中考数学模拟考试试题(有答案)
【必考题】数学中考模拟试题(含答案)
【必考题】数学中考模拟试题(含答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A.14cm B.4cm C.15cm D.3cm6.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,在半径为13的Oe中,弦AB与CD交于点E,75DEB∠=︒,6,1AB AE==,则CD的长是()A.26B.210C.211D.4312.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.若一个数的平方等于5,则这个数等于_____.18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.分解因式:2x 2﹣18=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD22200100-3∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
数学中考全真模拟测试卷(附答案)
A.﹣3B.3C.- D.
2.小友家阳台上有一个如图所示的移动台阶,它的主视图是( )
A. B. C. D.
3.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.已知正比例函数y=mx的图象过第一、三象限,则m的取值范围是( )
A.m<0B.m≤0C.m≥0D.m>0
5.计算(﹣2x2y3)•3xy2结果正确的是( )
A. ﹣6x2y6B. ﹣6x3y5C. ﹣5x3y5D. ﹣24x7y5
【答案】B
【解析】
【分析】根据单项式乘单项式法则直接计算即可.
【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,
故选B.
【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.
【详解】解:由图知,6张卡片中有2张是数字3,
∴从中任取一张是数字3的概率是 .
故选B.
【点睛】本题考查了概率公式.概率=所求情况数与总情况数之比.
8.广西北部湾某中学为了使学生能够更好地进行体育活动,决定修建一个长方体形状的游泳池,其底面周长为100 m,设游泳池的底面长方形的长为xm,要使游泳池的底面面积为400 m2,则可列方程为( )
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是轴对称图形,也不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误,
2024年中考数学模拟考试卷(含参考答案)
2024年中考数学模拟考试卷(含参考答案) 学校:___________班级:___________姓名:___________考号:___________ 一、选择题(各小题的四个选项中,只有一项符合题意)1.2024的倒数是()A.﹣2024B.12024C.2024 D.120242.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣43.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤24.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣15.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣87.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y19.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B 落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=.12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是.13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.参考答案与试题解析一、选择题(各小题的四个选项中,只有一项符合题意)11.2024的倒数是()A.﹣2024B.12024C.2024 D.12024【解答】解:2024的倒数是1 2024故选:D.2.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2 C.a2•a3=a6D.(a﹣2)2=a2﹣4【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤2【解答】解:∵3x﹣6≥0∴x≥2故选:B.4.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣1【解答】解:A.+无法合并,故此选项不合题意;B.|3.14﹣π|=π﹣3.14,故此选项符合题意;C.a2⋅a3=a5,故此选项不合题意;D.(a﹣1)2=a2﹣2a+1,故此选项不合题意;故选:B.5.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°【解答】解:如图,过点P作P A∥a,则a∥b∥P A∴∠3+∠NP A=180°,∠1+∠MP A=180°∴∠1+∠2+∠3=180°+180°=360°.故选:A.6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣8【解答】解:∵x=2是方程ax﹣b=3的解∴2a﹣b=3∴4a﹣2b=6∴4a﹣2b+1=7故选:A.7.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.【解答】解:画树状图为:(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)∵共有9种等可能的结果数,其中两人恰好选择同一课程的结果数为3∴两人恰好选择同一课程的概率=.故选:A.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y1【解答】解:∵反比例函数∴函数图象的两个分支分别在第二、四象限内,且在每一个象限内y随x的增大而增大又∵点A(﹣4,y1),B(2,y2),C(3,y3)∴点A在第二象限内,点B、点C在第四象限内∴y1>0,y2<0,y3<0又∵2<4∴y2<y3∴y2<y3<y1故选:C.9.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.【解答】解:如图所示,连接MN∵边长为2的正方形ABCD的对角线相交于点O∴AD=AB=BC=2∴∵将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E ∴∠AMN=∠ABN=90°,MN=BN,AM=AB=2∴∵∠ACB=45°∴∠MNC=45°∴∴∵AD∥BN∴△ADE∽△NBE∴,即解得.故选:B.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④【解答】解:∵△PBC是等边三角形,四边形ABCD是正方形∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD∴∠CPD=∠CDP=75°则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°∴∠DBH=∠DPB=135°又∵∠PDB=∠BDH∴△BDP∽△HDB,故②正确;如图,过点Q作QE⊥CD于E设QE=DE=x,则QD=x,CQ=2QE=2x∴CE=x由CE+DE=CD知x+x=1解得x=∴QD=x=∵BD=∴BQ=BD﹣DQ=﹣=则DQ:BQ=:≠1:2,故③错误;∵∠CDP=75°,∠CDQ=45°∴∠PDQ=30°又∵∠CPD=75°∴∠DPQ=∠DQP=75°∴DP=DQ=∴S△BDP=BD•PD sin∠BDP=×××=,故④正确;故选:D.二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是(4,2).【解答】解:如图所示:位似中心的坐标是(4,2)故答案为:(4,2).13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值 1.2.【解答】解:∵关于x方程(m﹣1)x2﹣=0的有两个实数根∴解得:0≤m≤2且m≠1.故答案为:1.2.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有①③④.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.【解答】解:∵∴4a+b=0故①正确;∵抛物线与x轴的一个交点为(﹣1,0),对称轴为直线x=2∴另一个交点为(5,0)∵抛物线开口向下∴当x=3时,y>0,即9a+3b+c>0故②错误;∵抛物线的对称轴为x=2,C(5,0)在抛物线上∴点(﹣1,y3)与C(5,y3)关于对称轴x=2对称∵,在对称轴的左侧,抛物线开口向下,y随x的增大而增大∴y1<y3<y2故③正确;若图象过(﹣1,0),即抛物线与x轴的一个交点为(﹣1,0)方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根∵x1<x2,抛物线与x轴交点为(﹣1,0),(5,0)∴依据函数图象可知:x1<﹣1<5<x2故④正确故答案为:①③④.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.【解答】解:如图点O的运动路径的长=的长+O1O2+的长==故答案为:.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()n﹣1.【解答】解:∵直线l为正比例函数y=x的图象∴∠D1OA1=45°∴D1A1=OA1=1∴正方形A1B1C1D1的面积=1=()1﹣1由勾股定理得,OD1=,D1A2=∴A2B2=A2O=∴正方形A2B2C2D2的面积==()2﹣1同理,A3D3=OA3=∴正方形A3B3C3D3的面积==()3﹣1…由规律可知,正方形A n B n∁n D n的面积=()n﹣1故答案为:()n﹣1.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.【解答】解:(1)原式=1﹣2×+2+2=4;(2)由①得:x≤1由②得:x>﹣1∴不等式组的解集为﹣1<x≤1则不等式组的整数解为0,1.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为50.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为213°.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?【解答】解:(1)本次抽样调查的样本容量为:30÷60%=50;故答案为:50;(2)满足欲望的人数有:50×12%=6(人)其他的人数有:50×8%=4(人)补全统计图如下:(3)“因琐事”区域所在扇形的圆心角的度数为:360°×60%=216°;故答案为:216°;(4)2800×(60%+20%)=2240(例)答:估计所有3000例欺凌事件中有2240例事件是“因琐事”或因“发泄情绪”而导致事件发生的.19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.【解答】解:(1)设纽荷尔每箱a元,则默科特每箱(a+20)元由题意得:=解得:a=60经检验,a=60是原分式方程的解∴a+20=80答:纽荷尔每箱60元,默科特每箱80元;(2)设购买纽荷尔x箱,则购买默科特(150﹣x)箱,所需费用为w元由题意得:w=60x+10(150﹣x)=﹣20x+12000∵x≥2(150﹣x)∴x≥100∵﹣20<0∴w随x的增大而减小∴当x=100时,w取得最大值,此时w=﹣20×100+12000=10000答:购买总费用的最大值为10000元.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.【解答】解:(1)∵一次函数y=﹣x+5的图象与过点A(4,a)∴a=﹣4+5=1∴点A(4,1)∵点A在反比例函数的图象上∴n=4×1=4;(2)由,解得或∴B(1,4)∴若x>0,当时x的取值范围是1<x<4;(3)设P(x,﹣x+5),则Q(x,)∴PQ=﹣x+5﹣∵△POQ的面积为1∴=1,即整理得x2﹣5x+6=0解得x=2或3∴P点的坐标为(2,3)或(3,2).21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.【解答】解:(1)∵⊙O与边AB相切于点E,且CE为⊙O的直径∴CE⊥AB∵AB=AC,AD⊥BC∴BD=DC又∵OE=OC∴OD∥EB∴OD⊥CE;(2)连接EF∵CE为⊙O的直径,且点F在⊙O上,∴∠EFC=90°∵CE⊥AB∴∠BEC=90°.∴∠BEF+∠FEC=∠FEC+∠ECF=90°∴∠BEF=∠ECF∴tan∠BEF=tan∠ECF∴又∵DF=1,BD=DC=3∴BF=2,FC=4∴EF=2∵∠EFC=90°∴∠BFE=90°由勾股定理,得∵EF∥AD∴∴.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.【解答】解:(1)把A(﹣1,0)代入y=ax2+2x+3得:0=a﹣2+3解得a=﹣1∴抛物线的解析式为y=﹣x2+2x+3;∵直线y=﹣2x+b与抛物线有唯一交点G∴﹣x2+2x+3=﹣2x+b有两个相等的实数解即x2﹣4x+b﹣3=0有两个相等的实数解∴Δ=0,即16﹣4(b﹣3)=0解得b=7∴直线的解析式为y=﹣2x+7;(2)在y=﹣x2+2x+3中,令y=0得x=﹣1或x=3∴B(3,0)∴抛物线y=﹣x2+2x+3的对称轴为直线x==1由得:∴G(2,3)∵点H为抛物线对称轴上的点∴HB=HA∴HB+HG=HA+HG∴当G,H,A共线时,HB+HG最小,最小值即为AG的长度;如图:由A(﹣1,0),G(2,3)可得直线AG解析式为y=x+1在y=x+1中,令x=1得y=2∴H(1,2);∴OH=OA=2∴△AOH是等腰直角三角形∴∠AHO=45°由对称性可得∠BHO=45°∴∠GHB=90°,即△GHB是直角三角形∵G(2,3),H(1,2),B(3,0)∴HG=,BG=,BH=2设△HBG内切圆的半径为r∴2S△BHG=BH•HG=(HG+BG+BH)•r∴r==∴△HBG内切圆的半径为;(3)存在点K,使△KBC的面积最大,理由如下:过K作KQ∥y轴交BC于Q,如图:设K(m,﹣m2+2m+3)在y=﹣x2+2x+3中,令x=0得y=3∴C(0,3)由B(3,0),C(0,3)可得y=﹣x+3∴Q(m,﹣m+3)∴KQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴S△KBC=×(﹣m2+3m)×3=﹣(m﹣)2+∴当m=时,S△KBC取最大值∴△KBC的最大面积是.。
