1模式识别与机器学习思考题及参考答案
2模式识别与机器学习思考题(07)
模式识别与机器学习思考题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。
模式识别和机器学习都是信息科学和人工智能的重要组成部分。
一、模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。
模式识别主要的研究领域有:(1)计算机视觉医学影像分析,光学文字识别;(2)语音识别;(3)手写识别;(4)生物特征识别:人脸识别,指纹识别,虹膜识别;(5)文件分类;(6)互联网搜索引擎;(7)信用评分。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
二、机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
机器学习的研究领域有:(1)计算机视觉;(2)语音和手写识别;(3)生物特征识别(4)搜索引擎(5)医学诊断(6)检测信用卡欺诈(7)证券市场分析(8)DNA序列测序;(9)战略游戏和机器人运用模式识别与机器学习都对计算机视觉、语音识别、手写识别、生物特征识别有重要的应用。
三、模式识别与机器学习各自的研究侧重点不同。
模式识别侧重研究计算机如何模拟人类的感知识别能力,主要集中在两方面,一是研究生物体(包括人)是如何感知对象的, 属于认识科学的范畴;二是在给定的任务下,如何用计算机实现模式识别的理论和方法。
模式识别是机器学习的一个主要任务。
模式识别试卷及答案
模式识别试卷及答案一、选择题(每题5分,共30分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪种算法不属于监督学习?A. 支持向量机(SVM)B. 决策树C. K最近邻(K-NN)D. K均值聚类答案:D3. 在模式识别中,以下哪一项是特征选择的目的是?A. 减少特征维度B. 增强模型泛化能力C. 提高模型计算效率D. 所有上述选项答案:D4. 以下哪种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 主成分分析(PCA)C. 支持向量机(SVM)D. 线性回归答案:C5. 在神经网络中,以下哪种激活函数常用于输出层?A. SigmoidB. TanhC. ReLUD. Softmax答案:D6. 以下哪种聚类算法是基于密度的?A. K均值聚类B. 层次聚类C. DBSCAND. 高斯混合模型答案:C二、填空题(每题5分,共30分)1. 模式识别的主要任务包括______、______、______。
答案:分类、回归、聚类2. 在监督学习中,训练集通常分为______和______两部分。
答案:训练集、测试集3. 支持向量机(SVM)的基本思想是找到一个______,使得不同类别的数据点被最大化地______。
答案:最优分割超平面、间隔4. 主成分分析(PCA)是一种______方法,用于降维和特征提取。
答案:线性变换5. 神经网络的反向传播算法用于______。
答案:梯度下降6. 在聚类算法中,DBSCAN算法的核心思想是找到______。
答案:密度相连的点三、简答题(每题10分,共30分)1. 简述模式识别的基本流程。
答案:模式识别的基本流程包括以下几个步骤:(1)数据预处理:对原始数据进行清洗、标准化和特征提取。
(2)模型选择:根据问题类型选择合适的模式识别算法。
(3)模型训练:使用训练集对模型进行训练,学习数据特征和规律。
模式识别课后习题答案
• 2.16 证明M ahalanobis距离r符合距离定义三定理,即 – (1) r(a, b) = r(b, a) – (2) 当且仅当a = b时,r(a, b) = 0 – (3) r(a, c) ≤ r(a, b) + r(b, c) 证明: (1) r(a, b) = (a − b)T Σ−1 (a − b) = (b − a)T Σ−1 (b − a) = r(b, a) (2) Σ为半正定矩阵所以r(a, b) = (a − b)T Σ−1 (a − b) ≥ 0,只有当a = b时,才有r(a, b) = 0。 (3) Σ−1 可对角化,Σ−1 = P ΛP T • 2.17 若将Σ−1 矩阵写为:Σ−1 h1d h2d ,证明M ahalanobis距离平方为 . . . hdd
• 2.13 把连续情况的最小错误率贝叶斯决策推广到离散情况,并写出其判别函数。 • 2.14 写出离散情况条件风险R(ai |x)的定义,并指出其决策规则。 解: R(ai |x) = = R(ak |x) = min
c ∑ j =1 c ∑ j =1
λij P (wj |x) λij pቤተ መጻሕፍቲ ባይዱx|wj )P (wj )////omit the same part p(x)
j =1,...,c j =1,...,c
考虑两类问题的分类决策面为:P (w1 |x) = P (w2 |x),与p(x|w1 )P (w1 ) = p(x|w2 )P (w2 ) 是相同的。 • 2.9 写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。 • 2.10 随机变量l(x)定义为l(x) = p(x|w1 ) ,l(x)又称为似然比,试证明 p(x|w2 )
