模式1中考数学第一轮复习导学案-锐角三导学案-锐角三角函数100

合集下载

濠知教育初三数学锐角三角函数导学案

濠知教育初三数学锐角三角函数导学案

学 生教 师 吴老师 日 期 2013/12/22 年 级 初三学 科数学时 段10:10-11:40学 情 分 析 锐角三角函数在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在20%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。

课 题 锐角三角函数学习目标与 考点分析 本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sin a 、cos a 、tan a 、cot a 准确表示出直角三角形中两边的比(a 为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。

学习重点 难 点让学生熟练掌握解题的方法,会运用知识灵活计算,并能正确地进行相关题目的运算教学方法 讲练结合、互动启发教学过程【例1】在Rt △ABC 中,∠C =900,AC =12,BC =15。

(1)求AB 的长;(2)求sinA 、cosA 的值; (3)求A A 22cos sin +的值; (4)比较sinA 、cosB 的大小。

变式:(1)在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = 。

(2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。

濠知教育学科导学案【例2】计算:020045sin 30cot 60sin +⋅【例3】已知,在Rt △ABC 中,∠C =900,25tan =B ,那么cosA ( ) A 、25 B 、35C 、552 D 、32变式:已知α为锐角,且54cos =α,则ααcot sin += 。

【例4】已知3cot tan =+αα,α为锐角,则αα22cot tan += 。

评注:由锐角三角函数定义不难推出1cos sin 22=+A A ,1cot tan =⋅αα,它们是中考中常用的“等式”。

中考数学一轮复习第20课锐角三角函数导学案

中考数学一轮复习第20课锐角三角函数导学案

中考数学一轮复习第20课锐角三角函数导学案【考点梳理】:1.理解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角:比;熟记30。

、45。

、60。

的三角函数值,并会由一个特殊的三角函数值说出这个角·2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函i应的锐角.3.理解直角三角形中边与边的关系、角与角的关系和边与角的关系,会运斥直角三角形两锐角互余以及锐角三角函数解直角三角形,并会运用解直角三角形解决简单的实际问题,进一步提高分析问题和解决问题的能力·4.在解直角三角形中要善于应用三角函数的定义;另外,直角三角形的勾雕之问的关系式是解直角三角形的依据,在解决实际问题时,先戛根据题意画出图^和理解题意,通过建立解直角三角形的数学模型使问题得以解决·5.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的角,三角函数和解直角三角形的学习,体会锐角三角函数和解直角三角形的理论感受由实际问题抽象出数学问题,然后解决数学问题,再将数学问题的答案回到这种:"实践--理论--实践"的认识过程.直角三角形边角的关系.拿实际图形解直角三角形或化为解直角三角形的有关问题.用仰角、俯角、坡度、方位角等有关知识解直角三角形应用。

【思想方法】1. 常用解题方法——设k法2. 常用基本图形——双直角【考点一】:锐角三角函数概念【例题赏析】(2015•山西,第10题3分)如图,在网格中,小正方形的边长均为1,点A,B C都在格点上,则∠ABC的正切值是()A.2 B.C.D.1 2考点:锐角三角函数的定义;勾股定理;勾股定理的逆定理.专题:网格型.分析:根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.解答:解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==12,故选:D.点评:本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.【考点二】:特殊角三角函数值的计算【例题赏析】(1)(2015,广西玉林,2,3分)计算:cos245°+sin245°=()A.12B. 1 C.32D.考点:特殊角的三角函数值.分析:首先根据cos45°=sin45°=,分别求出cos245°、sin245°的值是多少;然后把它们求和,求出cos245°+sin245°的值是多少即可.解答:解:∵cos45°=sin45°=,∴cos245°+sin245°===1.故选:B.点评:此题主要考查了特殊角的三角函数值,要熟练掌握,(1)30°、45°、60°角的各种三角函数值;(2)一个角正弦的平方加余弦的平方等于1(2)(2015•甘南州第15题 6分)计算:|﹣1|+20120﹣(﹣13)﹣1﹣3tan30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:可.解答:解:原式=﹣1+1﹣(﹣3)﹣3×=+3﹣=3.点评:本题考查了实数的运算,解题的关键是掌握有关运算的法则.【考点三】:解直角三角形【例题赏析】(2015,广西柳州,16,3分)如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sinB= .考点:锐角三角函数的定义;勾股定理.分析:根据锐角三角函数定义直接进行解答.解答:解:∵在Rt△ABC中,∠C=90°,AB=13,AC=7,故答案是:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,余弦为邻边比斜边,正切为对边比邻边.【考点四】:解直角三角形的应用【例题赏析】(2015•贵州省贵阳,第20题9分)小华为了测量楼房AB的高度,B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.到0.1m)(1)求小华此时与地面的垂直距离CD的值;(2)小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义求得AF答案即可.解答:解:(1)在Rt△BCD中,∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD=5.2(m).答:小华与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.点评:本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,关键是构造直角三角形.【考点五】:锐角三角函数的阅读理解应用题【例题赏析】2015•辽宁铁岭)(第23题)如图,大楼AN上悬挂一条幅AB,小颖在坡面处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.41)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题..分析:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,首先求出DFDH的长,在直角三角形ADH中,可求出AH的长,进而可求出AN的长,在直角三角形中可求出BN的长,利用AB=AH﹣BN计算即可.解答:解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,∵DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(30+30)米,∴AN=AH+EF=(40+30)米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=20+30≈71米,答:条幅的长度是71米.点评:此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.【真题专练】1.(2015•天津,第2题3分)cos45°的值等于()A.12B.C. D.2.(2015•黑龙江省大庆,第1题3分)sin60°=()A.12B. C 1 D.3.(2015,福建南平,17,分)计算:(﹣2)3+3tan45°﹣.4.(2015•贵州省黔东南州,第17题8分)计算:+4sin60°+|﹣|5.(2015•贵州省黔东南州,第14题4分)如图,A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行50海里可使渔船到达离灯塔距离最近的位置.6.(2015•辽宁阜新)(第11题,3分)如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为10m(结果保留根号).7.(2015•吉林,第21题7分)如图,一艘海轮位于灯塔P的北偏东100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)8.(2015•丹东,第23题10分)如图,线段AB,CD的距离BD 是60米.某人站在A 处测得C 点的俯角为37°,D 点的俯角为48°(人的身高忽略不计),求乙楼的高度CD .(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)9. (2015•重庆A24,10分) 某水库大坝的横截面是如图所示的四边形BACD ,期中AB ∥瞭望台PC 正前方水面上有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 31α=︒,观测渔船N 在俯角45β=︒,已知NM 所在直线与PC 所在直线垂直,垂足为点E PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH 1:1.5i =,施工12原来的1.5倍,结果比原计划提前20多少立方米?(参考数据:tan 310.60,sin 310.52︒≈︒≈)24题图αβHFENMJPD C10.(2015•内蒙古赤峰20,10分)如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )【真题演练参考答案】1.(2015•天津,第2题3分)cos45°的值等于()A.12B.C. D.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入求解.解答:解:cos45°=.故选B.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.(2015•黑龙江省大庆,第1题3分)sin60°=()A.12B. C 1 D.考点:特殊角的三角函数值.专题:计算题.分析:原式利用特殊角的三角函数值解得即可得到结果.解答:解:sin60°=,故选D点评:此题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解本题的关键.3.(2015,福建南平,17,分)计算:(﹣2)3+3tan45°﹣.考点:实数的运算;特殊角的三角函数值.分析:先根据数的乘方及开方法则、特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=﹣8+3×1﹣3=﹣8+3﹣3=﹣8.点评:本题考查的是实数的运算,熟知数的乘方及开方法则、特殊角的三角函数值是解答此题的关键.4.(2015•贵州省黔东南州,第17题8分)计算:+﹣4sin60°+|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及负整数指数幂、零指数幂、特殊角的三角函数值、绝对值、二次根式化简几个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:+﹣4sin60°+|﹣|=﹣3+1﹣4×+2=﹣3+1﹣2+2=﹣2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.5.(2015•贵州省黔东南州,第14题4分)如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行50海里可使渔船到达离灯塔距离最近的位置.考点:解直角三角形的应用-方向角问题.分析:过M作东西方向的垂线,设垂足为N.由题易可得∠MAN=30°,在Rt△MAN中,根据锐角三角函数的定义求出AN的长即可.解答:解:如图,过M作东西方向的垂线,设垂足为N.易知:∠MAN=90°=30°.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,AM=100海里,∴AN=AM•cos∠MAN=100×=50海里.故该船继续航行50海里可使渔船到达离灯塔距离最近的位置.故答案为50.点评:本题主要考查了解直角三角形的应用﹣方向角问题,三角函数的定义,利用垂线段最短的性质作出辅助线是解决本题的关键.6.(2015•辽宁阜新)(第11题,3分)如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为10m(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:由题意得,在直角三角形ACB中,知道了已知角的邻边求对边,用正切函数计算即可.解答:解:∵自楼的顶部A看地面上的一点B,俯角为30°,∴∠ABC=30°,∴AC=AB•tan30°=30×=10(米).∴楼的高度AC为10米.故答案为:10.点评:本题考查了解直角三角形的应用﹣仰角俯角问题,俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.7.(2015•吉林,第21题7分)如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B 处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)考点:解直角三角形的应用-方向角问题.分析:(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA•sin∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B 处约113海里.解答:解:(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA•sin∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.点评:本题考查了解直角三角形的应用﹣方向角问题,直角三角形,锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.8.(2015•丹东,第23题10分)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)考点:解直角三角形的应用-仰角俯角问题.分析: 过点C 作CE ⊥AB 交AB 于点E ,在直角△ADB 中利用三角函数求得AB 的长,然后在直角△AEC 中求得AE 的长,即可求解.解答: 解:过点C 作CE ⊥AB 交AB 于点E ,则四边形EBDC 为矩形,∴BE=CD CE=BD=60,如图,根据题意可得,∠ADB=48°,∠ACE=37°, ∵,在Rt △ADB 中,则AB=tan48°•BD≈(米), ∵, 在Rt △ACE 中,则AE=tan37°•CE≈(米),∴CD=BE=AB ﹣AE=66﹣45=21(米),∴乙楼的高度CD 为21米.点评: 本题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.9. (2015•重庆A24,10分) 某水库大坝的横截面是如图所示的四边形BACD ,期中AB ∥CD.瞭望台PC 正前方水面上有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,观测渔船N 在俯角45β=︒,已知NM 所在直线与PC 所在直线垂直,垂足为点E ,PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH 的坡度为1:1.5i =,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan 310.60,sin 310.52︒≈︒≈)24题图H考点:解直角三角形的应用-仰角俯角问题;分式方程的应用;解直角三角形的应用-坡度坡 角问题.分析:(1)在直角△ PEN ,利用三角函数即可求得ME 的长,根据MN=EM ﹣EN 求解; (2 )过点D 作DN ⊥AH 于点N ,利用三角函数求得AN 和AH 的长,进而求得△ ADH 的面积,得到需要填筑的土石方数,再根据结果比原计划提前20 天完成,列方程求 解.解答:⑴在Rt △PEN 中,EN=PE=30m在Rt △PEM 中,50tan 31PE ME m ==︒∴20m MN EM EN =-=答:两渔船M 、N 之间的距离为20米⑵过点D 作DN ⊥AH 交直线AH 于点N由题意:tan 4DAB ∠=,4tan 7H ∠= 在RT △DAN 中,2464tan 3DN AN DAB ===∠m 在RT △DHN 中,24424tan 7DN HN H===∠m 故AH=HN-AN=42-6=36m14322ADH S AH DN =⨯⨯=△2m 故需要填筑的土石方共343210043200V S L m =⨯=⨯=设原计划平均每天填筑3xm ,则原计划43200x天完成;增加机械设备后,现在平均每天填筑32xm4320010(1020)243200x x x+--⨯= 解得:864x =经检验:864x =是原分式方程的解,且满足实际意义答:该施工队原计划平均每天填筑8643m的土石方点评:本题考查了仰角的定义以及坡度,要求学生能借助仰角构造直角三角形并解直角三角形.10.(2015•内蒙古赤峰20,10分)如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )考点:解直角三角形的应用-仰角俯角问题.分析:利用30°的正切值即可求得AE长,进而可求得CE长.CE减去DE长即为信号塔CD的高度.解答:解:根据题意得:AB=18,DE=18,∠A=30°,∠EBC=60°,在R t△ADE中,AE===18∴BE=AE﹣AB=18﹣18,在R t△BCE中,CE=BE•tan60°=(18﹣18)=54﹣18,∴CD=CE﹣DE=54﹣18﹣18≈5米.点评:本题考查了解直角三角形﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形;难点是充分找到并运用题中相等的线段.。

