五年级奥数天天练(中难度)

合集下载

奥数天天练五年级2011年12月26日-12月30日(中难度)

奥数天天练五年级2011年12月26日-12月30日(中难度)

学而思奥数网天天练五年级2011年12月26日-12月30日(中难度)答:答:答第一题:整除问题若四位数98a a能被15整除,则a代表的数字是.第二题:数论问题一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数.第三题:分数应用问题五年级甲班的学生不超过60人,在一次数学测验中,分数不低于90分的人数占17,得80~89分的人数占12,得70~79分的人数占13,那么,得70分以下的有多少人?答:答:第四题:行程问题客车和货车分别从甲、乙两站同时相向开出,第一次相遇在离甲站40千米的地方,相遇后辆车仍以原速度继续前进,客车到达乙站、货车到达甲站后均立即返回,结果它们又在离乙站20千米的地方相遇。

求甲、乙两站之间的距离。

第五题:排列组合有3封不同的信,投入了4个信箱,一共有多少种不同的投法?奥数天天练五年级2011年12月26日-12月30日(中难度)第一题答案:因为15是3和5的倍数,所以98a a既能被3整除,也能被5整除.能被5整除的数的个位数字是0或5,能被3整除的数的各位数字的和是3的倍数.当0a=时,9817a a+++=,不是3的倍数;当5a=时,9827a a+++=,是3的倍数.所以,a代表的数字是5.第二题答案:现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要有具体的数字,而现在没有,所以我们选择先从数字和入手.5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989.第三题答案:由题意,“分数不低于90分的人数占17,得80~89分的人数占12,得70~79分的人数占13”,可知参加考试的学生人数是7,2,3的倍数,因为7,2,3的最小公倍数为42,4228460⨯=>,所以五年级甲班共有学生42人.那么得70分以下的学生有:11142(1)1723⨯---=人.第四题答案:第一次相遇时,客车、货车共行走了1倍的甲、乙全长;也就是第二次相遇距出发时间是第一次相遇距出发时间的3倍,第一次甲行走了40千米,则第二次甲行走了40×3=120千米。

奥数天天练(中难度)五年级-最新精品

奥数天天练(中难度)五年级-最新精品

学而思奥数网天天练(中难度)五年级答:答答:第一题:年龄爷爷告诉小明:“当我在你爸爸现在这个年龄的时,你爸爸当时的年龄比你现在年龄大了3岁。

”如果爷爷、爸爸和小明三人现在的年龄和是99岁,则爸爸现在的年龄是岁。

第二题:行程一列火车出发1小时后因故障停车0.5小时,然后以原速的34前进,最终到达目的地晚1.5小时。

若出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的34前进,则到达目的地仅晚1小时,那么整个路程为公里。

第三题:平均数将一群人分为甲、乙、丙三组,每人都必在且仅在一组。

已知甲、乙、丙的平均年龄分别为37、23、41。

甲、乙两组人合起来的平均年龄为29;乙、丙两组人合起来的平均年龄为33。

则这一群人的平均年龄为。

答:答:学而思奥数网天天练(中难度)五年级第一题答案: 爷爷和爸爸的年龄差比爸爸和小明的年龄差小3,所以爷爷的年龄加上小明的年龄是爸爸年龄的两倍少3岁,所以爸爸现在的年龄为()993334+÷=(岁)第二题答案: 第一次速度变为原来的34,行驶相同路程所需时间变为原来的43,所以如果火车以原速行驶需要4(1.50.5)(1)143-÷-+=(小时),第五题:图形 如图所示是一个正六边形的图案,已知正六边形的面积为254cm ,则阴影部分的面积是 2cm 。

30°60°60°60°60°60°第5题60° 第四题:数字迷 华杯赛网址是“ ”,将其中的字母组成如下算式: 2008www hua bei sai cn ++++= 如果每个字母分别代表0~9这十个数字是的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且8w =、6h =、9a =、7c =,则三位数bei 的最小值是 。

