简单的轴对称图形(一)教学设计
简单的轴对称图形第一课时教案5

●课题§7.2.1 简单的轴对称图形(一)●教学目标(一)教学知识点1.了解角的平分线的性质.2.了解线段垂直平分线的性质.(二)能力训练要求1.经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2.探索并了解角的平分线、线段垂直平分线的有关性质.(三)情感与价值观要求通过师生的共同活动,培养学生的动手能力,进一步发展其空间观念.●教学重点探索角的平分线,线段的垂直平分线的性质.●教学难点体验轴对称的特征.●教学方法启发诱导法.●教具准备投影片四张:第一张:想一想(记作投影片§7.2.1 A)第二张:做一做(记作投影片§7.2.1 B)第三张:想一想(记作投影片§7.2.1 C)第四张:做一做(记作投影片§7.2.1 D)●教学过程Ⅰ.巧设现实情景,引入新课[师]上节课我们探讨了轴对称图形,知道现实生活中由于有轴对称图形,而显得异常美丽.那什么样的图形是轴对称图形呢?[生]如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.[师]很好,大家想一想,我们以前学过的哪些几何图形是轴对称图形呢?[生甲]正方形、矩形.[生乙]圆、菱形.[生丙]等腰三角形、角.[师]很好.今天我们就来研究简单的轴对称图形.Ⅱ.讲授新课[师]同学们想一想:(出示投影片§7.2.1 A)角是轴对称图形吗?如果是,它的对称轴是什么?[生甲]角是轴对称图形.[生乙]角平分线所在的直线是它的对称轴.[师]是吗?你能验证吗?我们来做一做(出示投影片§7.2.1 B)按下面的步骤做一做1.在一张纸上任意画一个角∠AOB,沿角的两边将角剪下.将这个角对折,使角的两边重合.2.在折痕(即角平分线)上任意取一点C;3.过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA边的交点,即垂足.4.将纸打开,新的折痕与OB边的交点为E.[师]老师和大家一起动手.(教师叙述步骤,师生共同操作)[师]通过第一步,我们可以验证什么?[生齐声]可以知道:角是轴对称图形,角平分线所在的直线是它的对称轴.[师]很好,在上述的操作过程中,你发现了哪些相等的线段?[生]我发现了:CD与CE是相等的.[师]为什么呢?[生]因为折痕CD与CE互相重合.[师]还可以怎么说呢?可不可以利用三角形全等呢?图7-1[师生共析]如图7-1,CD垂直OA、CE垂直OB,则∠ODC=∠OEC=90°.因为:OC平分∠AOB,则∠AOC=∠BOC.又因为OC是公共边,所以根据“两角和其中一角的对边对应相等的两个三角形全等”得:△COD与△COE全等,再由“全等三角形的对应边相等”得:CD=CE.[师]很好,在上述操作过程中,如果在折痕即角平分线上另取一点,再折一折,然后小组讨论,你会得出什么结论呢?[生]角的平分线上的点到这个角的两边的距离相等.[师]同学们总结得很好,这就是角平分线除平分角外的另一个主要性质.在这里需要注意的是:①一个点在角的平分线上;②角平分线上的点到角的两边的距离..是相等的.好,大家再来想一想:(出示投影片§7.2.1 C)线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?[生甲]线段是轴对称图形,它的对称轴是与线段垂直的且垂足是线段中点的直线.[生乙]线段还可以沿它所在的直线对折,使得与原来的线段重合,所以说:线段所在的直线也是线段的对称轴.[师]很好.同学们知道了线段是轴对称图形,还找到了它的对称轴.现在大家来按照研究角的思路来探索线段的轴对称性.(出示投影片§7.2.1 D)按照下面的步骤来做一做:(1)CO 与AB 有怎样的位置关系?(2)OA 与OB 相等吗?CA 与CB 呢?能说明你的理由吗?在折痕上另取一点,再试一试.(学生操作、思考,教师指导)[生甲]通过折叠,我们验证了线段是轴对称图形.[生乙]CO 与AB 是垂直的.[生丙]OA 与OB 相等,因为OA 与OB 重合;CA 与CB 也是相等的,因为它们互相重合.[师]很好.OA 与OB 相等,而A 、O 、B 是在同一直线上,所以可知:O 是线段AB 的中点,OC 与AB是垂直的,因此可以知道:线段的一条对称轴垂直于这条直线且平分它,我们把这样的直线叫做这条线段的垂直平分线,简称中垂线(midperpendicular ).点C 是AB 的中垂线上一点,则有CA =CB ,若在线段AB 的中垂线上另取一点D ,是否也有DA =DB 呢?大家来试一试.[生]我们通过操作可知:DA =DB .[师]那由此可以得到什么样的结论呢?同学们讨论、归纳.[生]从刚才操作的过程及得出的结论可以知道:线段的垂直平分线上的点到这条线段两个端点的距离相等.[师]很好.这样我们得到了线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等.这个性质具有绝对性.如:有一条线段AB ,如果直线MN 是线段AB 的垂直平分线,那么如果给出一点O ,无论O 点是否在直线上,还是在直线外,只要O 点在MN 上,我们就可以得出结论:OA =OB .你能说明理由吗?图7-2[师生共析]我们可以用三角形全等来说明它.如图7-2:直线MN 是线段AB 的中垂线,则可以知道:MN ⊥AB 于D ,AD =DB .所以可得∠ADC =∠BDC=90°,因为CD是公共边,所以由“两边及其夹角对应相等的两个三角形全等”得:△ADC≌△BDC.从而由“全等三角形的对应边相等”得:CA=CB.[师]好,下面我们通过练习来熟悉掌握角平分线的性质及线段垂直平分线的性质.Ⅲ.课堂练习(一)课本P193随堂练习 11.如图7-3,在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?图7-3答:DE与DC相等.理由是:射线BD是∠ABC的平分线,点D到角两边BA、BC的距离分别是线段DE、DC,所以:DE=DC(二)看课本P191~193,然后小结.Ⅳ.课时小结这节课通过探索简单图形轴对称性的过程,了解了角的平分线、线段垂直平分线的有关性质.同学们应灵活应用这些性质来解决问题.Ⅴ.课后作业(一)课本P193习题7.2 1、2、3.(二)1.预习内容P194~1952.预习提纲:(1)等腰三角形的轴对称性.(2)等腰三角形的有关性质.(3)等边三角形的轴对称性及其性质.Ⅵ.活动与探究如图7-4所示:要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.图7-4[过程]让学生探索:在街道上找一点C,使得AC+BC为最小.通过学生活动,使他们懂得:只有A、C、B在一直线上时,才能使AC+BC最小,这时作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.[结果]如图7-5.图7-5作点A关于l(街道看成是一条直线)的轴对称点A′,连接A′B与l交于C点.奶站应建在C点处,才能使从A、B到它的距离之和最短.●板书设计§7.2.1 简单的轴对称图形(一)一、角是轴对称图形.二、角的平分线的性质:角的平分线上的点到这个角的两边的距离相等.三、线段是轴对称图形线段的垂直平分线.四、线段的垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等.。
小学五年级上学期数学《轴对称图形(一)》(第一课时 )教学设计

