土的压缩性及沉降计算

合集下载

土的压缩性及沉降计算

土的压缩性及沉降计算

最终沉降量是指建筑物地基从开 始变形到变形稳定时基础的总沉 降值。
最终沉降量
分层总和法是将地基土在一定深度范围内划分成
若干薄层,先求得各个薄层的压缩量,再将各个薄层的压 缩量累加起来,即为总的压缩量。
计算沉降时,由于采用了一系列计算假定,还需对总的 压缩量根据经验进行修正。
一、计算假定
1.地基中划分的各薄层均在无侧向膨
z
si hi
e1i e2i 1e1i
si
e1i e2i 1e1i
hi
由压缩模量的定义知:
Esi
p si
si
p Esi
hi
hi
si
zi
E si
hi
2.各薄层压缩量求和公式
基础的总沉降量就是在压缩层范围内各薄层压缩量的总和
n
Sn Si
1
3.基础总沉降量的规范公式
由于采用了一系列计算假定,求出的总压缩量与工程实际有一定出入, 故现行规范用经验系数进行修正。
一、土的压缩性
节概述
土的压缩性是指在外荷载作用下,土体体积变小的性 质.
它反映的是土中应力与其变形之间的变化关系,是土 的基本
力学性质之一。
土体压缩变形一般包括:
二、沉降的概念
建筑物作为外荷载作用于地基上,使地基中产生附加应 力,而附加应力的产生致使地基土出现压缩变形,通常将建 筑物基础随地基产生的竖向变位称之为沉降。
Cc值越大,土的压缩性越高,低压缩性土的Cc一 般小于0.2,高压缩性土的Cc值一般大于0.4。
二、现场荷载试验
1.试验方法
现场载荷试验是在工程现场 通过千斤顶逐级对置于地基土 上的载荷板施加荷载,观测记 录沉降随时间的发展以及稳定

土力学土的压缩性与地基沉降计算

土力学土的压缩性与地基沉降计算
§3.1.2 土的应力与应变关系
1、土体中的应力
⑷主应力——凡剪应力τ =0的平面上的法向应力σ ,称为主 应力,此平面称为主应面。σ cz为大主应力,σ cx=σ cy为小主应力 。 ⑸摩尔圆
在τ -σ 的直角坐标系 中,在横坐标上点出最大 主应力σ 1与最小主应力σ 3 ,再以σ 1-σ 3为直径作圆 ,此圆称为摩尔应力圆。 微元体中任意斜截面上的 法向应力σ 与剪应力τ , 可用此摩尔圆来表示。见 “4.2 土的极限平衡条件 ”土。力学
§§333.3.3土.2的侧压限侧缩条限性件与压下地缩基土性沉的指降压计标缩算性
2、压缩指数Cc
随着高层建筑的兴建和重型设备的发展,常规侧限压缩仪的压 力范围太小,可采用高压固结仪,最高压力可达3200Kpa。
高压固结仪的试验原理与试验方法同常规固结仪,试样面积由 50mm2改为30mm2,加压杠杆比由1:10提高为1:12。
土力学
§33.1土的土压的缩变性形与特地基性沉降计算
§3.1.2 土的应力与应变关系
1、土体中的应力
⑶水平土层中的自重应力——设地面为无限广阔的水平面,土 层均匀,土的天然重度为γ 。在深度为Z处取一微元体dxdydz,则 作用在此微元体上的竖向自重应力σ cz(如图3.2所示)为:
σ cz=γ z(kPa) (3.1)
0.1≤а 1-2<0.5Mpa-1 时, 属中压缩性土;
а 1-2≥0.5Mpa—1时, 属高压缩性土。
各类地基土压缩性的高低,取决于土的类别、原始密度和天然
结构是否扰动等因素。
例如:密实的粗砂、卵石的压缩性比粘性土为低。粘性土的压 缩性高低可能相差很大:当土的含水量高、孔隙比大时,如淤泥为 高压缩性土;若含水量低的硬塑或坚硬的土,则为低压缩性土。此 外,粘性土的天然结构受扰动后,它的压缩性将增高,特别对于高 灵敏度的粘土,天然结构遭到破坏时,影响压缩性更甚,同时其强 度土也力剧学烈下降。见图3.9

04 土的压缩性与地基沉降计算 (1)

04 土的压缩性与地基沉降计算 (1)