中考仿真模拟考试 数学试题 附答案解析
C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4
中考数学模拟试题(含答案)
中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。
选择题(共10小题,每小题3分,共30分)1.求-3的倒数。
()A。
-1/3 B。
-1/-3 C。
1/-3 D。
1/32.函数y=1/(x-8),x的取值范围是()。
A。
x8 D。
x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。
A。
2.6×10^5 B。
26×10^4 C。
0.26×10^6 D。
2.6×10^64.下列简单几何体的左视图是()。
A。
B。
C。
D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。
A。
32、31 B。
31、32 C。
31、31 D。
32、356.下列命题中,错误的是()。
A。
矩形的对角线互相平分且相等 B。
对角线互相垂直的四边形是菱形 C。
等腰梯形的两条对角线相等 D。
等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。
A。
B。
C。
D.8.下列各式计算结果正确的是()。
A。
2a+a=3a B。
(3a)^2=9a^2 C。
(a-1)^2=a^2-1 D。
a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。
10.已知函数y=2x^2-x-3,求其对称轴的方程。
答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。
11、一对互为相反数的数为x和-x。
12、b²-2b可以分解为b(b-2)。
2024年中考数学模拟考试卷(附带有答案)
2024年中考数学模拟考试卷(附带有答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上。
答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动。
用橡皮擦干净后,再选涂其他答案标号:答非选择题时,用0.5mw黑色签字笔在答题卡上题号所提示的答题区域作答、答案写在试卷上无效,考试结束后。
将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.9的平方根是()A.3B.-3C.±3D.√32.下列儿何体中,俯视图是三角形的是()3.从教育部获悉。
我国己基本建成世界第一大教育教学资源库,国家中小学智慧教育平台现有资源超过44000条,其中44000用科学记数法表示为()A.4.4x105B.4.4x104C.4.4x103D.44x1024.如图:AD∥BC、BD平分∠ABC,若∠ADB=35°,则∠4的度数为()A.35°B.70°C.110°D.120°(第4题图) (第6题图)5.下列设计的图案中既是中心对称图形又是轴对称图形的是()6.有理数a、b在数轴上的对应位置如图所示,下列选项正确的是()A.a﹣b>0B.a+b<0C.ab>0D.|a|<|b|7.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒。
配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,每盒盒饭的大小、外形都相同。
从中任选一盒,含肉的概率是()A.78B.67C.17D.188.周末,小鹏的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿中每包2元。
2024年中考数学模拟测试试卷(带有答案)
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:
∴
∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数
则
∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.
中考数学模拟试题和答案
中考数学模拟试题一、选择题(共10个小题,每小题3分,共30分)1.(3分)|﹣3|的倒数是()A .﹣3B .C.3D.解答:解:∵|﹣3|=3,∴|﹣3|的倒数是.故选:D.2.某市约330万人口,用科学记数法表示这个数为()A.330×104B.33×105C.3.3×105D.3.3×106解答:解:将330万=3300000用科学记数法表示为:3.3×106.故选:D.3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,不是轴对称图形,故此选项错误.故选:C.A.B.C.D.解答:解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.5.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C.数据3、5、4、1、﹣2的中位数是3D.某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖解答:解:A、选举中,人们通常最关心的数据是众数,故本选项正确;B、∵从1、2、3、4、5中随机取一个数,取得奇数的概率为:,取得偶数的概率为:,∴取得奇数的可能性比较大,故本选项正确;C、数据3、5、4、1、﹣2的中位数是3,故本选项正确;D、某游艺活动的中奖率是60%,不能说明参加该活动10次就有6次会获奖,故本选项错误.故选D.6.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么()A.y2<y1<0 B.y1<y2<0 C.y2>y1>0 D.y1>y2>0解答:7.(3分)(2012•自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对解答:解:图中全等的直角三角形有:△AED≌△FEC,△BDC≌△FDC≌△DBA,共4对.故选B.8.(3分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和4考点:平行四边形的性质。
中考数学模拟试卷(附带答案)
中考数学模拟试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)如图所示的几何体中主视图是()A.B.C.D.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×1035.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣26.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.210.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=b=c=(2)你认为服装店应选择哪个供应商供应服装?为什么?19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BE AC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为(2)当男女相遇时求此时男女同学距离终点的距离.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.参考答案与试题解析一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选:B.【点评】本题考查了绝对值的定义掌握一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0是解题的关键.2.(3分)如图所示的几何体中主视图是()A.B.C.D.【分析】找到从正面看所得到的图形得出主视图即可.【解答】解:如图所示的几何体中主视图是B选项故选:B.【点评】此题主要考查了几何体的三视图关键是掌握主视图和左视图所看的位置.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD从而求出∠DCE再根据三角形的内角和即可求解.【解答】解:∵AB∥CD∴∠ABE=∠BCD=45°∴∠DCE=135°由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理熟练掌握性质是解题关键.4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×103【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:17000=1.7×104.故选:C.【点评】此题主要考查了科学记数法﹣表示较大的数一般形式为a×10n其中1≤|a|<10 确定a与n的值是解题的关键.5.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣2【分析】先根据零指数幂二次根式的加法法则二次根式的性质二次根式的乘法法则进行计算再得出选项即可.【解答】解:A.()0=1 故本选项不符合题意B.2+3=5故本选项不符合题意C.=2故本选项不符合题意D.(2﹣2)=﹣2=6﹣2故本选项符合题意故选:D.【点评】本题考查了二次根式的混合运算和零指数幂能灵活运用二次根式的运算法则进行计算是解此题的关键.6.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x【分析】分式方程变形后去分母得到结果即可做出判断.【解答】解:分式方程去分母得:1+3(x﹣1)=﹣3x.故选:B.【点评】此题考查了解分式方程解分式方程的基本思想是“转化思想”把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω【分析】设I=则U=IR=40 得出R=计算即可.【解答】解:设I=则U=IR=40∴R===8故选:B.【点评】本题考查反比例函数的应用解题的关键是掌握欧姆定律.8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π【分析】根据弧长公式计算即可.【解答】解:l==π∴该扇形的弧长为π.故选:C.【点评】本题考查弧长的计算关键是掌握弧长的计算公式.9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.2【分析】根据抛物线的解析式求得对称轴为直线x=1 根据二次函数的性质即可得到结论.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2∴对称轴为直线x=1∵a=1>0∴抛物线的开口向上∴当0≤x<1时y随x的增大而减小∴当x=0时y=﹣1当1≤x≤3时y随x的增大而增大∴当x=3时y=9﹣6﹣1=2∴当0≤x≤3时函数的最大值为2故选:D.【点评】本题考查了二次函数的性质二次函数的最值熟练掌握二次函数的性质是解题的关键.10.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°【分析】利用扇形图可得喜欢排球的占10% 喜欢篮球的人数占被调查人数的30% 最喜欢足球的学生为100×40%=40人用360°×喜欢排球的所占百分比可得圆心角.【解答】解:A本次调查的样本容量为100 故此选项不合题意B最喜欢篮球的人数占被调查人数的30% 故此选项不合题意C最喜欢足球的学生为100×40%=40(人)故此选项不合题意D根据扇形图可得喜欢排球的占10% “排球”对应扇形的圆心角为360°×10%=36°故此选项符合题意故选:D.【点评】本题考查的是扇形统计图读懂统计图从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为x>﹣3.【分析】按照解一元一次不等式的步骤进行计算即可解答.【解答】解:9>﹣3x3x>﹣9x>﹣3故答案为:x>﹣3.【点评】本题考查了解一元一次不等式熟练掌握解一元一次不等式的步骤是解题的关键.