教学重点:
1.引导学生判断轴对称图形。
2.认识对称轴并利用轴对称图形的性质在方格纸上画出简单图形的对称轴。
教学难点:
1.认识对称轴并利用轴对称图形的性质在方格纸上画出简单图形的对称轴。
教学过程
一.复习引入。
1.师:什么是轴对称图形?ቤተ መጻሕፍቲ ባይዱ
(预设1:能对折的图形就是轴对称图形。)
师:怎样用标准的数学语言描述呢?(课件出示图形对折动画)
三.知识应用。
1.方法:师:因为轴对称图形的对称轴其实就是一条对称点所在线段的垂直平分线。画平面图形的对称轴只需要找到每组对称点所在线段的中心点,连接起来。
2.你能画出下面这个图形的对称轴吗?
①学生先尝试画一画。
②交流展示。
预设:我们先在图上找到两组对称点A和A',B和B',A和A'之间有4格,B和B'之间有10格,根据对称轴就是对称点所在线段的垂直平分线的特点,找到它们各自中心点,连接起来。
预设:A和A'所在线段与对称轴是互相垂直的。同样,对称点B和B'所在的线段和对称轴也是互相垂直的,因此对称点所在的线段与对称轴都是互相垂直。
(3)总结。轴对称图形到底有什么特点呢?
【在轴对称图形中,对称点到对称轴的距离相等,对称点所在的线段和对称轴互相垂直。轴对称图形的对称轴其实就是一条对称点所在线段的垂直平分线。】
②对称点到对称轴的距离相等。
师:我们可以看到A和A'与对称轴之间的距离都是2格,B和B'到对称轴之间的距离都是5格,每组对称点到对称轴的距离都是相等的,对称轴刚好在对称点所在线段的中心点上。
③对称点所在的线段与对称轴都是互相垂直。
师:仔细观察,这是A和A'这组对称点所在的线段,这条线段和对称轴有怎样的位置关系?
“轴对称图形”教学设计(优秀7篇)

“轴对称图形”教学设计(优秀7篇)《轴对称图形》教案篇一教学内容:北师大版义务教育课程标准实验教科书《数学》三年级下册第二单元第13—15页《轴对称图形》教学目标:1. 通过生活中的事例,使学生初步体会什么是轴对称图形。
2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。
3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意识和实践能力。
教学重点:1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。
2. 能正确判断轴对称图形。
教学难点:画出轴对称图形。
教学准备:课件剪刀彩色卡纸平行四边形纸一、情境导入1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。
课件出示不对称“脸图”问:“这张脸可爱吗?”生:不可爱!课件演示脸图由不对称变为对称,问:现在呢?生:可爱!师:看来,人人都喜欢美丽的东西。
今天老师给大家带来了一些美丽的图片,请欣赏。
2.图片欣赏(课件出示对称图形图片)看完图片后师问:这些图片中的图形有什么特点?(指名回答)学生可能会说,它们两边完全一样。
教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)二、探究新知1.认识轴对称图形师:在我们的生活中,还有很多事物都是对称的。
看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)生:想!师:老师和你们来一场比赛,看谁剪的又快又好,开始!师生同时动手剪,完成后教师把自己剪的贴在黑板上。
请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。
(指导学生演示方法)问演示学生:你怎么让大家知道你剪的小松树是对称的呢?生:我把它对折(生边说边演示)(师板书:对折)师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?生:左右两边完全重合(师板书:完全重合)师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。
轴对称图形教学教学设计(汇编12篇)

轴对称图形教学教学设计(汇编12篇)轴对称图形教学教学设计第1篇教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形。
2、使学生能根据轴对称图形的初步认识,在实物图案和平面图形中识别轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。
激发数学学习的兴趣。
教学重点:轴对称图形的初步认识和制作。
教学难点:轴对称图形的初步认识。
教学准备:多媒体课件、实物投影仪、剪刀、彩纸、图形纸、钉子板、字母卡片等。
教学过程一、猜一猜——情景导入1:欣赏录像。
(课件出示春天到北京旅游的景象)二、观察、操作——探究特征1、观察,初步感知(1)认识对称观察照片,你能发现它们有什么特点吗?(师课件点击放大剪纸图。
)生:它的两边都是一模一样的。
(课件点击返回)那其它物体有没有两边也是一模一样的呢?(2)揭示对称像这样物体的两边是一模一样的`,我们就说这个物体它是对称的。
那这些物体它们都是对称的。
(3)扩展认识在生活中你还见过哪些物体也是对称的呢?(课件出示)和你的同桌说一说。
(同桌之间自由说,全班交流)2、操作,体会特征(1)从物体到图形的认识把这些对称的物体画下来,得到下面的图形:(电脑出示按天安门、飞机、奖杯、蝴蝶等实物画下来的图形)继续观察,这几个图形有什么特点呢?任选一个图形,在小组内合作,尝试能用什么方法来验证它们是对称的呢?(学生操作,教师巡视,选择不同的实验方法。
)交流反馈。
演示折纸过程:对折后两边是对称的板贴:对折师:那再请同学们观察一下,你把图形对折后发现了什么呢?在小组里说一说。
(学生小组交流)生:它们对折后两边是对称(一模一样)的。
师:那其他图形也是这样的吗?师加以补充:像这样,对折后折痕两边的部分完全一样(对称),称为完全重合。
板贴:完全重合师:为了使大家看得更清楚,我们请电脑老师来演示一下。
《轴对称图形》教案设计

