数的三种形式.【分析】(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c求得b,c的值,得到此函数的解析式;再利用配方法先提出二次项系数,然后加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)由顶点式可得顶点C的坐标,再根据三角形的面积公式即可求出△CAO的面积.【解答】解:(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得,解得,所以此函数的解析式为y=﹣2x2﹣4x+4;y=﹣2x2﹣4x+4=﹣2(x2+2x+1)+2+4=﹣2(x+1)2+6;(2)∵y=﹣2(x+1)2+6,∴C(﹣1,6),∴△CAO的面积=×4×1=2.【点评】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键.21.已知抛物线y=﹣x2+bx+c的对称轴是直线x=﹣1,且经过点(2,﹣3),求这个二次函数的表达式.【考点】待定系数法求二次函数解析式.【分析】由抛物线的一般形式可知:a=﹣1,由对称轴方程x=﹣,可得一个等式﹣①,然后将点(2,﹣3)代入y=﹣x2+bx+c即可得到等式﹣4+2b+c=﹣3②,然后将①②联立方程组解答即可.【解答】解:根据题意,得:,解得,所求函数表达式为y=﹣x2﹣2x+5.【点评】此题考查了用待定系数法求二次函数的解析式,解题的关键是:熟练掌握待定系数法及对称轴表达式x=﹣.22.如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点C⊥AB于点D,在Rt△ACD中,求出AD、CD的值,然后在Rt△BCD中求出BD的长度,继而可求得AB的长度.【解答】解:过点C⊥AB于点D,在Rt△ACD中,∵∠ACD=35°,AC=100m,∴AD=100•sin∠ACD=100×0.574=57.4(m),CD=100•cos∠ACD=100×0.819=81.9(m),在Rt△BCD中,∵∠BCD=45°,∴BD=CD=81.9m,则AB=AD+BD=57.4+81.9≈139(m).答:A、B之间的距离约为139米.【点评】本题考查了直角三角形的应用,解答本题的关键是根据方向角构造直角三角形,利用三角函数解直角三角形.23.如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.【考点】相似三角形的判定与性质;等腰梯形的性质.【分析】(1)根据等腰梯形可得到∠ABE=∠C,结合条件可证得结论;(2)过D作DG⊥BC,则可求得BG、CG,在Rt△DCG中可求得DG,在Rt△BGD中由正切函数的定义可求得tan∠DBC;(3)由(2)可求得BD,结合(1)中的相似可求得BE,再利用平行线分线段成比例得到=,代入可求得BF.【解答】(1)证明:∵四边形ABCD为等腰梯形,∴∠ABE=∠C,且∠BAE=∠DBC,∴△ABE∽△BCD;(2)解:过D作DG⊥BC于点G,∵AD=1,BC=3,∴CG=(BC﹣AD)=1,BG=2,又∵在Rt△DGC中,CD=2,CG=1,∴DG=,在Rt△BDG中,tan∠DBC==;(3)解:由(2)在Rt△BGD中,由勾股定理可求得BD=,由(1)△ABE∽△BCD可得=,即==,解得BE=,又∵AD∥BC,∴=,且DF=BD﹣BF,∴=,解得BF=.【点评】本题主要考查相似三角形的判定和性质及三角函数的定义,在(2)中构造直角三角形,求得DG是解题的关键,在(3)中求得BE、BD的长是解题的关键.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D 的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)先求出A、C两点的坐标,再代入抛物线的解析式,就可求出该抛物线的解析式,然后根据抛物线的对称轴方程x=﹣求出抛物线的对称轴,根据抛物线上点的坐标特征求出点B的坐标;(2)易得∠OAC=∠OCA,∠ABC>∠ADC,由此根据条件即可得到△CAD∽△ABC,然后运用相似三角形的性质可求出CD的长,由此可得到OD的长,就可解决问题.【解答】解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,解得:k=5,∴此抛物线的解析式为y=x2+5x+4,∴此抛物线的对称轴为x=﹣=﹣.令y=0得x2+5x+4=0,解得:x1=﹣1,x2=﹣4,∴点B的坐标为(﹣1,0).(2)∵A(﹣4,0),C(0,4),∴OA=OC=4,∴∠OCA=∠OAC.∵∠AOC=90°,OB=1,OC=OA=4,∴AC==4,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,∴=,即=,解得:CD=,∴OD=CD﹣CO=﹣4=,∴点D的坐标为(0,﹣).【点评】本题主要考查了用待定系数法求二次函数的解析式、解一元二次方程、相似三角形的性质、勾股定理、等腰三角形的性质等知识,弄清两相似三角形的对应关系是解决第(2)小题的关键.25.