有理数经典测试题含答案

合集下载

语法知识—有理数的经典测试题含答案解析

语法知识—有理数的经典测试题含答案解析

一、填空题1.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.2.在校秋季运动会中,跳远比赛的及格线为4 m .小宸跳出了4.25 m ,记做+0.25 m ,那么小玲跳出了3.85 m ,记作__________m .3.若m 、n 互为相反数,则5m+5n=______4.已知|a|=8,|b|=10,b α<,则a-b 的值为_______5.数轴上,离原点6个单位长度的点所表示的数是_____.6.用一个x 的值说明“|x|=x”是错误的,这个值可以是x=______.7.数a 、b 在数轴上的位置如图所示,化简b ﹣|b ﹣a |=_____.8.到数轴上表示6-和表示10的两点距离相等的点表示的数是______.9.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A 、B 、C 、D ,先将圆周上的字母A 对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向右滚动: ()1数轴上的2所对应的点将与圆周上的字母______所对应的点重合;()2数轴上的数2019所对应的点将与圆周上的字母______所对应的点重合.10.若1x y -++(2-x )2=0,则xy =__________ 二、解答题 11.已知a b 、满足()222810a b a b +-+--=.(1)求ab 的值;(2)先化简,再求值:()()()()21212a b a b a b a b -+---+-.12.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km ):+9 -3 -5 +4 -8 +6 -3 -6 -4 +7 (1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元?13.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值. (2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.14.如图,数轴上A 、B 两点对应的有理数分別为20和30,点P 和点Q 分别同时从点A 和点O 出发,以每秒2个单位长度,每秒4个单位长度的速度向数轴正方向运动,设运动时间为t 秒.(1)当2t =时,则P 、Q 两点对应的有理数分别是______;PQ =_______;(2)点C 是数轴上点B 左侧一点,其对应的数是x ,且2CB CA =,求x 的值;(3)在点P 和点Q 出发的同时,点R 以每秒8个单位长度的速度从点B 出发,开始向左运动,遇到点Q 后立即返回向右运动,遇到点P 后立即返回向左运动,与点Q 相遇后再立即返回,如此往返,直到P 、Q 两点相遇时,点R 停止运动,求点R 运动的路程一共是多少个单位长度?点R 停止的位置所对应的数是多少?三、1315.下列说法正确的是( )A .若|a |=a ,则a >0B .若a 2=b 2,则a =bC .若0<a <1,则a 3<a 2<aD .若a >b ,则11a b< 16.在数轴上距2.5有3.5个单位长度的点所表示的数是( )A .6B .-6C .-1D .-1或617.已知 A 和 B 都在同一条数轴上,点 A 表示 - 2 ,又知点 B 和点 A 相距 5 个单位长度,则点 B 表示的数一定是( )A .3B .- 7C .7 或 - 3D .- 7 或 3 18.下列各数:-(-1),-|-5|,(-4)2,(-3)3,-24,其中负数有( )A .2个B .3个C .4个D .5个 19.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A .1个B .2个C .3个D .4个 20.冰箱冷藏室的温度零上5 °C 记作+5 °C,保鲜室的温度零下6 °C 记作 ( )A .+6 °CB .-1 °C C .−11 °CD .−6 °C21.已知|a +1|+a b -=0,则b ﹣1=( ) A .﹣1 B .﹣2 C .0D .1 22.实数a 、b 、c 在数轴上的对应点如图所示,化简|a ﹣b |+|c ﹣b |=( )A .a +c ﹣2bB .a ﹣cC .2bD .2b ﹣a ﹣c23.2( )A 2B 2C 2D .224.下列说法正确的是( )A .一个数的绝对值一定比0大B .绝对值等于它本身的数一定是正数C .一个数的绝对值越大,表示它的点在数轴上越靠右D .绝对值最小的数是025.下列各数不是1的相反数的是( )A .3(1)-B .1--C .21-D .()224-÷-【参考答案】***试卷处理标记,请不要删除一、填空题1.−2或−12【分析】根据绝对值的性质求出ab 的值然后代入进行计算即可求解【详解】∵|a|=5|b|=7∴a=5或−5b=7或−7又∵|a+b|=a+b ∴a+b ⩾0∴a=5或−5b=7∴a−b=5−7 解析:−2或−12.【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.此题考查绝对值,解题关键在于掌握其性质.2.-015【解析】【分析】根据跳远比赛的及格线为4m小宸跳出了425m记做+025m 可以表示出小玲跳出了385m的成绩【详解】解:∵跳远比赛的及格线为4m小宸跳出了425m记做+025m∴小玲跳出了3解析:-0.15【解析】【分析】根据跳远比赛的及格线为4m.小宸跳出了4.25m,记做+0.25m,可以表示出小玲跳出了3.85m的成绩.【详解】解:∵跳远比赛的及格线为4m.小宸跳出了4.25m,记做+0.25m,∴小玲跳出了3.85m,记作:3.85-4=-0.15m,故答案为:-0.15.【点睛】本题考查了正数和负数,解题的关键是明确正数和负数在题目中的实际含义.3.0【分析】根据互为相反数的两个数的和等于0写出m+n=0然后代入计算即可求解【详解】∵mn互为相反数∴m+n=0∴5m+5n=5(m+n)=0故答案是:0【点睛】本题主要考查相反数的性质相反数的和为解析:0【分析】根据互为相反数的两个数的和等于0写出m+n=0,然后代入计算即可求解.【详解】∵m,n互为相反数,∴m+n=0,∴5m+5n =5(m+n)=0.故答案是:0.【点睛】本题主要考查相反数的性质,相反数的和为0.4.-2或-18【解析】【分析】已知|a|=8|b|=10根据绝对值的性质先分别解出ab然后根据a<b判断a与b的大小从而求出a-b【详解】解:∵|a|=8|b|=10∴a=±8b=±10∵a<b∴①当解析:-2或-18【解析】【分析】已知|a|=8,|b|=10,根据绝对值的性质先分别解出a,b,然后根据a<b,判断a与b的大小,从而求出a-b.解:∵|a|=8,|b|=10,∴a=±8,b=±10,∵a<b,∴①当a=8,b=10时,a-b=-2;②当a=-8,a=10时,a-b=-18.a-b的值为-2或-18.故答案为-2或-18.【点睛】此题主要考查绝对值的性质及其应用,解题关键是判断a与b的大小.5.6或﹣6【解析】【分析】分所表示的点在原点左边与右边两种情况解答【详解】①左边距离原点6个单位长度的点是﹣6②右边距离原点6个单位长度的点是6∴距离原点6个单位长度的点所表示的数是6或﹣6故答案为6解析:6或﹣6【解析】【分析】分所表示的点在原点左边与右边两种情况解答.【详解】①左边距离原点6个单位长度的点是﹣6,②右边距离原点6个单位长度的点是6,∴距离原点6个单位长度的点所表示的数是6或﹣6.故答案为6或﹣6.【点睛】本题考查了数轴的知识,注意分所求的点在原点的左、右两边两种情况讨论,避免漏解而导致出错.6.-1(任意负数都可以)【解析】【分析】直接利用绝对值的性质得出答案【详解】解:∵用一个x的值说明|x|=x是错误的∴这个值可以是x=-1(任意负数都可以)故答案为-1(任意负数都可以)【点睛】本题考解析:-1(任意负数都可以)【解析】【分析】直接利用绝对值的性质得出答案.【详解】解:∵用一个x的值说明“|x|=x”是错误的,∴这个值可以是x=-1(任意负数都可以).故答案为-1(任意负数都可以).【点睛】本题考查绝对值,正确掌握绝对值的性质是解题关键.7.2b ﹣a 【解析】【分析】根据数轴可得b ﹣a <0从而可去掉绝对值合并同类项即可【详解】解:由数轴可得b ﹣a <0则b ﹣|b ﹣a|=b+b ﹣a =2b ﹣a 故答案为2b ﹣a 【点睛】本题考查了整式的加减数轴及绝解析:2b ﹣a .【解析】【分析】根据数轴可得b ﹣a <0,从而可去掉绝对值,合并同类项即可.【详解】解:由数轴可得b ﹣a <0,则b ﹣|b ﹣a |=b +b ﹣a =2b ﹣a .故答案为2b ﹣a .【点睛】本题考查了整式的加减、数轴及绝对值的知识,根据数轴得出b ﹣a <0是解答本题的关键.8.2【解析】【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:到数轴上表示和表示10的两点距离相等的点表示的数是故答案为:2【点睛】本题考查了数轴上两点之间中点求法我们把数和点对应 解析:2【解析】【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可.【详解】解:到数轴上表示6-和表示10的两点距离相等的点表示的数是61022-+=, 故答案为:2.【点睛】本题考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 9.DC 【解析】【分析】因为圆沿着数轴向右滚动依次与数轴上数字顺序重合的是ADCB 即表示的数都与A 点重合数轴上表示4n 的点大于都与点B 重合依此按序类推【详解】解:当圆周向右转动一个单位时可得D 点与数轴上解析:D C【解析】【分析】因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A 、D 、C 、B ,即表示4n 1+的数都与A 点重合,数轴上表示4n 的点(大于1)都与点B 重合,依此按序类推.