同理第二次火车行驶90公里的时间为441(10.5)(1) 1.53---÷-=(小时),所以火车原来的速度为90 1.560÷=(公里/小时)。

五年级奥数天天练(中难度)-名校版

五年级奥数天天练(中难度)-名校版

学而思奥数网天天练周练习(五年级)(中难度)姓名:成绩:答:答:第一题:牛吃草有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?第二题:阴影面积如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.答:答:答:第三题:分数一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原来的分数在约分前是第四题:自然数从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.第五题:排队画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.学而思奥数网天天练周练习(五年级)答案第一题答案:解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584⨯÷=份草;所以1公顷草地每天新生长的草量为()()846045301.6-÷-=份,1公顷原有草量为60 1.63012-⨯=.24公顷草地每天新生长的草量为1.62438.4⨯=;24公顷草地原有草量为1224288⨯=.那么24公顷草地80天可提供草量为:28838.4803360+⨯=,所以共需要牛的头数是:33608042÷=(头)牛.(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]5,15,24120=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192⨯-⨯÷-=,120 公顷草地原有草量为()240192301440-⨯=.120公顷草地可供144080192210÷+=(头)牛吃80天,那么24公顷草地可供210542÷=(头)牛吃80天.第二题答案:解答:本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.第三题答案:解答:设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知21833225xx-=-,交叉相乘得1090966x x-=-,解得24x=.于是,原来分数的分子、分母分别为222448x=⨯=.332472x=⨯=所以,原来的分数在约分前是4872.第四题答案:解答:方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数{}3,12,21,30,,1992,共计222个数{}4,13,22,31,,1993,共计222个数{}5,14,23,32,,1994,共计222个数{}6,15,24,33,,1986,共计221个数{}7,16,25,34,,1987,共计221个数{}8,17,26,35,,1988,共计221个数{}9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.第五题答案:解答:如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552⨯-⨯=,即1分钟来的人为240.5÷=,原有的人为:()30.5922.5-⨯=.这些人来到画展,所用时间为22.50.545÷=(分).所以第一个观众到达的时间为8点15分.点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

奥数天天练五年级2012年3月19日-3月23日(中难度)

奥数天天练五年级2012年3月19日-3月23日(中难度)

学而思奥数网天天练五年级2012年3月19日-3月23日(中难度)答:答:答:第一题:时钟问题有一个始终每小时快20秒,它3月1日中午12点准确,下一次准确的时间是什么时间?(5月30日 12时)第二题:几何问题如图,ABC是等腰直角三角形,D是半圆周的中点,BC是半圆的直径.已知AB= BC=10,那么阴影部分的面积是多少?(圆周率取3.14)第三题:和差倍问题春风小学原计划种杨树、柳树和槐树共1500棵,植树开始后,当种了杨树总数的3/5和30棵柳树后,又临时运来15棵槐树,这是剩下的3种树的棵数恰好相等,问原计划要栽植这三种树各多少棵?答:答:第四题:行程问题甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜。

已知甲、乙的速度分别为1.0米/秒和0.8米/秒。

问:(1)比赛开始后多长时间甲追上乙?(2)甲追上乙时两人共迎面相遇了几次?第五题:速算与巧算奥数天天练五年级2012年3月19日-3月23日(中难度)第一题答案:一圈快20x12=240秒=4分,一共要快几圈才会正好对准标准时间12x60÷4=180(圈),换算成是几日180x12=2160时=90日,3月1日中午12时+90日=5月30日12时第二题答案:第三题答案:假设杨树、柳树和槐树棵树分别为:a、b和c,由题意可得:a+b+c=1500 (1 - 3/5)a=b-30 b-30=c+15易得到三种树分别为:825、360、315棵第四题答案:(1)250秒;(2)4次。

如图,构造柳卡图,可见比赛开始250秒后甲追上乙,他们相遇4次。

奥数天天练五年级2011年9月13日-9月16日(中难度)

奥数天天练五年级2011年9月13日-9月16日(中难度)