《轴对称图形》教案设计•相关推荐《轴对称图形》教案设计(通用10篇)作为一名教学工作者,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
写教案需要注意哪些格式呢?下面是小编为大家整理的《轴对称图形》教案设计,欢迎大家分享。
《轴对称图形》教案设计篇1学习目的:1.通过展示轴对称图形的图片,使学生初步认识轴对称图形;2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3.培养学生的动手试验能力、归纳能力和语言表述能力。
学习过程:一、探究活动1.动手做剪纸:(1)将一张长方形的纸对折;(2)在纸上画出一个你喜欢的图形;(3)沿线条剪下;(4)把纸展开;2.观察下面的图形,它们有什么共同特征?3.结论:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就是它的。
这时,我们也说这个图形关于这条直线(成轴)对称。
二:尝试应用1.先想后做:下面图形是轴对称图形吗?如果是,请画出它们的对称轴。
等腰三角形等腰梯形等边三角形平行四边形正方形圆2.想一想下列英文字母中,那些是轴对称图形?3.猜字游戏(抢答)在艺术字中,有些汉字是轴对称的,猜猜下列是哪些字的一半?三:探究活动(1).看下面两组图形,和刚才的蝴蝶,枫叶等比较,有什么不同?第一组第二组(2).思考:这两幅图有什么共同点?2.结论:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形这条直线叫做,折叠后重合的点是对应点,叫做。
四:尝试应用1.下面给出的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点。
2.说出图中点A、B、C、D、E的对称点。
3.思考:(1)成轴对称的两个图形全等吗?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?(3)把成轴对称的两个图形看成一个整体,它就是一个什么图形?4.比较归纳。
《轴对称图形》教案(通用13篇)

《轴对称图形》教案(通用13篇)《轴对称图形》篇1教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。
2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。
3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。
教学重点:理解轴对称图形的特征。
教学难点:掌握并能准确辨别较为复杂的轴对称图形。
教具准备:多媒体网络、钉子板、剪刀等教学过程:一、活动导入谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。
)提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?学生回答。
教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。
板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)二、识轴对称图形1、课件出示天安门、飞机、奖杯图片。
引导学生观察图片上的物体,说说它们有什么共同特征。
教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)引导学生用手摸一摸对折后的两边,说说有什么样的感觉。
得出结论:这些图形对折后“两部分完全重合”。
介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。
(板书轴对称图形定义)。
中间这条折痕就是轴对称图形的对称轴。
(板书:对称轴)谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)2、试一试谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。
3、判断轴对称图形谈话:下面我们一起到“轴对称图形博物馆”去看看。
北师大版数学七年级下册《简单的轴对称图形》教学设计

北师大版数学七年级下册《简单的轴对称图形》教学设计一. 教材分析《简单的轴对称图形》是北师大版数学七年级下册第7章第1节的内容。
本节课的主要内容是引导学生认识轴对称图形,理解轴对称图形的概念及性质,并学会判断一个图形是否为轴对称图形。
通过本节课的学习,让学生体会数学与实际生活的联系,培养学生的观察能力、操作能力和推理能力。
二. 学情分析学生在六年级时已经学习了图形的对称性,对对称的概念有一定的了解。
但他们对轴对称图形的认识还比较模糊,对轴对称图形的性质和判定方法还不够熟练。
因此,在教学过程中,教师需要从学生的实际出发,通过丰富的实例和活动,帮助学生深化对轴对称图形的认识,提高他们的观察能力和操作能力。
三. 教学目标1.知识与技能目标:让学生掌握轴对称图形的概念,了解轴对称图形的性质,学会判断一个图形是否为轴对称图形。
2.过程与方法目标:通过观察、操作、推理等活动,培养学生的观察能力、操作能力和推理能力。
3.情感态度与价值观目标:让学生感受数学与实际生活的联系,提高学生学习数学的兴趣。
四. 教学重难点1.重点:轴对称图形的概念及性质。
2.难点:判断一个图形是否为轴对称图形,以及如何寻找对称轴。
五. 教学方法1.情境教学法:通过丰富的实例和实际问题,引发学生的兴趣,激发学生的思考。
2.操作教学法:让学生亲自动手操作,提高学生的实践能力。
3.引导发现法:教师引导学生发现问题,分析问题,从而解决问题。
4.小组合作学习:培养学生的团队合作精神,提高学生的交流表达能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备一些轴对称图形的模型或卡片,用于学生操作和判断。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如剪刀、飞机、树叶等,引导学生观察并提问:“这些图形有什么共同的特点?”学生回答后,教师总结出轴对称图形的概念。
2.呈现(10分钟)教师通过PPT或黑板,展示一些轴对称图形的性质和判定方法,如:对称轴的定义,轴对称图形的性质等。
简单的轴对称图形一教学设计

3 简单的轴对称图形(第1课时)教学目标:1. 经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。
2. 探索并掌握等腰三角形的轴对称性及其相关性质。
3. 通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念。
教学重点:理解等腰三角形和等边三角形的轴对称性及其有关性质。
教学难点:掌握等腰三角形和等边三角形的轴对称性及其有关性质,并用有关性质解决现实问题。
教学方法:“自主、合作、探究”的探究式和启发式教学法。
教学用具:多媒体教学教学设计分析第一环节知识回顾内容:观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?(多媒体显示图片)活动目的:通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形、乐于探索研究的学习品质及全面思考的能力。
第二环节创设情境导入新课1. 认识等腰三角形。
给出三种等腰三角形的形状,包括锐角、钝角、直角形状的图形。
2. 介绍等腰三角形的概念及各部分名称。
给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象。
如艾菲尔铁塔、埃及金字塔等。
活动目的:牢固而扎实的掌握等腰三角形的有关概念,尤其是等腰三角形的形状的分类,对于解决有关计算中多值问题大有助益,另外,等腰三角形的概念实际上也是它的一个有用性质,无论是在计算还是证明中都有很大的作用。
第三环节动手操作探求新知等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?1. 思考(1)等腰三角形是轴对称图形吗?找出对称轴。
(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?2.归纳(1)等腰三角形是轴对称图形。
(2)∠B =∠C(3 )∠BAD=∠CAD,AD为顶角的平分线(4)∠ADB=∠ADC=90°AD为底边上的高(5 )BD=CD,AD为底边上的中线。
《轴对称图形》教案(优秀8篇)

《轴对称图形》教案(优秀8篇)轴对称图形教案篇一教学目标:1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
课前准备:小黑板、学具卡片。
教学活动:一、复习导入出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。
(把课题补书完整)二、教学例题1.谈话:首先我们研究长方形的对称轴。
请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。
(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?指名到黑板上量长方形的边,取中点。
《轴对称》教学设计 (1)