4.2 土的压缩性试验及指标
一、室内侧限压缩试验及压缩模量 二、现场载荷试验及变形模量 三、弹性模量及试验测定 四、关于三种模量的讨论
4.2 土的压缩性试验及指标
一、室内侧限压缩试验及压缩模量
土的压缩性高低,常用压缩性指标定量表示。压缩性指标,通 土的压缩性高低,常用压缩性指标定量表示。压缩性指标, 常由工程地质勘察取天然结构的原状土样,进行室内侧限压缩试 常由工程地质勘察取天然结构的原状土样,进行室内侧限压缩试 验测定。 验测定。
e-logp曲线直线段的斜 logp曲线直线段的斜 表示, 率用Cc表示,称为压 缩指数
e1 − e2 Cc = = ∆e / log( p2 / p1 ) log p2 − log p1
4.2 土的压缩性试验及指标
(f)前期固结压力 f)前期固结压力
在 图 4-7 的 e-lgp 曲 线 上 , 对应于曲线段过渡到直线段的 某拐点的压力值是土层历史上 所曾经承受过的最大固结压力 最大固结压力, 所曾经承受过的最大固结压力, 也就是土体在固结过程中所受 到的最大有效应力,称为前期 到的最大有效应力,称为前期 固结压力p 固结压力pc。它是了解土层应 力历史的重要指标。 力历史的重要指标。
4.2 土的压缩性试验及指标
(g)原位压缩e-lgp曲线 g)原位压缩e lgp曲线 原位压缩
对于正常固结土, 1.对于正常固结土,图4-8a 中 E 点反映了原位土的一 个应力-孔隙比状态, 个应力-孔隙比状态,D点 也反应了原位土的一个应 孔隙比状态。 力-孔隙比状态。 连接 E 、 D 点的直线 就是原位压缩曲线, 就是原位压缩曲线,其斜 率Ccf就是原位土的压缩指 数。
4.2 土的压缩性试验及指标
一、室内侧限压缩试验及压缩模量 (3)试验结果 (3)试验结果

土力学 第4章 土的压缩性与地基沉降计算

土力学 第4章 土的压缩性与地基沉降计算

变形测量 固结容器
百分表
加压上盖
透水石
环刀 压缩
容器


试样
护环
支架
设 备
《土力学》 第4章 土的压缩性与地基沉降计算
(2)利用受压前后土粒体积不变和土样截面面积不变两个
条件,可求土样压缩稳定后孔隙比ei
受压前
:VS
(1
e 0
)

H
0
A
受压后:VS (1 e1) H1A
Vs
H 0
A
《土力学》 第4章 土的压缩性与地基沉降计算
土的固结状态对土的压缩性的影响:
在压力p作用下的地基沉降值si: 正常固结土为s1; 超固结土为s2; 欠固结土为s3。
则有:s2<s1<s3
《土力学》 第4章 土的压缩性与地基沉降计算
pc卡萨格兰德法
① 在e–lgp坐标上绘出试样
的室内压缩曲线; ② 找出压缩曲线上曲率最
Cc

lg
e1 p2
e2 lg
p1

e1 e2 lg p2
p1
一般认为:
cc<0.2时, 为低压缩性土; cc=0.2~0.4时,属中压缩性土; cc>0.4时, 属高压缩性土。
图5-6 由e-lgp曲线确定压缩系数cc
《土力学》
第4章 土的压缩性与ຫໍສະໝຸດ 基沉降计算(5)土的回弹与再压缩曲线
H1
A
1e 1e
0
1
受压前后Vs,A不变
H0 H1 H0 s1 1 e0 1 e1 1 e1

e1

e0

s1 H0
1
e0

式中 e0 为土的初始孔隙比,可由土的三个基本实验指标求得,即

土的压缩性与地基沉降计算

土的压缩性与地基沉降计算

的地基沉降量得到了有效控制
4 结论
通过该工程实例可以看出,地基沉降计算对于高层建筑的
设计和施工具有重要意义。准确的沉降计算可以帮助工程
5
师们更好地了解地基的变形情况,优化设计方案,提高建 筑物的安全性和稳定性。同时,对于类似的地质条件和建
Байду номын сангаас
筑物形式,地基沉降计算的经验和教训也可以为其他工程
提供参考和借鉴
地基沉降计算
参数确定
根据试验数据和工程经验,确定 相关参数,如土的压缩系数、弹 性模量、泊松比等。这些参数将 直接影响计算结果的精度
结果分析
对计算结果进行分析,判断其是 否满足工程要求。如果沉降量过 大或不均匀,可能需要采取措施 进行加固或优化设计
进行计算
根据选定的计算方法,利用相关 参数进行计算,得出地基沉降量。 在计算过程中,需要注意考虑各 种因素的影响,如建筑物荷载、 地下水位变化、施工过程等
建筑物的安全性和稳定性
地基沉降计算
总之,土的压缩性与地基沉降计算是土木工程 中非常重要的研究方向和实践领域
通过不断深入的研究和实践,我们可以进一步 提高地基沉降计算的精度和可靠性,为建筑物
的安全性和稳定性提供更好的保障
-


考虑多种因素:地基沉降是一个复 杂的过程,受到多种因素的影响。 在计算过程中,应充分考虑各种因 素的影响,如建筑物荷载、地下水 位变化、施工过程等
动态监测:在施工过程中和建筑 物使用期间,应对地基进行动态 监测,以便及时发现问题并采取 相应措施
地基沉降计算
工程实例
为了更直观地说明地基沉降计算的方法和重要性,下面将给出一个具体的工程实例 工程实例简介 某高层建筑位于城市中心地带,占地面积较大,建筑荷载较大。该建筑的地基土层分布不均, 含有软弱土层,且地下水位较高 沉降计算方法 由于该建筑的地基比较复杂,采用有限元法进行沉降计算。根据地质勘察资料,建立三维有 限元模型,将地基划分为若干个单元,并考虑土的压缩性和侧向变形 参数选取 在该工程中,根据试验数据和工程经验,选取合适的压缩系数、弹性模量和泊松比等参数值。 同时,根据地下水位变化和建筑物荷载情况,对模型进行适当的简化处理

