绝对值PPT精品课件
合集下载
《绝对值》ppt课件
4
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培
绝对值ppt课件
a | a | a
0
(a 0) (a 0) (a 0)
典例精析
1. 绝对值是6的数有几个?各是什么?有没有绝对值是-2 的数?
答:绝对值是6的数有两个,各是6与-. 没有绝对值是-2的数. 2.绝对值是0的数有几个?各是什么? 答:绝对值是0的数有一个,是0. 3.绝对值小于3的整数一共有多少个?
化简:
| 0.3 |= 0.3
-273 =
27 3
| b |= -b (b<0)
| b-a | = a-b(a>b)
下列判断,正确是( D )
A.若a>b,则│a│>│b│ 如a=1,b=-2 B.若│a│>│b│,则a>b 如a=-3,b=2 C.若a<b<0,则│a│<│b│ 如a=-3,b=-2 D.若a>b>0,则│a│>│b│
答:绝对值小于3的整数一共有5个, 它们分别是-2,-1,0,1,2.
练习
2、 已知 x-4 y-3 =0,求 x+y 的值.
解:根据题意可知 因为 x-4=0,y-3=0, 所以 x=4,y=3, 所以 x+y=7.
一个数的绝对值总是大于或等于0,即为非负数,若几 个非负数的和为0,则这几个数都为0.
4.求下列各数的绝对值:6,-0.2, -3.4,0 .
解:|6|=6 |-0.2|=0.2 |-3.4|=3.4 |0|=0
作
业
完成长江课堂第6面
再
会
绝对值
复习
1,-10与10互为 相反数?请把它们在数轴上表示出来
2,思考:-10和10到原点的距离分别是多少?
-10到原点的距离是10 ;10到原点的距离是10
10
10
-10
0
10
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
绝对值数学(22张PPT)
即:|10|=10,|-10|=10
表示 -4 的点到原点的距离是 4, 所以 -4的绝对值是4,记作| -4 | = 4
探究新知
表示4的点到原点的距离是4,所以4的绝对值是4,记作| 4 | = 4
探究新知
表示0的点到原点的距离是0,所以0的绝对值是0,记作| 0 | = 0
探究新知
归纳总结
1.2.4 绝对值
学习目标
知识回顾
互为相反数的两个数到原点的距离相等.
只有符号不同的两个数,互为相反数.
数轴上,点C、点D到原点的距离都是_____.
3
C
D
正数的相反数是负数;负数的相反数是正数; 0的
10
-10
10
10
【探究】10和-10互为相反数,在数轴上分别用点A,B表示这两个数
4
-4
A
B
C
D
D
5
9
2
10
-2024
C
C
A
小结
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0.
即:当a>0时,|a|=___;当a<0时,|a|=___;当a=0时,|a|=___.
a
-a
0
任何一个有理数的绝对值都是非负数
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0.
即:当a>0时,|a|=___;当a<0时,|a|=___;当a=0时,|a|=___.
a
-a
0
任何一个有理数的绝对值都是非负数
表示 -4 的点到原点的距离是 4, 所以 -4的绝对值是4,记作| -4 | = 4
探究新知
表示4的点到原点的距离是4,所以4的绝对值是4,记作| 4 | = 4
探究新知
表示0的点到原点的距离是0,所以0的绝对值是0,记作| 0 | = 0
探究新知
归纳总结
1.2.4 绝对值
学习目标
知识回顾
互为相反数的两个数到原点的距离相等.
只有符号不同的两个数,互为相反数.
数轴上,点C、点D到原点的距离都是_____.
3
C
D
正数的相反数是负数;负数的相反数是正数; 0的
10
-10
10
10
【探究】10和-10互为相反数,在数轴上分别用点A,B表示这两个数
4
-4
A
B
C
D
D
5
9
2
10
-2024
C
C
A
小结
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0.
即:当a>0时,|a|=___;当a<0时,|a|=___;当a=0时,|a|=___.
a
-a
0
任何一个有理数的绝对值都是非负数
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0.
即:当a>0时,|a|=___;当a<0时,|a|=___;当a=0时,|a|=___.
a
-a
0
任何一个有理数的绝对值都是非负数
绝对值课件(共20张PPT)
(4)绝对值等于2的数是___2_或__-_2.
易错提醒: 注意绝对值等于某个正数的数有两个,他们互为相反
数,解题时不要遗漏负值.