如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.【考点】相似形综合题;等腰三角形的判定与性质;等边三角形的判定与性质;直角三角形斜边上的中线;轴对称的性质;锐角三角函数的定义;特殊角的三角函数值.【专题】综合题;分类讨论.【分析】(1)要证△DEK∽△DFB,只需证到∠EKD=∠FBD,∠EDK=∠FDB即可;(2)易得DK=DA=x,DB=2﹣x,由△DFB∽△DEK可得到=,从而可得y=cot∠CFE=cot∠DFE===;然后只需先求出在两个临界位置(点F在点B处、点E在点A处)下的x值,就可得到该函数的定义域;(3)取线段EF的中点O,连接OC、OD,根据直角三角形斜边上的中线等于斜边的一半可得OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.由=可得tan∠HOC==,从而得到∠HOC=60°.①若点K在线段AC上,如图2,由∠HOC=60°可求得∠OFC=30°,由此可得到y的值,再把y的值代入函数解析式就可求出x的值;②若点K在线段AC的延长线上,如图3,由∠HOC=60°可求得∠OFC=60°,由此可得到y的值,再把y的值代入函数解析式就可求出x的值.【解答】(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F在点B处时,DB=BC=AB•sinA=2×=,AD=AB﹣AD=2﹣;当点E在点A处时,AD=AC=AB•cosA=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴sin∠HOC==,∴∠HOC=60°①若点K在线段AC上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K在线段AC的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x的值为﹣1或3﹣.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质、锐角三角函数的定义、特殊角的三角函数值、直角三角形斜边上的中线等于斜边的一半等知识,在解决本题的过程中还用到了临界值法、分类讨论的思想,而运用(1)中的结论则是解决第(2)小题的关键,取EF的中点O,将转化为则是解决第(3)小题的关键.。
普通中学人教版九年级下册开学数学试卷含答案解析
九年级(下)开学数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.方程(x+1)(x﹣3)=5的解是()A.x1=1,x2=﹣3B.x1=4,x2=﹣2C.x1=﹣1,x2=3D.x1=﹣4,x2=22.点P(﹣1,3)关于x轴对称的点的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3)D.(﹣3,1)3.在函数中的y=,自变量x的取值范围是()A.x>1B.x≠2C.x>1且x≠2D.x≥1且x≠24.有一斜坡的水平距离为10米,铅直高度为10米,则坡度为()A.30°B.60°C.1:D.:15.下列方程中有两个相等实数根的是()A.2x2+4x+35=0B.x2+1=2x C.(x﹣1)2=﹣1D.5x2+4x=16.一次函数y=kx+b(k>0,b>0)的图象可能是下面图象中的()A.B.C.D.7.Rt△ABC中,△C=90°,如果sinA=,那么cosB的值为()A.B.C.D.不能确定8.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,刚弹簧不挂重物时的长度是()A.9cm B.10cm C.10.5cm D.11cm9.已知x1和x2是方程2x2+3x﹣1=0的两个根,则的值是()A.3B.﹣3C.D.﹣10.小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回.父亲看了10分报纸后,用了15分返回家.下面的图形中表示父亲离家的时间与距离之间的关系是()A.B.C.D.二、填空题(本题共9小题,每小题4分,共36分)11.如果点P1(﹣2,3)和P2(﹣2,b)关于x轴对称,则b=.12.一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是.13.一元二次方程(m+1)x2﹣2mx=1的一个根是3,则m=.14.若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ=.15.已知方程x2﹣3x﹣2=0的两根为x1、x2,则x1+x2=,x12+x22=.16.已知一次函数y=kx+5过点P(﹣1,2),则k=.17.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号).18.计算:sin245°+cot60°•cos30°=.19.