2023年中考数学一轮专题练习 ——锐角三角函数(含解析)

2023年中考数学一轮专题练习 ——锐角三角函数(含解析)

2023年中考数学一轮专题练习 ——锐角三角函数一、单选题(本大题共10小题)1. (天津市2022年)tan 45︒的值等于( )A .2B .1C D 2. (陕西省2022年(A 卷))如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A .B .C .D .3. (吉林省长春市2022年)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A .sin ABBCα=B .sin BCABα=C .sin ABACα=D .sin ACABα=4. (湖北省荆州市2022年)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B .C .13D .35. (四川省广元市2022年)如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos ∠APC 的值为( )A B .C .25D 6. (湖北省江汉油田、潜江、天门、仙桃2022年)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =( )A .13B .12C D 7. (贵州省黔东南州2022年)如图,PA 、PB 分别与O 相切于点A 、B ,连接PO 并延长与O 交于点C 、D ,若12CD =,8PA =,则sin ADB ∠的值为( )A .45 B .35C .34D .438. (云南省2022年)如图,已知AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .13129. (湖南省湘潭市2022年)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 10. (黑龙江省省龙东地区2022年)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( )A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤二、填空题(本大题共12小题) 11. (广东省2022年)sin30°的值为 .12. (山东省滨州市2022年)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则sin A = . 13. (江苏省扬州市2022年)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为 .14. (湖南省益阳市2022年)如图,在Rt △ABC 中,∠C =90°,若sin A =45,则cos B =_____.15. (江苏省常州市2022年)如图,在四边形ABCD 中,90A ABC ∠=∠=︒,DB 平分ADC ∠.若1AD =,3CD =,则sin ABD ∠= .16. (四川省凉山州2022年)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ⊥CD 于点C ,BD ⊥CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为 .17. (黑龙江省绥化市2022年)定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=,则sin15︒的值为 . 18. (江苏省连云港市2022年)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A = .19. (山东省泰安市肥城市汶阳镇初级中学2021-2022学年)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AG EG AE ,将ABG 和ECG 分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠= .20. (广西河池市2022年)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN = .21. (四川省凉山州2022年)如图,在边长为1的正方形网格中,⊙O 是△ABC 的外接圆,点A ,B ,O 在格点上,则cos ∠ACB 的值是 .22. (湖南省湘西州2022年中考数学试卷)阅读材料:余弦定理是描述三角形中三边长度与一个角余弦值关系的数学定理,运用它可以解决一类已知三角形两边及夹角求第三边或者已知三边求角的问题.余弦定理是这样描述的:在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则三角形中任意一边的平方等于另外两边的平方和减去这两边及这两边的夹角的余弦值的乘积的2倍. 用公式可描述为:a 2=b 2+c 2﹣2bc cos A b 2=a 2+c 2﹣2ac cos B c 2=a 2+b 2﹣2ab cos C现已知在△ABC 中,AB =3,AC =4,∠A =60°,则BC =_____. 三、解答题(本大题共9小题)23. (湖南省湘西州20222tan45°+|﹣3|+(π﹣2022)0.24. (2022年西藏中考数学真题试卷)计算:01|()tan 452+︒.25. (湖南省岳阳市2022年)计算:2022032tan 45(1))π--︒+--.26. (湖南省株洲市2022年)计算:()202212sin 30-︒.27. (2022年四川省乐山市中考数学真题)1sin 302-︒28. (湖南省常德市2022年中考数学试题)计算:213sin 30452-︒︒⎛⎫- ⎪⎝⎭29. (浙江省湖州市2022年)如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.30. (黑龙江省哈尔滨市2022年)先化简,再求代数式21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭的值,其中2cos451x =︒+.31. (黑龙江省哈尔滨市2021年)先化简,再求代数式2323111a a a a a +⎛⎫-÷⎪---⎝⎭的值,其中2sin 451a =︒-.参考答案1. 【答案】B 【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∴∠B =90°-45°=45°,∴△ABC 是等腰三角形,AC =BC , ∴根据正切定义,tan 1BCA AC∠==, ∵∠A =45°, ∴tan 451︒=, 故选 B . 2. 【答案】D 【分析】先解直角ABC 求出AD ,再在直角ABD △中应用勾股定理即可求出AB . 【详解】解:∵26BD CD ==, ∴3CD =,∵直角ADC 中,tan 2C ∠=, ∴tan 326AD CD C =⋅∠=⨯=,∴直角ABD △中,由勾股定理可得,AB === 故选D . 3. 【答案】D 【分析】根据正弦三角函数的定义判断即可. 【详解】∵BC ⊥AC ,∴△ABC 是直角三角形, ∵∠ABC =α, ∴sin ACABα=, 故选:D . 4. 【答案】C 【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解. 【详解】∵P 点坐标为(1,1),则OP 与x 轴正方向的夹角为45°, 又∵OP AB ∥,则∠BAO =45°,OAB 为等腰直角形, ∴OA =OB ,设OC =x ,则OB =2OC =2x , 则OB =OA =3x , ∴tan 133OC x OAP OA x ∠===. 5. 【答案】B 【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∥AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos ∠APC =cos ∠EDC 即可得答案. 【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∥AB , ∴∠APC =∠EDC .在△DCE 中,有EC DC 5DE ==, ∴22252025EC DC DE +=+==, ∴DCE ∆是直角三角形,且90DCE ∠=︒,∴cos ∠APC =cos ∠EDC=DC DE =故选:B . 6. 【答案】C 【分析】证明四边形ADBC 为菱形,求得∠ABC =30°,利用特殊角的三角函数值即可求解. 【详解】解:连接AD ,如图:∵网格是有一个角60°为菱形,∴△AOD 、△BCE 、△BCD 、△ACD 都是等边三角形, ∴AD = BD = BC = AC ,∴四边形ADBC 为菱形,且∠DBC =60°, ∴∠ABD =∠ABC =30°, ∴tan ∠ABC = tan30°= 故选:C . 7. 【答案】A 【分析】连结OA ,根据切线长的性质得出PA =PB ,OP 平分∠APB ,OP ⊥AP ,再证△APD ≌△BPD (SAS ),然后证明∠AOP =∠ADP +∠OAD =∠ADP +∠BDP =∠ADB , 利用勾股定理求出OP=10=,最后利用三角函数定义计算即可. 【详解】 解:连结OA∵PA 、PB 分别与O 相切于点A 、B , ∴PA =PB ,OP 平分∠APB ,OP ⊥AP , ∴∠APD =∠BPD , 在△APD 和△BPD 中, AP BPAPD BPD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△APD≌△BPD(SAS)∴∠ADP=∠BDP,∵OA=OD=6,∴∠OAD=∠ADP=∠BDP,∴∠AOP=∠ADP+∠OAD=∠ADP+∠BDP=∠ADB,在Rt△AOP中,OP10=,∴sin∠ADB=84105 APOP==.故选A.8. 【答案】B 【分析】先根据垂径定理求出12CE CD=,再根据余弦的定义进行解答即可.【详解】解:∵AB是⊙O的直径,AB⟂CD.∴112,902CE CD OEC==∠=︒,OC=12AB=13,∴12 cos13CEOCEOC∠==.故选:B.9. 【答案】A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a,则较长的直角边为a+1,再接着利用勾股定理得到关于a的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tanα的值即可.【详解】∵小正方形与每个直角三角形面积均为1,∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a,则较长的直角边为a+1,其中a>0,∴a2+(a+1)2=5,其中a>0,解得:a1=1,a2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .10. 