【详解】()1解:当圆周向右转动一个单位时,可得D 点与数轴上的2对应的点重合, 故答案为D .()2解:设数轴上的一个整数为x ,由题意可知当x 4n 1=+时(n 为整数),A 点与x 重合;当x 4n 2=+时(n 为整数),D 点与x 重合;当x 4n 3=+时(n 为整数),C 点与x 重合;当x 4n =时(n 1≥的整数),B 点与x 重合;而201950443=⨯+,所以数轴上的2019所对应的点与圆周上字母C 重合. 故答案为C .【点睛】本题考查了数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.6【解析】【分析】由于|x-y+1|+(2-x )2=0而|x-y+1|和(2-x )2都是非负数由此可以得到它们中每一个都等于0由此即可求出xy 的值代入代数式求值即可【详解】∵|x -y+1|+(2-x解析:6【解析】【分析】由于|x-y+1|+(2-x )2=0,而|x-y+1|和(2-x )2都是非负数,由此可以得到它们中每一个都等于0,由此即可求出x 、y 的值,代入代数式求值即可.【详解】∵|x-y+1|+(2-x )2=0,|x-y+1|≥0和(2-x )2≥0,∴|x-y+1|=0,(2-x )2=0,解得x=2,y=3.∴xy=6.故答案是:6.【点睛】考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论即可解决此类问题.二、解答题11.(1)7ab 2=;(2)3(a 2+b 2)-5ab-1,112. 【分析】(1)根据绝对值和偶次方的非负性求出a 2+b 2=8,a-b=1,再根据完全平方公式进行求出ab ;(2)先算乘法,再合并同类项,最后整体代入求出即可.【详解】解:(1)∵|a2+b2-8|+(a-b-1)2=0,∴a2+b2-8=0,a-b-1=0,∴a2+b2=8,a-b=1,∴(a-b)2=1,∴a2+b2-2ab=1,∴8-2ab=1,7ab2∴=;(2)(2a-b+1)(2a-b-1)-(a+2b)(a-b)=(2a-b)2-12-(a2-ab+2ab-2b2)=4a2-4ab+b2-1-a2+ab-2ab+2b2=3a2+3b2-5ab-1=3(a2+b2)-5ab-1,当a2+b2=8,当7ab2=时,原式711 385122 =⨯-⨯-=.【点睛】本题考查了绝对值,偶次方,乘法公式的应用,也考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行计算和化简是解此题的关键.12.(1)出租车离鼓楼出发点3千米,在鼓楼西方;(2)55;(3)132.【分析】(1)根据有理数的加法运算,可得出租车离鼓楼出发点多远,在鼓楼什么方向;(2)将所有的行驶路程相加即可.(3)根据乘车收费:单价×里程,可得司机一下午的营业额.【详解】(1)9−3−5+4−8+6−3−6−4+7=−3,答:将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西方;(2) 9+|−3|+|−5|+4+|−8|+6+|−3|+|−6|+|−4|+7=55(千米).故租车一共行驶55千米(3) (9+|−3|+|−5|+4+|−8|+6+|−3|+|−6|+|−4|+7)×2.4=132(元),答:每千米的价格为2.4元,司机一下午的营业额是132元.【点睛】此题考查正数和负数,解题关键在于掌握其性质和运算法则.13.(1) m=-40,n=30.(2)t=5.(3)AP=或AP=70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2) 分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.【详解】(1)因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ=AB=35所以70-6t=35所以t=,AP==,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ=AB=35所以6t-70=35所以t=所以AP==70.【点睛】本题考查二元一次方程组的实际应用和单项式,解题的关键是掌握二元一次方程组的实际应用.14.(1)24,8;16;(2)703或10;(3)80;40.【解析】【分析】(1)根据路程=速度×时间,先求出OQ,OP的值,进而可求出PQ的值.(2)由CB=2CA,可得30-x=2(x-20)或30-x=2(20-x),解方程即可.(3)设t秒后P、Q相遇.则有4t-2t=20,t=10,此时P、Q、R在同一点,由此可以确定点R的位置.【详解】(1)t=2时,OQ=2×4=8,PA=2×2=4,OP=24,∴P、Q分别表示24和8,PQ=24-8=16,故答案为24,8;16.(2)∵CB=2CA,∴30-x=2(x-20)或30-x=2(20-x),∴x=703或10.(3)设t秒后P、Q相遇.则有4t-2t=20,∴t=10,∴R运动的路程一共是8×10=80.此时P、Q、R在同一点,所以点R的位置所对应的数是40.【点睛】本题考查一元一次方程的应用、数轴上两点间的距离等知识,解题的关键是理解题意,学会用方程的思想思考问题,属于中考常考题型.三、1315.C解析:C【解析】【分析】A.根据绝对值的性质判断即可;B.等式从左边到右边是开方运算,根据一个数的平分根有两个互为相反数,可判断;C.利用乘方和立方的性质可判断;D.利用不等式的性质可判断.【详解】A、若|a|=a,则a≥0,故这个说法错误;B、若a2=b2,则a=b或a=﹣b,故这个说法错误;C、若0<a<1,则a3<a2<a,故这个说法正确;D、若a>b,则1a<1b或1a>1b,故这个说法错误,故选:C.【点睛】本题考查绝对值、二次根式、乘方运算和不等式的性质.要判断一个结论是正确的需要用定理严格证明,要判断一个结论是错误的只需要举一个反例即可,所以做本题时可举反例用排除法去选择.16.D解析:D【解析】由题意得:当所求点在2.5的左侧时,则距离3.5个单位长度的点表示的数是2.5−3.5=−1;当所求点在2.5的右侧时,则距离3.5个单位长度的点表示的数是2.5+3.5=6.故所表示的数是−1或6.故选:D.点睛:本题考查了数轴的有关知识,是基础题,难点在于解答本题要分两种情况讨论. 17.D解析:D【分析】本题根据题意可知B的取值有两种,一种是在点A的左边,一种是在点A的右边.即|b﹣(﹣2)|=5,去绝对值即可得出答案.【详解】依题意得:数轴上与A相距5个单位的点有两个,右边的点为﹣2+5=3;左边的点为﹣2﹣5=﹣7.故选D.【点睛】本题难度不大,但要注意分类讨论,不要漏解.18.B解析:B【分析】把各式化简:-(-1)=1,-|-5|=-5,(-4)2=16,(-3)3=-27,-24=-64,然后根据负数的定义作出选择.【详解】∵-(-1)=1,-|-5|=-5,(-4)2=16,(-3)3=-27,-24=-64,∴上述数中的负数是:-|-5|=-5,(-3)3=-27,-24=-64共3个;故选B.【点睛】此题考查有理数的乘方,绝对值,正数和负数,解题关键在于掌握运算法则.19.C【分析】①举例说明命题错误;②举例说明命题错误;③根据有理数的概念判断即可;④根据有理数的概念判断即可.【详解】①当a≤0时,-a≥0,故-a 一定是负数错误;②当a=2,b=-2时, ||||a b ,但是a≠b ,故②的说法错误;③一个有理数不是整数就是分数,此选项正确;④一个有理数不是正数就是负数还有可能是0,故④的说法错误.所以错误的个数是3个.故答案为C【点睛】本题考查了有理数的概念,熟练掌握概念是解题的关键.20.D解析:D【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:冰箱冷藏室的温度零上5℃记作+5℃,保鲜室的温度零下6℃记作-6℃, 故选:D .【点睛】本题考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.21.B解析:B【解析】【分析】根据非负数的性质求出a 、b 的值,然后计算即可.【详解】解:∵|a +1|0,∴a +1=0,a -b =0,解得:a =b =-1,∴b -1=-1-1=-2.故选:B .【点睛】本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a 、b 的值是解决此题的关键.解析:B【解析】【分析】先根据各点在数轴上的位置判断出a-b及c-b的符号,再去括号,合并同类项即可【详解】由题意可得:c<b<a,∴a﹣b>0,c﹣b<0,∴|a﹣b|=a﹣b,|c﹣b|=﹣(c﹣b),∴原式=a﹣b﹣(c﹣b)=a﹣b﹣c+b=a﹣c.故选B.【点睛】本题考查的是实数的运算,熟知绝对值的性质是解答此题的关键.23.C解析:C【解析】【分析】根据绝对值的性质:负数的绝对值是它的相反数,可得答案.【详解】,故选C.【点睛】本题考查了实数的性质,熟记绝对值的性质是解题关键.24.D解析:D【解析】【分析】根据绝对值的意义和性质,逐个判断得结论.【详解】,故选项A错误;解:由于a00和正数的绝对值是它本身,故选项B错误;负数的绝对值越大,表示它的点在数轴上越靠左,故选项C错误;绝对值最小的数是0,故选项D正确.故选D.【点睛】.理解绝对值的意义是解决本题的关键.本题考查了绝对值的意义和性质解析:D【解析】【分析】分别计算后即可确定正确的选项.【详解】解:A 、3(1)1-=-,是1的相反数,不符合题意;B 、11--=-,是1的相反数,不符合题意;C 、211-=-,是1的相反数,不符合题意;D 、()2241-÷-=,不是1的相反数,符合题意; 故选D .【点睛】本题考查了有理数的乘方、相反数及绝对值的知识,属于基础运算,比较简单.。