学而思奥数网天天练五年级2011年09月13日-09月16日(中难度)答:答:第一题:面积(第四届"迎春杯"试题)如图,三角形ABC 的面积为1,其中AE=3AB ,BD=2BC ,三角形 BDE的面积是多少?第二题:面积如图,三角形ABC被分成了甲(阴影部分)、乙两部分,BD=DC=4,BE=3 ,AE=6 ,乙部分面积是甲部分面积的几倍?第三题:算一算(第四届"走美"试题)30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色、……的次序串成一圈.一只蚱蜢从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上.这只蚱蜢至少要跳几次才能再次落在黑珠子上.答:答:学而思奥数网天天练五年级2011年09月13日-09月16日(中难度)第一题答案:第四题:计算 (第三届"走美"试题)在1989后面写一串数字.从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字.这样得到1989286884L. 这串数字中,前2008个数字的和是__________.第二题答案:第三题答案:这些珠子按8粒红色、2粒黑色、8粒红色、2粒黑色、的次序串成一圈,那么每10粒珠子一个周期,我们可以推断出这30粒珠子数到第9和10、19和20、29和30、39和40、49和50粒的时候,会是黑珠子.刚才是从第10粒珠子开始跳,中间隔6粒,跳到第17粒,接下来是第24粒、31粒、38粒、45粒、52粒、59粒,一直跳到59 粒的时候会是黑珠子,所以至少要跳7次.第四题答案:首先我们可以来找这列数字的周期.这串数字如下:1989286884286884由下划线处知,从第5个数字开始,按“286884”循环出现.(),除前面的四个数字,后面2004个数字有这样的334组数.-÷=200846334所以前2008个数字之和为:198928688433412051()().+++++++++⨯=。

五年级奥数天天练(中难度)-最新推荐

五年级奥数天天练(中难度)-最新推荐

学而思奥数网天天练周练习(五年级)(中难度)姓名:成绩:答:答:第一题:牛吃草有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?第二题:阴影面积如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.答:答:答:第三题:分数一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原来的分数在约分前是第四题:自然数从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.第五题:排队画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.学而思奥数网天天练周练习(五年级)答案第一题答案:解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584⨯÷=份草;所以1公顷草地每天新生长的草量为()()84604530 1.6-÷-=份,1公顷原有草量为60 1.63012-⨯=.24公顷草地每天新生长的草量为1.62438.4⨯=;24公顷草地原有草量为1224288⨯=.那么24公顷草地80天可提供草量为:28838.4803360+⨯=,所以共需要牛的头数是:33608042÷=(头)牛.(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]5,15,24120=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192⨯-⨯÷-=,120 公顷草地原有草量为()240192301440-⨯=.120公顷草地可供144080192210÷+=(头)牛吃80天,那么24公顷草地可供210542÷=(头)牛吃80天.第二题答案:解答:本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.第三题答案:解答:设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知21833225xx-=-,交叉相乘得1090966x x-=-,解得24x=.于是,原来分数的分子、分母分别为222448x=⨯=.332472x=⨯=所以,原来的分数在约分前是4872.第四题答案:解答:方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990L,共计222个数{}2,11,20,29,,1991L,共计222个数{}3,12,21,30,,1992L,共计222个数{}4,13,22,31,,1993L,共计222个数{}5,14,23,32,,1994L,共计222个数{}6,15,24,33,,1986L,共计221个数{}7,16,25,34,,1987L,共计221个数{}8,17,26,35,,1988L,共计221个数{}9,18,27,36,,1989L,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.第五题答案:解答:如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552⨯-⨯=,即1分钟来的人为240.5÷=,原有的人为:()30.5922.5-⨯=.这些人来到画展,所用时间为22.50.545÷=(分).所以第一个观众到达的时间为8点15分.点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