1
模式识别习题集答案解析
模式识别习题集答案解析1、PCA和LDA的区别?PCA是⼀种⽆监督的映射⽅法,LDA是⼀种有监督的映射⽅法。
PCA只是将整组数据映射到最⽅便表⽰这组数据的坐标轴上,映射时没有利⽤任何数据部的分类信息。
因此,虽然做了PCA后,整组数据在表⽰上更加⽅便(降低了维数并将信息损失降到了最低),但在分类上也许会变得更加困难;LDA在增加了分类信息之后,将输⼊映射到了另外⼀个坐标轴上,有了这样⼀个映射,数据之间就变得更易区分了(在低纬上就可以区分,减少了很⼤的运算量),它的⽬标是使得类别的点距离越近越好,类别间的点越远越好。
2、最⼤似然估计和贝叶斯⽅法的区别?p(x|X)是概率密度函数,X是给定的训练样本的集合,在哪种情况下,贝叶斯估计接近最⼤似然估计?最⼤似然估计把待估的参数看做是确定性的量,只是其取值未知。
利⽤已知的样本结果,反推最有可能(最⼤概率)导致这样结果的参数值(模型已知,参数未知)。
贝叶斯估计则是把待估计的参数看成是符合某种先验概率分布的随机变量。
对样本进⾏观测的过程,把先验概率密度转化为后验概率密度,利⽤样本的信息修正了对参数的初始估计值。
当训练样本数量趋于⽆穷的时候,贝叶斯⽅法将接近最⼤似然估计。
如果有⾮常多的训练样本,使得p(x|X)形成⼀个⾮常显著的尖峰,⽽先验概率p(x)⼜是均匀分布,此时两者的本质是相同的。
3、为什么模拟退⽕能够逃脱局部极⼩值?在解空间随机搜索,遇到较优解就接受,遇到较差解就按⼀定的概率决定是否接受,这个概率随时间的变化⽽降低。
实际上模拟退⽕算法也是贪⼼算法,只不过它在这个基础上增加了随机因素。
这个随机因素就是:以⼀定的概率来接受⼀个⽐单前解要差的解。
通过这个随机因素使得算法有可能跳出这个局部最优解。
4、最⼩错误率和最⼩贝叶斯风险之间的关系?基于最⼩风险的贝叶斯决策就是基于最⼩错误率的贝叶斯决策,换⾔之,可以把基于最⼩错误率决策看做是基于最⼩风险决策的⼀个特例,基于最⼩风险决策本质上就是对基于最⼩错误率公式的加权处理。
模式识别习题及答案
模式识别习题及答案模式识别习题及答案【篇一:模式识别题目及答案】p> t,方差?1?(2,0)-1/2??11/2??1t,第二类均值为,方差,先验概率??(2,2)?122???1??1/21??-1/2p(?1)?p(?2),试求基于最小错误率的贝叶斯决策分界面。
解根据后验概率公式p(?ix)?p(x?i)p(?i)p(x),(2’)及正态密度函数p(x?i)?t(x??)?i(x??i)/2] ,i?1,2。
(2’) i?1基于最小错误率的分界面为p(x?1)p(?1)?p(x?2)p(?2),(2’) 两边去对数,并代入密度函数,得(x??1)t?1(x??1)/2?ln?1??(x??2)t?2(x??2)/2?ln?2(1) (2’)1?14/3-2/3??4/32/3??1由已知条件可得?1??2,?1,?2??2/34/3?,(2’)-2/34/31设x?(x1,x2)t,把已知条件代入式(1),经整理得x1x2?4x2?x1?4?0,(5’)二、(15分)设两类样本的类内离散矩阵分别为s1??11/2?, ?1/21?-1/2??1tt,各类样本均值分别为?1?,?2?,试用fisher准(1,0)(3,2)s2-1/21??(2,2)的类别。
则求其决策面方程,并判断样本x?解:s?s1?s2??t20?(2’) ??02?1/20??-2??-1?*?1w?s()?投影方向为12?01/22?1? (6’) ???阈值为y0?w(?1??2)/2??-1-13 (4’)*t2?1?给定样本的投影为y?w*tx??2-1?24?y0,属于第二类(3’) ??1?三、(15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为w0?w1?w2?0;1 第1次迭代2 第2次迭代(4’)(2’)3 第3和4次迭代四、(15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本,估计该部分的均值和方差两个参数。
模式识别答案
答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。
问答第2题答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。
根据定义,距某一点的Mahalanobis 距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。
问答第3题答:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
问答第4题答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。
问答第5题答:在给定观察序列条件下分析它由某个状态序列S产生的概率似后验概率,写成P(S|O),而通过O 求对状态序列的最大似然估计,与贝叶斯决策的最小错误率决策相当。
问答第6题答:协方差矩阵为,则1)对角元素是各分量的方差,非对角元素是各分量之间的协方差。
2)主分量,通过求协方差矩阵的特征值,用得,则,相应的特征向量为:,对应特征向量为,对应。