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.【分析】根据题意画出相应的树状图然后即可求得两次标号之和为3的概率.【解答】解:树状图如图所示由上可得一共存在4种等可能性其中两次标号之和为3的可能性有2种∴两次标号之和为3的概率为=故答案为:.【点评】本题考查列表法与树状图法解答本题的关键是明确题意画出相应的树状图求出相应的概率.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为5.【分析】由四边形ABCD是菱形可得BC=DC AC⊥BD∠BEC=90°又∠DBC=60°知△BDC是等边三角形BC=BD=10 而点F为BC中点故EF=BC=5.【解答】解:∵四边形ABCD是菱形∴BC=DC AC⊥BD∴∠BEC=90°∵∠DBC=60°∴△BDC是等边三角形∴BC=BD=10∵点F为BC中点∴EF=BC=5故答案为:5.【点评】本题考查菱形的性质及应用涉及等边三角形的判定与性质解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为1+.【分析】在Rt△AOB中利用勾股定理求出AB=则AB=BC=进而求得OC =1+据此即可求解.【解答】解:∵OA⊥OB∴∠AOB=90°在Rt△AOB中AB===∵以点B为圆心AB为半径作弧交直线OB于点C∴AB=BC=∴OC=OB+BC=1+∴点C的横坐标为1+.故答案为:1+【点评】本题主要考查勾股定理实数与数轴利用勾股定理正确求出AB的长是解题关键.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:8x﹣3=7x+4.【分析】根据货物的价格不变即可得出关于x的一元一次方程此题得解.【解答】解:依题意得:8x﹣3=7x+4.故答案为:8x﹣3=7x+4.【点评】本题考查了由实际问题抽象出一元一次方程找准等量关系正确列出一元一次方程是解题的关键.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.【分析】过点F作FM⊥CE于M作FN⊥CD于点N首先证四边形CMFN为正方形再设CM=a则FM=FN=CM=CN=a BE=5 EM=2﹣a然后证△EFM和△EAB相似由相似三角形的性质求出a进而在Rt△AFN中由勾股定理即可求出DF.【解答】解:过点F作FM⊥CE于M作FN⊥CD于点N∵四边形ABCD为正方形AB=3∴∠ACB=90°BC=AB=CD=3∵FM⊥CE FN⊥CD∠ACB=∠B=90°∴四边形CMFN为矩形又∵CF平分∠DCE FM⊥CE FN⊥CD∴FM=FN∴四边形CMFN为正方形∴FM=FN=CM=CN设CM=a则FM=FN=CM=CN=a∵CE=2∴BE=BC+CE=5 EM=CE﹣CM=2﹣a∵∠B=90°FM⊥CE∴FM∥AB∴△EFM∽△EAB∴FM:AB=EM:BE即:a:3=(2﹣a):5解得:∴∴在Rt△AFN中由勾股定理得:.故答案为:.【点评】此题主要考查了正方形的判定及性质相似三角形的判定和性质勾股定理等解答此题的关键是熟练掌握相似三角形的判定方法理解相似三角形的对应边成比例.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里再算括号外然后进行计算即可解答.【解答】解:原式=[+]•=•=.【点评】本题考查了分式的混合运算准确熟练地进行计算是解题的关键.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=75b=75c=6(2)你认为服装店应选择哪个供应商供应服装?为什么?【分析】(1)根据平均数众数和方差的计算公式分别进行解答即可(2)根据方差的定义方差越小数据越稳定即可得出答案.【解答】解:(1)B供应商供应材料纯度的平均数为a=×(72+75+72+75+78+77+73+75+76+77+71+78+79+72+75)=7575出现的次数最多故众数b=75方差c=×[3×(72﹣75)2+4×(75﹣75)2+2×(78﹣75)2+2×(77﹣75)2+(73﹣75)2+(76﹣75)2+(71﹣75)2+(79﹣75)2]=6故答案为:75 75 6(2)选A供应商供应服装理由如下:∵A B平均值一样B的方差比A的大A更稳定∴选A供应商供应服装.【点评】本题考查了方差平均数中位数众数熟悉相关统计量的计算公式和意义是解题的关键.19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.【分析】由“SAS”可证△ABC≌△ADE可得结论.【解答】证明:∵∠ACB+∠ACF=∠ACF+∠AED=180°∴∠ACB=∠AED在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴AB=AD.【点评】本题考查了全等三角形的判定和性质证明三角形全等是解题的关键.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.【分析】设2020﹣2022年买书资金的平均增长率为x利用2022年用于购买图书的费用=2020年用于购买图书的费用×(1+2020﹣2022年买书资金的平均增长率)2可列出关于x的一元二次方程解之取其符合题意的值即可得出结论.【解答】解:设2020﹣2022年买书资金的平均增长率为x根据题意得:5000(1+x)2=7200解得:x1=0.2=20% x2=﹣2.2(不符合题意舍去).答:2020﹣2022年买书资金的平均增长率为20%.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BEAC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)【分析】延长CD交AE于H于是得到CH=BE EH=BC=1.26m解直角三角形即可得到结论.【解答】解:延长CD交AE于H则CH=BE EH=BC=1.26m在Rt△ACH中AC=10.4m∠ACH=70°∴AH=AC•sin70°=10.4×0.94≈9.78(m)∴AE=AH+CH=9.78+1.26≈11(m)答:楼AE的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题正确地作出辅助线是解题的关键.22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为1000m(2)当男女相遇时求此时男女同学距离终点的距离.【分析】(1)根据男女同学跑步的路程相等即可求解(2)求出女生跑步的速度列方程求解即可.【解答】解:(1)男生匀速跑步的路程为4.5×100=450(m)450+50=500(m)则男女跑步的总路程为500×2=1000(m)故答案为:1000m(2)设从开始匀速跑步到男女相遇时的时间为xs女生跑步的速度为(500﹣80)÷120=3.5(m/s)根据题意得:80+3.5x=50+4.5x解得x=30∴此时男女同学距离终点的距离为4.5×(100﹣30)=315(m)答:此时男女同学距离终点的距离为315m.【点评】此题主要考查了一元一次方程的应用关键是正确理解题意找出题目中的等量关系然后设出未知数列出方程.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.【分析】(1)根据圆周角定理证得两直线平行再根据平行线的性质即可得到结论(2)由勾股定理得到边的关系求出线段的长再利用等面积法求解即可.【解答】解:(1)∵AB为⊙O的直径∴∠ACB=90°∵AD为∠CAB的平分线∴∠BAC=2∠BAD∵OA=OD∴∠BAD=∠ODA∴∠BOD=∠BAD+∠ODA=2∠BAD∴∠BOD=∠BAC∴OD∥AC∴∠OEB=∠ACB=90°∴∠BED=90°(2)连接BD设OA=OB=OD=r则OE=r﹣4 AC=2OE=2r﹣8 AB=2r∵AB为⊙O的直径∴∠ADB=90°在Rt△ADB中BD2=AB2﹣AD2由(1)得∠BED=90°∴∠BED=∠BEO=90°∴BE2=OB2﹣OE2BE2=BD2﹣DE2∴BD2=AB2﹣AD2=BE2+DE2=OB2﹣OE2+DE2∴=r2﹣(r﹣4)2+42解得r=7或r=﹣5(不合题意舍去)∴AB=2r=14∴∵AF是⊙O的切线∴AF⊥AB∵DG⊥AF∴DG⊥AB∴∴.【点评】本题考查了圆周角定理勾股定理切线的性质解一元二次方程熟练掌握圆周角定理和勾股定理是解题的关键.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为4△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.【分析】(1)由t=0时P与O重合得S=t=4时P与B重合得OB=4 (2)设A(a a)由×4a=得a=A()分两种情况:当0≤t≤时设OA交PD于E可得PE=PO=t S△POE=t2故S=﹣S△POE=﹣t2当<t<4时求出直线AB解析式为y=﹣x+2 可得C(0 2)由tan∠CBO====得DP=PB=(4﹣t)=2﹣t故S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=t2﹣2t+4.【解答】解:(1)t=0时P与O重合此时S=S△ABO=t=4时S=0 P与B重合∴OB=4 B(4 0)故答案为:4(2)∵A在直线y=x上∴∠AOB=45°设A(a a)∴S△ABO=OB•a即×4a=∴a=∴A()当0≤t≤时设OA交PD于E如图:∵∠AOB=45°PD⊥OB∴△PEO是等腰直角三角形∴PE=PO=t∴S△POE=t2∴S=﹣S△POE=﹣t2当<t<4时如图:由A()B(4 0)得直线AB解析式为y=﹣x+2 当x=0时y=2∴C(0 2)∴OC=2∵tan∠CBO====∴DP=PB=(4﹣t)=2﹣t∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4综上所述S=.【点评】本题考查动点问题的函数图象涉及锐角三角函数待定系数法等腰直角三角形等知识解题的关键是从函数图象中获取有用的信息.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C由邻补角的性质可得结论(2)由三角形中位线定理可得CD=2EF由勾股定理可求AF BF即可求解问题2:先证四边形CGMD是矩形由勾股定理可求AD由等腰三角形的性质可求MD CG即可求解.【解答】问题1:(1)证明:∵AB=AC∴∠ABC=∠ACB∵△BDE由△ABE翻折得到∴∠A=∠BDE=180°﹣2∠C∵∠EDC+∠BDE=180°∴∠EDC=2∠ACB(2)解:如图连接AD交BE于点F∵△BDE由△ABE翻折得到∴AE=DE AF=DF∴CD=2EF=3∴EF=∵点E是AC的中点∴AE=EC=AC=2在Rt△AEF中AF===在Rt△ABF中BF===∴BE=BF+EF=问题2:解:连接AD过点B作BM⊥AD于M过点C作CG⊥BM于G∵AB=BD BM⊥AD∴AM=DM∠ABM=∠DBM=∠ABD∵2∠BDC=∠ABD∴∠BDC=∠DBM∴BM∥CD∴CD⊥AD又∵CG⊥BM∴四边形CGMD是矩形∴CD=GM在Rt△ACD中CD=1 AD=4 AD===∴AM=MD=CG=MD=在Rt△BDM中BM===∴BG=BM﹣GM=BM﹣CD==在Rt△BCG中BC===.【点评】本题是几何变换综合题考查了等腰三角形的性质折叠的性质勾股定理矩形的性质和判定灵活运用这些性质解决问题是解题的关键.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.【分析】(1)根据题意得出点A(﹣2 4)B(1 1)利用待定系数法求解析式即可求解.(2)①根据平移的性质得出C′(2﹣m4﹣n)根据点C的对应点C′落在抛物线C1上可得(2﹣m)2=4﹣n即可求解.②根据题意得出P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)求得中点坐标根据题意即可求解.③作辅助线利用勾股定理求得MG=设出N点M点坐标将M点代入y=﹣x2﹣2x+4 求得N点坐标进而根据点C的对应点C′落在抛物线C1上即可求解.【解答】(1)根据题意点A的横坐标为﹣2 点B的横坐标为1 代入抛物线C1:y=x2∴当x=﹣2时y=(﹣2)2=4 则A(﹣2 4)当x=1时y=1 则B(1 1)将点A(﹣2 4)B(1 1)代入抛物线C2:y=﹣x2+bx+c∴解得∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C当y=4时x=±2∴C(2 4)∵矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.∴C′(2﹣m4﹣n)(2﹣m)2=4﹣n整理得n=﹣m2+4m∵m>0 n>0∴0<m<4∴n=﹣m2+4m(0<m<4)②如图∵A(﹣2 4)C(2 4)∴AC=4∵∴E(﹣2 6)由①可得A′(﹣2﹣m m2﹣4m+4)E′(﹣2﹣m m2﹣4m+6)∴P Q的横坐标为﹣2﹣m分别代入C1C2∴P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)∴∴PQ的中点坐标为(﹣2﹣m m+4)∵点E′为线段PQ的中点∴m2﹣4m+6=m+4解得m=或m=(大于4 舍去).③如图连接MN过点N作NG⊥E′D′于点G则NG=2∵∴设N(a﹣a2﹣2a+4)则M(a﹣﹣a2﹣2a+6)将M点代入y=﹣x2﹣2x+4得解得a=当a=∴将y =代入y=x2解得∴或.【点评】本题考查了二次函数的综合应用解题的关键是作辅助线掌握二次函数的性质.第31 页共31 页。
中考仿真模拟考试《数学卷》附答案解析
6000(1﹣x)2=3600
解得:x1= ,x2= (不合题意,舍去),
∴生产1t甲种药品成本的年平均下降率为 .