【答案】B【分析】分别对每个选项进行证明后进行判断:①通过证明()DOF COE ASA ≌得到EC =FD ,再证明()EAC FBD SAS ≌得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即AE BF ⊥;②通过等弦对等角可证明45OPA OBA ∠=∠=︒;③通过正切定义得tan BE BP BAE AB AP ∠==,利用合比性质变形得到CE BP AP BP BE ⋅-=,再通过证明AOP AEC ∽得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌,可证明S 四边形OECF =S △COE +S △COF = S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF ⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中ODF OCE OC ODDOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确; ③∵tan BE BP BAE AB AP ∠== ∴AB AP BE BP = ∴AB BE AP BP BE BP --= ∴AP BP CE BP BE-= ∴CE BP AP BP BE ⋅-=∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒∴AOP AEC ∽ ∴OP AO CE AE= ∴OP AE CE AO⋅= ∴OP AE BP AP BP AO BE⋅⋅-=⋅ ∵1122ABE AE BP AB BE S⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO⋅⋅-==⋅ 所以③正确;④作EG ⊥AC 于点G ,则EG ∥BO , ∴EG CE CG OB BC OC==设正方形边长为5a ,则BC =5a ,OB =OC , 若:2:3BE CE =,则23BE CE =, ∴233BE CE CE ++= ∴35CE BC =∴35CE EG OB BC =⋅== ∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3tan 7EG EG CAE AG AC CG ∠===- 所以④错误;⑤∵()DOF COE ASA ≌,S 四边形OECF =S △COE +S △COF∴S 四边形OECF = S △DOF +S △COF = S △COD∵S △COD =14ABCD S 正方形∴S 四边形OECF =14ABCD S 正方形所以⑤正确;综上,①②③⑤正确,④错误,故选 B11. 【答案】12【详解】根据特殊角的三角函数值计算即可:sin30°=12. 故答案为:1212. 【答案】1213 【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∵∠C =90°,AC =5,BC =12,∴AB=13,∴sin A =1213BC AB =.故答案为:1213.13. 【详解】 解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c⎛⎫+= ⎪⎝⎭,求出a c =或a c =∴在Rt ABC 中:in s a c A ==,故答案为: 14. 【答案】45 【分析】根据三角函数的定义即可得到cos B =sin A =45. 【详解】解:在Rt △ABC 中,∠C =90°,∵sin A =BC AB =45, ∴cos B =BC AB =45. 故答案为:45. 【点睛】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若∠A +∠B =90°,则sin A =cos B ,cos A =sin B .熟知相关定义是解题关键.15. 【分析】 过点D 作BC 的垂线交于E ,证明出四边形ABED 为矩形,BCD △为等腰三角形,由勾股定理算出DE BD =【详解】解:过点D 作BC 的垂线交于E ,90DEB ∴∠=︒90A ABC ∠=∠=︒,∴四边形ABED 为矩形,//,1DE AB AD BE ∴==,ABD BDE ∴∠=∠, BD 平分ADC ∠,ADB CDB ∴∠=∠,//AD BE ,ADB CBD ∴∠=∠,∴∠CDB =∠CBD3CD CB ∴==,1AD BE ==,2CE =∴,DE ∴BD ∴sinBE BDE BD ∴∠==,sin ABD ∴∠=故答案为:16. 【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.17. 【分析】根据sin()sin cos cos sin αβαβαβ-=-代入进行计算即可.【详解】解:sin15sin(4530)︒=︒-︒=sin 45cos30cos45sin30︒︒︒︒-=12==故答案为: 18. 【答案】45 【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC =, ∴4sin =5CE A AC =, 故答案为:45.19. 【答案】725【分析】根据折叠的性质结合勾股定理求得GE 5=,BC=AD=8,证得Rt △EGF ~Rt △EAG ,求得253EA =,再利用勾股定理得到DE 的长,即可求解. 【详解】矩形ABCD 中,GC=4,CE =3,∠C=90︒,∴5==,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90︒,∴BG=GF=GC=4,∴BC=AD=8,∵∠AGB+∠AGF+∠EGC+∠EGF=180︒,∴∠AGE=90︒,∴Rt△EGF~Rt△EAG,∴EG EFEA EG=,即535EA=,∴253 EA=,∴73 =,∴773sin DAE25253DEAE∠===,故答案为:725.20. 【答案】58##0.625【分析】先判断出四边形ABEF是正方形,进而判断出△ABG≌△BEH,得出∠BAG=∠EBH,进而求出∠AOB=90°,再判断出△AOB~△ABG,求出OA OB=△OBM~△OAN,求出BM=1,即可求出答案.【详解】解:∵点E,F分别是BC,AD的中点,∴11,22AF AD BE BC==,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,AD=BC,∴12AF BE AD==,∴四边形ABEF是矩形,由题意知,AD=2AB,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG ≌△BEH (SAS ),∴∠BAG =∠EBH ,∴∠BAG +∠ABO =∠EBH +∠ABO =∠ABG =90°, ∴∠AOB =90°,∵BG =EH =25BE =2, ∴BE =5,∴AF =5,∴AG =∵∠OAB =∠BAG ,∠AOB =∠ABG , ∴△AOB ∽△ABG , ∴OA OB AB AB BG AG ==,即52OA OB ==∴OA OB ==, ∵OM ⊥ON ,∴∠MON =90°=∠AOB ,∴∠BOM =∠AON ,∵∠BAG +∠FAG =90°,∠ABO +∠EBH =90°,∠BAG =∠EBH , ∴∠OBM =∠OAN ,∴△OBM ~△OAN , ∴OB BM OA AN=, ∵点N 是AF 的中点, ∴1522AN AF ==,∴52BM =,解得:BM =1, ∴AM =AB -BM =4, ∴552tan 48AN AMN AM ∠===. 故答案为:5821. 【分析】 取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ⊥AB ,则OB ==cos ∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∴OD ⊥AB ,∴∠ODB =90°,∴OB ==cos ∠DOB =13OD OB ==, ∵OA =OB ,∴∠BOD =12∠AOB ,∵∠ACB =12∠AOB ,∴∠ACB =∠DOB ,∴cos ∠ACB = cos ∠DOB =故答案为:22. 【分析】从阅读可得:BC 2=AB 2+AC 2﹣2AB AC cos A ,将数值代入求得结果.【详解】解:由题意可得,BC 2=AB 2+AC 2﹣2AB •AC •cos A=32+42﹣2×3×4cos60°=13,∴BC故答案为:【点睛】本题考查了阅读理解能力,特殊角锐角三角函数值等知识,解决问题的关键是公式的具体情景运用.23. 【答案】6【分析】先计算算术平方根、绝对值、零指数幂、特殊角三角函数值,再合并即可.【详解】解:原式=4﹣2×1+3+1=4﹣2+3+1=6【点睛】此题考查的是算术平方根、绝对值、零指数幂、特殊角三角函数值,掌握其运算法则是解决此题的关键.24. 【答案】2【分析】根据绝对值的意义,零指数幂的定义,数的开方法则以及特殊角的三角函数的值代入计算即可.【详解】解:01|()tan 452+︒11-2=【点睛】此题考查了实数的运算,熟练掌握运算法则和方法是解本题的关键. 25. 【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.26. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()2022112sin 3013213132-︒=+-⨯=+-=. 27. 【答案】3【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可.【详解】 解:原式113322=+-=. 28. 【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=1142-⨯+1=.29. 【答案】AC =4,sin A =35 【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∵∠C =90°,AB =5,BC =3,∴4AC .3sin 5BC A AB ==.30. 【答案】11x -,2【分析】 先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得.【详解】 解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅-11x =-∵2112x =⨯+=∴原式==31. 【答案】11a +,【分析】先算分式的减法,再把除法化为乘法进行约分化简,最后代入求值,即可求解.【详解】解:原式=223(1)23111a a a a a a ++-⎛⎫-⋅ ⎪--⎝⎭=33231(1)(1)a a a a a a +---⋅+- =1(1)(1)a a a a a -⋅+- =11a +,当2sin 451a =︒-=21=1时,原时。