这两个特征向量即为主分量。
3) K-L变换的最佳准则为:对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。
4)在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关消除。
模式识别习题答案(第一次)
−1 2 1
1
3
n ∑ t2 i =C λ i=1 i
显然,此为一超椭球面的方程,主轴长度由{λi , i = 1, · · · , n}决定,方向由变 换矩阵A,也就是Σ的特征向量决定。 2.19 假定x和m是两个随机变量,并在给定m时,x的条件密度为
1 1 p(x|m) = (2π )− 2 σ −1 exp{− (x − m)2 /σ 2 } 2
c ∑ j =1 c ∫ ∑ j =1 Rj
P (x ∈ Rj |ωj )p(ωj ) =
p(x|ωj )p(ωj )dx
又因为p(e) = 1 − p(c),所以 min p(e) ⇒ max p(c) ⇒ max
c ∫ ∑ j =1 Rj
p(x|ωj )p(ωj )dx
由上式可得到判决准则:若p(x|ωi )p(ωi ) > p(x|ωj )p(ωj ), ∀j ̸= i,则x ∈ ωi 等价于若p(ωi |x) > p(ωj |x), ∀j ̸= i,则x ∈ ωi 。 2.6 对两类问题,证明最小风险贝叶斯决策规则可表示为 ω1 p(x|ω1 ) (λ12 − λ22 )P (ω2 ) 若 ≷ 则x ∈ p(x|ω2 ) (λ21 − λ11 )P (ω1 ) ω2 证明: R(α1 |x) = λ11 p(ω1 |x) + λ12 p(ω2 |x)R(α2 |x) = λ21 p(ω1 |x) + λ22 p(ω2 |x) 若R(α1 |x) < R(α2 |x),则x ∈ ω1 , 代入即得所求结果。 2.9 写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。 解:两类情况下判别函数为:g (x) = R(α1 |x)−R(α2 |x),决策面方程为:g (x) = 0; 多 类 情 况 下 定 义 一 组 判 别 函 数gi (x) = R(αi |x), i = 1, · · · , c, 如 果 对 所 有 的j ̸= i, 有 :gi (x) < gj (x), 则x ∈ ωi , 其 中 第i类 和 第j 类 之 间 的 决 策 面 为:gi (x) − gj (x) = 0。 ∑c 当然,将R(αi |x) = j =1 λ(αi , ωj )P (ωj |x), i = 1, · · · , a代入亦可。 2.15 证明多元正态分布的等密度点轨迹是一个超椭球面,且其主轴方向由Σ的特征 向量决定,轴长度由Σ的特征值决定。
模式识别与机器学习:模式识别基本概念习题与答案
一、单选题
1、聚类技术属于()。
A.超监督式学习
B.无监督式学习
C.半监督式学习
D.有监督式学习
正确答案:B
2、泛化误差指的是()。
A.训练误差
B.测量误差
C.学习误差
D.测试误差
正确答案:D
二、多选题
1、以下函数为判别函数的是()。
A.min函数
B.sum函数
C.sign函数
D.max函数
正确答案:A、C、D
三、判断题
1、特征的个数越多,模式识别的效果越准确。
()
正确答案:×
2、无监督式学习算法的难度低于监督式学习算法。
()
正确答案:×
3、监督式学习指的是训练样本及输出真值都给定的机器学习算法。
()
正确答案:√
4、“过拟合”只在监督学习中出现,在非监督学习中,没有“过拟合”。
()
正确答案:×
5、对于k折交叉验证,k越大不一定越好,选择大的k会加大评估时间。
()
正确答案:√。
模式识别试题答案最终版【范本模板】
模式识别非学位课考试试题考试科目:模式识别考试时间考生姓名: 考生学号任课教师考试成绩一、简答题(每题6分,12题共72分):1、监督学习和非监督学习有什么区别?参考答案:监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的.非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等.2、你如何理解特征空间?表示样本有哪些常见方法?参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。
描述样本的常见方法:矢量、矩阵、列表等。
3、什么是分类器?有哪些常见的分类器?参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。
例如:贝叶斯分类器、神经网络等。
4、进行模式识别在选择特征时应该注意哪些问题?参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。
5、聚类分析中,有哪些常见的表示样本相似性的方法?参考答案:距离测度、相似测度和匹配测度。
距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。
相似测度有角度相似系数、相关系数、指数相似系数等。
6、SVM的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。