图形的运动(二)-轴对称教学设计一、教学分析(一)课标要求【内容要求】图形的运动:结合实例,感受平移、旋转、轴对称现象。
在感受图形的位置与运动的过程中,能在方格纸上补全轴对称图形以及进行简单图形的平移,形成空间观念和初步的几何直观。
【学业要求】图形的运动:能在实际情境中,辨认出生活中的平移、旋转和轴对称现象,直观感知平移、旋转和轴对称的特征,能利用平移或旋转解释现实生活中的现象,形成空间观念。
【教学提示】图形的运动教学尽量选择学生熟悉的情境,通过组织有趣的活动帮助学生认识平移、旋转和轴对称的现象,感知特征,增强空间观念。
可借助方格纸,引导学生补全轴对称图形以及进行图形的平移,感受图形变化的特征;引导学生会从轴对称、平移的角度欣赏自然界和生活中的美;引导学生了解图案中的基本图形及其变化规律,感知中华优秀传统文化,增强空间观念。
(二)教材分析人教版教材从第一学段开始安排“图形的运动”的学习任务,且小学阶段安排了三个单元。
在第一学段二年级下册中学习“图形的运动(一)”,侧重于整体感受现象,通过观察、操作等活动,帮助学生直观认识平移、旋转和轴对称图形,在活动中积累图形运动的活动经验,为学生后续的学习积累丰富的感性经验。
第二学段四年级下册中学习“图形的运动(二)”,主要是对平移和轴对称图形的再认识,学生能在方格纸上画出简单的轴对称图形的对称轴及补全简单的轴对称图形,能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形,会运用平移知识解决简单的实际问题。
在观察、操作活动中,帮助学生积累图形运动经验,描或画出图形的运动和变化,促使学生在探索和理解“运动”的过程中,认识图形之间的关系,发展学生的空间观念。
第三学段五年级下册中学习“图形的运动(三)”,进一步认识图形的旋转,学习在方格纸上画出一个简单图形旋转90°后的图形,能从对称、平移和旋转的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案,进一步增强空间观念。
人教版轴对称教学设计(集锦6篇)

人教版轴对称教学设计(集锦6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!人教版轴对称教学设计(集锦6篇)人教版轴对称教学设计(1)一、教学目标(一)知识与技能会画一个图形的轴对称图形,掌握画图的方法和步骤:先画出几个关键的对称点,再连线。
《轴对称图形》教学设计(通用5篇)

《轴对称图形》教学设计《轴对称图形》教学设计(通用5篇)作为一名教职工,就难以避免地要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的《轴对称图形》教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
《轴对称图形》教学设计1教学目标:1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。
2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
教学重点:1、认识轴对称图形的特点,建立轴对称图形的概念。
2、能够准确的判断生活中的轴对称图形,并能找出它的对称轴。
教具准备:对称的剪纸作品,对称的图片,剪刀,彩纸等教学过程:一、创设情境,激发兴趣1、欣赏剪纸作品:师:我们班有许多同学都参加了剪纸兴趣小组,他们的作品多次参加学校的展览,我们教室里也贴有他们的作品,你们喜欢这些剪纸作品吗?老师也很喜欢这些作品,今天我带来了一些剪纸作品,我们一起欣赏。
(出示剪纸作品)师:这些作品美不美?美在哪里?(答案强调图形的两边是对称的,对称也是一种美。
)师:这节课我们就一起来欣赏图形中的对称美。
(板书课题:对称图形)(反思:利用学生自己的剪纸作品引入新课,更能激发学生的学习兴趣,让学生体会数学知识来源于生活,从而产生学习数学的欲望。
这一环节,主要是让学生发现对称的美,激发学生探究新知的欲望。
)二、自主探究,感悟新知1、剪一剪师:同学们都认为对称也是一种美,那么我这儿有一幅图,谁能把它补充完整,使它成为一种对称的美。
(出示一个只画了一半的花瓶。
)指生上来画完整。
师:画得美不美?对称吗?(肯定不太对称)师:你有什么好办法能使它两边完全对称?师:我有一个好办法,能使它两边完全对称。
《轴对称图形》教学设计15篇

《轴对称图形》教学设计15篇《轴对称图形》教学设计篇1一、内容和内容解析1.内容画一个图形的轴对称图形.2.内容解析本节教材是在学生学习了轴对称图形和两个图形成轴对称的知识的基础上,来探索如何画一个图形关于给定对称轴的对称图形.教材首先通过一个在半透明的纸上描图的方法,由左脚印得到与它对称的右脚印,引导学生归纳得出轴对称的特点,为探索画轴对称图形作铺垫.接下来,教材讨论了如何画出一个图形的轴对称图形的问题,通过一个“思考”栏目和一个画出一个三角形的轴对称图形的例题,归纳得出画简单的轴对称图形的方法.基于以上分析,本节课的教学重难点是:探索画轴对称图形的方法.二、目标和目标解析1.教学目标(1)了解轴对称的特点.(2)能够画出简单图形关于给定对称轴的对称图形.2.教学目标解析(1)学生通过用折纸描图的方法得到两个成轴对称的图形的过程中,能够归纳得出轴对称的特点:轴对称前后两个图形全等;对应点所连线段被对称轴垂直平分.(2)学生在了解轴对称的特点的基础上,能画出简单图形(点,线段,直线,三角形等)关于给定对称轴的对称图形,并能归纳其画法.三、教学问题诊断分析学生由于有了前面一节关于轴对称图形的知识,自己通过折纸描图的方法得到两个成轴对称的图形,并归纳得出轴对称的特点,这一过程应当不难.但如何画一个平面图形关于给定对称轴的对称图形,则有一定的困难,学生对于画图的.思路往往一时难以想到,需要教师作好铺垫,加以引导.本节课的教学难点是:探索画轴对称图形的方法.四、教学过程设计1.问题导入问题1如图,在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?师生活动:学生讨论得出,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.问题2在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?师生活动:学生动手画图,全班展示、交流.归纳:由一个平面图形得到与它关于一条直线对称的图形.【设计意图】学生经历用折纸描图的方法,得到一个图形关于某条直线的对称图形的过程,积累画图的经验,为归纳轴对称的特点作铺垫.问题3一个平面图形和与它成轴对称的另一个图形之间有什么关系?师生活动:学生独立思考,小组讨论、交流,师生共同归纳:这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.【设计意图】引导学生归纳得出轴对称的特点,培养学生的概括能力,为探索作一个图形关于给定对称轴的对称图形作准备.2.探索新知问题4如图,有一点a和直线l,如何作出点a关于直线l的对称点a′?师生活动:学生独立思考,师生共同归纳出画法:过点a画直线l的垂线,垂足为点o,在垂线上截取oa′=oa,点a′就是点a关于直线l的对称点.【设计意图】让学生通过作一个点关于给定对称轴的对称点,领会作图的方法要领,为探索作一个图形关于给定对称轴的对称图形打基础.问题5例1如图,已知△abc和直线l,画出与△abc关于直线l对称的图形.师生活动:学生独立完成作图,全班展示交流.追问:如何验证画出的图形与△abc关于直线l对称?师生活动:引导学生从折叠和说理两个方面进行验证.【设计意图】让学生在画图的过程中,积累画图的经验,了解画图的道理.问题6如何作出一个图形关于某条直线对称的图形?师生活动:学生小组讨论交流,师生共同归纳:几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.【设计意图】让学生经历由特殊到一般的过程,概括画一个图形关于给定对称轴的对称图形的方法,体会由特殊到一般的思想.3.巩固运用练习完成教科书第68页的练习第1,2题.4.归纳小结教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课学习了哪些内容?(2)一个平面图形和与它成轴对称的另一个图形之间有什么关系?(3)画轴对称图形的一般方法是什么?依据是什么?师生活动:学生自由小结,教师适时点评、补充.【设计意图】通过小结,梳理本节课所学内容,使学生进一步理解画轴对称图形的一般方法,促进学生数学思维品质的优化.5.布置作业教科书习题13.2第1题.五、目标检测设计1.下面关于成轴对称的两个图形的错误说法是().a.这两个图形的形状、大小完全相同b.任意一对对应点到对称轴的距离相等c.连接任意一对对应点的线段被对称轴垂直平分d.其中一个图形可由另一个图形平移得到【设计意图】本题主要考查轴对称的特点.2.作已知点关于某直线的对称点的第一步是().a.过已知点作一条直线与已知直线相交b.过已知点作一条:直线与已知直线垂直c.过已知点作一条直线与已知直线平行d.不确定【设计意图】本题主要考查画一点关于某直线对称点的方法.3.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.【设计意图】本题主要考查轴对称图形的概念和画轴对称图形的方法.4.在图中作出△abc关于直线l对称的△.【设计意图】本题主要考查画一个图形关于某直线对称的图形的方法.《轴对称图形》教学设计篇2教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1.知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
9.2(1)简单的轴对称图形教案