中考数学一轮复习 第15课时 锐角三角函数导学案(无答案)

中考数学一轮复习 第15课时 锐角三角函数导学案(无答案)

第15课时 锐角三角函数学习目标: 1.理解锐角三角函数的定义,会由已知条件求锐角三角函数值.2.熟记特殊角的三角函数值.重难点: 利用三角函数知识解决问题学习过程一.知识梳理1.三角函数定义在直角三角形中,一个锐角的 与 的比叫正弦。

在直角三角形中,一个锐角的 与 的比叫余弦。

在直角三角形中,一个锐角的 与 的比叫正切。

sinA = ,cosA = ,tanA = 。

2.特殊角三角函数值3.三角函数的增减性当角度在0°~90°范围内变化时,正弦函数值随角度的增大而 ;余弦函数值随角度的增大而 ;正切函数值随角度的增大而 。

二、典型例题1.锐角三角函数(1)(2015•南通)如图,在平面直角坐标系中,直线OA 过点21(,),则tan α的值是( )A .5BC .12D .2 (2)(2017聊城)在Rt △ABC 中,1cos 2A =,那么sinA 的值是( )A B C .D .12 (3)(中考指要例2)(2017天水)在正方形网格中,△ABC 的位置如图所示,则cosB 的值为( )A .12 B . C . D 4)123l l ,相邻两条平行直线间的距离相等,若等腰直角△的三个项点分别在这三条平行直线上,则sin α的值是(2.特殊角的三角函数值计算:(中考指要例3)0014cos30+()002cos 45sin 604-+ 0112014)tan 45()2-+-︒-(4)(中考指要例3)已知αβ、均为锐角,且满足1sin 02a -+=, 则a β+=3.与三角函数有关的综合题(1)(2017安顺)如图,⊙O 的直径4AB =,BC 切O 于点B ,OC 平行于弦AD ,5OC =,则AD 的长为( )A .65B .85C .5D .5(2)(中考指要第8题)(2017杭州)如图,在△ABC 中,12AB AC BC ==,,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD x tan ACB y =∠=,,则( )A .23x y -=B .229x y -= C .2315x y -=D .2421x y -= 三、中考预测 (2015•乌鲁木齐)如图,AB 是O 的直径,CD 与O 相切于点C ,与AB 的延长线交于点D ,DE AD ⊥且与AC 的延长线交于点E .(1)求证:DC DE=;(2)若132tan CAB AB∠==,,求BD的长.四、反思总结1.本节课你复习了哪些内容?2.通过本节课的学习,你还有哪些困难?五、达标检测。

九年级数学《锐角三角函数(1)》导学案

九年级数学《锐角三角函数(1)》导学案

斜边c对边abCBA《28.1 锐角三角函数(1)》导学案【知识脉络】【学习目标】1.知识技能:知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定这一事实,进而认识正弦(sinA ).2. 数学思考:经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维.3.问题解决:通过自学、探究等活动,在直角三角形中,初步建立边与角之间的关系,进而知晓对于解决三角形问题又有了新的途径——运用正弦函数进行简单的计算。

4.情感态度:通过对直角三角形的“锐角”与“对边/斜边的比值”对应关系的学习,激发学生探究欲望,体验数学活动充满着探索与创造,从而主动参与数学活动。

【要点检索】 1、重点: 知道直角三角形当锐角固定时,它的对边与斜边的比值是固定值这一事实,认识正弦(sinA ). 2、难点: 对任意锐角,它的对边与斜边的比值是固定值的事实,关键在于比较、分析,得出结论. 【方法导航】 一、学习诱导 【课前热身】(一)我思考,我回顾1、(1)如图右,在Rt △ABC 中,∠C=90°,∠A=30°,BC=6,则AB= ,AC= 。