7、请论述模式识别系统的主要组成部分及其设计流程,并简述各组成部分中常用方法的主要思想。
特征空间信息获取:通过测量、采样和量化,可以用矩阵或向量表示二维图像或以为波形。
(完整word版)模式识别题目及答案(word文档良心出品)
一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。
解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。
(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。
解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。
《模式识别与机器学习》习题和参考答案
性函数。上式可以看作对 x 的各分量进行线性组合,然后平移,所以 r (x) 服从一
维高斯分布。下面计算一维高斯分布 p(r (x) | w 1) 的期望 m1 和方差 1 :
m1 [r (x) | w 1]
1
(μ 2 μ1 ) 1μ1 (μ1 1μ1 μ 2 1μ 2 )
190%
(2-13)
最小风险贝叶斯决策会选择条件风险最小的类别,即 h( x) 1 。
3.
给出在两类类别先验概率相等情况下,类条件概率分布是相等对角协方差
矩阵的高斯分布的贝叶斯决策规则,并进行错误率分析。
答:
(1)首先给出决策面的表达式。根据类条件概率分布的高斯假设,可以
得到
p(x | w i )
1/2
2 |
p(C, M ) p(C | M ) p(M ) 0.2 0.6 0.12
p( M | C )
p(C | M ) p( M )
0.12
0.25
p(C | M ) p( M ) p(C | F ) p( F ) 0.12 0.36
(2-1)
(2-2)
2. 举例说明最小风险贝叶斯决策与最小错误率贝叶斯决策的不同。
R(h( x) 1| x)
(h( x) 1| w 1) p( w 1| x) (h( x) 1| w 2) p( w 2 | x)
98.1%
(2-12)
R ( h( x ) 2 | x )
(h( x) 2 | w 1) p( w 1| x) (h( x) 2 | w 2) p( w 2 | x)
(2-16)
模式识别思考题答案
X ( NT ) 两部分,这两部分没有公共元素,它们的样本数各为 NR 和 NT,NR+NT=N。利用参照
集X
( NR)
中的样本 y1 , y2 ,, y NR 采用最近邻规则对已知类别的测试集 X
( NT )
中的每个样
x1 , x2 ,, xNT 进行分类,剪辑掉 X ( NT ) 中被错误分类的样本。
k=10, x k =x 2 ,d ( x k ) =w(k)' xk =2>0, w(11)= w(10)
k=11, x k =x3 ,d ( x k ) =w(k)' xk =0, w(12)= w(11)+x3 (2, 3, 1,2)
k=12, x k =x 4 ,d ( x k ) =w(k)' xk =1>0, w(13)= w(12) k=13, x k =x5 ,d ( x k ) =w(k)' xk =-1<0, w(14)= w(13)+x 5 (2, 3, 2)
x2
W2
+ W1
x
Hale Waihona Puke 1d 23 (x)=2x 2
-
W3
+
-
d13 ( x) 2 x1 x2 1
五、以下列两类模式为样本,用感知器算法求其判决函数。 (令 w(1) = (-1,-2,-2)T) 1:{(0,0,0)’, (1,0,0)’, (1,0,1)’, (1,1,0)’,} 2:{(0,0,1)’, (0,1,1)’, (0,1,0)’, (1,1,1)’,} 解: (1)将训练样本分量增广化及符号规范化,将训练样本增加一个分量 1,且把来自 w2 类的 训练样本的各分量乘以-1,则得到训练模式集:
模式识别课后习题答案
– (1) E{ln(x)|w1} = E{ln+1(x)|w2} – (2) E{l(x)|w2} = 1 – (3) E{l(x)|w1} − E2{l(x)|w2} = var{l(x)|w2}(教材中题目有问题) 证∫ 明ln+:1p对(x于|w(12)),dxE={ln∫(x()∫p(|wp(x(1x|}w|w=1)2))∫n)+nl1nd(xx)所p(x以|w∫,1)Ed{xln=(x∫)|w(1p(}p(x(=x|w|Ew1)2{))ln)n+n+11d(xx)又|wE2}{ln+1(x)|w2} = 对于(2),E{l(x)|w2} = l(x)p(x|w2)dx = p(x|w1)dx = 1
对于(3),E{l(x)|w1} − E2{l(x)|w2} = E{l2(x)|w2} − E2{l(x)|w2} = var{l(x)|w2}
• 2.11 xj(j = 1, 2, ..., n)为n个独立随机变量,有E[xj|wi] = ijη,var[xj|wi] = i2j2σ2,计 算在λ11 = λ22 = 0 及λ12 = λ21 = 1的情况下,由贝叶斯决策引起的错误率。(中心极限 定理)
R2
R1
容易得到
∫
∫
p(x|w2)dx = p(x|w1)dx
R1
R2