【绝对经典】初一数学有理数30题含详细答案

【绝对经典】初一数学有理数30题含详细答案
(3)当代数式|x+1|+|x﹣2|+|x﹣3|取最小值时,x的值为_____.
30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()

有理数的运算经典测试题附解析

有理数的运算经典测试题附解析

有理数的运算经典测试题附解析一、选择题1.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】4.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为( )A .611610⨯B .711.610⨯C .71.1610⨯D .81.1610⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.-2的倒数是( )A.-2 B.12-C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105 B.8.5×106C.85×105 D.85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n,其中1≤|a|<10,n为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.63.0510⨯B.630.510⨯C.73.0510⨯D.83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为( ) A .8.298×107 B .82.98×105 C .8.298×106 D .0.8298×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】数据“829.8万”用科学记数法表示为8.298×106.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .18.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.如图,是一个计算流程图.当16x =时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.。

第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。

有理数测试题及答案

有理数测试题及答案

有理数测试题及答案一、选择题1. 下列哪个数是有理数?A. √2B. πC. 1/3D. 0.8080080008…(每两个8之间依次增加一个0)答案:C2. 有理数的英文是什么?A. Rational numberB. Irrational numberC. Real numberD. Complex number答案:A3. 若a和b是有理数,且a/b ≠ 0,那么a和b至少有一个数是?A. 正数B. 负数C. 零D. 整数答案:D4. 两个有理数相加,结果必然是?A. 有理数B. 无理数C. 整数D. 零答案:A5. 以下哪个操作不会改变一个有理数的值?A. 乘以一个非零有理数B. 加上一个无理数C. 除以一个非零有理数D. 减去一个相同的有理数答案:D二、填空题1. 请写出一个有理数的例子:__________。