课题§9.2简单的轴对称图形第1课时教学目标:知识与技能目标1、能认识线段和角都是轴对称图形,并且线段的垂直平分线的概念,掌握线段和角的特殊性质.2、通过线段和角进一步认识轴对称图形及轴对称的知识,探究其特殊性质.过程与方法目标1、通过动手动脑,学会用自己的语言概括出线段和角的特殊性质。
2、鼓励学生从大胆实践,不断探索,总结归纳,得出结论。
情感与态度目标1、通过实践与探索,发现规律,总结归纳,尝试成功的喜悦。
2、培养学生合作学习。
教学重点与难点:⏹理解线段和角圆是轴对称图形,它们的对称轴;掌握和运用线段和角的特殊性质。
(重点)⏹能正确地运用线段和角的特殊性质。
(难点)教学方法:自主探究式法教学过程:一、揭示学习目标通过动手与探索,能识别线段和角是轴对称图形,能找出其对称轴;掌握与运用线段和角的特殊性质来解决实际问题。
二、创设情境,引入新课请看下列图形。
(出示课件:山水倒影图)提出:你发现了它的对称轴是什么吗?请回答。
接着给出线段和角的图形提出它们不还是轴对称图形吗?如果是,它们的对称轴是什么?小组讨论、交流(请与同伴交流并用自己的语言来描述。
)(3分钟后)最后让学生谈谈自己的发现。
点出课题:今天我们学习最简单的轴对称图形——线段和角(板书)三、指导学生自学(分两次看书自学)第一次看书:1、请大家先自学课本P71~72试一试之前的内容,并思考下列问题(5分钟):⑴线段是轴对称图形,它的对称轴是什么?⑵你是如何理解线段的垂直平分线?⑶线段的垂直平分线具有什么特殊的特征?⑷你能独立完成例1吗?2、点拨、矫正,检查学习结果⑴、课件展示;⑵、学生试做例1;⑶教师点评;⑷完成专项训练一、二第二次看书:(5分钟)1、请大家自学课本P72试一试到732、点拨、矫正,检查学习结果⑴、课件展示;⑵、教师点评;⑶完成专项训练三3五、课后练习:(出示课件)如图,直角三角形ABC中∠C=900,BD平分∠ABC交AC于D,DE⊥AB于E,DE是AB的垂直平分线,DE=3㎝,BD=5㎝,求AC的长。
《简单的轴对称图形第1课时》示范公开课教学设计【北师大版七年级数学下册】

第五章生活中的轴对称5.3简单的轴对称图形第1课时教学设计一、教学目标1.掌握等腰三角形的定义,利用定义解决问题;2.掌握等腰三角形和等边三角形的轴对称性、相关性质及判定.二、教学重点及难点重点:等腰三角形的相关概念;掌握等腰三角形的轴对称性、有关性质及判定.难点:应用等腰三角形的概念和性质解决等腰三角形解决问题.三、教学准备多媒体课件四、相关资源相关图片,微课,动画五、教学过程【问题情境】在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就从轴对称的角度来认识一些我们熟悉的几何图形.问题1:三角形是轴对称图形吗?有的三角形是轴对称图形,有的三角形不是.问题2:什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种是轴对称图形的三角形——等腰三角形.设计意图:通过回顾轴对称图形及轴对称性质,引出本节课所要探究的内容,让学生明确探究方向.【探究新知】探究一:认识等腰三角形 观察图片:这些三角形有什么共同特点?定义:有两条边相等的三角形叫等腰三角形探究二:等腰三角形的性质活动1.作等腰三角形(1)如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?(2)鼓励学生用不同的方法得到等腰三角形,例如还可以像下面这样来作一个等腰三角形.(顶角底角底角腰腰底边)作一条直线l ,在l 上取一点A ,在l 外取一点B ,作出点B 关于直线l 的对称点C ,连接AB ,BC ,CA ,则可得到一个等腰三角形.设计意图:以动手操作的形式得出一个等腰三角形,鼓励学生充分的进行交流,充分利用等腰三角形的特征,逆向思维,达到学以致用的目的.同时充分体现了数学来源于生活,同时也更好的服务于生活的理念.活动2.思考:(1)等腰三角形是轴对称图形吗?请找出它的对称轴. (2)等腰三角形顶角平分线所在的直线是它的对称轴吗?(3)等腰三角形底边上的中线所在的直线是它的对称轴吗?底边上的高所在的直线呢? (4)沿对称轴对折,你能发现等腰三角形的那些特征?说说你的理由.因为等腰三角形的两腰相等,所以把这两条腰重合对折便知:等腰三角形是轴对称图形,它的对称轴是折痕所在的直线.学生通过折叠,发现折痕两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到:等腰三角形是轴对称图形.性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.活动3.等腰三角形的性质1的证明:证法1:如图,在△ABC 中,AB =AC ,作底边BC 的中线AD ,则BD =CD . 在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,, ∴△ABD ≌△ACD (SSS ).∴∠B =∠C .证法2:如图,在△ABC 中,AB =AC ,作顶角∠BAC 的角平分线AD , ∴∠1=∠2.在△ABD 和△ACD 中,1=2AB AC AD AD =⎧⎪∠∠⎨⎪=⎩,,, ∴△ABD ≌△ACD (SAS ). ∴∠B =∠C .几何语言表示:在△ABC 中,∵AB =AC , ∴∠B =∠C .活动4.等腰三角形性质2的证明:性质2可以分解为三个命题,下面我们来证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.已知:如图,△ABC 中,AB =AC ,AD 是底边BC 的中线.求证:∠BAD =∠CAD ,AD ⊥BC .证明:∵AD 是底边BC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,, ∴△ABD ≌△ACD (SSS ). ∴∠BAD =∠CAD , ∠ADB =∠ADC .∵∠ADB +∠ADC =180°, ∴∠ADB =90°. ∴AD ⊥BC .教师鼓励学生仿照示例口述另两个命题的证明过程. 几何语言表示:在△ABC 中,(1)∵AB =AC ,BD =CD , ∴AD ⊥BC ,∠BAD =∠CAD . (2)∵AB =AC ,∠BAD =∠CAD , ∴AD ⊥BC ,BD =CD . (3)∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD ,BD =CD .在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此得到:等腰三角形是轴对称图形,底边上的中线(或顶角平分线、底边上的高)所在直线就是它的对称轴.设计意图:通过引导学生动手操作,探索和发现等腰三角形的性质,加深学生对等腰三角形性质的直观感知,并尝试构造全等三角形给出推理证明,锻炼学生探索和发现问题并解决问题的能力.探究三:等边三角形1. 定义:三边都相等的三角形是等边三角形也叫正三角形.2.性质:(1)等边三角形是轴对称图形吗?找出对称轴(2)你能发现它的哪些特征?结论:(1)等边三角形是轴对称图形;(2)等边三角形每个角的平分线和这个角的对边上的中线、高线重合(“三线合一”),它们所在的直线都是等边三角形的对称轴。
轴对称图形教学设计(热门14篇)