土的压缩性与地基沉降计算

土的压缩性与地基沉降计算

土的压缩性与地基沉降符号约定α1-2:土的压缩系数E s:土的压缩模量C c:压缩指数E0:土的变形模量μ:土的泊松比OCR:超固结比U:固结度一、土的压缩试验与压缩曲线室内侧限压缩试验(亦称固结试验)是研究土压缩性的最基本方法。

1、压缩曲线实验得到各级荷载p作用下对应的孔隙比e,从而可绘制出土的e-p曲线及e-lgp曲线:2、压缩系数在曲压缩试验所得的e-p曲线上,常以p1=100kPa、p2=200kPa及相对应的孔隙比e1和e2计算土的压缩系数:。

依α1-2可评价土的压缩性高低:为低压缩性土,为中压缩性土,为高压缩性土。

3、压缩模量土的压缩模量E s是表示土压缩性的又一指标,也采用室内侧限压缩试验获得,依E s可评价土的压缩性高低。

4、压缩指数在曲压缩试验所得的e-lgp曲线上,常出现直线段,直线段的斜率记作,称为压缩指数,在压力较大时为常数,不随压力变化而变化。

C c值越大,土的压缩性越高。

5、变形模量变形模量由现场静载试验确定。

,其中为土的泊松比。

二、基础沉降1、分层总和法计算最终沉降量分层总和法采用完全侧限条件下的压缩性指标计算沉降量,假定土层只发生竖向变形,不发生侧向变形。

求解步骤及注意事项:(1)分层:一般取0.4b或1~2m一层,地下水位线及土层界面应为分层界面;(2)求每一层顶面、底面的自重应力和附加应力,并分别求他们的平均值;(3)确定计算深度,对于一般土层,≤0.2;对于软土层,≤0.1。

(☆)(4)计算各层压缩量;(5)求和。

2、规范法计算最终沉降量略。

3、弹性理论法计算最终沉降量略。

三、地基变形与时间的关系1、地基最终沉降量的组成(1)瞬时沉降:加压之后即时发生的沉降,此时地基土只发生剪切变形,其体积还来不及变化。

(2)固结沉降:荷载作用下随着土孔隙中水分的逐渐挤出,孔隙体积相应减少而发生的沉降。

(3)次固结沉降:孔隙水压力消散后仍在继续缓慢进行的,由土骨架蠕变而引起的沉降。

土的压缩性与地基沉降计算

土的压缩性与地基沉降计算
式中:Cd:次固结系数, e-logt曲线上后段的斜率。 t:所求次固结沉降的时间; tt:主固节达100%时的时间; e0i:第i层土在主固结为100%时的孔隙比
地基瞬时沉降Sd的计算
饱和粘性土的瞬时沉降,可近似按弹性力学公式 计算:
Sd=·(1- 2)·P·B/E
地基的最终沉降量
概述 1)定义:地基的最终沉降量是指地基土层在附
甲:被影响建筑物 乙:影响建筑物 第1步:用角点法计算P0范围(2 abed)的荷载在O点下
任意深度引起的附加应力σz
划分网格:I区: oabc II区: odec
(σz )O= 2 (cI- CII) P0 第2步:用分层法或规范法计算σz
在甲地基中查生的沉降即为所求。
地基沉降与时间的关系
前面讲述的是地基的最终沉降量计算,有时对于饱和软粘土地 基尚需研究地基的沉降过程或在某一个时间点的沉降大小。所 以要研究地基沉降与时间的关系。
详细过程请参照黑板.
2、推荐公式
3、参数释义
σi :基底中心O点以下深度Z i 范围的平均附加应力,kpa σi-1:基底中心O点以下深度Z i-1 范围的平均附加应力,kpa i :基底中心O点以下深度Z i 范围的平均附加应力系数 i-1 :基底中心O点以下深度Z i-1 范围的平均附加应力系数 Z i :自基础底面至第i层土底面的垂直距离,m,cm. Zi-1 :自基础底面至第i-1层土底面的垂直距离,m,cm. Esi:第i层土的侧限压缩模量,Mpa S’:未作修正时按理论计算的地基沉降量大小.m,cm. n:地基压缩层范围内按天然土层界面划分的土层数 S:修正后地基的最终沉降量. s:沉降计算经验系数,由Es 、 P0查表5.3,可以内插.
瞬时沉降; 主固结沉降