一次函数y=2x﹣3+b中,y随着x的增大而,当b=时,函数图象经过原点.三、解答题(本题共74分)20.解方程(1)x2﹣2x﹣3=0(2)y2+8y﹣1=0(3)=3解方程组:(4).21.计算:+2sin60°﹣3tan30°.22.某工程队修建一条高速公路,在某座山处要打通一条东西走向的隧道AB(如图),为了预算造价,应测出隧道AB的长,为此,在A的正南方向1500米的C处,测得△ACB=62°,求隧道AB的长.23.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.24.已知直线y=kx+b与y=﹣平行,且和直线y=﹣交于y轴上的同一点,求直线的解析式.25.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?26.如图一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,求直线AB的一次函数解析式及△AOC的面积.-学年北京市丰台区普通中学九年级(下)开学数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.方程(x+1)(x﹣3)=5的解是()A.x1=1,x2=﹣3B.x1=4,x2=﹣2C.x1=﹣1,x2=3D.x1=﹣4,x2=2【考点】解一元二次方程-公式法.【分析】首先把方程化为一般形式,利用公式法即可求解.【解答】解:(x+1)(x﹣3)=5,x2﹣2x﹣3﹣5=0,x2﹣2x﹣8=0,化为(x﹣4)(x+2)=0,△x1=4,x2=﹣2.故选:B.2.点P(﹣1,3)关于x轴对称的点的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3)D.(﹣3,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点P(﹣1,3)关于x轴对称的点的坐标是(﹣1,﹣3),故选:A.3.在函数中的y=,自变量x的取值范围是()A.x>1B.x≠2C.x>1且x≠2D.x≥1且x≠2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:D.4.有一斜坡的水平距离为10米,铅直高度为10米,则坡度为()A.30°B.60°C.1:D.:1【考点】解直角三角形的应用-坡度坡角问题.【分析】坡度tanα=.【解答】解:坡度=10÷(10)=1:.故选C.5.下列方程中有两个相等实数根的是()A.2x2+4x+35=0B.x2+1=2x C.(x﹣1)2=﹣1D.5x2+4x=1【考点】根的判别式.【分析】只需将一元二次方程转化为一般形式,然后运用根的判别式就可解决问题.【解答】解:对于一元二次方程2x2+4x+35=0,△=16﹣4×2×35<0,原方程无解,故A错误;对于一元二次方程x2+1=2x即x2﹣2x+1=0,△=4﹣4×1×1=0,原方程有两个相等实数根,故B正确;对于一元二次方程(x﹣1)2=﹣1即x2﹣2x+2=0,△=4﹣4×1×2<0,原方程无解,故C错误;对于一元二次方程5x2+4x=1即5x2+4x﹣1=0,△=16﹣4×5×(﹣1)=36>0,原方程有两个不相等实数根,故D错误.故选B.6.一次函数y=kx+b(k>0,b>0)的图象可能是下面图象中的()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【解答】解:△k>0,△一次函数y=kx+b的图象经过第一、三象限.又△b>0时,△一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一、二、三象限.故选A.7.Rt△ABC中,△C=90°,如果sinA=,那么cosB的值为()A.B.C.D.不能确定【考点】互余两角三角函数的关系.【分析】一个角的正弦值等于它的余角的余弦值.【解答】解:在直角三角形中,△C=90°,△△A+△B=90°.△cosB=sinA=.故选A.8.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,刚弹簧不挂重物时的长度是()A.9cm B.10cm C.10.5cm D.11cm【考点】一次函数的应用.【分析】先根据函数图象运用待定系数法求出函数的解析式,当x=0时代入解析式就可与y的值而得出结论.【解答】解:设函数的解析式为y=kx+b,由函数图象,得,解得:,△y=x+10.当x=0时,y=10.故选B.9.已知x1和x2是方程2x2+3x﹣1=0的两个根,则的值是()A.3B.﹣3C.D.﹣【考点】根与系数的关系.【分析】先把所求的代数式变形为两根之积或两根之和的形式,再代入数值计算即可.【解答】解:由题意,得:x1+x2=﹣,x1x2=﹣;原式===3;故选A.10.小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回.父亲看了10分报纸后,用了15分返回家.下面的图形中表示父亲离家的时间与距离之间的关系是()A.B.C.D.