所以此时最小最大决策面使得P1(e) = P2(e)
• 2.8 对于同一个决策规则判别函数可定义成不同形式,从而有不同的决策面方程,指出 决策区域是不变的。
3
模式识别(第二版)习题解答
模式识别习题及答案-精品资料
第一章绪论1 •什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的—信息__。
2. 模式识别的定义? 让计算机来判断事物。
3. 模式识别系统主要由哪些部分组成? 数据获取一预处理一特征提取与选择一分类器设计/分类决策。
第二章贝叶斯决策理论P ( W 2 ) / p ( w 1 ) _,贝V X1. 最小错误率贝叶斯决策过程?答:已知先验概率,类条件概率。
利用贝叶斯公式 得到后验概率。
根据后验概率大小进行决策分析。
2 .最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率P ( W i ), i类条件概率分布p ( x | W i ), i 1 , 2 利用贝叶斯公式得到后验概率P (W i | x)P(X | W j )P(W j )j 1如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3. 最小错误率贝叶斯决策规则有哪几种常用的表示形式?决策规则的不同形式(董点)C1^ 如vr, | JV ) = max 戶(vr ] WJ A * U vtvEQ 如杲尹a H ; )2^(ir, ) = max |沪0輕』),则x e HpCx |=尸4 "J"匕< 4) 如!4i= — 1IL | /( JV )] = — 111 戸(兀 | w”. ) -+- 11111r a4. 贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了 (平均)错误率最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5 .贝叶斯决策是 由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这 个概率进行决策。
6.利用乘法法则和全概率公式证明贝叶斯公式p(AB) p(A|B)p(B) p(B|A)p(A)P (A」B )答:m所以推出贝叶斯公式p(B) p(B|Aj)p(Aj)j 17. 朴素贝叶斯方法的条件独立D (1P (x | W i ) P(W i )i i入)2P(x | W j ) P (w j )j 11 ,2P (x | W i )P(W i )如果 I (x)P(B |A i )P(AJ P ( B ) P ( B | A i ) P ( A i ) 7MP ( B | A j ) P ( A j )2假设是( P(x| 3 i) =P(x1, x2, …,xn | co i)19.=P(x1|3 i) P(x2| 3 i)…P(xn| 3 i))8•怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn |3 i) = P(x1| 3 i) P(x2| 3 i)P(xn| 3 i)后验概率:P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方 差,最后得到类条件概率分布。
模式识别练习题及答案.docx
1=填空题1、模式识别系统的基本构成单元包括:模式采集、特征选择与提取和模式分类。
2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。
3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离门限、预定的类别数目。
4、线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
5、感知器算法丄。
(1 )只适用于线性可分的情况;(2)线性可分、不可分都适用。
6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重愛情况;最小最大判别准则主要用于先验概率未知的情况。
7、“特征个数越多越有利于分类”这种说法正确吗?错误。
特征选择的主要目的是从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数。
一般在可分性判据对特征个数具有单调性和(C n m»n )的条件下,可以使用分支定界法以减少计算量。
& 散度Jij越大,说明。
类模式与3j类模式的分布差别越大;当3类模式与(Oj类模式的分布相同时,Jij=_O_.选择题1、影响聚类算法结果的主要因素有(BCD ).A.已知类别的样本质量B.分类准则C.特征选取D.模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是(CD )。
A.平移不变性B.旋转不变性C.尺度不变性D.考虑了模式的分布3、影响基本K-均值算法的主要因素有(DAB )。
A.样本输入顺序B.模式相似性测度C.聚类准则D.初始类中心的选取4、在统计模式分类问题中,当先验概率未知时,可以使用(BD )。
A.最小损失准则B.最小最大损失准则C.最小误判概率准则D.N-P判决5、散度环是根据(C )构造的可分性判据。