例 4 已知 x-4 y-3 =0,求 x+y 的值.
[解析] 一个数的绝对值总是大于或等于 0,即为非负 数,若两个非负数的和为 0,则这两个数同时为 0.
解:根据题意可知 x-4=0,y-3=0, 所以x=4,y=3,故x+y=7.
思考: 一个正数的绝对值是什么?
一个负数的绝对值是什么?
0的绝对值是什么?
结论1:一个正数的绝对值是正数.
一个负数的绝对值是正数.
0的绝对值是0.
|a|≥0
结论2:一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数.
思考: 字母a表示一个有理数,你知道a的绝对值
等于什么吗?
正数的绝对值是它本身
()
思考: 一个正数的绝对值是什么?
驶,记向东行驶的里程数为正 两辆出租车都从O 字母a表示一个有理数,你知道a的绝对值等于什么吗?
(2)当a是负数时,|a|=__;
.
(2)绝对值等于的正数是_____,
地出发,甲车向东行驶10km到达A处,记作 (5)有理数的绝对值一定是非负数.
(2)一个数的绝对值等于它的相反数,这个数一定是
√
典例精析
例1 求下列各数的绝对值. 12, 3 -7.5, 0. 5
解:
|12|=12;
| 3 |= 3
5
5
;
正数的绝对值等于它本身
; 负数的绝对值等于它的相反数
|0|=0.
0的绝对值是0
例2 填一填
(1)绝对值等于0的数是___0, (2)绝对值等于的正数是_____,
易错提醒: 注意绝对值等于某个正数的数有两个,他们互为相反
数,解题时不要遗漏负值.
例 4 已知 x-4 y-3 =0,求 x+y 的值.
[解析] 一个数的绝对值总是大于或等于 0,即为非负 数,若两个非负数的和为 0,则这两个数同时为 0.
解:根据题意可知 x-4=0,y-3=0, 所以x=4,y=3,故x+y=7.
思考: 一个正数的绝对值是什么?
一个负数的绝对值是什么?
0的绝对值是什么?
结论1:一个正数的绝对值是正数.
一个负数的绝对值是正数.
0的绝对值是0.
|a|≥0
结论2:一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数.
思考: 字母a表示一个有理数,你知道a的绝对值
等于什么吗?
正数的绝对值是它本身
()
思考: 一个正数的绝对值是什么?
驶,记向东行驶的里程数为正 两辆出租车都从O 字母a表示一个有理数,你知道a的绝对值等于什么吗?
(2)当a是负数时,|a|=__;
.
(2)绝对值等于的正数是_____,
地出发,甲车向东行驶10km到达A处,记作 (5)有理数的绝对值一定是非负数.
(2)一个数的绝对值等于它的相反数,这个数一定是
√
典例精析
例1 求下列各数的绝对值. 12, 3 -7.5, 0. 5
解:
|12|=12;
| 3 |= 3
5
5
;
正数的绝对值等于它本身
; 负数的绝对值等于它的相反数
|0|=0.
0的绝对值是0
例2 填一填
(1)绝对值等于0的数是___0, (2)绝对值等于的正数是_____,
绝对值ppt课件
[例 2] 求出下列各数的绝对值:
-1 ,0.3,0,-5,-(-3 ).
解:因为-1 到原点的距离是 1 个单位长度,所以|-1 |=1 .
因为 0.3 到原点的距离是 0.3 个单位长度,所以|0.3|=0.3.
因为 0 到原点的距离是 0 个单位长度,所以|0|=0.
1.(2022 荆门)如果|x|=2,那么 x 等于( C )
A.2
B.-2
C.2 或-2 D.2 或
2.绝对值为 4 的有理数为
-10
.
±4
,绝对值为 10 的负有理数为
3.若 a 的绝对值与-3 的绝对值相等,求 a 的值.
解:-3 的绝对值为|-3 |=3 .
因为 a 的绝对值为 3 .
a+b=0;
(3)任意实数的绝对值都是非负数,即|a|≥0.
新知应用
1.如图所示,点 A 所表示的数的绝对值是(
A.3 B.-3
C.
D.-
2.|- |=
,|+3.5|=
3.5
.
A
)
3.把下列各数表示在数轴上,并写出其绝对值.
4,2.5,-3,-1.5.
解:如图所示.
由数轴可得,|4|=4,|2.5|=2.5,|-3|=3,
|-1.5|=1.5.