五年级奥数天天练(中难度)-精选本

五年级奥数天天练(中难度)-精选本

学而思奥数网天天练周练习(五年级)(中难度)姓名:成绩:答:答:第一题:牛吃草有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?第二题:阴影面积如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.答:答:答:第三题:分数一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原来的分数在约分前是第四题:自然数从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.第五题:排队画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.学而思奥数网天天练周练习(五年级)答案第一题答案:解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584⨯÷=份草;所以1公顷草地每天新生长的草量为()()84604530 1.6-÷-=份,1公顷原有草量为60 1.63012-⨯=.24公顷草地每天新生长的草量为1.62438.4⨯=;24公顷草地原有草量为1224288⨯=.那么24公顷草地80天可提供草量为:28838.4803360+⨯=,所以共需要牛的头数是:33608042÷=(头)牛.(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]5,15,24120=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192⨯-⨯÷-=,120公顷草地原有草量为()240192301440-⨯=.120公顷草地可供14408019221÷+=(头)牛吃80天,那么24公顷草地可供210542÷=(头)牛吃80天.第二题答案:解答:本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.第三题答案:解答:设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知21833225xx-=-,交叉相乘得1090966x x-=-,解得24x=.于是,原来分数的分子、分母分别为222448x=⨯=.332472x=⨯=所以,原来的分数在约分前是4872.第四题答案:解答:方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数{}3,12,21,30,,1992,共计222个数{}4,13,22,31,,1993,共计222个数{}5,14,23,32,,1994,共计222个数{}6,15,24,33,,1986,共计221个数{}7,16,25,34,,1987,共计221个数{}8,17,26,35,,1988,共计221个数{}9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.第五题答案:解答:如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552⨯-⨯=,即1分钟来的人为240.5÷=,原有的人为:()30.5922.5-⨯=.这些人来到画展,所用时间为22.50.545÷=(分).所以第一个观众到达的时间为8点15分.点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

[精编]奥数天天练(中难度)五年级

[精编]奥数天天练(中难度)五年级

学五年级天天练(中难度)答:答答:第一题:年龄爷爷告诉小明:“当我在你爸爸现在这个年龄的时,你爸爸当时的年龄比你现在年龄大了3岁。

”如果爷爷、爸爸和小明三人现在的年龄和是99岁,则爸爸现在的年龄是岁。

第二题:行程一列火车出发1小时后因故障停车0.5小时,然后以原速的34前进,最终到达目的地晚1.5小时。

若出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的34前进,则到达目的地仅晚1小时,那么整个路程为公里。

第三题:平均数将一群人分为甲、乙、丙三组,每人都必在且仅在一组。

已知甲、乙、丙的平均年龄分别为37、23、41。

甲、乙两组人合起来的平均年龄为29;乙、丙两组人合起来的平均年龄为33。

则这一群人的平均年龄为。

答:答:天天练(中难度)五年级第一题答案: 爷爷和爸爸的年龄差比爸爸和小明的年龄差小3,所以爷爷的年龄加上小明的年龄是爸爸年龄的两倍少3岁,所以爸爸现在的年龄为()993334+÷=(岁)第五题:图形如图所示是一个正六边形的图案,已知正六边形的面积为254cm ,则阴影部分的面积是 2cm 。

30°60°60°60°60°60°第5题60° 第四题:数字迷华杯赛网址是“ ”,将其中的字母组成如下算式: 2008www hua bei sai cn ++++=如果每个字母分别代表0~9这十个数字是的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且8w =、6h =、9a =、7c =,则三位数bei 的最小值是 。

第二题答案:第一次速度变为原来的34,行驶相同路程所需时间变为原来的43,所以如果火车以原速行驶需要4(1.50.5)(1)143-÷-+=(小时),同理第二次火车行驶90公里的时间为441(10.5)(1) 1.53---÷-=(小时),所以火车原来的速度为90 1.560÷=(公里/小时)。

【推荐】五年级奥数天天练(中难度).doc

【推荐】五年级奥数天天练(中难度).doc

学而思奥数网天天练周练习(五年级)(中难度)姓名:成绩:答:答:第一题:牛吃草有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?第二题:阴影面积如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.答:答:答:第三题:分数一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原来的分数在约分前是第四题:自然数从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.第五题:排队画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.学而思奥数网天天练周练习(五年级)答案第一题答案:解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584⨯÷=份草;所以1公顷草地每天新生长的草量为()()84604530 1.6-÷-=份,1公顷原有草量为60 1.63012-⨯=.24公顷草地每天新生长的草量为1.62438.4⨯=;24公顷草地原有草量为1224288⨯=.那么24公顷草地80天可提供草量为:28838.4803360+⨯=,所以共需要牛的头数是:33608042÷=(头)牛.(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]5,15,24120=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192⨯-⨯÷-=,120 公顷草地原有草量为()240192301440-⨯=.120公顷草地可供144080192210÷+=(头)牛吃80天,那么24公顷草地可供210542÷=(头)牛吃80天.第二题答案:解答:本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.第三题答案:解答:设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知21833225xx-=-,交叉相乘得1090966x x-=-,解得24x=.于是,原来分数的分子、分母分别为222448x=⨯=.332472x=⨯=所以,原来的分数在约分前是4872.第四题答案:解答:方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数{}3,12,21,30,,1992,共计222个数{}4,13,22,31,,1993,共计222个数{}5,14,23,32,,1994,共计222个数{}6,15,24,33,,1986,共计221个数{}7,16,25,34,,1987,共计221个数{}8,17,26,35,,1988,共计221个数{}9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.第五题答案:解答:如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552⨯-⨯=,即1分钟来的人为240.5÷=,原有的人为:()30.5922.5-⨯=.这些人来到画展,所用时间为22.50.545÷=(分).所以第一个观众到达的时间为8点15分.点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