【考点】函数的图象.【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得离家的距离.【解答】解:20分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.故选:D.二、填空题(本题共9小题,每小题4分,共36分)11.如果点P1(﹣2,3)和P2(﹣2,b)关于x轴对称,则b=﹣3.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点的横坐标相同,纵坐标互为相反数,可得答案.【解答】解:△点P1(﹣2,3)和P2(﹣2,b)关于x轴对称,△b=﹣3;故答案为:﹣3.12.一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是y=﹣2x.【考点】待定系数法求正比例函数解析式.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣4)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),△正比例函数的图象经过点(2,﹣4),△﹣4=2k,解得k=﹣2,△这个正比例函数的表达式是y=﹣2x.故答案为:y=﹣2x.13.一元二次方程(m+1)x2﹣2mx=1的一个根是3,则m=.【考点】一元二次方程的解.【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.【解答】解:△一元二次方程(m+1)x2﹣2mx=1的一个根是3,△9m+9﹣6m=1,解得m=﹣.14.若θ为三角形的一个锐角,且2sinθ﹣=0,则tanθ=.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由θ为三角形的一个锐角,且2sinθ﹣=0,得θ=60°.tanθ=tan60°=,故答案为:.15.已知方程x2﹣3x﹣2=0的两根为x1、x2,则x1+x2=3,x12+x22=13.【考点】根与系数的关系.【分析】先利用根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式变形得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故答案为3,13.16.已知一次函数y=kx+5过点P(﹣1,2),则k=3.【考点】待定系数法求一次函数解析式.【分析】把点的坐标代入一次函数,即可求解.【解答】解:根据题意得:﹣1×k+5=2,解得k=3.故填3.17.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号)①②④.【考点】一次函数的应用.【分析】结合甲、乙的图象位置以及交点(2,4)的意义可以判断①②③结论的成立与否;再由甲图象过(0,2)、(2,4),可知(1,3)在甲的图象上,即买甲家的1件的售价为3元,而不是约为3元,从而得出结论①②③成立.【解答】解:图形中甲乙的交点为(2,4),结合点的意义可知:售2件时甲、乙两家售价一样,即①成立;当x=1时,乙的图象在甲的图象的下方,即买1件时买乙家的合算,②成立;当x=3时,甲的图象在乙的图象的下方,即买3件时买甲家的合算,③成立;甲的图象经过点(0,2)、(2,4),两点的中点坐标为(=1,=3).即买甲家的1件售价为3元,④不成立.故答案为:①②③.18.计算:sin245°+cot60°•cos30°=1.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin245°+cot60°•cos30°=()2+×=+=1.故答案为:1.19.一次函数y=2x﹣3+b中,y随着x的增大而增大,当b=3时,函数图象经过原点.【考点】一次函数的性质.【分析】根据一次函数的性质k>0,y随x的增大而增大,函数从左到右上升;k<0,y 随x的增大而减小,函数从左到右下降可直接得到答案.【解答】解:一次函数y=2x﹣3+b中,△k=2>0,△y随着x的增大而增大,△函数的图象过原点,△﹣3+b=0,解得:b=3,当b=3时,函数图象经过原点.故答案为:增大,b=3;三、解答题(本题共74分)20.解方程(1)x2﹣2x﹣3=0(2)y2+8y﹣1=0(3)=3解方程组:(4).【考点】高次方程;解一元二次方程-配方法;解一元二次方程-因式分解法;换元法解分式方程.【分析】(1)分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)首先进行移项变形为y2+8y=1,方程两边同时加上一次项系数一半的平方,则方程的左边是完全平方式,右边是常数,则利用直接开平方法即可求解;(3)本题考查用换元法解分式方程的能力.因为与互为倒数,所以可设t=,然后对方程进行整理变形;(4)由方程x﹣3y=0得x=3y,将x=3y代入第二个方程,解关于y的方程可得y的值,再将y的值代回x=3y可得x的值.