答案:2/32. 有理数可以表示为两个整数的比,即 a/b,其中a和b都是__________。

答案:整数3. 若一个有理数的分母为零,则该有理数是__________。

答案:未定义4. 一个有理数可以是__________或__________。

答案:正数负数5. 请写出一个无限循环小数的有理数例子:__________。

答案:1/3 = 0.33333…三、简答题1. 请简述什么是有理数。

答案:有理数是可以表示为两个整数的比的数,其中分母不为零。

这包括有限小数、无限循环小数以及整数。

2. 有理数和无理数有什么区别?答案:有理数可以表示为两个整数的比,而无理数则不能。

有理数可以是有限小数或无限循环小数,而无理数则是无限不循环小数。

3. 如何判断一个数是否是有理数?答案:如果一个数可以表示为两个整数的比,并且分母不为零,那么这个数就是有理数。

例如,所有整数、分数和无限循环小数都是有理数。

4. 请举例说明有理数的加法和减法。

答案:例如,1/2 + 1/3 = 5/6,这是一个有理数的加法例子。

语法知识—有理数的经典测试题及答案

语法知识—有理数的经典测试题及答案

一、填空题1.|x +1|+|y -2|=0,则y -x -13的值是____. 2.大于-112而小于213的整数有是___________; 3.小贝认为:若a b >,则a b >.小贝的观点正确吗?___________(填“正确”或“不正确”),请说明理由___________.4.与原点的距离为3个单位的点所表示的有理数是_____.5.若代数式45x -的值与7互为相反数,则x 的值是_________.6.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.7.绝对值小于5的所有整数是_____,它们的和是_____.8.已知|x ﹣2|+|y+2|=0,则x+y=_____.二、解答题9.一辆货车从永福超市出发负责送货,向东走了5千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米到达小刚家,最后返回永福超市.(1)以永福超市为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.6升,那么这辆货车此次送货共耗油多少升?10.在数轴上画出表示下列各数的点,并把它们用“>”连接起来.3,﹣1,0,﹣2.5,1.5,212. 11.对于数轴上的两点P ,Q 给出如下定义: P ,Q 两点到原点O 的距离之差的绝对值称为P ,Q 两点的绝对距离,记为POQ .例如:P ,Q 两点表示的数如图1所示,则312POQ PO QO =-=-=. (1)A ,B 两点表示的数如图2所示.①求A ,B 两点的绝对距离;②若C 为数轴上一点(不与点O 重合),且2AOB AOC =,求点C 表示的数; (2)M ,N 为数轴上的两点(点M 在点N 左边),且MN =2,若1MON =,直接写出点M 表示的数.12.如图在数轴上A 点表示数a,B 点表示数b,AB 表示A 点和B 点之间的距离,且a 、b 满足|2a+4|+|b-6|=0(1)求A,B 两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一个小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t 表示);②求甲、乙两小球到原点的距离相等时经历的时间13.已知数轴上两点A ,B 对应的数分别为﹣4,8.(1)如图1,如果点P 和点Q 分别从点A ,B 同时出发,沿数轴负方向运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒6个单位.①A ,B 两点之间的距离为 .②当P ,Q 两点相遇时,点P 在数轴上对应的数是 .③求点P 出发多少秒后,与点Q 之间相距4个单位长度?(3)如图2,如果点P 从点A 出发沿数轴的正方向以每秒2个单位的速度运动,点Q 从点B 出发沿数轴的负方向以每秒6个单位的速度运动,点M 从数轴原点O 出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP =MQ ?14.某茶叶加工厂一周生产任务为182kg ,计划平均每天生产26kg ,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负): +3,﹣2,﹣4,+1,﹣1,+6,﹣5(1)这一周的实际产量是多少kg ?(2)若该厂工人工资实际计件工资制,按计划每生产1kg 茶叶50元,每超产1kg 奖10元,每天少生产1kg 扣10元,那么该厂工人这一周的工资总额是多少?15.如图,已知数轴上点A 表示的数为﹣7,点B 表示的数为5,点C 到点A ,点B 的距离相等,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t (t >0)秒.(1)点C 表示的数是 ; (2)求当t 等于多少秒时,点P 到达点B 处;(3)点P 表示的数是 (用含有t 的代数式表示);(4)求当t 等于多少秒时,PC 之间的距离为2个单位长度.16.材料阅读:已知点A 、B 在数轴上分别表示有理数a 、b ,|a ﹣b |表示A 、B 两点之间的距离.如:|1﹣2|表示数轴上1与2两点之间的距离,所以数轴上1与2两点之间的距离是|1﹣2|=1.(1)数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x 和﹣1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 ;(3)若x 表示一个有理数,则|x ﹣1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.三、1317.有理数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( )A .1a >-B .0a b +>C .1b <D .0ab >18.如图所示的数轴上,被叶子盖住的点表示的数可能是( )A .-1.3B .1.3C .πD .2.319.下列说法中,正确的个数有( )①-a 一定是负数;②|-a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;⑥若a b = ,则a=b.A .1个B .2个C .3个D .4个20.x 、y 、z 在数轴上的位置如图所示,则化简|x ﹣y|+|z ﹣y|的结果是( )A .x ﹣zB .z ﹣xC .x+z ﹣2yD .以上都不对21.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是( )A.+a b B.-a b C.ab D.a b-22.a,b,c是三个有理数,且abc<0,a+b<0,a+b+c﹣1=0,下列式子正确的是()A.|a|>|b+c|B.c﹣1<0C.|a+b﹣c|﹣|a+b﹣1|=c﹣1D.b+c>0 23.已知 x﹣y=4,|x|+|y|=7,那么 x+y 的值是()A.±32B.±112C.±7D.±124.如图,数轴上两定点A、B对应的数分别为-18和14,现在有甲、乙两只电子蚂蚁分别从A、B同时出发,沿着数轴爬行,速度分别为每秒1.5个单位和1.7个单位,它们第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此规律,则它们第一次相遇所需的时间为()A.55秒B.190秒C.200秒D.210秒25.有理数a、b在数轴上的位置如下图所示,则下列判断正确的是()A.0ab>B.0ab>C.a b<D.0a b>>【参考答案】***试卷处理标记,请不要删除一、填空题1.【解析】【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0列出二元一次方程组解出xy的值再代入原式即可【详解】解:根据题意得:解得:则原式=2-(-1)-故答案是:【点睛】本题解析:83【解析】【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”列出二元一次方程组,解出x、y的值,再代入原式即可.