五年级奥数天天练(中难度)

五年级奥数天天练(中难度)

旗开得胜天天练周练习(五年级)(中难度)
姓名:成绩:
第一题:牛吃草
有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长
得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:
第三块草地可供多少头牛吃80天?
答:
第二题:阴影面积
如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.
1
答:
2
答:
第三题:分数
一个分数约分后是
2
3
.如果这个分数的分子减去18,分母减去22,约分后就可以
得到一个新的分数3
5
.那么,原来的分数在约分前是
第四题:自然数
从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.
3
答:
答:
第五题:排队
画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观
众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5
分就没有人排队.求第一个观众到达的时间.
4
5。

五年级奥数天天练(中难度)【最佳】

五年级奥数天天练(中难度)【最佳】

学而思奥数网天天练周练习(五年级)(中难度)姓名:成绩:答:答:第一题:牛吃草有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?第二题:阴影面积如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.答:答:答:第三题:分数一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原来的分数在约分前是第四题:自然数从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.第五题:排队画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.学而思奥数网天天练周练习(五年级)答案第一题答案:解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584⨯÷=份草;所以1公顷草地每天新生长的草量为()()84604530 1.6-÷-=份,1公顷原有草量为60 1.63012-⨯=.24公顷草地每天新生长的草量为1.62438.4⨯=;24公顷草地原有草量为1224288⨯=.那么24公顷草地80天可提供草量为:28838.4803360+⨯=,所以共需要牛的头数是:33608042÷=(头)牛.(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]5,15,24120=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192⨯-⨯÷-=,120 公顷草地原有草量为()240192301440-⨯=.120公顷草地可供144080192210÷+=(头)牛吃80天,那么24公顷草地可供210542÷=(头)牛吃80天.第二题答案:解答:本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.第三题答案:解答:设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知21833225xx-=-,交叉相乘得1090966x x-=-,解得24x=.于是,原来分数的分子、分母分别为222448x=⨯=.332472x=⨯=所以,原来的分数在约分前是4872.第四题答案:解答:方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数{}3,12,21,30,,1992,共计222个数{}4,13,22,31,,1993,共计222个数{}5,14,23,32,,1994,共计222个数{}6,15,24,33,,1986,共计221个数{}7,16,25,34,,1987,共计221个数{}8,17,26,35,,1988,共计221个数{}9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.第五题答案:解答:如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552⨯-⨯=,即1分钟来的人为240.5÷=,原有的人为:()30.5922.5-⨯=.这些人来到画展,所用时间为22.50.545÷=(分).所以第一个观众到达的时间为8点15分.点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