轴对称图形教学设计(热门14篇)轴对称图形教学设计第1篇教学目标:1、使学生初步认识轴对称图形,理解轴对称图形的含义,并熟练判断轴对称图形。
2、通过观察、思考和动手操作,培养学生观察和想象能力,发展学生的空间观念。
3、引导学生领略轴对称图形的美妙与神奇,感受现实生活、自然世界中丰富的'对称现象,激发学生的数学审美情趣。
教学准备:多媒体课件、试一试的图形学生四人小组一份。
教学过程:一、猜一猜——体会对称现象1、春天到了,万物复苏。
猜猜谁来了?(蜻蜓按八分之一、四分之一、二分之一出示)老师没有出示完整的图你怎么猜到的?指出:仔细观察一半想象另一半,所以猜到了。
(板书:观察、想象)打开看看猜的对吗?2、这个呢?(三叶草按八分之一、四分之一、二分之一出示)你又是怎么猜到的?指出:据说三叶草每片叶子都代表美好的祝福,得到三叶草的人就会一生幸福。
送给你们,希望你们幸福。
3、你们发现蜻蜓、三叶草有什么共同的特点吗?指出:像这样两边一样的物体,我们就说它们是对称的。
(板书:对称)【设计意图:本环节让学生借助已有的生活经验用眼睛观察两幅实物图,初步感知生活中的对称现象。
两个猜谜游戏,既引起了学生的学习兴趣,又突出体现了自然界的对称现象,同时提出了学习本课的两个方法:观察与想象。
】二、认识轴对称图形的特征1、(出示天安门、飞机、奖杯图片)老师还带来了三样物体,把这些物体画下来,看这三个图形对称吗?为什么?你有什么办法来证明?(对折)2、拿出这些图形,同桌合作,把这三个图形对折并说一说:你有什么发现?(1)你愿意把你的发现说一说吗?预设:①这些图形对折后,两边都是一样的。
哪里看出两边一样?②两边重叠在一起。
老师这也有一个图形,对折后两边也重合了。
和刚才有什么不一样?指出:象这样不多不少全部重合在一起的我们可以说成是完全重合。
(2)飞机、奖杯是不是完全重合?为什么?老师也把奖杯对折了一下(上下)你觉得呢?指出:奖杯不能上下对折,只能左右对折才会完全重合。
《简单轴对称图形》第一课时:资料:教学设计(一)

简单的轴对称图形(一)〖教学目标〗1.经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。
2.探索并了解角的平分线、线段垂直平分线的有关性质。
3.初步体验解决问题策略的多样性,发展创新能力。
4.经历猜想、折叠、观察、发现等数学活动过程,培养学生的动手能力和逻辑思考能力。
〖教材分析〗轴对称是现实生活中广泛存在的一种现象,也是探索一些图形的性质,认识、描述图形的形状和位置关系的必要手段之一。
本节课的教学内容是研究和学习角与线段的轴对称性。
教材通过分析角与线段的轴对称性,引导学生逐步了解和领略轴对称现象的共同规律,从而由学生自己得出结论,形成角与线段的轴对称性质,这样更有利于体现以学生为主体的教育思想。
重点:角的平分线、线段垂直平分线的有关性质。
难点:探索角的平分线和线段垂直平分线性质的过程。
〖学校及学生状况分析〗学校教学设备基本齐全,配有多媒体教室。
本校绝大多数学生来自城市,其中特别优秀的学生不多,学生学习水平属于中等。
〖教学设计〗(一)创设情境,激发学习兴趣1.交流:在小组里展示同学们制作或收集的轴对称图形作品,每个小组评出一幅最优秀的作品在全班展示。
2.欣赏:利用多媒体演示一些具有实际意义的轴对称现象,使同学们感受到现实生活中存在着大量的轴对称图形。
3.体验:利用多媒体的动画效果演示一些常见的几何图形,如等腰三角形、圆、正六边形,使学生亲身感受轴对称图形:沿对称轴折叠时,两旁的部分一定重合。
(二)探索和学习角的轴对称性探究一(全体活动)1.猜想:角是轴对称图形吗?如果是,你能找出它的对称轴吗?2.动手操作(投影展示步骤):(1)画一个角,标上字母A,O,B;(2)将这个角剪下来;(3)将角的两边重合后折叠;(4)展开。
3.讨论:在操作过程中,你发现了什么?4.明晰(利用动画效果验证学生的发现):(1)角是轴对称图形;(2)角的平分线所在的直线是它的对称轴。
探究二(小组活动)1.动手操作(投影展示步骤):(1)在角平分线OC上任取一点P;(2)过点P分别作角的两边OA和OB的垂线。
《轴对称(一)》教学设计