BC 与AB 的比值是多少?(2)在图中,当∠A=45°时,BC=1,则AC= ,AB= 。

BC 与AB 的比值是多少? 【头脑风暴】又是一年金秋时,秋天是植树的好季节。

为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?【追根溯源】(友情提示:先自学课本第74—75页,然后独立解决1——4题,时间5分钟,比一比,看谁最先完成)(二)我自学,我探索问题2:思考1:如果使出水口的高度为50m ,那么需要准备多长的水管? ; 如果使出水口的高度为a m ,那么需要准备多长的水管? ;结论:直角三角形中,30°角的对边与斜边的比值思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值 。

九年级一轮复习锐角三角函数教案

九年级一轮复习锐角三角函数教案

第一章 直角三角形的边角关系1.1 锐角三角函数(1)一、知识点1. 认识锐角三角函数——正弦、余弦2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.B 1B 2AC 1C 2它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=_ _____.3、锐角A的正弦,余弦,正切和余切都叫做∠A的三角函数.温馨提示(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA 的关系: sinA 越大,梯子 ; cosA 越 ,梯子越陡.探究活动3:如图,在Rt △ABC 中,∠C=90°,AB=20,sinA=0.6,求BC 和cosB.通过上面的计算,你发现sinA 与cosB 有什么关系呢? sinB 与cosA 呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 .设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备. 六、 归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt △ABC 中,∠C=90°, BC=3,AB=5,求A 的三个三角函数值. 类型二:利用三角函数值求线段的长度例2、如图,在Rt △ABC 中,∠B=90°,AC=200,sinA=0.6 ,求BC 的长 七、 总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA ,cosA ,tanA , 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形); (2)sinA ,cosA ,tanA 是一个完整的符号,表示∠A 的正切,习惯省去“∠”号; (3)sinA ,cosA ,tanA 都是一个比值,注意区别,且sinA,cosA,tanA 均大于0,无单位; (4)sinA ,cosA ,tanA 的大小只与∠A 的大小有关,而与直角三角形的边长没有必然关系; (5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等. 3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻.八、 随堂小测1、下图中∠ACB=90° ,CD ⊥AB 指出∠A2、1题中如果CD=5,AC=10,则sin ∠ACD= sin ∠DCB=3、如图:在等腰△ABC 中,AB=AC=5,BC=6.求: sinB,cosB,tanB设计意图:设计各种题型,可以检验学生的方法掌握情况,同时巩固学生的知识,提高学生的运用能力,若时间不允许该部分也可作为课后作业完成.BCABCsin a A c=cos b A c =sin b B c=cos a B c=bABCa┌csinA=cosB ,cosA=sinB (∠A+∠B=90。

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。

中考数学一轮复习几何部分导学案专题11:锐角三角函数(学生用)

中考数学一轮复习几何部分导学案专题11:锐角三角函数(学生用)

中考数学一轮复习几何部分专题11:锐角三角函数必考知识点:本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sin a 、cos a 、tan a 补充cot a 准确表示出直角三角形中两边的比(a 为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。

必考例题:【例1】在Rt △ABC 中,∠C =900,AC =12,BC =15。

(1)求AB 的长;(2)求sinA 、cosA 的值;(3)求A A 22cos sin +的值;(4)比较sinA 、cosB 的大小。

变式:(1)在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = 。

(2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。

【例2】计算:020045sin 30cot 60sin +⋅【例3】已知,在Rt △ABC 中,∠C =900,25tan =B ,那么cosA ( ) A 、25 B 、35 C 、552 D 、32变式:已知α为锐角,且54cos =α,则ααcot sin += 。

【例4】已知3cot tan =+αα,α为锐角,则αα22cot tan += 。

探索与创新:【问题】已知009030<<<βα,则αβαβcos 123cos )cos (cos 2-+---= 。

变式:若太阳光线与地面成α角,300<α<450,一棵树的影子长为10米,则树高h 的范围是( )(取7.13=)A 、3<h <5B 、5<h <10C 、10<h <15D 、h >15跟踪训练:一、选择题:1、在Rt △ABC 中,∠C =900,若43tan =A ,则sinA =( )A 、34B 、43C 、35D 、532、已知cos α<0.5,那么锐角α的取值范围是( )A 、600<α<900B 、00<α<600C 、300<α<900D 、00<α<3003、若1)10tan(30=+α,则锐角α的度数是( )A 、200B 、300C 、400D 、5004、在Rt △ABC 中,∠C =900,下列式子不一定成立的是( )A 、cosA =cosB B 、cosA =sinBC 、cotA =tanBD 、2cos 2sinB AC += 5、在Rt △ABC 中,∠C =900,31tan =A ,AC =6,则BC 的长为( ) A 、6 B 、5 C 、4 D 、26、某人沿倾斜角为β的斜坡前进100米,则他上升的最大高度为( )A 、βsin 100米B 、βsin 100米C 、βcos 100米 D 、βcos 100米 7、计算0030cot 3360cos +的值是( ) A 、27 B 、65 C 、23 D 、223+ 二、填空题:1、若α为锐角,化简αα2sinsin 21+-= 。

九年级数学《锐角三角函数3》导学案

九年级数学《锐角三角函数3》导学案

《28.1锐角三角函数(3)》导学案【学习目标】1.知识技能:熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。

2. 数学思考:加深学生对锐角三角函数的认识,了解特殊与一般的关系,并对学生进行逆向思维的训练。

3.问题解决:会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。

4.情感态度:通过对30°,45°,60°锐角的正弦、余弦、正切的学习,积极参加数学活动,增强学习数学的好奇心和学好数学的自信心。

【学习重点】会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。

【学习难点】会由一个特殊锐角的三角函数值说出这个角的度数。

【头脑风暴】同学们,我们学习了正弦、余弦、正切的知识,拿出一副三角尺,你能说出各个锐角的三角函数值各是多少吗?【追根溯源】(友情提示:先自学课本第79—80页,然后独立解决1——4题,上课时举手展示,比一比,看谁做得又快又对)(一)我思考,我尝试1、如右图,如图所示,在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、 ∠B 、∠C 的对边.那么①斜边)(sin =A =______,②斜边)(cos =A =______,的邻边A A ∠=)(tan =______2、在一副三角板中,根据正弦、余弦、正切的定义分别说出30°、45°、60°的各个锐角三角函数值。

(二)我自学,我探索3、 根据自己探求的三角函数值填表:4、 观察上表,尝试归纳三角函数值谁角度变化的特点,以及数字规律。

【基础闯关】(友情提示:可以在试卷上记录大致的解题思路,尝试独立完成,要自信哦!)5、求下列各式的值. (1)o 45cos 230sin 2-︒(2)tan30°-sin60°·sin30°(3)cos45°+3tan30°+cos30°+2sin60°-2tan45°(4)︒+︒+︒+︒-︒45sin 30cos 30tan 130sin 145cos 222 【方法导航】(友情提示:自学课本80页例3、例4后完成,10分钟完成,课堂上再展示) 6、求适合下列条件的锐角α .(1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α7、已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.【拓展提升】(友情提示:根据自己的学习需要选择适合自己的题组并完成,将解题思路适当的记录在试卷上)题组一锐角α 30° 45° 60° sin αcos α tan α8、已知:如图,在△ABC中,∠BAC=120°,AB=10,AC=5.求:sin∠ACB的值.9、已知:如图,Rt△ABC中,∠C=90°,∠BAC=30°,延长CA至D点,使AD=AB.求:(1)∠D及∠DBC;(2)tan D及tan∠DBC;(3)请用类似的方法,求tan22.5°.【课外探究】10、已知:如图,∠AOB=90°,AO=OB,C、D 是上的两点,∠AOD>∠AOC,求证:(1)0<sin∠AOC<sin∠AOD<1;(2)1>cos∠AOC>cos∠AOD>0;(3)锐角的正弦函数值随角度的增大而______;(4)锐角的余弦函数值随角度的增大而______.【小结提炼】●经过本节学习你有什么收获?●在这部分学习中,你还有什么困难?【实战演练】必做题:课本82--83页,3,10.11、已知:如图,Rt△ABC中,∠C=90°,3==BCAC ,作∠DAC =30°,AD交CB于D点,求:(1)∠BAD;(2)sin∠BAD、cos∠BAD和tan ∠BAD.12、已知:如图△ABC中,D为BC中点,且∠BAD=90°,31tan=∠B,求:sin∠CAD、cos∠CAD、tan ∠CAD.选做题:13、已知:如图,Rt△ABC中,∠C=90°,求证:(1)sin2A+cos2A=1;(2)⋅=AAAcossintan14、化简:ααcossin21⋅-(其中0°<α <90°)15、已知:如图,在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,交AD于H点.在底边BC保持不变的情况下,当高AD变长或变短时,△ABC和△HBC的面积的积S△ABC·S△HBC的值是否随着变化?请说明你的理由.。