故选:A.
【点睛】本题主要考查了一元二次方程的实际应用,熟练掌握相关方法是解题关键.
9.如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为( )
A.2- B. C. D.1
10.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是( )
(1)对任意实数k,函数与x轴有两个交点
(2)当x≥﹣k时,函数y的值都随x的增大而增大
(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上
(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
22.阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣ ,x1x2= .
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m= ,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于 ?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
6.抛物线y=2(x﹣2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是()
A.x=2B.x=﹣1C.x=5D.x=0
7.已知点A(﹣1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是( )
中考数学模拟测试题(附有答案)
中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。
中考数学模拟考试卷(有答案解析)
中考数学模拟考试卷(有答案解析)一、选择题1.9的算术平方根是()A. ±3B. 3C. −3D. √32.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,数据499.5亿用科学记数法应表示为()A. 4.995×1010B. 49.95×1010C. 0.4995×1011D. 4.995×1011图象上,则y1,y2,y3的大小关系为()3.已知(−2,y1),(−3,y2),(2,y3)在反比例函数y=−0.8xA. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y24.某班篮球爱好小组10名队员进行定点投篮练习,每人投篮20次,将他们投中的次数进行统计,制成如表:投中次数121315161718人数123211则关于这10名队员投中次数组成的数据,下列说法错误的是()A. 平均数为15B. 中位数为15C. 众数为15D. 方差为55.利用配方法将二次函数y=x2+2x+3化为y=a(x−ℎ)2+k(a≠0)的形式为()A. y=(x−1)2−2B. y=(x−1)2+2C. y=(x+1)2+2D. y=(x+1)2−26.下列关于x的方程中一定没有实数根的是()A. x2−x−1=0B. 4x2−6x+9=0C. x2=−xD. x2−mx−2=07.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF//BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;∠A;②∠BOC=90°+12③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是()A. ①②③B. ①②④C. ②③④D. ①③④8.平行四边形、矩形、菱形、正方形都具有的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直且相等9.如图,已知⊙O的弦AB、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=2√5cm,则PE的长为()A. 4cmB. 3cmC. 5cmD. √2cm10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC的边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则y与x函数关系的图象大致是()A. B. C. D.二、填空题11.分解因式:x2﹣9y2=.12.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN 交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为.14.如图,A、B是函数y=(x>0)图象上两点,作PB∥y轴,PA∥x轴,PB与PA交于点P,若S△BOP=2,则S△ABP=.15.如图,△ABO中,以点O为圆心,OA为半径作⊙O,边AB与⊙O相切于点A,把△ABO绕点A逆时针旋转得到△AB'O',点O的对应点O'恰好落在⊙O上,则sin∠B'AB的值是.三、解答题16.解方程:x2+2x﹣3=0(公式法)17.某校760名学生参加植树活动,要求每人植树的范围是2≤x≤5棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:2棵;B:3棵;C:4棵;D:5棵,将各类的人数绘制成扇形统计图(如图2)和条形统计图(如图1).回答下列问题:(1)补全条形统计图;(2)被调查学生每人植树量的众数、中位数分别是多少?(3)估计该校全体学生在这次植树活动中共植树多少棵?18.在坐标系中作出函数y=x+2的图象,根据图象回答下列问题:(1)方程x+2=0的解是;(2)不等式x+2>1的解;(3)若﹣2≤y≤2,则x的取值范围是.19.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=3cm,DE=cm,求⊙O直径的长.20.某中学计划购买A、B两种学习用品奖励学生,已知购买一个A比购买一个B多用20元,若用400元购买A的数量是用160元购买B数量的一半.(1)求A、B两种学习用品每件各需多少元?(2)经商谈,商店给该校购买一个A奖品赠送一个B奖品的优惠,如果该校需要B奖品的个数是A奖品个数的2倍还多8个,且该学校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A奖品?21.在平面直角坐标系xOy中,二次函数y=ax2+bx+4(a<0)的图象与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C,直线BC与对称轴于点D.(1)求二次函数的解析式.(2)若抛物线y=ax2+bx+4(a<0)的对称轴上有一点M,以O、C、D、M四点为顶点的四边形是平行四边形时,求点M的坐标.(3)将抛物线y=ax2+bx+4(a<0)向右平移2个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点,当以D、E、F、G四点为顶点的四边形是菱形时,求点F的坐标.22.如图1,在正方形ABCD中,E为边AD上的一点,连结CE,过D作DF⊥CE于点G,DF交边AB于点F.已知DG=4,CG=16.(1)EG的长度是.(2)如图2,以G为圆心,GD为半径的圆与线段DF、CE分别交于M、N两点.①连结CM、BM,若点P为BM的中点,连结CP,求证∠BCP=∠MCP.②连结CN、BN,若点Q为BN的中点,连结CQ,求线段CQ的长.参考答案与解析一、选择题1.B试题分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.∵32=9,∴9的算术平方根是3.故选:B.2.A解:499.5亿=49950000000=4.995×1010,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.3.A解:当x=−2时,y1=−0.8−2=615;当x=−3时,y2=−0.8−3=415;当x=2时,y3=−0.82=−0.4,所以y1>y2>y3.故选:A.分别把x=−2、−3、2代入反比例函数解析式计算出y1,y2,y3的值,从而得到它们的大小关系.4.D解:这组数据的平均数为12+13×2+15×3+16×2+17+1810=15,故A选项正确,不符合题意;将数据从小到大排列,第5第6个数都是15,中位数为15+152=15,故B选项正确,不符合题意;15出现的次数最多,众数为15,故C选项正确,不符合题意;方差为110×[(12−15)2+2×(13−15)2+3×(15−15)2+2×(16−15)2+(17−15)2+(18−15)2]= 3.2,故D选项错误,符合题意;故选:D.依次根据加权平均数、中位数、众数及方差的定义求解即可.5.C解:y=x2+2x+3=(x+1)2+3−1=(x+1)2+2.故选:C.化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).6.B解:A、△=5>0,方程有两个不相等的实数根;B、△=−108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.A【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误.【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°−12∠A,∴∠BOC=180°−(∠OBC+∠OCB)=90°+12∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF//BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE⋅OM+12AF⋅OD=12OD⋅(AE+AF)=12mn;故④错误;故选:A.8.A解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.9.A试题分析:首先根据相交弦定理得PA⋅PB=PC⋅PD,得PD=2.设DE=x,再根据切割线定理得AE2=ED⋅EC,即x(x+8)=20,x=2或x=−10(负值舍去),则PE=2+2=4.∵PA⋅PB=PC⋅PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED⋅EC,∴x(x+8)=20,∴x=2或x=−10(负值舍去),∴PE=2+2=4.故选A.10.D解:当点P在AB上时,△BDP是等腰直角三角形,故BD=x=DP,∴△BDP的面积y=12×BD×DP=12x2,(0≤x≤2)当点P在AC上时,△CDP是等腰直角三角形,BD=x,故CD=4−x=DP,∴△BDP的面积y=12×BD×DP=12x(4−x)=−12x2+2x,(2<x≤4)∴当0≤x≤2时,函数图象是开口向上的抛物线;当2<x≤4时,函数图象是开口向下的抛物线,故选:D.先根据点P在AB上时,得到△BDP的面积y=12×BD×DP=12x2,(0≤x≤2),再根据点P在AC上时,△BDP的面积y=12×BD×DP=−12x2+2x,(2<x≤4),进而得到y与x函数关系的图象.二、填空题11.解:x2﹣9y2=(x+3y)(x﹣3y).12.解:树状图如下所示,由上可得,一共有4种可能性,其中数字之积为偶数的可能性有3种,∴数字之积为偶数的概率为:,故答案为:.13.解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.故答案为:6.14.解:如图,延长BP交x轴于N,延长AP交y轴于M,设点M的纵坐标为m,点N的横坐标为n,∴AM⊥y轴,BN⊥x轴,又∠MON=90°,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO=S△BNO=3,∵S△BOP=2,∴S△PMO=S△PNO=1,∴S矩形OMPN=2,∴mn=2,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=||,∴S△ABP=×2|n|×||=4,故答案为:4.15.解:由旋转得OA=O′A,∠OAB=∠O′AB′,∴OA=O′A=OO′,∴△OO′A是等边三角形,∴∠O′AO=60°,∵边AB与⊙O相切于点A,∴∠OAB=∠O′AB′=90°,∴∠B'AB=60°,∴sin∠B'AB=.故答案为:.三、解答题16.解:△=22﹣4×(﹣3)=16>0,x=,所以x1=1,x2=﹣3.17.