【解答】解:(1)方程左边因式分解,得:(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;(2)由原方程得:y2+8y=1,方程两边同时加上一次项系数一半的平方得:y2+8y+16=1+16,即:(y+4)2=17,直接开平方的:y+4=,解得:y1=﹣4+,y2=﹣4﹣;(3)令t=,则原方程可化为:t+=3,即:t2﹣3t+2=0,因式分解得:(t﹣1)(t﹣2)=0,△t=1或t=2,当t=1时,=1,即:x2﹣x+1=0,△△=(﹣1)2﹣4×1×1=﹣3<0,△此时原分式方程无解;当t=2时,=2,即:x2﹣2x+1=0,解得:x=1,经检验:x=1是原分式方程的解,故缘分是方程的解是:x=1;(4)由方程x﹣3y=0,得:x=3y,将x=3y代入方程x2+y2=20,得:9y2+y2=20,即10y2=20,解得:y=或y=﹣,当y=时,x=3y=3,当y=﹣时,x=3y=﹣3,故方程组的解为:或.21.计算:+2sin60°﹣3tan30°.【考点】二次根式的混合运算;零指数幂;特殊角的三角函数值.【分析】先利用特殊角的三角函数值和零指数幂的意义得到原式=﹣1+2×﹣3×,然后利用二次根式的乘除法则运算即可.【解答】解:原式=﹣1+2×﹣3×=﹣1﹣1+﹣=﹣2.22.某工程队修建一条高速公路,在某座山处要打通一条东西走向的隧道AB(如图),为了预算造价,应测出隧道AB的长,为此,在A的正南方向1500米的C处,测得△ACB=62°,求隧道AB的长.【考点】解直角三角形的应用-方向角问题.【分析】根据题意直接运用三角函数的定义解题.【解答】解:在Rt△ABC中,△△CAB=90°,△C=62°,AC=1500米,△△AB=AC×tan62°≈2821米答:AB的长是2821米.23.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.【考点】根的判别式.【分析】要分类讨论:当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m≥﹣,则m的范围是m≥﹣且m≠0;最后综合两种情况得到m的取值范围.【解答】解:当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m≥﹣,则m的范围是m≥﹣且m≠0;所以,m的取值范围为m≥﹣.24.已知直线y=kx+b与y=﹣平行,且和直线y=﹣交于y轴上的同一点,求直线的解析式.【考点】两条直线相交或平行问题.【分析】根据平行的性质设直线为,根据直线y=﹣求得与y轴的交点坐标,代入即可求得b的值.【解答】解△直线y=kx+b与平行,△,则又△直线与y轴的交点为(0,)△直线与y轴也交于(0,)则,即△直线的解析式为25.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?【考点】解直角三角形的应用;平行投影.【分析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造Rt△DCE,其中有CE=30米,△DCE=30°,解三角形可得DE的高度,再由DB=BE+ED可计算出新建楼房的最高高度.【解答】解:过点C作CE△BD于E.△AB=40米,△CE=40米,△阳光入射角为30°,△△DCE=30°,在Rt△DCE中tan△DCE=.△,△DE=40×=米,△AC=BE=1米,△DB=BE+ED=1+=米.答:新建楼房最高为米.26.如图一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,求直线AB的一次函数解析式及△AOC的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据待定系数法即可求得;(2)根据三角形面积公式即可求得.【解答】解:△一次函数y=kx+b经过点A(2,4)和B(0,2)两点;△△△所求一次函数为y=x+2,△点C(﹣2,0)△OC=2;△.2016年4月13日。
人教版2020届九年级下册数学开学考试试卷A卷
人教版2020届九年级下册数学开学考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知点A(﹣3,7)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A . (0,7)B . (﹣1,7)C . (﹣2,7)D . (﹣3,7)2. (2分)如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为()A .B .C .D .3. (2分)下列四条线段不成比例的是()A . a=3,b=6,c=2,d=4B . a=,b=8,c=5,d=15C . a=,b=2,c=3,d=D . a=1,b=,c=,d=4. (2分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为()A .B .C .D .5. (2分)AB是⊙O的直径,弦CD垂直于AB交于点E,∠COB=60°,CD=2 ,则阴影部分的面积为()A .B .C . πD . 