A.先验概率B.后验概率C.类概率密度D.信息燔E.几何距离6、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(B C )。
1模式识别与机器学习思考题及参考答案
模式识别与机器学习期末考查思考题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。
机器学习是研究让机器(计算机)从经验和数据获得知识或提高自身能力的科学。
机器学习和模式识别是分别从计算机科学和工程的角度发展起来的。
然而近年来,由于它们关心的很多共同问题(分类、聚类、特征选择、信息融合等),这两个领域的界限越来越模糊。
机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析、(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。
近年来,机器学习和模式识别的研究吸引了越来越多的研究者,理论和方法的进步促进了工程应用中识别性能的明显提高。
机器学习:要使计算机具有知识一般有两种方法;一种是由知识工程师将有关的知识归纳、整理,并且表示为计算机可以接受、处理的方式输入计算机。
另一种是使计算机本身有获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善,这种方式称为机器学习。
机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。
机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学科基础上的。
依赖于这些学科而共同发展。
目前已经取得很大的进展,但还没有能完全解决问题。
模式识别:模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。
如识别物体、地形、图像、字体(如签字)等。
在日常生活各方面以及军事上都有广大的用途。
近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。
特别神经网络方法在模式识别中取得较大进展。
理解自然语言计算机如能“听懂”人的语言(如汉语、英语等),便可以直接用口语操作计算机,这将给人们带来极大的便利。
计算机理解自然语言的研究有以下三个目标:一是计算机能正确理解人类的自然语言输入的信息,并能正确答复(或响应)输入的信息。
8-模式识别与机器学习思考题
模式识别与机器学习思考题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。
试题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。
答:(1)模式识别是研究用计算机来实现人类的模式识别能力的一门学科,是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。
主要集中在两方面,一是研究生物体(包括人)是如何感知客观事物的,二是在给定的任务下,如何用计算机实现识别的理论和方法。
机器学习则是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是研究如何使机器通过识别和利用现有知识来获取新知识和新技能。
主要体现以下三方面:一是人类学习过程的认知模型;二是通用学习算法;三是构造面向任务的专用学习系统的方法。
两者关心的很多共同问题,如:分类、聚类、特征选择、信息融合等,这两个领域的界限越来越模糊。
机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。
(2)机器学习和模式识别是分别从计算机科学和工程的角度发展起来的,各自的研究侧重点也不同。
模式识别的目标就是分类,为了提高分类器的性能,可能会用到机器学习算法。
而机器学习的目标是通过学习提高系统性能,分类只是其最简单的要求,其研究更侧重于理论,包括泛化效果、收敛性等。
模式识别技术相对比较成熟了,而机器学习中一些方法还没有理论基础,只是实验效果比较好。
许多算法他们都在研究,但是研究的目标却不同。
如SVM 在模式识别中研究所关心的就是其对人类效果的提高,偏工程。
而在机器学习中则更侧重于其性能上的理论证明。
2:列出在模式识别与机器学习中的常用算法及其优缺点。
试题2:列出在模式识别与机器学习中的常用算法及其优缺点。
答:(1) K近邻法KNN算法作为一种非参数的分类算法,它已经广泛应用于分类、回归和模式识别等。
在应用KNN算法解决问题的时候,要注意的两个方面是样本权重和特征权重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模式识别与机器学习期末考查思考题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。
机器学习是研究让机器(计算机)从经验和数据获得知识或提高自身能力的科学。
机器学习和模式识别是分别从计算机科学和工程的角度发展起来的。
然而近年来,由于它们关心的很多共同问题(分类、聚类、特征选择、信息融合等),这两个领域的界限越来越模糊。