《轴对称(一)》教学设计教学目标:1. 联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象;认识轴对称图形的一些基本特征。
2. 使学生能根据自己对轴对称图形的初步认识,在一组实物图案或简单平面图形中识别出轴对称图形;能用一些方法“做“出一些简单的轴对称图形。
3. 使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
教学重点:感知对称的现象,认识轴对称图形的特征,并能判断一个图形是否是轴对称图形。
教学难点:在理解轴对称图形的基础上,灵活解决相关问题。
教学过程:一、从生活实际出发感受物体的对称与不对称1.在飞纸飞机的游戏中,初步感知生活中的对称现象。
提供两架纸飞机,一架机身两边是对称的,一架是不对称的。
请两名学生比赛玩纸飞机,其他学生观察飞机飞行的情况。
2.提问:仔细观察两架飞机,想想如果再比下去,你认为哪架飞机飞的远呢?为什么?指出:像这样左右两边形状一样、大小一样的物体,我们说他们是“对称”的。
(板书:对称)黄飞机因为是对称的,所以飞得又稳又远。
而蓝飞机不是对称的,所以飞行的不够平稳。
2.寻找生活中的对称物体提问:你知道生活中也有哪些物体也是对称的?谈话:生活中有许多物体都是对称的,让我们走进美妙的对称世界欣赏一下。
(播放课件)谈话:老师从中选了三个对称的物体,仔细观察,你能具体说说是哪边和哪边对称吗?(播放课件)【设计意图:通过飞纸飞机的活动,引发学生关注生活中的对称和不对称,初步感知物体对称的特征。
】二、在操作活动中主动探究轴对称图形的特征1.确定研究内容出示:蝴蝶、天坛和飞机实物图(播放课件)谈话:把这三个物体画在纸上,就得到了平面图形。
今天这节数学课,我们主要研究平面图形的对称。
2.由物体对称迁移到图形对称提问:仔细看看,这些图形还是对称的吗?要想验证一下这三幅图究竟是不是对称的,你有什么好办法?(折一折)3.探究轴对称图形的特征——对折后能完全重合请一名上学生黑板前演示折一折。
轴对称图形(第一课时)教学设计及点评

