实验流体力学4.风洞.ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了提高风洞实验的雷诺数(模拟尺度或粘性效应的 相似准则),1980年,美国将一座旧的低速风洞改造 成为世界最大的全尺寸风洞(可以直接把原形飞机放 进试验段中吹风),试验段面积24.4米×12.2米,风速 150m/s,功率10万kW。
1975年,英国建成一座低速压力风洞,试验段5米 ×4.2米,风速95-110m/s,压力3个大气压,功率1.4 万kW,试验雷诺数(它是一个无量纲数)8×106。
3.1 风洞的发展
世界上最早的风洞是1871年英国Wenhan在格 林威治建造的(45.7×45.7cm,长3.05m);
美国的莱特兄弟 (O.Wright和W.wright)于 1901年制造了试验段0.56米2,风速12m/s的 风洞,从而于1903年发明了世界上第一架实 用的飞机。风洞的大量出现是在20世纪中叶。
(1)边界效应或边界干扰
真实飞行时,静止大气是无边界的。而在风洞中, 气流是有边界的,边界的存在限制了边界附近的流 线弯曲,使风洞流场有别于真实飞行的流场。其影 响统称为边界效应或边界干扰。克服的方法是尽量 把风洞试验段做得大一些(风洞总尺寸也相应增大), 并限制或缩小模型尺度,减小边界干扰的影响。但 这将导致风洞造价和驱动功率的大幅度增加,而模 型尺度太小会便雷诺数变小。近年来发展起一种称 为"自修正风洞"的技术。风洞试验段壁面做成弹性 和可调的。试验过程中,利用计算机,粗略而快速 地计算相当于壁面处流线应有的真实形状,使试验 段壁面与之逼近,从而基本上消除边界干扰。
为此,应运而生出现了许多"大气边界层风洞 "。在这种风洞中,试验段的气流并不是均匀 的,从风洞底板向上,速度逐渐增加,模拟 地面"风"的运动情况(称为大气边界层)。国内 已出现了十几座这样的风洞。
3.2 风洞试验模拟的不足及其修正
风洞试验既然是一种模拟试验,不可能完全 准确。概括地说,风洞试验固有的模拟不足 主要有以下三个方面。与此同时,相应也发 展了许多克服这些不足或修正其影响的方法。
第三章 风 洞 (Wind Tunnel)
在实验室内进行模型试验,必须创 造一个可调节的均匀气流场。而风洞就 是产生这个均匀气流场的气动设备。实 质上是一个特殊设计的管道。
本章主要介绍低速风洞、超音速风 洞、跨音速风洞的基本工作原理和气流 特点。
主要内容
风洞的发展 风洞试验模拟的不足及其修正 风洞类别 低速风洞 超音速风洞 跨音速风洞 风洞发展动向
风洞试验的理论基础是相似原理。相似原理要求风 洞流场与真实飞行流场之间满足所有的相似准则, 或两个流场对应的所有相似准则数相等。风洞试验 很难完全满足。最常见的主要相似准则Байду номын сангаас满足是亚 跨声速风洞的雷诺数不够。以波音737飞机为例,它 在巡航高度(9000m)上,以巡航速度(927km/h)飞行, 雷诺数为2.4×107,而在3米亚声速风洞中以风速 100m/s试验,雷诺数仅约为1.4×106,两者相距甚远。 提高风洞雷诺数的方法主要有:
80年代,美国建成一座低温风洞,以氮气(氮气凝固 点低,适于低温下工作)为工作介质,温度范围34078K,压力可达9个大气压,试验段2.5米×2.5米,马 赫数0.2-1.2,雷诺数高达120×106。
我国的风洞建设发展迅速。1977年,中国空
气动力研究与发展中心建成亚洲最大的低速 风洞,串联双试验段:8米×6米和16米×l2米, 风速100m/s,功率7800kW。1999年,又建成 具有世界规模的跨声速风洞,试验段口径2.4 米,马赫数0.6-1.2。
风洞应用扩大到一般工业
随着工业技术的发展,从60年代开始, 风洞试验(主要是低速风洞)从航空航天领域 扩大到一般工业部门。反映各行各业的发展 越来越需要空气动力学和风洞试验的参与, 已经形成了新的学科:“工业空气动力学” 和“风工程学”
汽车风洞、气象风洞、环保风洞、风沙风洞
例如,当汽车速度达到180km/h时,空气阻力可占总 阻力的1/3。对小汽车模型进行风洞试验,合理修形。 可使气动阻力减小75%。对建筑物模型进行风载荷 试验,从根本上改变了传统的设计方法和规范,大
(4)提高Re的方法
增大模型和风洞的尺度,其代价同样是风洞造价和 风洞驱动功率都将大幅度增加。如上文所说美国的 全尺寸风洞。
增大空气密度或压力。已出现很多压力型高雷诺数 风洞,工作压力在几个至十几个大气压范围。我国 也正在研制这种高雷诺数风洞。
降低气体温度。如以90K(-1830C)的氮气为工作介质, 在尺度和速度相同时,雷诺数是常温空气的9倍多。 世界上已经建成好几个低温型高雷诺数风洞。我国 也研制了低温风洞,但尺度还比较小。
(2)支架干扰
风洞试验中,需要用支架把模型支撑在气流 中。支架的存在,产生对模型流场的干扰, 称为支架干扰。虽然可以通过试验方法修正 支架的影响,但很难修正干净。近来,正发 展起一种称为"磁悬模型"的技术。在试验段内 产生一可控的磁场,通过磁力使模型悬浮在 气流中。
(3)相似准则不能满足的影响
型建筑物如大桥、电视塔、大型水坝、高层建筑群
等,己规定必须要进行风洞试验,而且模型必须模 拟实物的刚度 (即弹性模型),测量"风振特性"。这 方面已有教训。1940年,美国塔科马(Tacoma)大桥, 一座大型钢索吊桥,因为并不很大的风载荷,导致
桥体强迫振动和共振,引起断塌,因而受到学界广
泛重视。对于大型工厂、矿山群,也要做成模型, 在风洞中进行防止污染和扩散的试验。
为了试验炮弹的气动力作用和研究超声速流动,瑞 士阿克雷特(G.Ackttet)于1932年建成了世界第一座超 声速风洞,试验段面积0.4米×0.4米,马赫数(风速与 声速之比)2;
适应跨超声速飞行器的发展,1956年美国建成世界 最大的跨超声速风洞,试验段面积4.88米×4.88米, 马赫数0.8-4.88,功率为16.1万kW。1958年,美国航 天局建成试验段直径0.56米,马赫数可高达18-22的 高超声速风洞。
相关文档
最新文档