数学中考一轮复习:三角函数-锐角三角函数要点集锦

数学中考一轮复习:三角函数-锐角三角函数要点集锦

初中数学锐角三角函数要点集锦考点考纲要求分值考向预测锐角三角函数要点1. 理解正弦、余弦、正切的定义及计算公式;2. 能够推导并掌握特殊角的三角函数值;3. 能够理解与锐角三角函数有关的公式。

3~5分主要考查为利用三角函数的定义求值,利用特殊角的三角函数值进行计算,难度不大,分值也不高,理解定义是解决问题的关健。

一、锐角三角函数基本定义:在Rt△ABC中,∠C=90°,我们把∠A的对边与斜边的比叫做∠A的正弦,记作sin A;把∠A的邻边与斜边的比叫做∠A的余弦,记作cos A;把∠A的对边与邻边的比叫做∠A 的正切,记作tan A。

即:sinA=;cosA=;tanA=。

锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。

ABCabc对边邻边斜边【随堂练习】(贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为()A. B. C. D.思路分析:首先画出图形,进而求出AB的长,再利用锐角三角函数求出即可。

答案:解:如图所示:∵∠C=90°,AC=12,BC=5,∴AB===13,则sinA==,故选:D。

三角函数角度αsinαcosαtanα30°45° 160°【重要提示】1. 各三角函数值可通过直角三角形性质及勾股定理求出边长从而求出比值;2. 锐角三角函数值的取值范围及增减情况:①∠A的正弦函数、余弦函数的取值范围是:0<sinA<1,0<cosA<1,即任意锐角的正弦、余弦值都大于0而小于1;而正切是两直角边的比,所以∠A的正切函数取值范围是:tanA>0,即任意锐角的正切值都大于0。

②当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小)。

三、同角、互余两角的锐角三角函数值的关系:1. 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值;即:。

九年级数学《锐角三角形3》导学案

九年级数学《锐角三角形3》导学案

第三节 28.1.3 锐角三角函数【知识脉络】【学习目标】探索30°、45°、60°的三角函数值,要求能够熟记或快速地口算出相应的值,并能用于简单的计算。

【要点检索】1、30°、45°、60°的三角函数值2、三角函数的简单计算。

【方法导航】1、为你支招:(1)借助锐角三角函数的概念,探索出30°、45°、60°的三角函数值;(2)涉及有关特殊角的三角形函数参与的代数运算,其运算顺序与普通代数运算顺序相同。

2、课前热身:在直角三角形ABC 中,锐角A 的正弦、余弦、正切分别是怎样定义的?3、自主探究:(1)用锐角三角函数的定义分别求当锐角A 为30°、45°、60°的正弦、cosA tanA(2)观察归纳:①用“<”或“>”号连接: sin30°______sin45°______sin60° cos30°______cos45°______cos60° tan30°______tan45°______tan60°②你能从①中发现什么?③归纳:锐角A 的正弦(切)随着角度数的增大而增大,余弦值随着角度数的增大而减小;锐角A 的正弦值等于它的余角的余弦值;同角的正弦与余弦之比等于其正切;为锐角ααα,1cos sin 22=+(3)即兴演练: 问题1:求下列各式的值.①cos 260°+sin 260°. ②cos 45sin 45︒︒-tan45°.问题2:①如图(1),在Rt △ABC 中,∠C=90°,6,3,求∠A 的度数.②如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3倍,求α. 分析导引:①要求∠A 的度数,从题中给出的条件6,3求出什么?②的实质是什么?问题3:已知∠A 为锐角,且cosA ≤12,那么( )A .0°<∠A ≤60°B .60°≤∠A<90°C .0°<∠A ≤30°D .30°≤∠A<90°(4)理理便清晰:本节课主要学习了什么?锐角α的三角函数之间有什么关系?你能根据锐角三角函数的定义解释这种关系吗? 【基础过关】1.下列各式中不正确的是( ).A .sin 260°+cos 260°=1B .sin30°+cos30°=1C .sin35°=cos55°D .tan45°>sin45° 2.计算2sin30°-2cos60°+tan45°的结果是( ). A .2 B .3 C .2 D .13、若sina=21,则锐角a= ,若cosa=22,则锐角a= 。

2023年中考数学一轮复习:锐角三角函数

2023年中考数学一轮复习:锐角三角函数

2023年中考数学一轮复习:锐角三角函数一、单选题1.如图,一座厂房屋顶人字架的跨度12AC =m ,上弦AB BC =,25BAC ∠=︒.若用科学计算器求上弦AB 的长,则下列按键顺序正确的是( )A .1225cos ÷=B .625cos ÷=C .625tan ÷=D .625sin ÷=2.如图,一块矩形木板ABCD 斜靠在墙边(OC⊥OB ,点A ,B ,C ,D ,O 在同一平面内) 。

已知AB=a ,AD=b ,⊥BCO=θ,则点A 到OC 的距离等于( )A .asinθ+bsinθB .acosθ+bcosθC .asinθ+bcosθD .acosθ+bsinθ3.如图,在⊥ ABC 中,⊥C =90°,以OA 为半径的半圆经过Rt ⊥ABC 的顶点B ,交直角边AC 于点E ,且B ,E 是半圆的三等分点,弧BE 的长为43π,则图中阴影部分的面积为( )A .38π B .83π C .38πD .83π二、填空题4.在 Rt ABC 中, 90ACB ∠=︒ , 6BC = , 3sin 5A =,则 AB = . 5.计算: ()0212014()2sin 6012π----︒+= .6452sin 60︒-︒= .三、综合题7.如图,在⊥ABC 中,AB=AC ,以AC 边为直径作O 交BC 边于点D ,过点D 作DE⊥AB 于点E ,ED 、AC 的延长线交于点F.(1)求证:EF 是O 的切线;(2)若EB=6,且sin⊥CFD=35,求O 的半径.8.如图,四边形ABCD 是平行四边形,延长AD 至点E ,使DE =AD ,连接BD 、CE.(1)求证:四边形BCED 是平行四边形;(2)若DA =DB =4,cosA =14,求点B 到点E 的距离. 9.(1)计算:02012460sin ⨯︒(2)求代数式的值:2222(2)42x x x x x x -÷++-+,其中12x =.10.测量计算是日常生活中常见的问题,如图,建筑物BC 的屋顶有一根旗杆AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°,观测旗杆底部B 点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2).(1)若已知CD =20米,求建筑物BC 的高度; (2)若已知旗杆的高度AB =5米,求建筑物BC 的高度.11.随着精准扶贫政策的落地实施,小亮家所在的村落进行了整村搬迁,小亮同家人一起告别了祖辈们世代居住的窑洞,搬进了宽敞明亮的新房.他家的新房全部安装的是内倒式窗户.为帮助家人确定窗边家具摆放位置,小亮想要知道开启窗扇时,窗扇顶端向屋内移动的水平距离.如图,小亮测得窗扇高度AB=80cm,开启时的最大张角⊥A=22.5°,窗扇开启后的位置为AB'.(1)请根据这些数据帮助小亮计算开启窗扇时,窗扇顶端向屋内移动的最大水平距离(不考虑窗扇的厚度,参考数据sin22.5°≈0.38,cos22.5°≈0.92,tan22.5°≈0.41);(2)小亮的爸爸说:“咱家安装窗户总共花了4800元,隔壁小明家安装的是平移式窗户,他家窗户总面积比咱家多3平方米,但他家总共才花了3680元,咱家安装的这种内倒式窗户每平方米的价格是小明家安装的平移式窗户每平方米价格的1.5倍.”请你根据以上信息求出小亮家安装的这种内倒式窗户每平方米多少元?12.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,⊥ADB=30°.(1)试探究线段BD 与线段MF的数量关系和位置关系,并说明理由;(2)把⊥BCD 与⊥MEF 剪去,将⊥ABD绕点A顺时针旋转得⊥AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当⊥AFK 为等腰三角形时,求β的度数;(3)若将⊥AFM沿AB方向平移得到⊥A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP⊥AB时,求平移的距离.13.如图,在⊥ABC中,以BC为直径的⊥O交AC于点D,点E在⊥O上,且BD DE=,连接BE交AC于点F,已知BA=BF.(1)求证:AB是⊥O的切线;(2)若AF=6,35ABAC=,求⊥O的直径.14.如图,在⊥O中,C,D是直径AB上的两点,且AC=BD,EG⊥AB,FH⊥AB,交AB于C、D,点E,G,F,H在⊥O上.(1)若EG=8,AC=2,求⊥O半径;(2)求证:AE=BF;(3)若C,D分别为OA,OB的中点,则AE=EF=FB成立吗?请说明理由.15.如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏东60°方向往前铺设,测绘员在A 处测得另一个需要安装天然气的M小区位于北偏东30°方向,测绘员从A处出发,沿主输气管道步行到达C 处,此时测得M小区位于北偏西60°方向.(1)求⊥AMC与⊥ACM度数.(2)现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短,且AC=2000米,求A小区与支管道连接点N的距离.16.在平面直角坐标系中,一次函数()0y ax b a=+≠的图形与反比例函数()0ky kx=≠的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH y⊥轴,垂足为H,3OH=,4tan3AOH∠=,点B的坐标为()2m-,.(1)求 AHO 的周长;(2)求该反比例函数和一次函数的解析式;(3)写出不等式 kax b x+≥ 的解集.17.(1)计算: ()(04116tan 303--+︒-- ;(2)已知 ()223400x xy y y --=≠ ,试求代数式2x yx y-+ 的值. 18.如图,ABCD 中,点E ,F 分别在BC ,AD 上,BE=DF ,连结AE ,CF 。