2π6. (2分)已知二次函数y=-3x2+1的图象如图所示,将其沿x轴翻折后得到的抛物线的表达式为()A . y=-3x2-1B . y=3x2C . y=3x2+1D . y=3x2-17. (2分)如图,△ABC中,AB=4,BC=6.点D,点E分别是边AB,BC上的两个动点,若按照下列条件将△ABC沿DE剪开,剪下的△BDE与原三角形不相似的是()A . ∠BDE=∠CB . DE∥ACC . AD=3,BE=2D . AD=1,CE=48. (2分)如图,△ABC内接于⊙O中,AB=AC,=60°,则∠B=()B . 45°C . 60°D . 75°9. (2分)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:点A(x1 , y1)、B(x2 , y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1 与y2的大小关系正确的是()A . y1>y2B . y1<y2C . y1≥y2D . y1≤y210. (2分)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A . 9.5C . 11D . 15.5二、填空题 (共6题;共6分)11. (1分)计算:3tan30°+sin45°=________.12. (1分)下列函数(其中n为常数,且n>1)① y=(x>0);② y=(n﹣1)x;③ y=(x>0);④ y=(1﹣n)x+1;⑤ y=﹣x2+2nx(x<0)中,y 的值随 x 的值增大而增大的函数有________个.13. (1分)如图,⊙O的直径CD垂直弦AB于点E,且CE=4,DE=16,则AB的长为________14. (1分)规定sin(α﹣β)=sinα•cosβ﹣cosα•sinβ,则sin15°=________.15. (1分)如图,△ABC的内切圆与三边分别切于点D,E,F,若∠C=90,AD=3,BD=5,则△ABC的面积为________。
2022-2023学年人教版九年级下学期开学考试数学试卷
2022-2023年人教版九年级下学期开学考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分)1.下列四个选项为负整数的是( )A .0B .C .0.3-D .23- 2.有下列结论:①a 一定是正数;②只有两个数相等时,它们的绝对值才相等;③绝对值最小的数是0;④在数轴上表示21195的点一定在原点的左边;⑤有理数分为正有理数和负有理数;其中正确的结论的个数为( )A .1个B .2个C .3个D .4个 3.分式方程131x x x x +=--的解为() A .1x = B .=1x - C .3x = D .3x =-4.下列各式中,结果是负数的是( )A .()3--B .|3|--C .32D .()23- 5.不能判定四边形ABCD (O 为对角线AC 、BD 的交点)是矩形的是( )A .,,AB CD AD BC AC BD ===B .,,90AO CO BO DO BAD ==∠=︒C .,,AB CD AB CD A B =∠=∠∥D .,180,DAB BCD ABC BCD AOB BOC ∠=∠∠+∠=︒∠=∠6.如图,用两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( )A .14 B .13 C .12 D .347.如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校8.把抛物线2y x bx c =++向右平移3个单位,再向下平移2个单位,所得图象的解析式是235y x x =-+,则有( )A .3b =,7c =B .9b =-,15c =-C .7b =,3c =D .9b =-,21c =9.如图,网络中的每个小正方形的边长为1,A 、B 是格点,则以A ,B ,C 为等腰三角形顶点的所有格点C 的位置的个数是( )A .6B .5C .4D .310.如图,过y 轴上一个动点M 作x 轴的平行线,交双曲线y=4x -于点A ,交双曲线10y x =于点B ,点C 、点D 在x 轴上运动,且始终保持DC =AB ,则平行四边形ABCD 的面积是( )A .7B .10C .14D .28二、填空题(本大题共5个小题,每小题3分,共15分)11有意义,则x 能取得最小整数是___________.12.方程231133x x x =+--的解是__________. 13.如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线交BC 于点E ,△ACE 的周长为17,AC =5,则AB =________.14.关于x 的一元二次方程250x x m -+=有两个相等的实数根,则m =________.15.