【详解】解:根据题意得:1020xy⎧⎨-⎩+==,解得:12xy-⎧⎨⎩==,则原式=2-(-1)-1833=.故答案是:83.【点睛】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.2.-1012【解析】【分析】根据题意先画出数轴然后根据整数定义即可解答【详解】如图所示:∴大于-1而小于2的整数有-1012故答案是:-1012【点睛】由于引进了数轴我们把数和点对应起来也就是把数和形解析:-1,0,1,2【解析】【分析】根据题意先画出数轴,然后根据整数定义即可解答.【详解】如图所示:∴大于-112而小于213的整数有-1,0,1,2.故答案是:-1,0,1,2.【点睛】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.不正确;两个负数比较大小绝对值大的反而小【分析】根据数轴具有方向性的特征即可解题【详解】解:绝对值的几何含义表示数轴上该点与原点的距离但是因为数轴是有方向的所以不能单纯的认为如果则比如一正一负的情况解析:不正确;两个负数比较大小,绝对值大的反而小.【分析】根据数轴具有方向性的特征即可解题.【详解】解:绝对值的几何含义表示数轴上该点与原点的距离,但是因为数轴是有方向的,所以不能单纯的认为如果a b >,则a b >,比如一正一负的情况,所以小贝的观点错误.理由如下:两个负数比较大小,绝对值大的反而小.【点睛】本题考查了绝对值的大小比较,属于简单题,熟悉绝对值法则是解题关键.4.±3【解析】【分析】根据数轴上两点间距离的定义进行解答即可【详解】设数轴上到原点的距离等于3个单位长度的点所表示的有理数是x 则解得:故本题答案为:【点睛】本题考查了数轴解决本题的关键突破口是知道原点解析:±3【解析】【分析】根据数轴上两点间距离的定义进行解答即可.【详解】设数轴上,到原点的距离等于3个单位长度的点所表示的有理数是 x ,则 x =3, 解得: x=3±.故本题答案为: 3±.【点睛】本题考查了数轴,解决本题的关键突破口是知道原点距离为3的长度有两个,不要遗漏.5.;【解析】【分析】根据相反数的定义得到方程(4x-5)+7=0通过解该方程可以求得x 的值【详解】∵代数式的值与7互为相反数∴(4x -5)+7=0∴4x=-2∴x=故答案为【点睛】本题考查了相反数的定 解析:12-; 【解析】【分析】 根据相反数的定义得到方程(4x-5)+7=0,通过解该方程可以求得x 的值.【详解】∵代数式4x 5-的值与7互为相反数,∴(4x-5)+7=0,∴4x=-2,∴x=12-, 故答案为12-. 【点睛】本题考查了相反数的定义,解一元一次方程,根据相反数的定义列出关于x 的方程是解题的关键.6.b+2c【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=(c-a解析:b+2c【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a<b,则c-a<0,原式=(c-a)+b+a-(-c)=c-a+b+a+c=b+2c.【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.7.0±1±2±3±40【解析】【分析】根据绝对值的意义得到整数0±1±2±3±4的绝对值都小于5然后利用互为相反数的两数的和为0即可得到所有这些数的和为0【详解】绝对值小于5的所有整数有0±1±2±3解析:0,±1,±2,±3,±40.【解析】【分析】根据绝对值的意义得到整数0,±1,±2,±3,±4的绝对值都小于5,然后利用互为相反数的两数的和为0即可得到所有这些数的和为0.【详解】绝对值小于5的所有整数有0,±1,±2,±3,±4;它们的和为0.故答案为0,±1,±2,±3,±4;0.【点睛】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.8.0【解析】【分析】直接利用绝对值的性质得出xy的值进而得出答案【详解】∵|x-2|+|y+2|=0∴x=2y=-2∴x+y=2-2=0故答案为0【点睛】此题主要考查了非负数的性质正确应用绝对值的性质解析:0【解析】【分析】直接利用绝对值的性质得出x,y的值,进而得出答案.【详解】∵|x-2|+|y+2|=0,∴x=2,y=-2,∴x+y=2-2=0.故答案为0.【点睛】此题主要考查了非负数的性质,正确应用绝对值的性质是解题关键.二、解答题9.(1)详见解析;(2)小明家与小刚家相距8千米;(3)这辆货车此次送货共耗油11.4升.【解析】【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米,一辆货车从百货大楼出发,向东走了5千米,到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知;(2)用小明家的坐标减去小刚家的坐标即可;(3)这辆货车一共行走的路程,实际上就是5+1.5+9.5+3 (千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【详解】解:(1)如图所示:(2)小明家与小刚家相距:5-(-3)=8(千米);答:小明家与小刚家相距8千米;(3)这辆货车此次送货共耗油:(5+1.5+9.5+3)×0.6=11.4(升).答:这辆货车此次送货共耗油11.4升.【点睛】熟练掌握能够使用数轴将应用问题转化为有理数的混合运算是解题关键.10.3>212>1.5>0>﹣1>﹣2.5【解析】【分析】依据在数轴上右边的数比左边的数大进行比较即可完成解答.【详解】解:,3>2>1.5>0>﹣1>﹣2.5.【点睛】本题考查数轴上的点,熟悉掌握相关知识是解题关键.11.(1)①2;②点C 表示的数为2或-2;(2)点M 表示的数为-0.5或-1.5.【分析】根据绝对距离的定义即可解题.【详解】(1)①求A ,B 两点的绝对距离=AO BO 132-=-=, ②∵AOB AO BO 132=-=-=,又AOB 2AOC =,∴AOC 1=,即AO CO 1-=, 或CO AO 1-=,∴点C 表示的数为2或-2;(2)由题可知MON =|MO-NO|=1或|NO-MO|=1∵MN=2,∴点M 表示的数为-0.5或-1.5.【点睛】本题考查了绝对值的实际应用,绝对距离的含义,中等难度,熟悉绝对距离的概念是解题关键.12.(1)8;(2)c =103或c =14;(3)①甲球与原点的距离为t +2;乙球到原点的距离分两种情况:当0⩽t ⩽3时,乙球到原点的距离为6−2t ;当t >3时,乙球到原点的距离为:2t −6;②当t =43秒或t =8秒时,甲乙两小球到原点的距离相等. 【分析】(1)先根据非负数的性质求出a 、b 的值,再根据两点间的距离公式即可求得A 、B 两点之间的距离;(2)分C 点在线段AB 上和线段AB 的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t >3时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t >3,根据甲、乙两小球到原点的距离相等列出关于t 的方程,解方程即可.【详解】(1)因为2460a b ++-=,所以2a +4=0,b -6=0,所以a =−2,b =6;所以AB 的距离=|b −a |=8;(2)设数轴上点C 表示的数为c .因为AC =2BC ,所以|c −a |=2|c −b |,即|c +2|=2|c −6|.因为AC =2BC >BC ,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c =103;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c =14.故当AC=2BC时, c =103或c =14;(3)①因为甲球运动的路程为:1×t =t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t =2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t =43;当t>3时,得t+2=2t−6,解得t =8.