初中数学 导学案1:锐角三角函数

初中数学 导学案1:锐角三角函数

《锐角三角函数》导学案【学习目标】⑴能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。

⑵能熟练计算含有30°、45°、60°角的三角函数的运算式【学习重点】熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式【学习难点】30°、45°、60°角的三角函数值的推导过程【导学过程】一、自学提纲:一个直角三角形中,一个锐角正弦是怎么定义的?一个锐角余弦是怎么定义的?一个锐角正切是怎么定义的?二、合作交流:思考:两块三角尺中有几个不同的锐角?是多少度?你能分别求出这几个锐角的正弦值、余弦值和正切值码?.三、教师点拨:归纳结果tanA例3求下列各式的值.(1)cos260°+sin260°.(2)cos45sin45︒︒-tan45°.例4(1)如图(1),在Rt△ABC中,∠C=90,AB=,BC=,求∠A的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求a.四、学生展示:(一)课本6页课内练习第1 题课本9页课内练习第 2题(二)选择题.1.已知:Rt△ABC中,∠C=90°,cosA=35,AB=15,则AC的长是().A.3 B.6 C.9 D.12 2.下列各式中不正确的是().A.sin260°+cos260°=1 B.sin30°+cos30°=1 C.sin35°=cos55° D.tan45°>sin45°3.计算2sin30°-2cos60°+tan45°的结果是().A.2 B.C.D.14.已知∠A为锐角,且cosA≤12,那么()A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30°D.30°≤∠A<90°5.在△ABC中,∠A、∠B都是锐角,且sinA=12,cosB=32,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定6.如图Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana的值为().A.34B.43C.35D.457.当锐角a>60°时,cosa的值().A.小于12B.大于12C.大于32D.大于18.在△ABC中,三边之比为a:b:c=1::2,则sinA+tanA等于().A.32313331.32B C D+++9.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,若梯形的高是,则∠CAB等于()A.30° B.60° C.45° D.以上都不对10.sin272°+sin218°的值是().A.1 B.0 C.12D.3211.若( 3 tanA-3)2+│2cosB- 3 │=0,则△ABC().A.是直角三角形B.是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 (三)填空题.12.设α、β均为锐角,且sin α-cos β=0,则α+β=_______.13. 的值是_______.14.已知,等腰△ABC •的腰长为4 3 ,•底为30 °,•则底边上的高为______,•周长为______.15.在Rt △ABC 中,∠C =90°,已知tanB = 52,则cosA =________.五、课堂小结:要牢记下表:六、作业设置: 七、自我反思:本节课我的收获: 。