如图,直线a ∥b ,直线l 与a 相交于点P ,与直线b 相交于点Q ,PM ⊥l 于点P ,若∠1=50°,则∠2=___________°.三、解答题(一)(本大题共3个小题,每小题8分,共24分)16.(本题8分)解不等式组263(1)25x x x -⎧⎨+<+⎩①②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 ;(Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的阶级在数轴上表示出来;(Ⅳ)原不等式组的解集为17.(本题8分)如图,在等边ABC 中,点D ,E 分别在边BC ,AC 上,DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求∠F 的度数;(2)若CD =2,求ED 、DF 的长.18.(本题8分)先化简,再求值:21111a a a ⎛⎫+÷ ⎪--⎝⎭,请在-1、0、1、2当中选出一个合适的数a 代入求值.四、解答题(二)(本大题共3个小题,每小题9分,共27分)19.(本题9分)我校小李同学对北大附中初中三个年级的学生年龄构成很感兴趣,整理数据并绘制如图所示不完整的统计图.依据信息解答下列问题.(1)求样本容量;(2)直接写出样本数据的众数、中位数;(3)已知北大附中实验学校一共有1920名学生,请估计全校年龄在14岁及以上的学生大约有多少人.20.(本题9分)某家商店的账目记录显示,某天卖出6件甲商品和3件乙商品,收入108元;另一天,以同样价格卖出5件甲商品和1件乙商品,收入84元.问每件甲商品和乙商品的售价各是多少元?21.(本题9分)如图,ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作∠DAB 的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,∠DAB=60°,求四边形AFED的面积.五、解答题(三)(本大题共2个小题,每小题12分,共24分)22.(本题12分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对AB两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院供检测______人,甲乙两家医院检测的速度差是______.(2)哪家医院先进行检测的?哪家医院先检测完?(3)求出两家医院的y与x的函数关系式;(4)甲医院开始检测多长时间两家医院检测人数相差200人?23.(本题12分)已知抛物线y=ax²+bx+c经过点A(-6,0)、B(2,0)和C(0,3),点D是该抛物线在第四象限上的一个点,连接AD、AC、CD,CD交x轴于E.(1)求这个抛物线的解析式;(2)当S△DAE=14S△ACD时,求点D的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使得△P AD中的一个角等于2∠BAD?若存在,直接写出点P的坐标;若不存在,请说明理由.。
人教版2019年九年级下学期数学入学试题A卷
人教版2019年九年级下学期数学入学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A.4个B.3个C.2个D.1个2 . 今年3月12日,学校开展植树活动,植树小组名同学的树苗种植情况如下表:那么这名同学植树棵树的众数和中位数分别是()A.和B.和C.和D.和3 . 若、是一元二次方程的两根,则的值是()A.1B.2C.-1D.-24 . 如图,点A、B、C在⊙O上,过点C作⊙O的切线与OA的延长线交于点D,若,则的大小为()A.B.C.D.5 . 下列说法正确的个数是()①是绝对值最小的有理数②相反数小于本身的数是正数③数轴上原点两侧的数互为相反数④两个负数比较,绝对值大的反而小A.1B.2C.3D.46 . 在菱形中,,边上的高为()A.B.C.D.7 . 2017年河南省经济保持总体平稳,稳中向好发展态势,生产总值达到44988.16亿元,用科学记数法表示数据44988.16亿为()A.44988.16×108B.4.498816×1012C.4.49×1012D.4.50×10138 . 如图,在第一象限内,动点P在反比例函数y=的图象上,以P为顶点的等腰△OPQ,两腰OP、PQ分别交反比例函数y=的图象于A、B两点,作PC⊥OQ于C,BE⊥PC于E,AD⊥OQ于D,则以下说选正确的个数为()个①为定值;②若k=4m,则A为OP中点;③S△PEB=;④OA2+PB2=PQ2.A.4B.3C.2D.19 . 中国结是我国特有的一种手工编制工艺品,它的造型独特、绚丽多彩、寓意深刻、内涵丰富,是我国传统吉祥装饰物品.下列中国结图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.10 . 明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A.B.C.D.11 . 