3.土的压缩性和地基沉降计算

3.土的压缩性和地基沉降计算

前期固结压力的确定
确定先期固结压力步骤如下: (1)从e~logp曲线上找出曲率半 径最小的一点A,过A点作水平线 A1和切线A42; (2)作lA2的平分线A3,, 与
e~logp 曲线中直线段的延长线相交
于B点; (3)B 点所对应的有效应力就是 先期固结压力pc。
初始(原始)压缩曲线确定
n
考虑应力历史的地基沉降计算
超 固 结 土
p ( pc p1 )
p ( pc p1 )
pci p1i pi Hi S C log Cei log p ci p p 1 e i 1 0i ci 1i
考虑应力历史的地基沉降计算
正常固结土
欠固结土
p1i pi Hi S Cci log p i 1 1 e0 i 1i
n
S
p1i pi Hi Cci log p i 1 1 e0 i ci
若pc> p1 ,则试样是超固结的。由于超固结土由 前期固结压力pc减至现有有效应力p1期间曾在原位经历 了回弹。因此,当超固结土后来受到外荷引起的附加 应力p时,它开始将沿着原始再压缩曲线压缩。如果 p较大,超过(pc- p1 ),它才会沿原始压缩曲线压缩 。 超固结土原始压缩曲线推求: (1) 先作b1点,其横、纵坐标分别为试样的现场自 重压力p1 和现场孔隙比 e0; (2) 过b1点作一直线, 其斜率等于室内回弹曲线与再压缩曲线的平均斜率, 该直线与通过B点垂线(其横坐标相应于先期固结压力 值)交于b1 点, b1 b就作为原始再压缩曲线。其斜率为回 弹指数Ce; (3) 作c点,由室内压缩曲线上孔隙比 等0.42 e0处确定; (4) 连接bc直线,即得原始压缩 曲线的直线段,取其斜率作为压缩指标Cc。 若p c < p1,则试样是欠固结的,由于自重作用下的压缩尚 未稳定,实质上属于正常固结土一类,它的现场压缩 曲线的推求方法完全与正常固结土一样。