机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析、(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。
近年来,机器学习和模式识别的研究吸引了越来越多的研究者,理论和方法的进步促进了工程应用中识别性能的明显提高。
机器学习:要使计算机具有知识一般有两种方法;一种是由知识工程师将有关的知识归纳、整理,并且表示为计算机可以接受、处理的方式输入计算机。
另一种是使计算机本身有获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善,这种方式称为机器学习。
机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。
机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学科基础上的。
依赖于这些学科而共同发展。
目前已经取得很大的进展,但还没有能完全解决问题。
模式识别:模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。
如识别物体、地形、图像、字体(如签字)等。
在日常生活各方面以及军事上都有广大的用途。
近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。
特别神经网络方法在模式识别中取得较大进展。
理解自然语言计算机如能“听懂”人的语言(如汉语、英语等),便可以直接用口语操作计算机,这将给人们带来极大的便利。
计算机理解自然语言的研究有以下三个目标:一是计算机能正确理解人类的自然语言输入的信息,并能正确答复(或响应)输入的信息。
二是计算机对输入的信息能产生相应的摘要,而且复述输入的内容。
三是计算机能把输入的自然语言翻译成要求的另一种语言,如将汉语译成英语或将英语译成汉语等。
目前,研究计算机进行文字或语言的自动翻译,人们作了大量的尝试,还没有找到最佳的方法,有待于更进一步深入探索。
机器学习今后主要的研究方向如下:1)人类学习机制的研究;2)发展和完善现有学习方法,建立实用的学习系统,特别是开展多种学习方法协同工作的集成化系统的研究;通过多个现有的具体例子进行分析,归纳为更一般的概念.机器学习所关注的一个根本问题是如何提高学习系统的泛化能力,或者说是机器在数据中发现的模式怎样才能具有良好的推广能力.机器学习的研究主旨是使用计算机模拟人类的学习活动,它是研究计算机识别现有知识、获取新知识、不断改善性能和实现自身完善的方法。
模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
模式识别的研究的内容是指利用计算机对要分析的客观事物与标准模板的通过某种模式算法,对其进行分类,在错误概率最小的条件,使识别到的结果最接近于待识别的客观事实。
先用一定数量的样本,根据它们之间的相似性进行分类器设计,而后用所设计的分类器对待识别的样本进行分类决策.目前模式识别的主要研究的是提取目标的运动特征,或在此基础上进行对目标的整体的运动轨迹进行研究,2:列出在模式识别与机器学习中的常用算法及其优缺点。
1.k-近邻法近邻法是一种最简单的非参数模式识别方法中的模式匹配法,它主要依据样本间的多维空间距离来实现分类.令D n={x1,x2,…,x n},其中,每一个样本所属的类别均已知.对于测试样本点x,分类是,在集合Dn中与每个模板进行一一比较,将距离最近的点标记为x'.那么,近邻法就是把点x分为x'所属类别.(1)优点:算法简单,易于理解和分析,分类效果好。
(2)缺点:大样本的计算量大,存储所有样本需较大容量,样本小时误差难控制。
2. 贝叶斯决策法贝叶斯决策法是基于概率统计的基本的判别函数分类法。
(1)贝叶斯决策优点:算法简单,易于理解和分析,其基本概念被众多的先进决策算法运用,判断结果较精确。
(2)贝叶斯决策的主要的缺陷:在采用贝叶斯算法之前,要事先收集一定数量的符合实际情况的样本,这样才能较精确得出先验概率和条件概率。
且在实际生活中,决策表是很难确定的,计算所需要的损失差数,往往是根据多位专家根据实际具体问题,共同其错误的决策造成的损失的严重程度来大概确立的。
3. 逆向传播神经网络其算法在应用中的缺点主要如下:(1)算法的稳定性与学效率成反比。
(2)还没找到某一明确的规则确定学效率的大小,尤其相对于非线性网络来说,学效率的选择更是一个难题。
(3)训练过程也可能陷入局部最小,可以通过变换初始值进行多次训练来决绝这个问题,但又增加了计算的负担。
(4)没有有效的方法可以确定网络层数,太多或太少都会影响系统的性能。
(5)收敛于局部极小的较早收敛问题尚未解决主要的优点如下:(6)每个神经元的运算功能十分简单。
(7)各神经元之间是并行结构互使得其具有高速处理能力。
(8)在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系,知识存储容量很大。
(9)网状结构似的整个系统的工作不会因为个别的神经元的损失而大大降低系统性能。
(10)它可以实现输入和输出数据之间的非线性映射.4. 遗传算法遗传算法的优点①遗传算法解决了传统优化算法容易误入局部最优解的缺点,不用单值迭代,而是从解集合进行搜索,利于全局择优。
②遗传算法需要的参数少,容易形成通用算法程序。