故当t=43秒或t =8秒时,甲乙两小球到原点的距离相等.【点睛】本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.13.(1)①12;②﹣10;③点P出发2或4秒后,与点Q之间相距4个单位长度;(2)三个点同时出发,经过23或32秒后有MP=MQ.【解析】【分析】(1)①根据两点间的距离公式即可求解;②根据相遇时间=路程差÷速度差先求出时间,再根据路程=速度×时间求解即可;③分两种情况:P,Q两点相遇前;P,Q两点相遇后;进行讨论即可求解;(2)分两种情况:M在P,Q两点之间;P,Q两点相遇;进行讨论即可求解.【详解】(1)①A,B两点之间的距离为8﹣(﹣4)=12,故答案为:12;②12÷(6﹣2)=3(秒),﹣4﹣2×3=﹣10,故当P,Q两点相遇时,点P在数轴上对应的数是﹣10,故答案为:-10;③P,Q两点相遇前,(12﹣4)÷(6﹣2)=2(秒),P,Q两点相遇后,(12+4)÷(6﹣2)=4(秒),故点P出发2或4秒后,与点Q之间相距4个单位长度;(2)设三个点同时出发,经过t秒后有MP=MQ,M在P,Q两点之间,8﹣6t﹣t=t﹣(﹣4+2t),解得t=23;P,Q两点相遇,2t+6t=12,解得t=32,故若三个点同时出发,经过23或32秒后有MP=MQ.【点睛】本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.14.(1)180kg;(2)8980元【解析】【分析】(1)根据七天的生产情况记录(超产为正、减产为负),可以计算每天实际产量,求和即可.(2)根据(1)中结果,算出金额,再将一周的超产、减产相加乘以10元,求出二者之和即可以得出答案.【详解】(1)∵七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5,∴七天的生产情况实际值为:29kg、24kg、22kg、27kg、25kg、32kg、21kg,∴一周总产量:29+24+22+27+25+32+21=180(kg).答:这一周的实际产量是180kg.(2)∵+3+(﹣2)+(﹣4)+1+(﹣1)+6+(﹣5)=﹣2∴180×50+(﹣2)×10=9000﹣20=8980(元).答:该厂工人这一周的工资总额是8980元.【点睛】本题考查了正数负数在实际生活中的应用,通过实际例子,可以让学生体会数学与生活的密切相关,提升学生在实际生活中发现数学、应用数学的情商.15.(1) -1;(2)6;(3)﹣7+2t;(4)t=2 或t=4.【解析】【分析】(1)根据线段中点坐标公式可求点C表示的数;(2)根据时间=路程÷速度,可求t的值;(3)根据两点之间的距离公式可求点P表示的数;(4)分P在点C左边和点C右边两种情况讨论求解.【详解】(1)(﹣7+5)÷2=﹣2÷2=﹣1.故点C表示的数是﹣1.故答案为:﹣1;(2)()572--=6;(3)﹣7+2t;故答案为:﹣7+2t;(4)因为PC之间的距离为2个单位长度,所以点P运动到﹣3或1,即﹣7+2t=﹣3或﹣7+2t=1,即t=2 或t=4.【点睛】此题考查了数轴,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的应用.16.(1)3;(2)|x+1|,1或﹣3;(3)代数式|x﹣1|+|x+3|有最小值,为4.【解析】【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(2)直接根据数轴上A、B两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(3)根据绝对值的性质,根据得到结论.【详解】(1)数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3.故答案为3;(2)数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3.故答案为|x+1|,1或﹣3;(3)当代数式|x﹣1|+|x+3|有最小值,理由:根据数轴上两点之间的距离定义有:|x﹣1|+|x+3|表示x与﹣3两点的距离之和,根据几何意义分析可知:当x在﹣3与1之间时,|x﹣1|+|x+3|有最小值4.【点睛】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、1317.C解析:C【分析】根据数轴判断a,b的取值范围即可解题.【详解】-<<-<<A、B项错误,解:由数轴可知,2a1,0b1,a,b异号,D错误,故选C.【点睛】本题考查了数轴的应用,属于简单题,在数轴中判断出有理数的取值范围是解题关键. 18.D解析:D【解析】【分析】设被叶子盖住的点表示的数为x,则1<x<3,再根据每个选项中实数的范围进行判断即可.【详解】解:设被叶子盖住的点表示的数为x,则1<x<3,又因为x的位置比较靠近3,则表示的数可能是2.3.故选D.【点睛】本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.19.A解析:A【解析】【分析】根据正数和负数、绝对值、倒数等相关的性质,逐句判断即可.【详解】∵如果a为负数时,则-a为正数,∴-a一定是负数是错的.∵当a=0时,|-a|=0,∴|-a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴③对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.两个有理数的和一定大于其中每一个加数,∴⑤错误. 若a b =,则a=b 或a=-b 或-a=b 或-a=-b ∴⑥错误.所以正确的说法共有1个.故选A .【点睛】本题考查的知识点是正数和负数、绝对值、倒数,解题关键是能熟记相关的定义及其性质.20.B解析:B【解析】【分析】根据x 、y 、z 在数轴上的位置,先判断出x-y 和z-y 的符号,在此基础上,根据绝对值的性质来化简给出的式子.【详解】由数轴上x 、y 、z 的位置,知:x <y <z ;所以x-y <0,z-y >0;故|x-y|+|z-y|=-(x-y )+z-y=z-x .故选B .【点睛】此题借助数轴考查了用几何方法化简含有绝对值的式子,能够正确的判断出各数的符号是解答此类题的关键.21.A解析:A【解析】【分析】先根据数轴判断出a 、b 的正负性及a 、b 之间的关系,然后对各选项逐一分析即可.【详解】∵a <+a b ,∴b >0.∵+a b <b ,∴a <0.∵AM >BM , ∴a b a a b b +->+-, ∴b a >.∵a <0,b >0,b a >,A. ∵a <0,b >0,b a >,a b +>0,故正确;B. ∵a <0,b >0, 0a b -<,故不正确;C. ∵a <0,b >0, 0ab <,故不正确;D. ∵a <0,b >0,b a >, 0a b -<,故不正确;故选A.【点睛】本题考查的是利用数轴比较大小及数轴上两点之间的距离,数轴上两点之间的距离等于两点所表示数的差的绝对值.22.C解析:C【解析】【分析】由a +b +c ﹣1=0,表示出a +b =1﹣c ,再由a +b 小于0,列出关于c 的不等式,求出不等式的解集确定出c 大于1,将a +b =1﹣c ,a +b ﹣1=c 代入|a +b ﹣c |﹣|a +b +1|中,利用绝对值的代数意义化简,去括号合并得到结果为c ﹣1,即可得答案.【详解】∵a +b +c ﹣1=0,a +b <0,∴a +b =1﹣c <0,即c >1,则|a +b ﹣c |﹣|a +b ﹣1|=|1﹣2c |﹣|c |=2c ﹣1﹣(c ﹣1)=2c ﹣1﹣c =c ﹣1,故选C .【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.23.C解析:C【解析】【分析】根据x -y =4,可得:x =y +4,代入|x |+|y |=7,然后分类讨论y 的取值即可。