解:(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人),补全统计图如下:(2)∵植3棵的人数最多,∴众数是3棵,把这些数从小到大排列,中位数是第10、11个数的平均数,则中位数是=3(棵).(3)这组数据的平均数是:×(4×2+8×3+4×6+5×2)=3.3(棵),3.3×760=2508(棵).答:估计这760名学生共植树2508棵.18.解:y=x+2列表如下:图象如下图所示:(1)由图形可得,方程x+2=0的解是x=﹣2,故答案为x=﹣2;(2)由图象可得,不等式x+2>1的解是x>﹣1,故答案为x>﹣1;(3)若﹣2≤y≤2,则x的取值范围是﹣4≤x≤0,故答案为﹣4≤x≤0.19.(1)证明:如图1,连接OD,∵AC是⊙O的直径,∴∠ADC=∠BDC=90°,∵E是BC的中点,∴ED=EC,∴∠EDC=∠ECD,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠ECD=90°,∴∠EDC+∠ODC=90°,∵OD为半径,∴DE是⊙O的切线;(2)解:如图2,∵DE是Rt△BDC斜边上的中线,DE=cm,CD=3cm,∴BC=2DE=cm,∴BD===(cm),∵∠A+∠ACD=∠BCD+∠ACD=90°,∴∠BCD=∠A,∵∠BDC=∠CDA=90°,∴△BDC ∽△CDA ,∴,即,∴AC =(cm ), ∴⊙O 直径的长cm .20.解:(1)设A 种学习用品每件x 元钱,则B 种学习用品每件(x ﹣20)元钱,由题意得:=×, 解得:x =25,经检验,x =25是原方程的解,且符合题意,则x ﹣20=5,答:A 种学习用品每件25元钱,则B 种学习用品每件5元钱;(2)设该校可购买y 个A 奖品,则可购买(2y +8﹣y )个B 奖品,由题意得:25y +5(2y +8﹣y )≤670,解得:y ≤21,答:该校最多可购买21个A 奖品.21.解:(1)将点A (﹣2,0)和点B (4,0)代入抛物线解析式y =ax 2+bx +4(a <0),∴{4a −2b +4=016a +4b +4=0,解得{a =−12b =1, ∴抛物线解析式为y =−12x 2+x +4.(2)由(1)知抛物线解析式为y =−12x 2+x +4=−12(x ﹣1)2+92,∴抛物线的对称轴为:直线x =1,令x =0,则y =0,∴C (0,4),∴直线BC 的解析式为:y =﹣x +4,OC =4,∴D (1,3).∵点M 在对称轴上,∴DM ∥OC ,若以O 、C 、D 、M 四点为顶点的四边形是平行四边形,则OC =DM ,∴|3﹣y M |=4,解得y M =﹣1或7.∴点M 的坐标为(1,﹣1)或(1,7).(3)将抛物线y =−12(x ﹣1)2+92向右平移2个单位得到新抛物线y ′=−12(x ﹣3)2+92, 令−12(x ﹣1)2+92=−12(x ﹣3)2+92,解得x =2,∴E (2,4),∴DE =√2,若以D 、E 、F 、G 四点为顶点的四边形是菱形,则△DEF 是等腰三角形,需要分情况讨论,当DE =DF 时,如图1,以点D 为圆心,DE 长为半径作圆,圆与直线x =3无交点,不存在点F ; 当ED =EF 时,如图1,以点E 为圆心,DE 长为半径作圆,圆与直线x =3交于点F ;设点F (3,n ),∴(2﹣3)2+(4﹣n )2=2,解得n =3或n =5(此时D ,E ,F 三点共线,不符合题意),∴F (3,3).当FD =FE 时,作DE 的垂直平分线交直线x =3于点F ,则有(2﹣3)2+(4﹣n )2=(1﹣3)2+(3﹣n )2,解得n =2.此时F (3,2).综上,点F 的坐标为(3,3)或(3,2).22.(1)解:∵四边形ABCD 为正方形,∴∠ADC =90°,∴∠EDG +∠CDG =90°,∵DF ⊥CE ,∴∠DGE =∠CGD =90°,∠DCG +∠CDG =90°,∴∠EDG =∠DCG ,∴△DGE ∽△CGD ,∴EG DG =DG CG ,即EG 4=416,解得:EG =1,故答案为:1;(2)①证明:如图2,连接CM 、BM 、CP ,∵点G 为DM 的中点,CG ⊥DM ,∴CM =CD ,∵CD =CB ,∴CB =CM ,∵点P 为BM 的中点,∴∠BCP =∠MCP ;②解:如图3,连接BN 、CQ ,过点Q 作QH ⊥CD 于H ,连接NH 并延长交BC 的延长线于L ,过点N 作NK ⊥CD 于K ,在Rt △CGD 中,DG =4,CG =16,则CD =√CG 2+DG 2=4√17,∵CG =16,GN =4,∴CN =16﹣4=12,∵∠CGD =∠CKN =90°,∠NCK =∠DCG ,∴△CKN ∽△CGD ,∴CN CD =CK CG =NK DG ,即4√17=CK 16=NK 4, 解得:CK =48√1717,NK =12√1717, ∵QH ⊥CD ,∠DCB =90°,NK ⊥CD ,∴NK ∥QH ∥BC ,∵NQ =QB ,∴KH =HC =12KC =24√1717,QH =12×(KN +BC )=40√1717, ∴CQ =√CH 2+QH 2=8√2.。
中考数学模拟考试卷(附带有答案)
中考数学模拟考试卷(附带有答案)(满分:120分 ;考试时间:120分钟)第I 卷 (选择题 共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3-的相反数是( )A .3B .-3C .31D .31-2. 下列运算正确的是( )A .326a a a =÷ B .222a b a b -=-)( C .6223b a ab =)( D .b 3-a 2-b 3-a 2-=)(3. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( ) A .∠AOD =∠BOC B .∠AOE +∠BOD =90° C .∠AOC =∠AOE D .∠AOD +∠BOD =180°4.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A .众数是20B .中位数是17C .平均数是12D .方差是26 5. 下列一元二次方程中,没有实数根的是( )A .2x +3x =0B .22x –4x +1=0C .2x –2x +2=0D .52x +x –1=06.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为A .8mB .6mC .5mD .4m7.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米EOD CBA8. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,可列出的方程是 ( ) A .(x +1)(4–0.5x )=15 B .(x +3)(4+0.5x )=15 C .(x +4)(3–0.5x )=15 D .(3+x )(4–0.5x )=159. 在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A .B .C .D .10.如图,在正方形ABCD 中,AC 、BD 相交于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AG 交BD 于点F ,连结EG 、EF 下列结论:①tan ∠AGB =2; ②若将△GEF 沿EF 折叠,则点G 一定落在AC 上;③ BG =BF ; ④S 四边形GFOE =S △AOF ,上述结论中正确的个数是( ) A .1个 B .2个 C .3个 D .4个第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.GFE OD CBA11. 华为正式发布2020年财报,报告显示,华为去年销售收入8914亿元人民币,销售收入遥遥领先。
中考数学模拟测试题(附含答案)
中考数学模拟测试题(附含答案)(满分:120分;考试时间120分钟)一、单选题。
(每小题4分,共40分) 1.实数﹣2023的绝对值是( )A.2023B.﹣2023C.12023 D.﹣120232.如图是由6个相同的正方体搭成的几何体,这个几何体的主视图是( )A. B. C. D.3.山东省济南济阳区躯曲堤街道,号称中国黄瓜之乡,特产曲堤黄瓜,全国农产品地理标志,2022年,该街道黄瓜年产值超15 0000 0000元,将数字15 0000 0000用科学记数法表示为( ) A.15×108 B.1.5×109 C.0.15×1010 D.1.5×1084.如图,AB ∥CD ,点E 在AB 上,EC 平分∠AED ,若∠2=50°,则∠1的度数为( ) A.45° B.50° C.65° D.80°(第4题图) (第8题图) (第9题图)5.数学中的对称之美无处不在,下列是张强看到的他所在小区的垃圾桶上的四幅垃圾分类标志图案,如果不考虑图案下面的文字说明,那么这四幅图案既是轴对称图形,又是中心对称图形的是( )A.有害垃圾B.可回收物C.厨余垃圾D.其它垃圾 6.化简:x 2x 2-4÷xx -2=( )A.1B.xC.xx-2D.xx+27.现将正面分别标有“善”、“美”、“济”、“阳”图案的四张卡片(除卡片正面内容不同处,其余完全相同),背面朝上放在桌面上,混合洗匀后,王刚从中随机抽取两张,则这两张卡片的图案恰好可以组成济阳概率是()A.12B.13C.14D.168.反比例函数y=kx在第一象限的图案如图所示,则k的值可能是()A.9B.18C.25D.369.如图,点C是直线AB为4的半圆的中点,连接BC,分别以点B和点C为圆心,大于12BC的长为半径画弧,两弧相交于点D,作直线OD交BC于点E,连接AE,则阴影部分面积为()A.πB.2πC.3√3-πD.2√3-π10.把二次函数y=ax2+bx+c(a>0)的图象作关于y轴的对称变换,所的图象的解析式为y=a (x+1)2-a2,若(m-2)a+b+c≥0成立,则m的最小整数值为()A.2B.3C.4D.5二、填空题。
2024年山西省中考数学模拟试题 (含答案)
2024年山西省中考数学模拟试题(考试总分:120 分)一、单选题(本题共计10小题,总分30分)1.(3分)计算−2−3的结果是( )A.-1B.1C.-5D.52.(3分)腰鼓是中国传统民族乐器,历史悠久,在民间广泛流传.如图是一个腰鼓的示意图,则其视图描述正确的是( )A. B. C. D.3.(3分)下列计算正确的是( )A.(−3+1)3=8B.(3+6)2=9+32C.(−ba )2=b2a2D.a2+a3=a54.(3分)第33届夏季奥林匹克运动会(即2024年巴黎奥运会)将于2024年7月26日开幕.下表是中国体育代表团近7届夏季奐运会获得金牌数量的统计结果(单位:块):那么中国体育代表团近7届夏季奥运会获得金牌数量的中位数是( )A.48块B.38块C.28块D.32块5.(3分)如图1,四边形ABCD是一张矩形纸片,点O是BC上一点,将矩形纸片ABCD折叠得到图2,使得OB与OC重合.若∠2=50°,则∠1的度数为( )A.30°B.40°C.50°D.55°6.(3分)已知点(−1,y1),(1.5,y2),(4.5,y3)都在二次函数y=−x2+4x+c的图象上,则y1,y2, y3的大小关系为( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y1<y27.(3分)为了比较5+1与10的大小,小亮先画了一条数轴,然后在原点O处作了一条垂线段OA,且OA=1,点B表示的数是2,点C表示的数为3,连接AB,AC,由AB+BC>AC推出5+1>10,这里小亮用到的数学思想是( )A.统计思想B.数形结合C.模型思想D.分类讨论8.(3分)如图,四边形ABCD内接于⨀O,AE是⨀O的直径,连接AC.若∠ADC=115°,则∠CAE的度数为( )A.15°B.25°C.30°D.35°9.(3分)《低空经济产业发展白皮书》指出,我国低空经济产业具有巨大的发展潜力,未来将对国民经济作出重要贡献.2023年我国低空经济规模为0.5万亿元,预计2025年我国低空经济规模将达到0.86万亿元.如果设这两年低空经济规模年平均增长率为x,那么根据题意可列方程为( )A.0.5(1+x2)=0.86B.0.5(1+2x)=0.86C.0.5(1−x)2=0.86D.0.5(1+x)2=0.8610.(3分)如图,在Rt ΔABC 中,∠C =90°,∠A =30°,AB =4,O 是斜边AB 的中点,以点O 为圆心的半圆O 与AC 相切于点D ,交AB 于点E,F ,则图中阴影部分的面积为( )A.332−13π B.23−12π C.23−13π D.332−12π二、 填空题 (本题共计5小题,总分15分)11.