③遗传算法有极强的容错能力,遗传算法的初始串集本身就带有大量与最优解甚远的信息;该算法具有收敛性,通过选择、交叉、变异操作能迅速排除与最优解相差极大的串。
④遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。
力称为隐含并行性(Implicit Parallelism)。
它说明遗传算法其内在具有并行处理的特质。
遗传算法的缺点遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;遗传算法还有大量的问题需要研究,目前也还有各种不足。
①选取的值范围大,变量多时,收敛速度也随之下降,甚至有时还无法给定取值范围时。
②可找到最优解附近,但无法精确确定最优解位置。
③遗传算法的参数(n,Pm,Pc)选择还没准确的定数,还需要进一步研究其数学基础理论。
5. 决策树算法优点:由于决策树具有易构造、结构简单、易于理解、分类精度高,且易于转化成SQI语句有效地存取数据库,易于算法实现等优点,决策树尤其适于数据挖掘。
描述简单,分类速度快,特别适合大规模的数据处理缺点:在学习过程中不能有很多背景知识。
是非递增学习算法;ID3决策树是单变量决策树,复杂概念的表达困难;同性间的相互关系强调不够;抗噪性差。
决策树的这种明确性可能带来误导.⑴神经网络方法神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
典型的神经网络模型主要分3大类:以感知机、BP反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以Hopfield的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以ART模型、Koholon模型为代表的,用于聚类的自组织映射方法。
神经网络方法的缺点是"黑箱"性,人们难以理解网络的学习和决策过程。
⑵遗传算法遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。
遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
Sunil已成功地开发了一个基于遗传算法的数据挖掘工具,利用该工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据挖掘的有效方法之一。
遗传算法的应用还体现在与神经网络、粗集等技术的结合上。
如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层单元;用遗传算法和BP算法结合训练神经网络,然后从网络提取规则等。
但遗传算法的算法较复杂,收敛于局部极小的较早收敛问题尚未解决。
⑶决策树方法决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。
它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
最有影响和最早的决策树方法是由Quinlan提出的著名的基于信息熵的ID3算法。
它的主要问题是:ID3是非递增学习算法;ID3决策树是单变量决策树,复杂概念的表达困难;同性间的相互关系强调不够;抗噪性差。
针对上述问题,出现了许多较好的改进算法,如 Schlimmer和Fisher设计了ID4递增式学习算法;钟鸣,陈文伟等提出了IBLE算法等。
⑷粗集方法粗集理论是一种研究不精确、不确定知识的数学工具。
粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。
粗集处理的对象是类似二维关系表的信息表。
目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗集的数据挖掘奠定了坚实的基础。
但粗集的数学基础是集合论,难以直接处理连续的属性。
而现实信息表中连续属性是普遍存在的。
因此连续属性的离散化是制约粗集理论实用化的难点。
现在国际上已经研制出来了一些基于粗集的工具应用软件,如加拿大Regina大学开发的KDD-R;美国Kansas大学开发的LERS等。
⑸覆盖正例排斥反例方法它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。
首先在正例集合中任选一个种子,到反例集合中逐个比较。
与字段取值构成的选择子相容则舍去,相反则保留。
按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
比较典型的算法有Michalski 的AQ11方法、洪家荣改进的AQ15方法以及他的AE5方法。
⑹统计分析方法在数据库字段项之间存在两种关系:函数关系(能用函数公式表示的确定性关系)和相关关系(不能用函数公式表示,但仍是相关确定性关系),对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。
可进行常用统计(求大量数据中的最大值、最小值、总和、平均值等)、回归分析(用回归方程来表示变量间的数量关系)、相关分析(用相关系数来度量变量间的相关程度)、差异分析(从样本统计量的值得出差异来确定总体参数之间是否存在差异)等。