土的压缩性和地基沉降计算

土的压缩性和地基沉降计算

土的压缩性和地基沉降计算土壤的压缩性和地基沉降计算是土木工程中一个重要的问题,与地基设计和结构安全密切相关。

本文将从土壤的压缩性和地基沉降计算的基本原理、方法以及在实际工程中的应用等方面进行探讨。

一、土壤的压缩性土壤的压缩性指的是土壤在受一定应力作用下发生体积变化的能力。

当土体受到应力作用时,其中的孔隙水和气体会逐渐排出,土体颗粒之间的接触点受到应力的作用,导致土体发生变形。

根据土壤的压缩性质,可以将土壤分为压缩性土和不压缩性土。

压缩性土的体积变化主要是由于土体颗粒重新排列和孔隙压缩导致的,而不压缩性土的体积变化主要是由于土体颗粒的破碎和溶解引起的。

压缩性土的压缩度是评价土壤压缩性的重要参数。

压缩度可以分为初始压缩度和终极压缩度。

初始压缩度是指土壤在施加一定压力之前的初始压缩变形,主要包括初始固结和微观结构的调整。

终极压缩度是指土壤在持续施加一定压力后,接触点进一步调整和颗粒重新排列导致的终极压缩变形。

二、地基沉降计算方法地基沉降计算是指在地基承受荷载的作用下,土壤发生压缩而导致的地基下沉。

地基沉降计算的目的是为了保证结构的安全和稳定,避免地基沉降过大导致结构沉降、损坏甚至倾斜。

地基沉降的计算方法主要分为经验公式法、理论计算法和实测法。

经验公式法是通过以往工程经验总结出的关于地基沉降与荷载、土壤性质等因素之间的经验关系进行计算。

理论计算法是基于土壤力学理论和压缩性原理,通过推导土壤压缩系数、土压力分布等参数,采用有限元分析或解析方法计算地基沉降。

实测法是通过在工程中实测地基沉降数据,将实测数据进行处理分析得到地基沉降。

在实际工程中,地基沉降的计算方法通常是综合应用经验公式法、理论计算法和实测法。

先根据经验公式估算地基沉降量的大致范围,然后根据工程实际情况选择合适的理论计算方法进行计算,最后在工程实施过程中结合实测数据进行验证和修正。

三、地基沉降计算的应用地基沉降计算在土木工程中有着广泛的应用。

首先,在地基设计中,地基沉降计算可以用于确定结构地基的稳定性和安全性,从而选择合适的地基改良方法。

土力学第3章土的压缩性与地基沉降计算

土力学第3章土的压缩性与地基沉降计算

pc p0
第14页/共27页
e
e
e
p
z z p0 pc
OCR 1 正常固结状态
p
p0 pc
pc p0 OCR 1
超固结状态
p
pc p0
pc p0 OCR 1
欠固结状态
第15页/共27页
先期固结压力 pc 的确定
Casagrande 法
1. 在e-lgp曲线上,找出曲 率半径最小的点A
3.1.3 土的回弹曲线与再压缩曲线 土的回弹曲线与再压缩曲线
在进行室内试验过程中,当土压力加到某一数值后,逐渐卸压,土样 将发生回弹,土体膨胀,孔隙比增大,若测得回弹稳定后的孔隙比, 则可绘制相应的孔隙比与压力的关系曲线称为回弹曲线。
第12页/共27页
3.1.4 应力历史对压缩性的影响
一、沉积土的应力历史
后,进行逐级加压固结(一
般按p=50kPa、100kPa、
200kPa、300kPa、400kPa
5级加荷),测定各级压力p
作用下土样的压缩稳定后的
孔隙比变化。
三联固结仪
第2页/共27页
• 压缩仪示意图
试验方法:侧限压缩试验
加压活塞 刚性护环
荷载 透水石 环刀
土样
注意:土样在竖直压 力作用下,由于环刀 和刚性护环的限制, 只产生竖向压缩,不 产生侧向变形
2. 作水平线m1
3. 作A点切线m2
4. 作m1,m2 的角分线m3
5. m3与试验曲线的直线段 交于点B
pc
6. B点对应开普顿在对大量资料
进行统计分析的基础上
提出了按塑性指数近似

确定pc 的公式可供参考。 式中, -土的不排水剪抗

41土的压缩性和地基沉降计算

41土的压缩性和地基沉降计算
相邻荷载对沉降量有较大的影响,在附加应力计算中应考 虑相邻荷载的作用
3.当建筑物基础埋置较深时,应考虑开挖基坑时地基土的 回弹,建筑物施工时又产生地基土再压缩的情况
回弹在压缩影 响的变形量
sc
c
n i 1
Pc Eci
(zi
i
zi1
) i 1
式中:
sc——考虑回弹再压缩影响的地基变形
计算深度取至 基坑底面以下 5m,当基坑底 面在地下水位 以下时取10m
的比值为20%处,即σz=0.2σc
处的深度作为沉降计算深度的 下限
对于软土,应该取σz=0.2σc处,
若沉降深度范围内存在基岩时, 计算至基岩表面为止
确定地基分层
1.不同土层的分界面与地下水位 面为天然层面
2.每层厚度hi ≤0.4b
计算各分层沉降量
根据自重应力、附加应力曲线、
e-p压缩曲线计算任一分层沉降量
土体在侧限条件下孔隙比减少量与竖向压应力增量的比值
e
e0
e1 △e M1
e2
△p
斜 率a e= e1 e2 p p2 p1
利用单位压力增量所引起 得孔隙比改变表征土的压
缩性高低
M2
a de
dp
p1e-p曲线p2
p 在压缩曲线中,实际采 用割线斜率表示土的压
《规范》用p1=100kPa、 p2=200kPa 缩性
按分层总和法求得基础最终沉降量为s=Σsi =54.7mm B.《规范》法计算
1. σc 、σz分布及p0计算值见分层总和法计算过程
2. 确定沉降计算深度
3. 确定各层Esi
zn=b(2.5-0.4lnb)=7.8m
4. 根据计算尺寸,查表得 到平均附加应力系数

土的压缩性与地基沉降计算

土的压缩性与地基沉降计算

灌浆加固
通过灌浆技术将浆液注 入土体中,提高土体的
强度和稳定性。
土体置换
对于软弱土体,可采用 优质土进行置换,提高 土体的承载力和稳定性

地基沉降控制案例分析
某高层建筑地基沉降控制
某桥梁墩台基础沉降控制
通过采用复合地基和分层处理方法, 有效控制了高层建筑的地基沉降。
通过采用桩基和扩大基础等措施,有 效控制了桥梁墩台的基础沉降。
80%
室内试验
通过室内试验测定土的压缩系数 、压缩模量等参数,进而预测地 基沉降量。
100%
数值模拟
利用数值模拟软件对土体进行模 拟分析,预测地基沉降量。
80%
经验公式
根据工程实践经验,总结出一些 经验公式来预测地基沉降量。
04
地基沉降控制措施
地基沉降控制原则
预防为主
在设计和施工过程中,应采取 有效的预防措施,减少地基沉 降的可能性。
缺点
计算量大,对计算机资源要求较高,且建模和参 数设置需专业人员操作。
极限分析法
基本原理
基于土体的极限平衡状态,通 过分析土体的极限承载力和稳
定性来进行地基沉降计算。
应用范围
适用于大变形和应力状态的极 限分析,如滑坡、沉陷等。
优点
能够考虑土体的极限承载力和 稳定性,适用于大变形和应力 状态的工程问题。
缺点
忽略土体的非线性、剪切变形 和孔隙水压力等因素,可能的地基土体离散为有限个单元,根据力的 平衡条件和变形协调条件进行计算。
优点
能够模拟复杂的地形、地质条件和施工过程,计 算精度高。
应用范围
适用于各种复杂的地质条件和边界条件,能够考 虑土体的非线性、剪切变形和孔隙水压力等因素 。