(3分)因式分解:9x−4x 3=_________.12.(3分)根据物理学实验研究可知,在定量定温条件下,气体的体积与气体的压强成反比.如图是某潜艇沉浮箱的示意图,将压强为1.0×105Pa ,体积为600m 3的空气压入气舱.若温度保持不变,气舱容积为12m 3,则气舱内的压强为______Pa.13.(3分)如图是一个风车图案,它由4个全等的平行四边形叶片和1个正方形按如图方式拼接而成,以正方形的中心为原点O ,对角线所在直线为x 轴、y 轴建立平面直角坐标系,其中一个平行四边形叶片的顶点A,B 的坐标分别为(1,0),(0,3),则点D 的坐标为____________.14.(3分)如图是某公园休息区的1张石桌和4个石凳,甲、乙、丙、丁4位同学在公园游玩时,临时在该休息区休息,他们分别随机坐到这4个石凳上,则甲与乙恰好坐在相邻石凳的概率为___________.15.(3分)如图,在RtΔABC中,∠ABC=90°,AB=3,BC=6,点D是边AC上的一点,且AD=2CD,连接BD,过点C作CE⊥AC交BD的延长线于点E,则DE的长为___________.三、解答题(本题共计8小题,总分75分)16.(10分)(1)计算:3−8+|−5+2|×3−2+(−1)4.(2)解方程组:{x+2y=1,①2x−y=7.②17.(10分)“植”此青绿,共赴青山.2024年植树节,某学校计划采购一批银杏树苗和白杨树苗,经了解,每棵银杏树苗比每棵白杨树苗贵10元,用400元购买银杏树苗的棵数与用300元购买白杨树苗的棵数相同.(1)分别求每棵银杏树苗、白杨树苗的价格.(2)学校最终决定购买银杏树苗、白杨树苗共100棵,若用于购买两种树苗的总费用不超过3200元,那么最多可购买多少棵银杏树苗?18.(7分)近年来,随着锂电池的广泛应用,我国已成为全球最大的锂电池生产基地.以下是2019年2023年我国锂电池产量的条形统计图与2019年2023年我国锂电池产量在全球锂电池产量中占比的折线统计图.根据图中信息解答下列问题:(1)这五年我国锂电池产量在全球锂电池产量中占比的平均数是_________.(2)在2020年2023年中,我国锂电池产量增长率最高的年份是_________年.(3)小教观察我国锂电池产量统计图后认为:与2022年相比,2023年我国锂电池产量在全球锂电池产量中的占比下降了,因此,与2022年相比,2023年全球锂电池产量下降了.你同意她的说法吗?请通过计算说明理由.(结果精确到个位)19.(8分)项目化学习项目主题:确定不同运动效果的心率范围.项目背景:最大心率指人体在进行运动时心脏每分钟跳动的最大次数.某校综合与实践小组的同学以“探究不同运动效果的心率范围”为主题展开项目学习.驱动任务:探究最大心率与年龄的关系.收集数据:综合与实践小组的同学通过某医学杂志收集到不同年龄最大心率数据如下:问题解决:(1)根据表中的信息,可以推断最大心率y是年龄x(周岁)的_________函数关系(填“一次”“二次”或“反比例”);求y关于x的函数表达式.(2)已知不同运动效果时的心率如下:20周岁的小李想要达到提升耐力的效果,他的运动心率应该控制在________次/分至_______次分;30周岁的小美想要达到燃烧脂肪的效果,她的运动心率应该控制在________次分至__________次/分.20.(7分)五月五,赛龙舟.酷爱龙舟运动的小宇在参观汾河水上龙舟比赛时,想要测算龙舟的速度,如图,BN为河岸,起点线BM与河岸BN互相垂直,小宇在河岸BN上的点A处放置水平测角仪(大小忽略不计),起点线上一点C处为龙舟龙头,测得AC与河岸BN所成的角∠1=37°,龙舟沿与河岸BN平行的赛道出发10s龙头恰好到达点D处,测得AD与河岸BN所成的角∠2=45°,AB=25m,且点A,B,C,D,M,N均在同一平面内,求该龙舟的平均速度.(结果精确到0.1m /s.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.(8分)阅读与思考下面是小明同学的一篇数学读书笔记,请仔细阅读并完成相应的任务.我在课外读物《怎样解题》中看到这样一个问题:如图1,给定不在同一直线上的三个点A,B,C,如何利用无刻度的直尺和圆规在点B,C之间画一条过点A的直线,且点B和点C到这条直线的距离相等?下面是我的解题步骤:如图2,第一步:以点B为圆心,以AC的长为半径画弧;第二步:以点C为圆心,以AB的长为半径画弧,两弧交于点D;第三步:作直线AD,则点B和点C到直线AD的距离相等.下面是部分证明过程:证明:如图3,连接BD,CD,过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,连接BC交AD于点O.由作图可知AB=CD,AC=BD,∴四边形ABDC是平行四边形.(依据1)∴BO=CO.(依据2)......于是我得到了这样的结论:只要确定线段BC的中点,由两点确定一条直线即可确定问题中所求直线.任务:(1)填空:材料中的“依据1”是指______;“依据2”是指_________.(2)请将小明的证明过程补充完整.(3)尺规作图:请在图4中,用不同于材料中的方法,在点B利点C之间作直线AM,使得点B和点C 到直线AM的距离相等.(要求:保留作图痕迹,标明字母,不写作法)22.(12分)综合与探究如图1,抛物线y=x2+2x−8与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC.(1)求A,B,C三点的坐标并直接写出直线AC的函数表达式.(2)如图2,点D是第三象限内二次函数图象上的一个动点,过点D作DE⊥x轴于点E,与直线AC 交于点F,设点D的横坐标为m.①当FD=OE时,求m的值.②如图3,隐去线段AC与点F,连接BD,EC交于点P,连接CD,设S1=SΔBEP,S2=SΔCDP,S=S1−S2.试探究:在点D运动的过程中,S是否存在最大值?若存在,请直接写出S的最大值;若不存在,请说明理由.23.(13分)综合与实践问题情境在数学活动课上,老师让同学们以“等边三角形的旋转”为主题开展活动,已知完全相同的等边三角形ABC和等边三角形DEF,点A,B,C分别与点D,E,F重合,点O是边BC,EF的中点.固定ΔABC,将ΔDEF绕点O顺时针旋转α(0°<α<180°).问题解决(1)如图1,当点E落在边AB上时,试判断四边形EOCM的形状,并说明理由.(2)在ΔDEF旋转的过程中,连接AD,CF,试判断AD,CF的位置关系,并在图2与图3中选择一种情况进行证明.问题拓展(3)如图4,若ΔABC与ΔDEF都是等边三角形,但DE>AB,其他条件不变,在ΔDEF旋转的过程中,当点E落在边AC上时,连接AD,CF,延长FC交AD于点N.已知AB=4,∠BCF=45°,请直接写出CN的长.答案一、单选题(本题共计10小题,总分30分)1.(3分)【答案】C2.(3分)【答案】A3.(3分)【答案】C4.(3分)【答案】D5.(3分)【答案】B6.(3分)【答案】C7.(3分)【答案】B8.(3分)【答案】B9.(3分)【答案】D10.(3分)【答案】A二、填空题(本题共计5小题,总分15分)11.(3分)【答案】x(3+2x)(3−2x)12.(3分)【答案】5×10613.(3分)【答案】(−1,−2)14.(3分)【答案】2315.(3分)【答案】5177三、解答题(本题共计8小题,总分75分)16.(10分)(1)解:原式=−2+3×19+1=−2+13+1=−2 3 .(2)①×2−②,得5y=−5.解得y=−1.将y=−1代入①,得x+2×(−1)=1.解得x=3.∴原方程组的解为{x=3, y=−1.17.(10分)(1)解:设每棵银杏树苗的价格是x元,则每棵白杨树苗的价格是(x−10)元.根据题意得400x =300x−10.解得x=40.经检验,x=40是原方程的解.∴x−10=40−10=30.答:每棵银杏树苗的价格是40元,每棵白杨树苗的价格是30元.(2)设购买m棵银杏树苗.根据题意,得40m+30×(100−m)⩽3200.解得m⩽20.答:最多可购买20棵银杏树苗.18.(7分)(1)解:62.44%(2)2022(3)不同意.理由如下:2023年全球锂电池产量=778.164.3%≈1210(GWh),2022年全球锂电池产量=75078.3%≈958(GWh),∵1210>958,∴与2022年相比,2023年全球锂电池产量增长了.19.(8分)(1)解:一次设y关于x的函数表达式为y=kx+b.将点(12,208),(17,203)代人得{12k+b=208, 17k+b=203,解得{k=−1, b=220.∴y关于x的函数表达式为y=−x+220.(2)140;160;114;13320.(7分)【答案】解:如答图,过点A作AE⊥CD于点E,则∠AED=90°,由题可知四边形ABCE是矩形,∠ABC=90°,∴CE=BA=25,EA=CB.在RtΔABC中,tan∠1=tan37°=BCBA ,即0.75≈BC25.解得BC=18.75.∴EA=CB=18.75.∵CD//BA,∴∠EDA=∠2=45°.∴ED=EA=18.75,∴CD=CE+ED=25+18.75=43.75.∴43.75÷10=4.375≈4.4(m/s).答:龙舟的平均速度约为4.4m/s.21.(8分)(1)解:两组对边分别相等的四边形是平行四边形.平行四边形的对角线互相平分(2)∵BE ⊥AD,CF ⊥AD,∴∠BEO =∠CFO =90°.又∵∠BOE =∠COF,∴ΔBOE≅ΔCOF(AAS).∴BE =CF.(3)如答图所示即为所求(答案不唯一).22.(12分)(1)解:将y =0代入y =x 2+2x−8,得x 2+2x−8=0,解得x 1=−4,x 2=2.∵点A 在点B 的左侧,∴A(−4,0),B(2,0).将x =0代入y =x 2+2x−8,得y =−8.∴C(0,−8).直线AC 的函数表达式为y =−2x−8.(2)①∵D(m,m 2+2m−8),DE ⊥x 轴,∴F(m,−2m−8),E(m,0).∵点D,F 在第三象限,∴FD =−2m−8−(m 2+2m−8)=−m 2−4m.∵E(m,0),∴OE =−m.∵FD =OE,∴−m 2−4m =−m.解得m 1=0(舍去),m 2=−3.∴m 的值为-3.②存在.S 的最大值为9.23.(13分)【答案】解:(1)四边形EOCM 是菱形.理由如下:∵点O 是边BC,EF 的中点,∴BO =CO =12BC,EO =FO =12EF .∵ΔABC 与ΔDEF 是完全相同的等边三角形,∴∠B =∠ACB =∠FED =60°,BC =EF.∴BO =CO =EO =FO.∴ΔBOE 是等边三角形.∴∠BOE=60°.∴∠BOE=∠ACB,∠BOE=∠FED.∴OE//CM,OC//EM.∴四边形EOCM是平行四边形.∵OE=OC,∴四边形EOCM是菱形.(2)AD⊥CF.证明:①选择图2.方法一,如答图1,连接OA,OD,延长AD,FC交于点M.由旋转可得∠AOD=∠COF.∵点O是BC,EF的中点,∴∠AOC=∠DOF=90°.∵∠ACO=∠DFO=60°,∴OAOC =3,ODOF=3.∴ΔAOD∽ΔCOF.∴∠OCF=∠OAD.∵∠MAC=∠OAD−∠OAC=∠OAD−30°,∠MCA=180°−∠ACB−∠OCF=120°−∠OCF,∴∠MAC+∠MCA=∠OAD−30°+120°−∠OCF=90°.∴AD⊥CF.方法二,易证ΔAOD∼ΔCOF,且ΔAOD与ΔCOF都是等腰三角形,可证∠ODA=∠OFC.由∠ODA+∠ODM=180°,可得∠ODM+∠OFC=180°.可得∠M=360°−∠DOF−∠ODM+∠OFC=90°.故AD⊥CF.②选择图3.如答图2,连接OA,OD,记AD,CF交于点G.由旋转可得∠AOD=∠COF.∵点O是BC,EF的中点,∴∠AOC=∠DOF=90°.∵∠ACO=∠DFO=60°,∴OAOC =3,ODOF=3.∴ΔAOD∽ΔCOF.∴∠OCF=∠OAD.∵∠GAC=30°−∠OAD,∠GCA=∠ACB+∠OCF=60°+∠OCF,∴∠GAC+∠GCA=90°.∴AD⊥CF.(3)6−2.。
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。
中考数学模拟考试卷(附有答案)