五年级奥数天天练(中难度)-推荐

五年级奥数天天练(中难度)-推荐

学而思奥数网天天练周练习(五年级)(中难度)姓名:成绩:答:答:第一题:牛吃草有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?第二题:阴影面积如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.答:答:答:第三题:分数一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原来的分数在约分前是第四题:自然数从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.第五题:排队画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.学而思奥数网天天练周练习(五年级)答案第一题答案:解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584⨯÷=份草;所以1公顷草地每天新生长的草量为()()84604530 1.6-÷-=份,1公顷原有草量为60 1.63012-⨯=.24公顷草地每天新生长的草量为1.62438.4⨯=;24公顷草地原有草量为1224288⨯=.那么24公顷草地80天可提供草量为:28838.4803360+⨯=,所以共需要牛的头数是:33608042÷=(头)牛.(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]5,15,24120=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192⨯-⨯÷-=,120 公顷草地原有草量为()240192301440-⨯=.120公顷草地可供144080192210÷+=(头)牛吃80天,那么24公顷草地可供210542÷=(头)牛吃80天.第二题答案:解答:本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.第三题答案:解答:设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知21833225xx-=-,交叉相乘得1090966x x-=-,解得24x=.于是,原来分数的分子、分母分别为222448x=⨯=.332472x=⨯=所以,原来的分数在约分前是4872.第四题答案:解答:方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数{}3,12,21,30,,1992,共计222个数{}4,13,22,31,,1993,共计222个数{}5,14,23,32,,1994,共计222个数{}6,15,24,33,,1986,共计221个数{}7,16,25,34,,1987,共计221个数{}8,17,26,35,,1988,共计221个数{}9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.第五题答案:解答:如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552⨯-⨯=,即1分钟来的人为240.5÷=,原有的人为:()30.5922.5-⨯=.这些人来到画展,所用时间为22.50.545÷=(分).所以第一个观众到达的时间为8点15分.点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

2020年五年级奥数天天练(中难度)

2020年五年级奥数天天练(中难度)

天天练周练习(五年级)(中难度)
姓名:
成绩:
答:答:
第一题:牛吃草
有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长
得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?
第二题:阴影面积
如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.
易提分旗舰店https:// 听听课https://。

五年级奥数天天练(中难度)-最新推荐

五年级奥数天天练(中难度)-最新推荐

学而思奥数网天天练周练习(五年级)(中难度)姓名:成绩:答:答:第一题:牛吃草有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?第二题:阴影面积如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.答:答:答:第三题:分数一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原来的分数在约分前是第四题:自然数从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.第五题:排队画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.学而思奥数网天天练周练习(五年级)答案第一题答案:解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584⨯÷=份草;所以1公顷草地每天新生长的草量为()()84604530 1.6-÷-=份,1公顷原有草量为60 1.63012-⨯=.24公顷草地每天新生长的草量为1.62438.4⨯=;24公顷草地原有草量为1224288⨯=.那么24公顷草地80天可提供草量为:28838.4803360+⨯=,所以共需要牛的头数是:33608042÷=(头)牛.(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]5,15,24120=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192⨯-⨯÷-=,120 公顷草地原有草量为()240192301440-⨯=.120公顷草地可供144080192210÷+=(头)牛吃80天,那么24公顷草地可供210542÷=(头)牛吃80天.第二题答案:解答:本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.第三题答案:解答:设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知21833225xx-=-,交叉相乘得1090966x x-=-,解得24x=.于是,原来分数的分子、分母分别为222448x=⨯=.332472x=⨯=所以,原来的分数在约分前是48 72.第四题答案:解答:方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数{}3,12,21,30,,1992,共计222个数{}4,13,22,31,,1993,共计222个数{}5,14,23,32,,1994,共计222个数{}6,15,24,33,,1986,共计221个数{}7,16,25,34,,1987,共计221个数{}8,17,26,35,,1988,共计221个数{}9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.第五题答案:解答:如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552⨯-⨯=,即1分钟来的人为240.5÷=,原有的人为:()30.5922.5-⨯=.这些人来到画展,所用时间为22.50.545÷=(分).所以第一个观众到达的时间为8点15分.点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

奥数天天练五年级2011年9月26日-9月30日(中难度)

奥数天天练五年级2011年9月26日-9月30日(中难度)