七年级数学第一章有理数测试试卷及答案(共6套)

七年级数学第一章有理数测试试卷及答案(共6套)

七年级数学第一章有理数测试题(一)一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。

(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。

有理数经典测试题附答案

有理数经典测试题附答案
根据数轴可以发现a<b,且-3<a<-2,1<b<2,由此即可判断以上选项正确与否.
【详解】
∵-3<a<-2,1<b<2,∴|a|>|b|,∴答案A错误;
∵a<0<b,且|a|>|b|,∴a+b<0,∴a<-b,∴答案B错误;
∵-3<a<-2,∴答案C错误;
∵a<0<b,∴b>a,∴答案D正确.
故选:D.
11.下列各数中,绝对值最大的数是( )
A.1B.﹣1C.3.14D.π
【答案】D
【解析】
分析:先求出每个数的绝对值,再根据实数的大小比较法则比较即可.
详解:∵1、-1、3.14、π的绝对值依次为1、1、3.14、π,
∴绝对值最大的数是π,
故选D.
点睛:本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.
【详解】
当 时, , ,此选项错误;
B、当a<b<c时, , ,此项错误;
C、当c<a<b时, , ,此项正确
D、当c<b<a时, , ,此选项错误;
故选C.
【点睛】
本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.
15.下列运算正确的是( )
A. =-2B.|﹣3|=3C. = 2D. =3
【详解】
由题意可知:ab=1,c+d=0, ,f=64,
∴ , ,

= ;
故答案为:D
【点睛】
此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.
7.下列各数中,最大的数是( )
A. B. C.0D.-2
【答案】B
【解析】
【分析】
将四个数进行排序,进而确定出最大的数即可.

有理数基础测试题含答案

有理数基础测试题含答案

有理数基础测试题含答案一、选择题1.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.2.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A.4 B.4-C.8-D.4或8-【答案】D【解析】【分析】根据相反数的性质求出a的值,再根据两点距离公式求出b的值即可.【详解】∵a的相反数为2a+=∴20a=-解得2∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列等式一定成立的是( )A .945-=B .1331-=-C .93=±D .32166--=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】A. 94321-=-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.若︱2a︱=-2a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019 【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.14.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.15.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a<-1,0<b<1,∴a+b<0,|a|>|b|,ab<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.19.不论a取什么值,下列代数式的值总是正数的是()A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】【分析】 直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.。