第四章 土的压缩性与沉降计算

第四章 土的压缩性与沉降计算
第四章 土的压缩性与沉降计算 26
令∫ αdz = α ⋅ z
0
z
1 1
其中
∫ αdz α=
0
z
- -
z
为z深度范围内附加应力系数的平均值,即 平均附加应力系数(查表)
p0 则Si = (ziαi − zi−1αi−1) Esi
第四章 土的压缩性与沉降计算 27
0.25 0.25
- -
附加应力系数曲线
[
]
第四章 土的压缩性与沉降计算
15
又ε z =
σz
Es
(1− 2µK0 )
σz
Es
=
σz
E0
∴E0 = Es (1− 2µK0 )
令β = 1− 2µK0 则E0 = βEs
因β< 所以,理论上E0均小于Es 1
第四章 土的压缩性与沉降计算 16
2 实际上 硬土:E0均大于Es(扰动影响) 软土:E0接近Es
Es↓→压缩性越高
∆p
ε=
σz
Es
注意二者的区别
Es(压缩模量)---有侧限条件下的模量 E(弹性模量)---无侧限条件下的模量
特别注意:以上三个压缩性指标均是指某个荷载段 某个荷载段 的压缩特性。同一土样,荷载段不同, 压缩性指标也不同。
第四章 土的压缩性与沉降计算 8
第四章 土的压缩性与沉降计算
31
要点小结:
•建筑基础(形状、大小、重量、埋深) 建筑基础(形状、大小、重量、埋深) 建筑基础 •地基各土层的压缩曲线 地基各土层的压缩曲线 •计算断面和计算点 计算断面和计算点 •自重应力 自重应力 •基底压力→基底附加应力 基底压力→ 基底压力 •附加应力 附加应力 •确定计算深度 确定计算深度 •确定分层界面 确定分层界面 •计算各土层的σszi,σzi 计算各土层的σ 计算各土层的 •计算各层沉降量 计算各层沉降量 •地基总沉降量 地基总沉降量

土力学 第五章 土压缩性与地基沉降计算

土力学 第五章 土压缩性与地基沉降计算

土的压缩性的有关概念
为了保证建筑物的安全和正常使用,地基的最大
沉降量和沉降差都必须控制在一定的范围之内。
建筑物地基沉降的研究内容:
绝对沉降量的大小
沉降与时间的关系
第一节 土的压缩性试验 及压缩性指标
一、室内压缩试验及压缩模量
室内侧限压缩试验(固结试验)
百分表 压缩容器
支架
加 压 设 备
pc OCR p0
土的固结状态的划分
正常固结土:
土层的自重应力等于前期固结压力,OCR = 1;
超固结土:
土层的自重应力小于前期固结压力,OCR > 1;
欠固结土:
土层的自重应力大于前期固结压力,OCR < 1。
二、现场载荷试验及变形模量
载荷试验装置
堆重平台反力法
地锚反力架法
室内压缩试验与现场载荷试验的比较
地基是均质的、各向同性的线弹性半无限连续体;
基础整个底面和地基土体一直保持接触。
集中荷载作用下地表沉降
Q 1
2 2 2
s

2
E x y
Q 1

Er
完全柔性基础沉降
均布荷载作用下矩形完全柔性基础下任意点沉降:
1 so obp0 E
2
中点沉降影响系数, l/b的函数,表5-3
高压缩性土 Cc > 0.4
土的回弹曲线和再压缩曲线
回弹曲线与初始压
缩曲线并不重合; 土样中有残留的塑 性变形(残余变 形),但也有恢复 的弹性变形;
超过卸载点后,再
压力完全卸除以后,
压缩曲线就像是初 始压缩曲线的延长 线。
e~p 曲线

土的压缩性与地基沉降计算—地基沉降量计算(土力学课件)

土的压缩性与地基沉降计算—地基沉降量计算(土力学课件)

1 5
Ai-16
2
C i-1σz0
△z
(2)计算原理
利用附加应力面积A的等代值计算地基任意 土层的沉降量,因此第i层沉降量为
si
Ai
Ai1 Esi
z(0)
Esi
( zi Ci
zi1Ci1)
根据分层总和法基本原理可得 地基沉降量的基本公式
s
n i1
si
n i1
(z 0) Esi
(
ziCi
△z
zi
zi-1
第i层 第n层
b C i-1
Ci
平均附加应力 系数曲线
s
ms
n
si
i 1
ms
n
i 1
z(0)
Esi
( zi Ci
zi1Ci1 )
2.地基总沉降量的计算
(2)计算原理
厚度为z均质地基土,在侧限条件下,压缩模量Es 不随深度变化,土层的压缩量为
分层总和法
si
zi
Esi
hi
按铁路桥涵地基和基础设计规范 计算地基沉降量-案例1
按《铁路桥涵地基和基础设计规范》计算地基沉降量-案例1
矩形基础长3.6m,宽2m,地面以上荷载重量F=900KN, 地基为均质黏土,重度γ=18KN/m3,e0=1.0;a=0.4MPa-1。 试按《铁路桥涵地基和基础设计规范》计算地基沉降量 (确定修正系数时,按σz0=σ0 确定)
分层总和法简介-作业1
1.分层总和法:将地基压缩层范围以内的土层划 分成若干薄层,分别计算每一薄层土的变形量, 最后总和起来,即得基础的沉降量。 2.地基最终沉降量:地基变形完全稳定时,地基 表面的最大竖向变形量。
分层总和法简介-作业1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t0,u,0
(2)随着时间增长,有效应力逐渐增大, 孔隙水压力逐渐减小;