学而思奥数网天天练五年级2011年09月26日-9月30日(中难度)答:答:答第一题:计算题在表中有15个数,选出5个数,使它们之和等于30 ,你能做到吗?为什么?第二题:计算题元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么?第三题:计算题10个人走进只有6 辆不同颜色碰碰车的游乐场,每辆碰碰车必须且只能坐一个人,那么共有多少种不同的坐法?第四题:计算题9名同学站成两排照相,前排 4人,后排5 人,共有多少种站法?答:答:奥数天天练五年级2011年9月26日-9月30日(中难度)第一题答案: 如果很直接的抽取其中5个数开始尝试,那么到最后会发现都是在做无用功,因为无论选哪5个数,它们的和绝不等于30,但是在尝试的过程中却是不敢断言这是 不可能做到的.现在换一个角度分析,图中15个数全为奇数,任取5个数,根据“奇数个奇数之和为奇数”可知无论哪5个数的和总为奇数,而30是一个偶数, 所以是不可能做到的.第二题答案:此题初看似乎缺总人数.但解决问题的实质在送贺年卡的张数的奇偶性上,因此与总人数无关.由于是两人互送贺年卡,给每人分别标记送出贺年卡一次.那么贺年卡的总张数应能被2 整除,所以贺年卡的总张数应是偶数.送贺年卡的人可以分为两种:一种是送出了偶数张贺年卡的人:他们送出贺年卡总和为偶数.另一种是送出了奇数张贺年卡的人:他们送出的贺年卡总数= 所有人送出的贺年卡总数 -所有送出了偶数张贺年卡的人送出的贺年卡总数= 偶数 -偶数= 偶数.他们的总人数必须是偶数,才使他们送出的贺年卡总数为偶数.所以,送出奇数张贺年卡的人数一定是偶数.第三题答案:把6辆碰碰车看成是6个位置,而10个人作为10个不同元素,则问题就可以转化成从10个元素中取6个,排在6个不同位置的排列问题.共有(种)不同的坐法第四题答案:如果问题是9 名同学站成一排照相,则是 9个元素的全排列的问题,有P 99种不同站法.而问题中, 9个人要站成两排,这时可以这么想,把 9个人排成一排后,左边 4个人站在前排,右边5 个人站在后排,所以实质上,还是 9个人站9 个位置的全排列问题.第五题答案: 第五题:计算题学校开设 6门任意选修课,要求每个学生从中选学 3门,共有多少种不同的选法?[分析]被选中的3门排列顺序不予考虑,所以这是个组合问题.由组合数公式知,3 665420 321C⨯⨯==⨯⨯(种).所以共有20种不同的选法.。