如图所示,四边形的两条对角线交于点,且,下列结论中总能成立的有()①与相似;②与相似;③;④.A.个B.个C.个D.个12 . 点P为第三象限的点,P到x轴的距离是2,到y轴的距离是5,那么P点坐标是()A.(-2,-5)B.(﹣5,﹣2)C.(﹣5,2)D.(5,﹣2)二、填空题13 . 要使分式有意义,则应满足的条件是14 . 分解因式:____________________.15 . 小华用家里的旧纸盒做了一个底面半径为3cm,高为4cm的圆锥模型,则此圆锥的侧面积是___cm2.16 . 如图,□ABCD中,E,F分别为AD,BC 边上的一点.若再增加一个条件__________________,就可得BE=DF.17 . 我们把△ABC三边上的高分别记作:,,,如果=3,=8,是偶数,则的值是_____.18 . 已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足;当x1<x2<0时(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B、C,且B在C的左侧,△ABC有一个内角为60°.则抛物线的解析式是__.三、解答题19 . 如图1,AB是O的直径,点C在O上,且点C为弧BE的中点,连接AE并延长交BC延长线于点A.(1)判断△ABD的形状,并说明理由;(2)过点C作CM⊥AD,垂足为点F,如图2.求证:CF是O的切线;(3)若O的半径为3,DF=1,求sinB的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级下册数学开学考试试卷A卷
一、单选题 (共5题;共10分)
1. (2分)y=﹣的比例系数是()
A . 4
B . ﹣4
C .
D . ﹣
2. (2分)下列函数中,y是x的反比例函数的是()
A .
B .
C . y=3x
D . y=x2
3. (2分)下列函数中,不是反比例函数的是()
A . x=
B . y=(k≠0)
C . y=
D . y=﹣
4. (2分)下列函数中,是反比例函数的是()
A . y=x﹣1
B .
C .
D .
5. (2分)下列函数中,图象经过点(2,﹣3)的反比例函数关系式是()
A . y=-
B . y=
C . y=
D . y=-
二、填空题 (共6题;共8分)
6. (1分)一盒冰淇淋售价16元,内装冰淇淋9支,请写出冰淇淋售价y(元)与所购冰淇淋x(支)之间的关系式________ .
7. (1分)反比例函数y=的图象经过点(﹣2,3),则k的值为________
8. (2分)已知反比例函数y=,当x=﹣1时,y=________;y=6时,x=________.
9. (1分)如图,已知双曲线y= (k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD=________.
10. (1分)当m=________ 时,是反比例函数.
11. (2分)某公司有500吨煤,这些煤所用天数y(天)与平均每天用煤量x(吨)的函数解析式为________ ,自变量x的取值范围是________ .
三、解答题 (共5题;共28分)
12. (10分)如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:c= (f﹣32),试分别求:
(1)当f=68和f=﹣4时,c的值;
(2)当c=10时,f的值.
13. (8分)给出下列四个关于是否成反比例的命题,判断它们的真假.
(1)面积一定的等腰三角形的底边长和底边上的高成反比例;
(2)面积一定的菱形的两条对角线长成反比例;
(3)面积一定的矩形的两条对角线长成反比例;
(4)面积一定的直角三角形的两直角边长成比例.
14. (5分)已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,△BCD为等边三角形,且AD=,求梯形ABCD的周长
15. (0分)如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
16. (5分)已知y=y1+y2 , y1与x成正比例,y2与x成反比例,并且当x=1时y=4;当x=3时,y=5.求当x=4时,y的值.
解:∵y1与x成正比例,y2与x成反比例,可以设y1=kx,y2= .
又∵y=y1+y2 ,
∴y=kx+ .
把x=1,y=4代入上式,解得k=2.
∴y=2x+ .
∴当x=4时,y=2×4+ =8 .
阅读上述解答过程,其过程是否正确?若不正确,请说明理由,并给出正确的解题过程.
参考答案一、单选题 (共5题;共10分)
1-1、
2-1、
3-1、
4-1、
5-1、
二、填空题 (共6题;共8分)
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
三、解答题 (共5题;共28分)
12-1、
12-2、
13-1、
13-2、
13-3、
13-4、
14-1、
15、答案:略
16-1、。