中考数学模拟考试卷(附有答案)(满分:120分 ;考试时间:120分钟)第I 卷(选择题)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣15的绝对值是( ) A .5 B .﹣5 C .﹣15 D .152.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 33.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°第3题 第6题 第7题4.若在“正三角形、平行四边形、圆、正六边形”这四种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A .14B .12C .34D .15.若点()2,1A a b -+在第二象限,则点()3,2B a b -+在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-5,2).若反比例函数y =k x(x >0)的图象经过点A ,则k 的值为( )A .-5B .-10C .5D .10 7.如图,∠O 的弦AB =8,M 是弦AB 上的动点,若OM 的最小值是3,则∠O 的半径是( ) A .4 B .5 C .6 D .78.如图,在矩形ABCD 中4AB BC ==,E 为BC 的中点,连接,,,AE DE P Q 分别是,AE DE 上的点,且PE DQ =.设EPQ ∆的面积为y ,PE 的长为x ,则y 关于x 的函数关系式的图象大致是 ( )A .B .C .D .9.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,△ABC 面积为10,则BM +MD 长度的最小值为( )A .52B .3C .4D .510.如图,在正方形ABCD 中,对角线,AC BD 相交于点O ,点E 在BC 边上,且CE=2BE ,连接AE 交BD 于点G ,过点B 作BF AE ⊥于点F ,连接OF 并延长,交BC 于点M ,过点O 作OP OF ⊥交DC 于占N ,94MONC S =四边形现给出下列结论:∠13GE AG = ∠sin 10BOF ∠= ∠5OF = ∠OG BG = 其中正确的结论有( )A .①②③B .②③④C .①②④D .①③④第II 卷(非选择题)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为___.12.因式分解:244ax ax a -+=______.13.临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:22 0.075,0.04s s ==甲乙,这两名同学成绩比较稳定的是_______________(填“甲”或“乙”).14.如果关于x 的一元二次方程230x x k -+=有两个相等的实数根,那么实数k 的值是________. 15.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为___.第15题 第16题 第17题16.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D 处,无人机测得操控者A 的俯角为37°,测得点C 处的俯角为45°.又经过人工测得操控者A 和教学楼BC 距离为57米,则教学楼BC 的高度为______米.(注:点A ,B ,C ,D 都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) 17.如图,在平面直角坐标系xOy 中,A (8,0),∠O 半径为3,B 为∠O 上任意一点,P 是AB 的中点,则OP 的最小值是____.18.如图,在平面直角坐标系中,12OA = 130AOx ∠=︒ 以1OA 为直角边作12Rt OA A △,并使1260AOA ∠=︒,再以12A A 为直角边作123Rt A A A △,并使21360A A A ∠=︒,再以23A A 为直角边作234Rt A A A △,并使32460A A A ∠=︒…按此规律进行下去,则2020A 的坐标是_______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:.2012cos301(2019)2π-⎛⎫-+︒-+- ⎪⎝⎭ (2)解不等式组:.20.(8分)某校对九年级学生进行“综合素质”评价,评价的结果分为A (优秀)、B (良好)、C (合格)、D (不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B (良好)等级人数所占百分比是______________________;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是___________________;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A (优秀)等级或B (良好)等级的学生共有多少名?21.(8分)如图,在直角坐标系中,直线y 1=ax+b 与双曲线y 2=k x(k≠0)分别相交于第二、四象限内的A (m ,4),B (6,n )两点,与x 轴相交于C 点.已知OC =3,tan∠ACO =23. (1)求y 1,y 2对应的函数表达式;(2)求∠AOB 的面积;(3)直接写出当x <0时,不等式ax+b >k x的解集.22.(8分)某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同. (1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?23.(8分)如图,AB 为∠O 的直径,在AB 的延长线上,C 为∠O 上点,AD ⊥CE 交EC 的延长线于点D ,若AC 平分∠DAB .(1)求证:DE 为∠O 的切线;(2)当BE =2,CE =4时,求AC 的长.24.(10分)如图,已知二次函数2y x bx c =-++的图象经过点()1,0A - ()3,0B 与y 轴交于点C .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在请写出点P 的坐标,并说明理由.若不存在,请说明理由.25.(12)分如图,在矩形ABCD 中,6AB cm = 8BC cm = 如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC , BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t=_______s 时,EF =(2)连接EP ,当EPC 的面积为23cm 时,求t 的值(3)若EQP ADC ∽△△,求t 的值参考答案1.【答案】D 2.【答案】B 3.【答案】D 4.【答案】C 5.【答案】A6.【答案】D 7.【答案】B 8.【答案】C 9.【答案】D 10.【答案】D11.8210-⨯ 12.()221a x - 13.乙 14.94 15.8π 16.13 17.5218.(0,101013-)19.【答案】(1)原式=+1+1=6. (2)∠可化简为:,,∠;∠可化简为:,∠ ∠ 不等式的解集为. 21.【答案】解:(1)4=4010%, 40-18-8-4=10,; 10100%=25%40⨯ 故答案为:25%;(2)8360=7240⨯︒︒,故答案为:72°;(3)如图所示:(4)由题意得:1810100070040+⨯=(名);答:评价结果为A等级或B等级的学生共有700名.22.【答案】解:(1)设直线y1=ax+b与y轴交于点D;在Rt∠OCD中,OC=3,tan∠ACO=.∠OD=2,即点D(0,2);把点D(0,2),C(0,3)代入直线y1=ax+b得;b=2,3a+b=0,解得,a=﹣;∠直线的关系式为y1=﹣x+2;把A(m,4),B(6,n)代入y1=﹣x+2得,m=﹣3,n=﹣2;∠A(﹣3,4),B(6,﹣2);∠k=﹣3×4=﹣12;∠反比例函数的关系式为y2=﹣,因此y1=﹣23x+2,y2=﹣12x;(2)由S∠AOB=S∠AOC+S∠BOC=×3×4+×3×2=9.(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.(1)根据OC=3,tan∠ACO=,可求直线与y轴的交点坐标,进而求出点A、B的坐标,确定两个函数的关系式;(2)由S∠AOB=S∠AOC+S∠BOC,进行计算即可;(3)由函数的图象直接可以得出,当x<0时,不等式ax+b>的解集.23.【答案】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料;根据题意,得100080030x x=+;解得x=120;经检验,x=120是所列方程的解;当x=120时,x+30=150;答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台;根据题意,得150a+120(20﹣a)≥2800;解得a≥40 3;∠a是整数;∠a≥14;答:至少购进A型机器人14台.24.【答案】解:(1)连接OC;∠AC平分∠OAD;∠∠DAC=∠OAC;∠OC=OA;∠∠OAC=∠OCA;∠∠OCA=∠DAC;∠OC∠AD;∠∠ADC=∠OCE;∠AD∠CE;∠∠ADC=90°;∠∠OCE =90°;∠OC∠ED;∠OC 是∠O 的半径;∠DE 是∠O 的切线. (2)设∠O 的半径为r; 在Rt∠OCE 中(r +2)2=r 2+42;∠r =3;∠OC∠AD;∠∠EOC∠∠EAD; ∠OC OE AD AE=; ∠358AD =; ∠AD =245; ∠由勾股定理可知:DE =325; ∠CD =DE ﹣CE =125; 在Rt∠ADC 中;由勾股定理可知:AC =525.【答案】(1)∠二次函数2y x bx c =-++的图象经过点A(-1,0),B(3,0);∠10930b c b c --+=⎧⎨-++=⎩; 解得:23b c =⎧⎨=⎩;∠抛物线的解析式为:2y x 2x 3=-++; (2)存在,理由如下: 当点P 在x 轴下方时;如图,设AP 与y 轴相交于E;令0x =,则3y =; ∠点C 的坐标为(0,3); ∠A(-1,0),B(3,0); ∠OB=OC=3,OA=1; ∠∠ABC=45︒;∠∠PAB=∠ABC=45︒; ∠∠OAE 是等腰直角三角形; ∠OA=OE=1;∠点E 的坐标为(0,-1); 设直线AE 的解析式为1y kx =-; 把A(-1,0)代入得:1k =-; ∠直线AE 的解析式为1y x =--; 解方程组2123y x y x x =--⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2245x y =⎧⎨=-⎩;∠点P 的坐标为(4,5-); 当点P 在x 轴上方时;如图,设AP 与y 轴相交于D;同理,求得点D 的坐标为(0,1);同理,求得直线AD 的解析式为1y x =+;解方程组2123y x y x x =+⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2223x y =⎧⎨=⎩; ∠点P 的坐标为(2,3);综上,点P 的坐标为(2,3)或(4,5-) 25.【答案】解:(1)由题意得:2,,BE t DF t ==矩形ABCD ,,FQ BC ⊥∴ 四边形FQCD 为矩形,83,6,QC DF t EQ t FQ CD ∴===-== 由勾股定理可得:()(222836,t -+=()28336,t ∴-=836t ∴-=或836,t -=- 23t ∴=或14,3t = 04t << 143t ∴=不合题意,舍去,取2.3t s =故答案为:23. (2)由题意知,2BE t = DF t = 82CE t =- CQ t = 在Rt ABC 中,3tan 4AB ACB BC ∠== 在Rt CPQ 中,3tan 4PQ PQ ACB CQ t ∠=== ∠34PQ t = ∠EPC 的面积为23cm ; ∠()113823224EPC S CE PQ t t =⋅=⨯-⨯=△ 2440,t t ∴-+=∠122t t ==,即t 的值为2 (3)∠四边形ABCD 是矩形 ∠//AD BC∠CAD ACB ∠=∠ ∠EQP ADC ∽△△ ∠CAD PEQ ∠=∠ ∠ACB PEQ ∠=∠ ∠EQ CQ =∠2CE CQ =由(2)知CQ t =,82CE t =- ∠822t t -=∠2t =,即t 的值为2。
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵
∴
∵
∴
∴
∴
在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式
;
【小问2详解】
原式
.