t,,u.u
(3) 当弹簧压力


筒中水停止向外流出, u 0
2.有效压力与孔隙水压力在深度上随时间的分布
二、单向固结理论
单向固结是指土孔隙水在孔隙水压力作用下,只产生竖直 一个方向渗流,同时土颗粒在有效应力的作用下,也只沿竖直 一个方向位移。
变增量△的比值。反映了土体在无侧膨胀条件下抵抗压缩变 形的能力,E值越大,说明了土的压缩性越小。
Es
P

P H

P e
1e1 a
H 1
1e1
(3)压缩指数Cc
在e-lg p曲线中可以看到,当压力较大时,e-lg p曲线接近直线。
将e-lg p曲线直线段的斜率用Cc来表示,称为压缩指数。
第一节 概 述
一、土的压缩性
土的压缩性是指在外荷载作用下,土体体积变小的性质. 它反映的是土中应力与其变形之间的变化关系,是土的基本 力学性质之一。
土体压缩变形一般包括: ①孔隙体积的减小; ②孔隙中水被压缩; ③土粒本身被压缩。
二、沉降的概念
建筑物作为外荷载作用于地基上,使地基中产生附加应 力,而附加应力的产生致使地基土出现压缩变形,通常将建 筑物基础随地基产生的竖向变位称之为沉降。
U St S
2.计算公式 ①当地基中附加应力上下均匀分布时 a.计算地基中某一点的固结度u 此时若荷载不大,土中应力与应变可采用直线关系。地基
中某一点的固结度为有效应力对总应力的比值:

USt u1u S
b.计算地基平均固结度u。
实际上,地基中各点的应力不等,故各点的固结度也不同。
根据压缩过程中土样变形与土的三相指标的关系,可以导
出试验过程孔隙比e与压缩量的关系,从而可绘制出土样压缩 试验的e-p 曲线及e-lgp曲线等。
2. 压缩性指标
(1)压缩系数a
ape12 ep21e1 pe2(1Ma)P
压缩系数愈大,土的压缩性愈高。
压缩系数a值与土所受的荷载大小有关。
确定压缩层的计算深度
压缩层的计算深度一般要经过试算才能得到。规范规定:如已确定 的计算深度下有较软土层时,尚应继续计算,直到软弱土层中1米厚的 压缩量满足下式要求为止
Sn / 0.02S 5n
某水中基础如图所示,基底尺寸为6m×12m,作用于基底 的中心荷载Ⅳ:17490kN(只考虑恒载作用,其中包括基础 重力及水的浮力),基础埋置深度h=3.5m,地基上层为透水 的亚砂土,其r=19.3lkN/m3,下层为硬塑粘土, r=18.6kN/m3,求基础中心下各点(1—7点)的竖向自重应力 和附加应力,并画出应力分布图。
2.地基变形模量
在p-s曲线中,当荷载p小于某数值时,荷载p与载荷板沉
降之间基本呈直线关系。在这段直线关系内,可根据弹性理
论计算沉降的公式反求地基的变形模量E0:
EPB12 S
三、旁压试验
用于测定地下较深土层的压缩性指标。将竖向加载改为水 平方向加载,试验原理基本同荷载试验。
第四节 分层总和法计算基础沉降量
u t