绝对值的性质
[例 3] 化简:
-|+3|,|-(-8)|,|0|,-|-1 |,-|+(-6)|.
绝对值课件
• 减法与乘法的结合律:$\frac{\mid a-b \mid}{\mid c \mid} = \frac{\mid a \mid - \mid b \mid}{\mid c \mid}$,$\frac{\mid a\times b^{-1} \mid}{\mid c \mid} = \frac{\mid a \mid \times {\left|b^{1}\right|}}{\left|c\right|}$
06
总结与回顾
重点知识回顾
绝对值的定义
绝对值是一个数到原点的距离, 正数的绝对值是它本身,负数的 绝对值是它的相反数,0的绝对值
是0。
绝对值的性质
绝对值具有非负性,即|a| ≥ 0;正 数的绝对值是它本身,负数的绝对 值是它的相反数,0的绝对值是0。
绝对值的运算
两个正数的绝对值相等,两个负数 的绝对值也相等,但正数的绝对值 大于负数的绝对值。
04
绝对值的拓展知识
绝对值不等式
绝对值不等式的定义
如果用字母表示两个数,那么当$a \geq 0$时,$|a|=a$;当 $a<0$时,$|a|=-a$。
绝对值不等式的性质
绝对值不等式的性质包括对称性、传递性、加法单调性、乘法单调 性等。
绝对值不等式的解法
解绝对值不等式需要先去掉绝对值符号,将其转化为一般的不等式 ,然后求解。
绝对值的性质
任何数的绝对值都是非负数。例 如,|x|≥0,且|x|=0当且仅当 x=0。
互为相反数的两个数的绝对值相 等。例如,|-3|=|3|。
绝对值等于同一个正数的数有两 个,它们互为相反数。例如, |5|=5,|-5|=5。
绝对值的几何意义
从数轴上来看,一个数的绝对值就是 表示该数的点到原点的距离。例如, |-3|表示-3这个点到原点的距离,|5| 表示5这个点到原点的距离。
06
总结与回顾
重点知识回顾
绝对值的定义
绝对值是一个数到原点的距离, 正数的绝对值是它本身,负数的 绝对值是它的相反数,0的绝对值
是0。
绝对值的性质
绝对值具有非负性,即|a| ≥ 0;正 数的绝对值是它本身,负数的绝对 值是它的相反数,0的绝对值是0。
绝对值的运算
两个正数的绝对值相等,两个负数 的绝对值也相等,但正数的绝对值 大于负数的绝对值。
04
绝对值的拓展知识
绝对值不等式
绝对值不等式的定义
如果用字母表示两个数,那么当$a \geq 0$时,$|a|=a$;当 $a<0$时,$|a|=-a$。
绝对值不等式的性质
绝对值不等式的性质包括对称性、传递性、加法单调性、乘法单调 性等。
绝对值不等式的解法
解绝对值不等式需要先去掉绝对值符号,将其转化为一般的不等式 ,然后求解。
绝对值的性质
任何数的绝对值都是非负数。例 如,|x|≥0,且|x|=0当且仅当 x=0。
互为相反数的两个数的绝对值相 等。例如,|-3|=|3|。
绝对值等于同一个正数的数有两 个,它们互为相反数。例如, |5|=5,|-5|=5。
绝对值的几何意义
从数轴上来看,一个数的绝对值就是 表示该数的点到原点的距离。例如, |-3|表示-3这个点到原点的距离,|5| 表示5这个点到原点的距离。
绝对值(37张PPT)数学
16
17
解 如图,
(2)超市D距货场A多远?
解
返回
解 向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,5.5-1.5-2=2(km),超市D距货场A有2 km.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(3)货车一共行驶了多少千米?
解 货车一共行驶了5.5+2+1.5+2=11(km).
答案
解析
7.计算:|-2|+2=____.
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 |-2|+2=2+2=4.
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
9.绝对值不大于5的整数共有____个.
11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 绝对值不大于5的整数有-5,-4,-3,-2,-1,0,1,2,3,4,5,共11个.
A
2.|-3|等于( )
C
答案
1
2
3
4
5
6
7
8
17
解 如图,
(2)超市D距货场A多远?
解
返回
解 向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,5.5-1.5-2=2(km),超市D距货场A有2 km.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(3)货车一共行驶了多少千米?
解 货车一共行驶了5.5+2+1.5+2=11(km).
答案
解析
7.计算:|-2|+2=____.