轴对称图形(第一课时)教学目标:一、知识技能目标:1.通过欣赏现实生活中的轴对称图形,抽象、概括轴对称图形的概念,能找出轴对称图形的对称轴;2.能够利用轴对称图形的特点,进行简单图案的设计.二、过程方法目标:经历欣赏生活中的轴对称图形的美,探索、发现它们的共同特征,发展学生的形象思维和空间观念,积累数学活动的经验,培养学生的动手能力、总结归纳能力、想象力和创造力。
三、情感态度目标:欣赏现实生活中的轴对称图形,体会轴对称图形在现实生活中的广泛应用和它的丰富的文化价值,培养学生审美情趣和动手能力,增强鉴赏美的能力和分享美的情怀。
重点难点:重点:轴对称图形的概念难点:轴对称图形概念的获得过程学情分析:这节课的教学对象是八年级的学生,他们虽然在小学已学过简单的轴对称图形,但对什么是轴对称图形还停留在直观的表象认识上,对轴对称图形概念缺乏理性的认识,八年级学生的思维已开始由形象思维向抽象思维过渡,这为本节课教学提供了条件。
教学准备:剪刀、纸张、剪好的一些几何图形、多媒体课件教学流程:教学过程:一、欣赏图片,引入新课欣赏一组图片:建筑之美、文化之美、自然之美二、观察发现,探索概念(一)发现:活动1:多媒体展示图案时,演示对折重合的过程。
活动2:折一折把一张纸对折,然后从折叠处剪出一个图形,想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?让学生思考、讨论。
引导学生得出:轴对称图形的定义(二)探究:活动3:说一说下面这些图形是不是轴对称图形?活动4:找一找看看下面的轴对称图形,各有几条对称轴?三、动手创造、体验成功活动5:看一看活动6:猜一猜活动7:试一试你能用纸剪一个双喜图吗?看谁剪得快?四、小组交流、整理归纳活动8:理一理:本节课你有哪些体会呢?师生共同总结活动9:晒一晒五、分享美丽分享快乐活动10:亲爱的同学,2014年即将过去了,新的一年就要来到,请大家一起行动起来,用你灵巧的双手,运用剪纸艺术,手工制作一张贺年卡,把最美的祝福分享给你的亲人、朋友、老师、同学!《轴对称图形》教学设想与反思马鞍山外国语学校杨庆九本节课的内容是沪科版版八年级数学(上)第十五章第一节《轴对称图形》第一课时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章生活中的轴对称3 简单的轴对称图形(第1课时)一、学生起点分析学生的知识技能基础:学生在生活中已经对轴对称现象不陌生了,在本章前面两节课中,认识了轴对称的现象,加强了对图形的理解和认识,初步探索并了解了概念,为接下来的学习奠定了基础。
学生活动经验基础:在相关知识的学习过程中,学生通过想象,再动手操作验证自己的想象,解决了一些简单的现实问题,感受到了充分观察、操作的必要性和作用,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生对轴对称图形的认识,提出了本课的具体学习任务,认识等腰三角形和等边三角形的轴对称性及其有关性质。
本节课的教学目标是:1. 经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。
2. 探索并掌握等腰三角形的轴对称性及其相关性质。
3. 通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念。
三、教学设计分析按照学生的认识规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法为辅。
教学中,精心设计了一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考、操作,教师适时地演示,并用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,从而培养学生的思维能力。
本节课设计了如下教学环节:第一环节知识回顾内容:观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?活动目的:通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形、乐于探索研究的学习品质及全面思考的能力。
实际教学效果:学生大部分能够准确而全面的找出对称轴,并能说出部分图标的标志名称。
以生活中的事例入题,大大提高了学生的学习兴趣,也由此告知学生数学来源于生活的道理。
注意事项:本节涉及的有关现实中的轴对称图形可以根据实际适时调整,如脸谱,生活中的建筑等,生活中存在大量的实际背景,所挖掘的素材应包括丰富多彩的现实世界中的图形,使学生能够用轴对称的观点来揭示现实世界中与图形有关的现象,同时能够欣赏现实世界中蕴涵的有关轴对称的图案。
第二环节创设情境导入新课活动内容:1. 认识等腰三角形。
给出三种等腰三角形的形状,包括锐角、钝角、直角形状的图形。
2. 介绍等腰三角形的概念及各部分名称。
给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象。
如艾菲尔铁塔、埃及金字塔等。
活动目的:牢固而扎实的掌握等腰三角形的有关概念,尤其是等腰三角形的形状的分类,对于解决有关计算中多值问题大有助益,另外,等腰三角形的概念实际上也是它的一个有用性质,无论是在计算还是证明中都有很大的作用。
实际教学效果:学生在一个开放的环境下展示、接触生活中的等腰三角形,从中获取了信息,感受生活中的事例。
而且讲解中图形生动形象,使概念的获取更加全面。
注意事项:学生可能在回答次问题时表现出差异,有的学生可能在分析等腰三角形特点的基础上直接想象出它的对称轴,有的学生可能需要借助折叠等活动寻找出对称轴,教师要鼓励学生进行充分的交流,注重操作和思考的有机结合。
对于通过想象解决问题的学生,鼓励他们通过操作进行验证,对于通过操作得出结论的学生,鼓励他们重新观察等腰三角形的轴对称性。
第三环节动手操作探求新知活动内容:等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?1. 思考(1)等腰三角形是轴对称图形吗?找出对称轴。
(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?2.归纳(1)等腰三角形是轴对称图形。
(2)∠B =∠C(3 )∠BAD=∠CAD,AD为顶角的平分线(4)∠ADB=∠ADC=90°AD为底边上的高(5 )BD=CD,AD为底边上的中线。
等腰三角形的特征:1).等腰三角形是轴对称图形2).等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
3).等腰三角形的两个底角相等。
3.推理等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”).证明:因为AD是角平分线,所以∠BAD= ∠ CAD在ΔABD和ΔACD中,因为AB=AC, ∠BAD= ∠CAD,AD=AD所以ΔABD ≌ΔACD所以BD=CD, ∠ADB=∠ ADC=90˚所以AD是ΔABC的角平分线、底边上的中线、底边上的高。
活动目的:探索等腰三角形的轴对称性及其有关性质,教学时,可以让学生先动手折一折等腰三角形纸片,自己发现有哪些结论。
然后小组成员一起通过操作验证自己的结论,并由此归纳现象,探索等腰三角形的有关特征。
实际教学效果:(1)学生可能在回答此问题时表现出差异,有的学生可能从分析等腰三角形特点的基础上直接想象出它的对称轴,有的学生可能需要借助折叠等活动寻找出对称轴,教师要鼓励学生进行充分的交流,注重操作和思考的有机结合,对于通过想象解决问题的学生,鼓励他们通过操作进行验证,对于通过操作得出结论的学生,鼓励他们重新观察等腰三角形的轴对称性。
对于对称轴的描述,学生可能有不同的回答,有的学生可能回答是顶角平分线所在直线,有的学生可能回答是底边上的中线或高所在直线,教师此时提出问题:“你们所说的是同一条直线吗?”引出下两题的讨论。
(2)鼓励学生在操作中尽可能多的探索等腰三角形的特征,并尽量运用自己的语言说明理由,既可以根据折叠过程中某些线段或角重合说明,也可以用全等来说明。
对于学生可能探索出来的结论,应鼓励交流,但对于全体学生而言,只要求掌握教科书中列出的特征。
第四环节知识延伸活动内容:1.等边三角形的有关概念有几条对称轴?2. 你能发现等边三角形的哪些特征?活动目的:教师应鼓励学生通过操作和思考分析等边三角性的轴对称性,并尽可能多的探索它的特征。
实际教学效果:学生可能运用不同的办法解决这个问题,有的学生可能借助操作,有的学生可能通过等边三角形的特殊性由等腰三角形的性质推知它的特征。
教师应鼓励学生进行充分的交流。
第五环节 知识逆用充分利用等腰三角形的特征,逆向思维,达到学以致用的目的。
同时充分体现了数学来源于生活,同时也更好的服务于生活的理念。
第六环节 练习与提高活动内容:以小组竞赛的方式做习题:1.在等腰ΔABC 中,AB=AC 顶角∠A=100°那么底角∠B=_______∠C =_______ .2.在△ABC 中,AB=AC ,∠B=72°,那么∠A=______3. 在等腰三角形△ABC 中,有一个角为50°,那么另外两个角分别是多少?4.如图,在△ABC 中,AB=AC 时, (1)因为AD ⊥BC所以∠ ____= ∠_____;____=____(2) 因为AD 是中线所以____⊥____; ∠_____=∠_____(3) 因为 AD 是角平分线所以____ ⊥____;_____=____小组竞赛试题:每一幅图画后面都有一道习题,选择一幅你喜欢的图画吧!AB CD1、如果ΔABC 是轴对称图形,则它的对称轴一定是( )A. 某一条边上的高。
B. 某一条边上的中线。
C. 平分一角和这个角的对边的直线。
D. 某一个角的平分线。
2、①若等腰三角形的一个内角为 40°,则它的另外两个内角为________。
②若等腰三角形的一个内角为120°,则它的另外两个内角为______3、①一等腰三角形的两边长为2和4,则该等腰三角形的周长为________ ②一等腰三角形的两边长为3和4,则该等腰三角形的周长为________4、已知等腰三角形的腰长比底边长多2cm,并且它的周长为16cm,求这个等腰三角形的各边长。
5、拓展提高:如图,P ,Q 是△ABC 边上的两点,且BP=PQ=QC=AP=AQ ,求∠BAC 的度数。
活动目的:通过点击图片,得到习题,增加乐趣,调动积极性,增强参与意识,促进学生学习兴趣,习题以选择填空题为主,简单精练。
实际教学效果:知识点掌握牢固,课堂气氛热烈。
第七环节:课堂小结活动内容:师生互相交流总结本节所学,等腰三角形的性质和等边三角形的性质,以及在习题中出现的解题方法。
活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)实际教学效果:学生畅所欲言自己的切身感受与实际收获,在丰富的现实情景中,观察生活中的轴对称现象,体会了轴对称在现实生活中的广泛应用和丰富的文化价值。
四、教学设计反思 APBC Q1.充分挖掘和利用现实生活中大量存在的轴对称现象进行教学。
本节内容具有丰富的实际背景,在现实世界中有着广泛的应用,因此要充分利用现实生活中大量存在的轴对称现象进行教学。
所挖掘的素材应包括丰富多彩的现实世界中的二、三维图形,使学生能够用轴对称的观点来解释现实世界中与图形有关的现象,同时能够欣赏现实世界中蕴涵的有关轴对称的图案。
2.注重使学生经历探索轴对称性质的实践活动。
本节内容的学习包括大量的实践活动,学生空间观念的培养、推理能力的发展、对图形美的感受等都是在实践活动中发展起来的。
因此,教学中应充分利用这部分内容的特点,将观察、操作等实践活动以及实践活动中的思考与交流贯穿于教学活动的始终,使学生体会所学内容与现实世界的广泛联系,体验轴对称的数学内涵,积累丰富的数学活动经验,发展良好的空间观念和一定的创新意识。
3.有意识的满足学生多样化的学习需求,为学生提供个性化学习的时间和空间。
当学生探索轴对称的性质时,可能会有不同的创意,应鼓励他们大胆想象,并对具有创造性的想法给予充分的赞扬。