Cv
2u z2
土的固结系数
k1e
Cv wa
3.单向固结微分方程解
根据图初始条件和边界条件:
4
u
1sinmzem242Tv
m1m 2H
Tv

Cv H2
t
三、固结度
1.固结度的概念 它表示地基在外荷载作用下,经历时间t所完成的固结 程度。沉降量St与最终沉降量S之比值,称之为固结度U,即:
工程中一般采用100~200 kPa压力区
间内对应的压缩系数a1-2来评价土的压
缩性。
a1-2<0.1 MPa-1 0.1 MPa-1≤a1-2<0.5 MPa-1 a1-2≥0.5 MPa-1
属低压缩性土; 属中压缩性土; 属高压缩性土。
(2)压缩模量Es 土在完全侧限的条件下,竖向应力增量△P与相应的应
最终沉降量是指建筑物地基从开 始变形到变形稳定时基础的总沉 降值。
最终沉降量
分层总和法是将地基土在一定深度范围内划分成
若干薄层,先求得各个薄层的压缩量,再将各个薄层的压 缩量累加起来,即为总的压缩量。
计算沉降时,由于采用了一系列计算假定,还需对总的 压缩量根据经验进行修正。
一、计算假定
1.地基中划分的各薄层均在无侧向膨
由于采用了一系列计算假定,求出的总压缩量与工程实际有一定出入, 故现行规范用经验系数进行修正。
Sms
n 1
e1i e2i 1e1i
hi
S ms
i 1
zi
Esi
hi
Sms
n 1
e1i e2i 1e1i
hi
三、计算步骤
❖ 地基土分层
成层土的层面及地下水面是当然的分层界面,分层厚度
胀情况下产生竖向压缩变形。 2.基础沉降量按基础底面中心垂线上
的附加应力进行计算。 3.对于每一薄层来说,从层顶到层底
的应力是变化的,计算时均近似地取层 顶和层底应力的平均值。
4.只计算“压缩层”范围内的变形。 所谓“压缩层”是指基础底面以下地基 中有显著变形的那部分土层。
二、计算公式
1.各薄层压缩量计算公式 设第i薄层土的竖应力从p1i增加到p2i,其变形稳定后 的压缩量为△si,薄层厚度为hi,
1.基本假定
①土层是均匀的,而且是完全饱和的 ②土粒和水自身是不可压缩的; ③土的压缩和水的渗透,只在竖直单向上发生,而水平 方向不排水,不压缩; ④在压缩过程中,渗透系数和压缩模量不发生变化; ⑤附加应力一次骤加,且沿土层深度呈均匀分布。
2.单向固结微分方程的建立
在土层任意深度z处,取一个微单元体进行分析。假定 单位时间内单元体内挤出的水量等于单元体压缩量. 推出
cc

e1 e2 lgp2 lgp1

e lgp2
p1
压缩指数Cc与压缩系数 a 不同,它在压力较大时
为常数,不随压力变化而变化。
Cc值越大,土的压缩性越高,低压缩性土的Cc一 般小于0.2,高压缩性土的Cc值一般大于0.4。
二、现场荷载试验
1.试验方法
现场载荷试验是在工程现场 通过千斤顶逐级对置于地基土 上的载荷板施加荷载,观测记 录沉降随时间的发展以及稳定
时的沉降量s,将上述试验得到
的各级荷载与相应的稳定沉降
量绘制成p-s曲线,即获得了地
基土载荷试验的结果。
加载由小到大分级进行,每级增加的压力值视土质软硬 程度而定,
对较松软的土,一般为10—25kPa; 对较坚硬的土,一般按50一lOOkPa的等级增加。
每加一级荷载,必须待沉降基本稳定时,量测承压板的 沉降量后,再加下一级荷载。 沉降基本稳定,通常指: 对于粘性土,30min内的沉降值小于0.05mm; 对于砂性土30min内的沉降值小于0.1mm。
z
si hi
e1i e2i 1e1i
si
e1i e2i 1e1i
hi
由压缩模量的定义知:
Esi

p si
si

p Esi
hi
hi
si

zi
E si
hi
2.各薄层压缩量求和公式
基础的总沉降量就是在压缩层范围内各薄层压缩量的总和
n
Sn Si
1
3.基础总沉降量的规范公式
第五节 基础沉降与时间的关系
一、饱和土体渗透固结概念
1.饱和土体的渗流固结过程 饱和土体排水时间长短主要取决于土层排水距离长短、土 粒粒径与孔隙大小,土层渗透系数和荷载大小以及土的压缩系 数高低等因素。
饱和土体的渗流固结过程,就是土中的孔隙水压力消散 并逐渐转移为有效应力的过程。
(1)压力施加瞬间
一般不宜大于0.4b(b为基底宽度)。
❖ 计算各分层界面处土自重应力和基底中心下竖向附加应
力。土自重应力应从天然地面起算。
❖ 确定地基沉降计算深度(或压缩层厚度)

计算各分层土的压缩量。
si
e1i e2i 1e1i
hi
❖ 叠加计算基础的平均沉降量。
n
Sn Si
1
❖ 确定压缩层的计算深度
荷载作用情况 沉降量的大小
土的压缩性
第二节 有效应力原理
孔隙水 压力

u
有效应 力
有效应力原理包含了两个内容:
一 是土的有效应力等于总应力减去孔隙水压力; 二 是仅仅作用在骨架上的有效应力才是影响土的变形 和强度的决定因素。
第三节 土的压缩性指标和确定方法 一、室内固结试验
1.试验方法
80%,90%。
4.计算时间因子L。由假定的每一个平均固结度Uo与a值,
应用图查出横坐标时间因子。
5.计算时间t。由地基土的性质指标和土层厚度,计算每一Uo
的时间t。
6.计算时间t的沉降量
St UtS
7.绘制St与t的曲线。以计算的St为纵坐标,时间t为横坐标, 在直角坐标系中,绘制S地基的平均固结度
U0
1
8
2
e42Tv
②地基单面排水,且上下面附加应力不等时
四、地基沉降与时间关系的计算步骤
1.计算地基总沉降量S。由前述《规范》分层总和法进行计算。
2.计算附加应力比值a。由地基附加应力计算
3.假定一系列地基平均固结度。如:10%,20%,40%,60%,
相关文档
最新文档