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 |-2|+2=2+2=4.
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
9.绝对值不大于5的整数共有____个.
11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 绝对值不大于5的整数有-5,-4,-3,-2,-1,0,1,2,3,4,5,共11个.
A
2.|-3|等于( )
C
答案
1
2
3
4
5
6
7
8
绝对值ppt课件
看,最接近标准的是(
A.-0.6
B.+0.7
A
)
C.-1
D.+1
1.一个正数的绝对值是
它本身
数
.
,0的绝对值是
2.绝对值具有
非负
0
相等
它的相反
性,即|a|≥0.
3.互为相反数的两个数的绝对值
数可能
,一个负数的绝对值是
,也可能
相等
互为相反数
,反之,绝对值相等的两个
.
1.-3的绝对值是(
1
A.
3
C )
(毫米).
答:蜗牛共爬行了40毫米.
(2)若该蜗牛每爬行1毫米需用时0.2秒,则这5次爬行共用了多
少秒?
解:(2)40×0.2=8(秒).
答:这5次爬行共用了8秒.
7.(阅读理解)已知|5-2|表示5与2这两个数在数轴上所对应的两
点之间的距离,那么|5+2|可以看作|5-(-2)|,表示5与-2
这两个数在数轴上所对应的两点之间的距离.
是
0
Hale Waihona Puke ,-8的绝对值是6
,0的绝对值
8
;
-4.5的绝对值
(2)(多维原创)|-4.5|读作
上表示-4.5的点与原点的距离
5
【变式1】(1)2的绝对值是
绝对值是
,其结果等于
,它表示
4.5
.
,-3.9的绝对值是
3.9
,100的
100 ;
(2)|-1.5|=
1.5
,|7|=
7
数轴
2
,|-11|=
.
(B)
A.9
B.5
A.-0.6
B.+0.7
A
)
C.-1
D.+1
1.一个正数的绝对值是
它本身
数
.
,0的绝对值是
2.绝对值具有
非负
0
相等
它的相反
性,即|a|≥0.
3.互为相反数的两个数的绝对值
数可能
,一个负数的绝对值是
,也可能
相等
互为相反数
,反之,绝对值相等的两个
.
1.-3的绝对值是(
1
A.
3
C )
(毫米).
答:蜗牛共爬行了40毫米.
(2)若该蜗牛每爬行1毫米需用时0.2秒,则这5次爬行共用了多
少秒?
解:(2)40×0.2=8(秒).
答:这5次爬行共用了8秒.
7.(阅读理解)已知|5-2|表示5与2这两个数在数轴上所对应的两
点之间的距离,那么|5+2|可以看作|5-(-2)|,表示5与-2
这两个数在数轴上所对应的两点之间的距离.
是
0
Hale Waihona Puke ,-8的绝对值是6
,0的绝对值
8
;
-4.5的绝对值
(2)(多维原创)|-4.5|读作
上表示-4.5的点与原点的距离
5
【变式1】(1)2的绝对值是
绝对值是
,其结果等于
,它表示
4.5
.
,-3.9的绝对值是
3.9
,100的
100 ;
(2)|-1.5|=
1.5
,|7|=
7
数轴
2
,|-11|=
.