五年级奥数天天练(中难度)-优选

五年级奥数天天练(中难度)-优选

学而思奥数网天天练周练习(五年级)(中难度)姓名:成绩:答:答:第一题:牛吃草有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?第二题:阴影面积如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.答:答:答:第三题:分数一个分数约分后是23.如果这个分数的分子减去18,分母减去22,约分后就可以得到一个新的分数35.那么,原来的分数在约分前是第四题:自然数从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.第五题:排队画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.学而思奥数网天天练周练习(五年级)答案第一题答案:解答:(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584⨯÷=份草;所以1公顷草地每天新生长的草量为()()84604530 1.6-÷-=份,1公顷原有草量为60 1.63012-⨯=.24公顷草地每天新生长的草量为1.62438.4⨯=;24公顷草地原有草量为1224288⨯=.那么24公顷草地80天可提供草量为:28838.4803360+⨯=,所以共需要牛的头数是:33608042÷=(头)牛.(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]5,15,24120=,那么题中条件可转化为:120公顷草地可供240头牛吃30天,也可供224头牛吃45天.设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为()() 22445240304530192⨯-⨯÷-=,120 公顷草地原有草量为()240192301440-⨯=.120公顷草地可供144080192210÷+=(头)牛吃80天,那么24公顷草地可供210542÷=(头)牛吃80天.第二题答案:解答:本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.解法一:取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222⨯÷⨯+⨯=,阴影部分的面积为662214⨯-=.解法二:连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为221:13:13:31:3:3:9⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的916,阴影部分的面积占该梯形面积的716,所以阴影部分的总面积是四个梯形面积之和的716,那么阴影部分的面积为227(62)1416⨯-=.第三题答案:解答:设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知21833225xx-=-,交叉相乘得1090966x x-=-,解得24x=.于是,原来分数的分子、分母分别为222448x=⨯=.332472x=⨯=所以,原来的分数在约分前是4872.第四题答案:解答:方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数{}3,12,21,30,,1992,共计222个数{}4,13,22,31,,1993,共计222个数{}5,14,23,32,,1994,共计222个数{}6,15,24,33,,1986,共计221个数{}7,16,25,34,,1987,共计221个数{}8,17,26,35,,1988,共计221个数{}9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.第五题答案:解答:如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552⨯-⨯=,即1分钟来的人为240.5÷=,原有的人为:()30.5922.5-⨯=.这些人来到画展,所用时间为22.50.545÷=(分).所以第一个观众到达的时间为8点15分.点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数天天练(中难度】
姓名;
成绩;
答;答;
第一题;牛吃草
有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长
得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?
第二题;阴影面积
如图,在一个边长为6的正方形中,放入一个边长为2的正方形,保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,那么阴影部分的面积为.
答;
答;
答;
第五题;排队
画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观
众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.
解答;(法1)设1头牛1天吃草量为“1”,第一块草地可供10头牛吃30天,说明1公顷草地30天提供1030560
⨯÷=份草;第二块草地可供28头牛吃45天,说明1公顷草地45天提供28451584
⨯÷=份草;所以1公顷草地每天新生长的草量为()()
84604530 1.6
-÷-=份,1公顷原有草量为60 1.63012
-⨯=.24公顷草地每天新生长的草量为1.62438.4
⨯=;24公顷草地原有草量为1224288
⨯=.那么24公顷草地80天可提供草量为;28838.4803360
+⨯=,所以共需要牛的头数是;33608042
÷=(头)牛.
(法2)现在是3块面积不同的草地,要解决这个问题,也可以将3块草地的面积统一起来.由于[]
5,15,24120
=,那么题中条件可转化为;120公顷草地可供240头牛吃30天,也可供224头牛吃45天.
设1头牛1天的吃草量为“1”,那么120公顷草地每天新生长的草量为
()() 22445240304530192
⨯-⨯÷-=,120 公顷草地原有草量为
()
240192301440
-⨯=.120公顷草地可供144080192210
÷+=(头)牛吃80天,那么24公顷草地可供210542
÷=(头)牛吃80天.
第二题答案;
解答;本题中小正方形的位置不确定,所以可以通过取特殊值的方法来快速求解,也可以采用梯形蝴蝶定理来解决一般情况.
解法一;取特殊值,使得两个正方形的中心相重合,如右图所示,图中四个空白三角形的高均为1.5,因此空白处的总面积为6 1.5242222
⨯÷⨯+⨯=,阴影部分的面积为662214
⨯-=.
解法二;连接两个正方形的对应顶点,可以得到四个梯形,这四个梯形的上底都为2,下底都为6,上底、下底之比为2:61:3
=,根据梯形蝴蝶定理,这四个梯形每个梯形中的四个小三角形的面积之比为22
1:13:13:31:3:3:9
⨯⨯=,所以每个梯形中的空白三角形占该梯形面积的
9
16
,阴影部分的面积占该梯形面积的
7
16
,所以阴影部分的总面积是四个梯形面积之和的
7
16
,那么阴影部分的面积为22
7
(62)14
16
⨯-=.第三题答案;
解答;设原来分数的分母为3x,依题意,原来分数的分子为2x;同样可知
2183
3225
x
x
-
=
-

交叉相乘得1090966
x x
-=-,
解得24
x=.
于是,原来分数的分子、分母分别为222448
x=⨯=.332472
x=⨯=
所以,原来的分数在约分前是
48
72

第四题答案;
解答;方法一;把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;
19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………
1963,1964,…,1979,1980;
1981,1982, (1994)
每一组中取前9个数,共取出9111999
⨯=【个】数,这些数中任两个的差都不等于9.因此,最多可以取999个数.
方法二;构造公差为9的9个数列【除以9的余数】
{}
1,10,19,28,,1990,共计222个数
{}
2,11,20,29,,1991,共计222个数
{}
3,12,21,30,,1992,共计222个数
{}
4,13,22,31,,1993,共计222个数
{}
5,14,23,32,,1994,共计222个数
{}
6,15,24,33,,1986,共计221个数
{}
7,16,25,34,,1987,共计221个数
{}
8,17,26,35,,1988,共计221个数
{}
9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999
⨯=个数.
第五题答案;
解答;如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题.
设每一个入场口每分钟通过“1”份人,那么4分钟来的人为39552
⨯-⨯=,即1分钟来的人为240.5
÷=,原有的人为;()
30.5922.5
-⨯=.这些人来到画展,所用时间为22.50.545
÷=(分).所以第一个观众到达的时间为8点15分.
点评;从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了.解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质.。

相关文档
最新文档