【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学模拟考试试题(有答案)学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,精品编辑老师为大家整理了2019年中考数学模拟考试试题,供大家参考。
一、选择题1. (2019四川巴中,第8题3分)在Rt△ABC中,C=90,sinA=1/2 ,则tanB的值为()A. 1B.3C.1/2D.2考点:锐角三角函数.分析:根据题意作出直角△ABC,然后根据sinA= ,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tanB. 解答:∵sinA= ,设BC=5x,AB=13x,则AC= =12x,2. (2019山东威海,第8题3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则AOB的正弦值是( )A.1B. 1/2C. 3/5D.2/3考点:锐角三角函数的定义;三角形的面积;勾股定理分析:作ACOB于点C,利用勾股定理求得AC和AB的长,根据正弦的定义即可求解.解答:解:作ACOB于点C.则AC= ,3.(2019四川凉山州,第10题,4分)在△ABC中,若|cosA ﹣|+(1﹣tanB)2=0,则C的度数是( )A. 45B. 60C. 75D. 105考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出C的度数.解答:解:由题意,得 cosA=,tanB=1,A=60,B=45,4.(2019甘肃兰州,第5题4分)如图,在Rt△ABC中,C=90,BC=3,AC=4,那么cosA的值等于()A.1/2B.3/5C. 2D.1/5考点:锐角三角函数的定义;勾股定理.分析:首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.解答:解:∵在Rt△ABC中,C=90,AC=4,BC=3,5.(2019广州,第3题3分)如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则 ( ).(A) (B) (C) (D)【考点】正切的定义.【分析】 .【答案】 D6.(2019浙江金华,第6题4分)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为,则t的值是【】A.1B.1.5C.2D.3【答案】C.【解析】7.(2019滨州,第11题3分)在Rt△ACB中,C=90,AB=10,sinA= ,cosA= ,tanA= ,则BC的长为( )A. 6B. 7.5C. 8D. 12.5考点:解直角三角形分析:根据三角函数的定义来解决,由sinA= = ,得到BC= = .解答:解:∵C=90AB=10,8.(2019扬州,第7题,3分)如图,已知AOB=60,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=() A. 3 B. 4 C. 5 D. 6(第1题图)考点:含30度角的直角三角形;等腰三角形的性质分析:过P作PDOB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.解答:解:过P作PDOB,交OB于点D,在Rt△OPD中,cos60= = ,OP=12,OD=6,∵PM=PN,PDMN,MN=2,9.(2019四川自贡,第10题4分)如图,在半径为1的⊙O 中,AOB=45,则sinC的值为()A.1B. 1/2C. 2D.3考点:圆周角定理;勾股定理;锐角三角函数的定义专题:压轴题.分析:首先过点A作ADOB于点D,由在Rt△AOD中,AOB=45,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作ADOB于点D,∵在Rt△AOD中,AOB=45,OD=AD=OAcos45= 1= ,BD=OB﹣OD=1﹣,AB= = ,∵AC是⊙O的直径,10.(2019浙江湖州,第6题3分)如图,已知Rt△ABC中,C=90,AC=4,tanA= ,则BC的长是()A.2B. 8C. 2D. 4分析:根据锐角三角函数定义得出tanA= ,代入求出即可.11.(2019广西来宾,第17题3分)如图,Rt△ABC中,C=90,B=30,BC=6,则AB的长为 4 .考点:解直角三角形.分析:根据cosB= 及特殊角的三角函数值解题.解答:解:∵cosB= ,即cos30= ,12.(2019年贵州安顺,第9题3分)如图,在Rt△ABC中,C=90,A=30,E为AB上一点且AE:EB=4:1,EFAC于F,连接FB,则tanCFB的值等于()A.30 AB.45C.60D.15考点:锐角三角函数的定义..分析: tanCFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.解答:解:根据题意:在Rt△ABC中,C=90,A=30,∵EFAC,EF∥BC,∵AE:EB=4:1,=5,设AB=2x,则BC=x,AC= x.13.(2019年广东汕尾,第7题4分)在Rt△ABC中,C=90,若sinA= ,则cosB的值是()A. 1B.3C. 2D.-1分析:根据互余两角的三角函数关系进行解答.14.(2019毕节地区,第15题3分)如图是以△ABC的边AB 为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.已知cosACD= ,BC=4,则AC的长为( )A. 1B.4C. 3D.2考点:圆周角定理;解直角三角形分析:由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.易得ACD=B,又由cosACD= ,BC=4,即可求得答案.解答:解:∵AB为直径,ACB=90,ACD+BCD=90,∵CDAB,BCD+B=90,ACD,∵cosACD= ,cosB= ,tanB= ,15.(2019年天津市,第2 题3分)cos60的值等于()A. 1/2B. 1C.3D.5考点:特殊角的三角函数值.分析:根据特殊角的三角函数值解题即可.二、填空题1. (2019年贵州黔东南11.(4分))cos60=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.2. (2019江苏苏州,第15题3分)如图,在△ABC中,AB=AC=5,BC=8.若BPC=BAC,则tanBPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理分析:先过点A作AEBC于点E,求得BAE=BAC,故BPC=BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tanBPC=tanBAE= .解答:解:过点A作AEBC于点E,∵AB=AC=5,BE=BC=8=4,BAE=BAC,∵BPC=BAC,BPC=BAE.在Rt△BAE中,由勾股定理得3.(2019四川内江,第23题,6分)如图,AOB=30,OP平分AOB,PCOB于点C.若OC=2,则PC的长是 .考点:含30度角的直角三角形;勾股定理;矩形的判定与性质.专题:计算题.分析:延长CP,与OA交于点Q,过P作PDOA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可.解答:解:延长CP,与OA交于点Q,过P作PDOA,∵OP平分AOB,PDOA,PCOB,PD=PC,在Rt△QOC中,AOB=30,OC=2,QC=OCtan30=2 = ,APD=30,在Rt△QPD中,cos30= = ,即PQ= DP= PC,QC=PQ+PC,即 PC+PC= ,4.(2019四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.据此判断下列等式成立的是②③④ (写出所有正确的序号)①cos(﹣60②sin75③sin2x=2sinx④sin(x﹣y)=sinxcosy﹣cosxsiny.考点:锐角三角函数的定义;特殊角的三角函数值.专题:新定义.分析:根据已知中的定义以及特殊角的三角函数值即可判断.解答:解:①cos(﹣60)=cos60=,命题错误;②sin75=sin(30+45)=sin30cos45+cos30sin45= + = + = ,命题正确;③sin2x=sinxcosx+cosxsinx═2sinxcosx,故命题正确;④sin(x﹣y)=sinxcos(﹣y)+cosxsin(﹣y)=sinxcosy﹣cosxsiny,命题正确.5.(2019甘肃白银、临夏,第15题4分)△ABC中,A、B都是锐角,若sinA= ,cosB=,则C= .考点:特殊角的三角函数值;三角形内角和定理.分析:先根据特殊角的三角函数值求出A、B的度数,再根据三角形内角和定理求出C即可作出判断.解答:解:∵△ABC中,A、B都是锐角sinA= ,cosB=,B=60.6. ( 2019广西贺州,第18题3分)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=. 考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:根据正弦是角的对边比斜边,可得答案.解答:解:如图,作ADBC于D,CEAB于E,由勾股定理得AB=AC=2 ,BC=2 ,AD=3 ,由BCAD=ABCE,为大家推荐的2019年中考数学模拟考试试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!。