(B)
A.9
B.5
绝对值PPT教学课件
绝对值不等式
若a和b为实数,则有|a||b|≤|a+b|≤|a|+|b|成立。
绝对值的几何意义
数轴上的绝对值
在数轴上,一个数到原点的距离等于该点与原点之间的距离。例如,点A表 示的数为-3,则点A到原点的距离为3,即|-3|=3。
绝对值的几何解释
绝对值还可以理解为在数轴上,一个点到任意一个点之间的距离。例如,点B 表示的数为x,点C表示的数为y,则|x-y|表示点B到点C的距离。
对于形如“|x| > a”或“|x| < a”的 不等式,可以通过去掉绝对值符号, 将不等式转化为若干个不等式组来解 决。
要点三
绝对值不等式的应用
绝对值不等式可以用来解决一些实际 问题,例如在物理、化学、生物等领 域中,常常需要使用绝对值不等式来 解决一些限制条件或优化问题。
在函数中的应用
绝对值函数的定义
3. 根据以上两点,进行 化简求值。
习题二:绝对值的比较大小
详细描述
2. 比较两个负数的绝对值大小: 先取它们的相反数,再比较大小 。
总结词:掌握比较两个数的绝对 值大小的方法,能够根据两个数 的绝对值判断它们的大小关系。
1. 比较两个正数的绝对值大小: 直接比较它们的绝对值即可。
3. 比较两个数的绝对值大小:先 分别求出它们的绝对值,再比较 大小。
3
绝对值的定义也可以理解为:一个数a的绝对值 就是a和0之间的距离。
绝对值的意义
01
绝对值的意义在于它反映了数在数轴上的位置离原点的远近程 度。
02
对于任何有理数a,它都有一个对应的绝对值|a|,这个绝对值
表示了a离原点的距离。
通过比较两个数的绝对值大小,我们可以知道它们在数轴上的
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说出数轴上A,B,C,D,E, 各点所表示的数的绝对值
C
A
E
-6ቤተ መጻሕፍቲ ባይዱ-5 -4 -3 -2 -1
01
B
D
23456
解:因为A点与原点的距离是4个单位,所以-4的绝对值为4
因为B点与原点的距离是2.5个单位,所以2.5的绝对值为2.5
因为C点与原点的距离是6个单位,所以-6的绝对值为6
因为D点与原点的距离是4个单位,所以4的绝对值为4 因为E点与原点的距离是2.5个单位,所以2.5的绝对值为2.5
2021/3/1
4
为了方便起见一个数的绝对值可用数学 符号表示:
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
例如:-4的绝对值可记成: -4
读出下列各式子,并说它表示的意义
你能求出它们的值吗?试一试
-3 6 0 2021/3/1
=3 =6 =0
1.5 =1.5 -0.4 =0.4
12
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/3/1
13
-2
=2
5
我们看到:一个数a的绝对值是指在数轴上表 示a的点与原点的距离。
利用数轴,求出下列数的绝对值:
-4,-2,-1,0,1,3,4,5。 -4 -2 -1 0 1 3 4 5
-5 -4 -3 -2 -1 0 1 2 3 4 5
解: 44 ; 22 ; 11 ;00 ; 11 ;33 ;44;55
3,绝对值大于4的整数有多少个?你 能和你的同伴一起感知一下吗?请你举3 个例子.把你的发现和大家交流
4,有绝对值最小的数吗?有绝对值最大的数吗?
2021谈/3/1谈你的看法.
10
拓展和延伸
1、大于-3而小于5的整数有 个,它们分别
是
。
2、绝对值小于5的整数有 是
个,它们分别
。
3、绝对值不大于3的整数有
2.3 绝对值
2021/3/1
1
两辆汽车从同一起点出发,第一辆沿公路向 东行驶了5千米,第二辆向西行驶了4千米,为了 表示行驶的方向(规定向东为正)和所在位置,分 别记作+5千米和-4千米。这样,利用有理数就可 以明确表示每辆汽车在公路上的位置了.
-4
5
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
2021/3/1
8
如图,数轴上有四个数,请用<号把它们的 绝对值连起来
a
b0
c
d
解:
b < c <d < a
2021/3/1
9
观察与思考
3个单位
3个单位
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1,如果一个数的绝对值是3,那么这个数是 多少?(把你的想法与大家交流)
2,绝对值小于4的整数有那些?
我们知道,出租汽车是计程收费的,这时我
们只需要考虑汽车行驶的距离,不需要考虑方向。
当不考虑方向时,两辆汽车行驶的距离就可以记
为5千米和4千米。
2021/3/1
2
-3
23
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
在数轴上一个数所对应的点与原点的 距离叫做该数的绝对值.
2021/3/1
3
是
2021/3/1
个,它们分别
。
11
出租车司机小李某天下午某一时段营运,全
是在东西走向的人民大道进行。如果规定向东 为正,向西为负,他在这一时段行车里程(单 位:千米)如下: -2,5,-1,+10,-3,若车耗油量为0.8升/千 米,你能帮助小李算出在这一时段共耗油多少 升吗?(谈谈你的看法)
2021/3/1
思考:从上述结果中你发现了什么?
2021/3/1
6
例1:求下列各数的绝对值 -21, 0, 4 , -7.8,
9 从上述结果中你发现了什么?
一个数的绝对值一定为非负数,即 a ≥ 0.
思考:什么数的绝对值等于4? 什么数的绝对值等于2.5? 你发现了什么?
2021/3/1
7
例题
• 求4与-3.5的绝对值. • 比较-3与-6的绝对值的大小