模式1中考数学第一轮复习导学案-锐角三导学案-锐角三角函数14

模式1中考数学第一轮复习导学案-锐角三导学案-锐角三角函数14

锐角三角函数◆ 课前热身1.sin30°的值为( ) A .32B .22C .12D .332.在等腰直角三角形ABC 中,∠C =90º,则sin A 等于( ) A .12B .22C .32D .13.在Rt ABC △中,9032C AB BC ∠===°,,,则cos A 的值是 . 4.如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是5.计算:tan 60°=________. 【参考答案】** 2.B 3. 4.6 5. ◆考点聚焦 知识点锐角三角函数、锐角三角函数值的符号、锐角三角函数值的变化规律、特殊角三角函数值 大纲要求1.了解锐角三角函数的定义,并能通过画图找出直角三角形中边、角关系,•这也是本节的重点和难点.2.准确记忆30°、45°、60°的三角函数值. 3.会用计算器求出已知锐角的三角函数值. 4.已知三角函数值会求出相应锐角.5.掌握三角函数与直角三角形的相关应用,这是本节的热点. 考查重点与常见题型1.求三角函数值,常以填空题或选择题形式出现;2.考查互余或同角三角函数间关系,常以填空题或选择题形式出现;3.求特殊角三角函数值的混合运算,常以中档解答题或填空题出现.◆备考兵法充分利用数形结合的思想,对本节知识加以理解记忆. ◆考点链接1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值◆典例精析例1(内蒙古包头)已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43 B .45 C .54D .34【解析】本题考查三角函数的定义和勾股定理,在RTΔABC 中,∠C=90°,则sin aA c=,tan b B a =和222a b c +=;由3sin 5A =知,如果设3a x =,则5c x =,结合222a b c +=得4b x =;∴44tan 33b x B a x ===,所以选A . 【答案】A例2(湖北荆门)104cos30sin 60(2)(20092008)-︒︒+---=______.【解析】本题考查特殊角的三角函数值.零指数幂.负整数指数幂的有关运算,104cos30sin 60(2)(20092008)-︒︒+---=3313412222⎛⎫⨯⨯+--= ⎪⎝⎭,故填32.【答案】32例3(黑龙江哈尔滨)先化简.再求代数式的值.22 ()2111a aa a a ++÷+-- 其中a =tan60°-2sin30°.30° 45°60° sin αcos α tan αα abc【分析】此题考查了分式的混合运算,计算时,可以先算括号里的,也可利用乘法分配律进行计算,注意约分.另外在计算a 的值时,特殊的三角函数要记准确. 【答案】原式2(1)(2)13(1)(1)1a a a a a a a -++-==+-+ 当1tan 602sin 3032312a =-=-⨯=-°°时,原式33311==-+. ◆迎考精炼 一、选择题1.(浙江湖州) 如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A . 3sin 2A =B .1tan 2A = C .3cos 2B = D .tan 3B =2.(福建漳州)三角形在方格纸中的位置如图所示,则tan α的值是( ) A .34B .43 C .35 D .453.(吉林)将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A .233cm B .433cm C .5cm D .2cm 60°P Q2cmαBC A4.(广东深圳)如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是( )A .3B .5C .25 D .2255.(浙江衢州)为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是 A .14 B .4C .117D .4176. (湖北鄂州) 如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD =CD ,cos ∠DCA=54,BC =10,则AB 的值是( ) A .3B .6C .8D .9二、填空题1.(山东济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .520α 520m2.(山东济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为米.(精确到0.1米,3 1.73≈)3.(湖北孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .4.(山东泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .ADB EC60°第2题图(第18题图)MAC B5.(湖南益阳)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 .6.(广东深圳)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD ,若AB=8,BD=5,则CD= .三、解答题1.(湖北黄石)求值101|32|20093tan 303-⎛⎫-+--+ ⎪⎝⎭°2.(广西崇左)计算:0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°.3.(福建福州)如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点在格点上, 请按要求完成下列各题:(1) 用签字笔...画AD ∥BC (D 为格点),连接CD ; (2) 线段CD 的长为 ;(3) 请你在ACD △的三个内角中任选一个锐角..,若你所选的锐角是 ,则它所对应的正弦函数值是 .AC (B ′)BA ′C ′(4) 若E 为BC 中点,则tan ∠CAE 的值是 .4.(四川南充) 如图,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A . (1)求tan BOA ∠的值;(2)将点B 绕原点逆时针方向旋转90°后记作点C ,求点C 的坐标;(3)将OAB △平移得到O A B '''△,点A 的对应点是A ',点B 的对应点B '的坐标为(22)-,,在坐标系中作出O A B '''△,并写出点O '.A '的坐标.【参考答案】 一、选择题1. D2. A3. B4.D5.A6. B二、填空题 1.22 2.16.1 3.45(或0.8) 4.335.316.1.4(或75) 三、解答题O xAB11y1.解:原式= 3231333-+++⨯6= 2.原式=33231123⨯-⨯+-=0. 3.(1)如图 (2)5;(3)∠CA D ,55(或∠ADC ,552); (4)21. 4.解:(1)点(42)B ,,BA x ⊥轴于A ,42OA BA ∴==,, 21tan 42AB BOA OA ∴∠===. (2)如图,由旋转可知:24CD BA OD OA ====,,∴点C 的坐标是(24)-,.(3)O A B '''△如图所示,(24)O '--,,(24)A '-,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数
◆ 课前热身
1.sin30°的值为( ) A .
32
B .
22
C .
12
D .
33
2.在等腰直角三角形ABC 中,∠C =90º,则sin A 等于( ) A .
12
B .
22
C .32
D .1
3.在Rt ABC △中,9032C AB BC ∠===°,,,则cos A 的值是 . 4.如图,△ABC 中,∠C=90°,AB=8,cosA=
4
3
,则AC 的长是
5.计算:tan 60°=________. 【参考答案】
** 2.B 3. 4.6 5. ◆考点聚焦 知识点
锐角三角函数、锐角三角函数值的符号、锐角三角函数值的变化规律、特殊角三角函数值 大纲要求
1.了解锐角三角函数的定义,并能通过画图找出直角三角形中边、角关系,•这也是本节的重点和难点.
2.准确记忆30°、45°、60°的三角函数值. 3.会用计算器求出已知锐角的三角函数值. 4.已知三角函数值会求出相应锐角.
5.掌握三角函数与直角三角形的相关应用,这是本节的热点. 考查重点与常见题型
1.求三角函数值,常以填空题或选择题形式出现;
2.考查互余或同角三角函数间关系,常以填空题或选择题形式出现;
3.求特殊角三角函数值的混合运算,常以中档解答题或填空题出现.
◆备考兵法
充分利用数形结合的思想,对本节知识加以理解记忆. ◆考点链接
1.sin α,cos α,tan α定义
sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值
◆典例精析
例1(内蒙古包头)已知在Rt ABC △中,3
90sin 5
C A ∠==°,,则tan B 的值为( ) A .43 B .45 C .54
D .
34
【解析】本题考查三角函数的定义和勾股定理,在RTΔABC 中,∠C=90°,则sin a
A c
=,
tan b B a =和222a b c +=;
由3
sin 5
A =知,如果设3a x =,则5c x =,结合222a b c +=得4b x =;∴44
tan 33
b x B a x ===,所以选A .
【答案】A
例2(湖北荆门)104cos30sin 60(2)(20092008)-︒︒+---=______.
【解析】本题考查特殊角的三角函数值.零指数幂.负整数指数幂的有关运算,
104cos30sin 60(2)(20092008)-︒︒+---=3313412222
⎛⎫⨯
⨯+--= ⎪⎝⎭,故填3
2.
【答案】
3
2
例3(黑龙江哈尔滨)先化简.再求代数式的值.22 ()211
1a a a a a ++÷+-- 其中a =tan60°
-2sin30°.
30° 45°
60° sin α
cos α tan α
α a
b
c
【分析】此题考查了分式的混合运算,计算时,可以先算括号里的,也可利用乘法分配律进行计算,注意约分.另外在计算a 的值时,特殊的三角函数要记准确. 【答案】原式2(1)(2)13
(1)(1)1
a a a a a a a -++-=
=+-+
当1
tan 602sin 3032312a =-=-⨯=-°°时,原式33311
=
=-+. ◆迎考精炼 一、选择题
1.(浙江湖州) 如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A . 3sin 2A =
B .1
tan 2
A = C .3cos 2
B = D .tan 3B =
2.(福建漳州)三角形在方格纸中的位置如图所示,则tan α的值是( ) A .
34
B .
43 C .35 D .45
3.(吉林)将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )
A .
233cm B .4
33
cm C .5cm D .2cm 60°
P Q
2cm
α
B
C A
4.(广东深圳)如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是( )
A .3
B .5
C .
25 D .2
25
5.(浙江衢州)为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是 A .1
4 B .4
C .117
D .417
6. (湖北鄂州) 如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD =CD ,cos ∠DCA=5
4
,BC =10,则AB 的值是( ) A .3
B .6
C .8
D .9
二、填空题
1.(山东济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .
5
20
α 5
20
m
2.(山东济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:
(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.
根据测量数据,计算出风筝的高度CE 约为
米.(精确到0.1米,3 1.73≈)
3.(湖北孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点
P (3,4),则 sin α= .
4.(山东泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .
A
D
B E
C
60°
第2题图
(第18题图)
M
A
C B
5.(湖南益阳)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 .
6.(广东深圳)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD ,若AB=8,BD=5,则CD= .
三、解答题
1.(湖北黄石)求值1
01|32|20093tan 303-⎛⎫-+--+ ⎪⎝⎭°
2.(广西崇左)计算:0
200912sin 603tan 30(1)3⎛⎫
-++- ⎪⎝⎭
°°.
3.(福建福州)如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点在格点上, 请按要求完成下列各题:
(1) 用签字笔...画AD ∥BC (D 为格点),连接CD ; (2) 线段CD 的长为 ;
(3) 请你在ACD △的三个内角中任选一个锐角..,若你所选的锐角是 ,则它所对应的正弦函数值是 .
A
C (B ′)
B
A ′
C ′
(4) 若E 为BC 中点,则tan ∠CAE 的值是 .
4.(
四川南充) 如图,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A . (1)求tan BOA ∠的值;
(2)将点B 绕原点逆时针方向旋转90°后记作点C ,求点C 的坐标;
(3)将OAB △平移得到O A B '''△,点A 的对应点是A ',点B 的对应点B '的坐标为
(22)-,,在坐标系中作出O A B '''△,并写出点O '.A '的坐标.
【参考答案】 一、选择题
1. D
2. A
3. B
4.D
5.A
6. B
二、填空题 1.
22 2.16.1 3.45(或0.8) 4.33 5.31 6.1.4(或75
) 三、解答题
O x
A
B
1
1
y
1.解:原式= 3
231333
-+++⨯
6= 2.原式=33231123

-⨯+-=0. 3.(1)如图 (2)5;
(3)∠CA D ,
55(或∠ADC ,5
5
2); (4)
2
1. 4.解:(1)
点(42)B ,,BA x ⊥轴于A ,
42OA BA ∴==,,
21
tan 42
AB BOA OA ∴∠=
==. (2)如图,由旋转可知:24CD BA OD OA ====,,
∴点C 的坐标是(24)-,.
(3)O A B '''△如图所示,
(24)O '--,,(24)A '-,.。

相关文档
最新文档