有理数经典测试题及答案

有理数经典测试题及答案

有理数经典测试题及答案一、选择题1.在数轴上,点 A , B 在原点 O 的两侧,分别表示数 a 和 3,将点 A 向左平移 1个单位长度,得到点 C . 若 OCOB ,则 a 的值为( ).A . 3B.2C . 1D .2【答案】 B【解析】【分析】先用含 a 的式子表示出点 C,根据 CO=BO 列出方程 ,求解即可.【详解】解:由题意知 :A 点表示的数为 a,B 点表示的数为 3, C 点表示的数为 a-1. 因为 CO=BO, 所以 |a-1| =3, 解得 a=-2 或 4, ∵a <0, ∴a=-2. 故选 B . 【点睛】本题主要考查了数轴和绝对值方程的解法,用含 a 的式子表示出点 C,是解决本题的关键.2.如图, a 、b 在数轴上的位置如图,则下列各式正确的是( A . ab > 0B .a ﹣b >0C . a+b > 0【答案】 B【解析】 解: A 、由图可得: a >0,b <0,且﹣ b >a ,a >b ∴ab < 0,故本选项错误;B 、由图可得: a > 0,b <0,a ﹣b >0,且 a >b ∴a+b <0,故本选项正确;C 、由图可得: a >0,b <0,a ﹣b >0,且﹣ b >a ∴a+b <0;D 、由图可得:﹣ b > a ,故本选项错误.故选 B .3.若 a 为有理数,且 |a|=2,那么 a 是( )A .2B .﹣ 2C .2 或﹣ 2D .4【答案】 C 【解析】 【分析】)D .﹣ b < a利用绝对值的代数意义求出 a 的值即可. 【详解】若 a 为有理数,且 |a| =2,那么 a 是 2 或﹣ 2, 故选 C .【点睛】 此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.【答案】 B 【解析】 【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可 【详解】A. 9 4 3 2 1 ,故错误;B. 1 3 3C. 9 3 , 故错误;D. 3216 6 6 ,故错误; 故答案为: B.4.已知实数 a , b ,c , 12 , f 的算术平方根是 8,求 21abd ,e ,f ,且 a , b 互为倒数, c ,d 互为相反数, c d 2 e 3f 的值是 ( )e 的绝对值为B . 92 2 A . 9 2 2 【答案】 D【解析】 【分析】根据相反数,倒数,以及绝对值的意义求出 【详解】C .c+d , 292或922 D . 132ab 及 e 的值,代入计算即可.由题意可知: ab=1, c+d=0, e 3f = 364 2 , f=64 ,∴ e2(2,4, ∴ 2abcd53f612;=1 02故答案为:【点睛】 此题考查了实数的运算, 法则是解本题的关键.算术平方根, 绝对值,相反数以及倒数和立方根,熟练掌握运算5.下列等式一定成立的是 ( )13 A . 9 4 5B .3 1 C . 9 3D . 3 216 61,故正确;【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.如果a 是实数,下列说法正确的是( )A.a2和a 都是正数B.(-a+2,a2)可能在x轴上1C.a 的倒数是D.a 的相反数的绝对值是它本身a【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、a2和a 都是非负数,故错误;B、当a=0时,(-a+2,a2)在x 轴上,故正确;C、当a=0 时,a 没有倒数,故错误;D、当a≥0时,a 的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.7.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b 的中间,如图,由图可得:,,,,,故选项A 错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.8.﹣3 的绝对值是( )11A.﹣3 B.3 C.- D.33【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3 .故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数9.实数a、b 在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a-b B.a>a+b>b>a-bC.a-b>a>b>a+b D.a-b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b 在数轴上的位置可以确定a、b 的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b 两点的位置可知,∵b<0,a> 0,|b| < |a| ,设a=6,b=-2,则a+b=6-2=4 ,a-b=6+2=8 ,又∵ -2< 4<6< 8,∴a-b > a> a+b> b.故选: D . 【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上 算其大小,再取特殊值进行计算即可比较数的大小.10. 如图是张小亮的答卷,他的得分应是( )A .40 分B . 60 分C . 80 分D . 100 分【答案】 A 【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可. 【详解】解: ① 若 ab=1,则 a 与 b 互为倒数, ② (-1) 3=-1, ③ -12=-1, ④|-1|=-1 ,⑤ 若 a+b=0 ,则 a 与 b 互为相反数, 故选 A .【点睛】 本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.M ,P ,N ,Q ,若点 M ,N 表示的有理数互为相 )D .点 Q 【答案】 C【解析】试题分析:∵点 M , N 表示的有理数互为相反数,∴原点的位置大约在 O 点,∴绝对值最小的数的点是 P 点,故选 C .a ,b 的位置估 C .点 P 11.如图,四个有理数在数轴上的对应点反数,则图中表示绝对值最小的数的点是(A .点 MB .点 N考点:有理数大小比较.12.如图数轴所示,下列结论正确的是()A.a>0 B.b> 0 C.b>a D.a> b【答案】A【解析】【分析】根据数轴,可判断出a 为正,b 为负,且a距0 点的位置较近,根据这些特点,判定求解【详解】∵a 在原点右侧,∴ a> 0,A 正确;∵b 在原点左侧,∴ b<0,B 错误;∵a 在b 的右侧,∴ a> b,C 错误;∵b 距离0 点的位置远,∴ a < b ,D 错误点睛】本题是对数轴的考查,需要注意3 点:(1)在0 点右侧的数为正数,0 点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0 点越远,则绝对值越大13.已知|m+3| 与(n ﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0 列出方程,再根据非负数的性质列方程求出m、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3| 与(n﹣2)2互为相反数,∴|m+3|+ (n﹣2)2=0,∴m+3=0 ,n﹣2=0,解得m=﹣3,n=2,所以, m n =(﹣ 3) 2=9. 故选 C . 【点睛】本题考查了非负数的性质:几个非负数的和为14.已知直角三角形两边长 x 、y 满足 x 2 4 (y 2)21 0 ,则第三边长为 ( ) A .B . 13C . 5 或 13D . , 5 或 13【答案】 D 【解析】 【分析】 【详解】解:∵ |x 2-4| ≥0, (y 2)21≥0,∴x 2-4=0,(y 2)2 1=0,∴x=2或-2(舍去), y=2或3,分 3种情况解答:① 当两直角边是 2 时,三角形是直角三角形, 则斜边的长为: 22 222 2;② 当 2,3 均为直角边时,斜边为2232 13;③ 当 2 为一直角边, 3 为斜边时,则第三边是直角, 长是32 225.故选 D .考点: 1.非负数的性质; 2.勾股定理.15.2019 的倒数的相反数是()11 A . -2019 B . C .2019 2019【答案】 B 【解析】 【分析】先求 2019 的倒数,再求倒数的相反数即可 . 【详解】故选 B . 【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.16.实数 a,b 在数轴上对应的点位置如图所示,则化简a 2 |a b|b 2 的结果是( )0 时,这几个非负数都为 0 .D .20192019 的倒数是12019 12019的相反数为 1 2019所以 2019 的倒数的相反数是1 2019A.2a B.2b C.2a b D.2a b【答案】A【解析】【分析】利用a2a , 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:Qa<0< b, a > b ,a b< 0,a2|a b| b2a a b ba (a b)b aabb2a.故选A.【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.在﹣6,0,﹣1,4这四个数中,最大的数是()A.4 B.﹣6 C.0 D.﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4 .故选A.【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2 和实数x 的两点,那么x 的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2 到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.19.已知整数a0,a1,a2,a3,a4,L 满足下列条件:a0 0,a1 a0 1,a2 a1 2,a3 a2 3L 以此类推,a2019 的值为()A.1007 B.1008 C.1009 D.1010【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:a00,a0 1011,a1a1 2121,a2a2 3132,a3a3 4242,a4a4 5253,a5363,a6a5 6a7a6 7374,由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,(2019+1)÷2=1010,故a2019 1010 ,故选:D.【点睛】 本题考查了绝对值的运算,对于计算规律的发现和总结.20.已知整数 a 1, a2 ,a 3 , a4满足下列条件: a 1 0, a 2 |a 1 1| ,a3|a 22|, a 4| a 3 3| 依此类推,则a 2017 的值为 ()A .1007B . 1008C .1009D . 2016【答案】 B【解析】【分析】 n1根据条件求出前几个数的值,再分 n 是奇数时,结果等于 n 1;n 是偶数时,结果等于2n;然后把 n 的值代入进行计算即可得解.2【详解】解: a 1 0 ,a 2 | a 1 1| 01 1, a 3 | a 2 2| 12 1, a 4| a 3 3|132,a 5 | a 4 4|2 4 2 ,是解题的关键.∴n 是奇数时,结果等于n1n 是偶数时,结果等于∴ a2017 1∴ a 20172故选: B .1008;点睛】 此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律n。

有理数单元检验题10套附答案

有理数单元检验题10套附答案

有理数单元检验题10套附答案有理数单元检测001有理数及其运算<综合)<测试5)一、境空题<每空2分,共28分)1、的倒数是____;的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:4、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为,最高气温为8℃,那么该景点这天的温差是____.C7、计算:8、平方得的数是____;立方得–64的数是____.9、用计算器计算:10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题<每小题3分,共24分)11、–5的绝对值是………………………………………………………<)A、5B、–5C、D、12、在–2,+3.5,0,,–0.7,11中.负分数有……………………<)A、l个B、2个C、3个D、4个13、下列算式中,积为负数的是………………………………………………<)A、B、C、D、14、下列各组数中,相等的是…………………………………………………<)A、–1与<–4)+<–3)B、与–<–3)C、与D、与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………<)A、90分B、75分C、91分D、81分16、lM长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………<)oTIgKpQ yjvA、B、C、D、17、不超过的最大整数是………………………………………<)A、–4B–3C、3D、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折<80%)大拍卖,那么该商品三月份的价格比进货价………………………………………<)oTIgKpQyjvA、高12.8%B、低12.8%C、高40%D、高28%三、解答题<共48分)19、<4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l,,-l.5,6.20、<4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?oTIgKpQyjv21、<8分)比较下列各对数的大小.<1)与<2)与<3)与<4)与22、<8分)计算.<1)<2)<3)<4)23、<12分)计算.<l)<2)<3)<4)24、<4分)已知水结成冰的温度是C,酒精冻结的温度是–117℃。

语法知识—有理数的经典测试题及答案解析

语法知识—有理数的经典测试题及答案解析

一、填空题1.比较大小:﹣2_______﹣3.(填“>”或“<”号)2.数轴上有一个点到表示7-和2的点的距离相等,则这个点所表示的数是________.3.如图,观察表示a ,b 的点在数轴上的位置,化简2|a -2|-3|b +1|的结果为_________.4.已知:2(2)10y x -++=,则2x y +=_________.5.如果a 、b 互为相反数,c 、d 互为倒数,那么2a+2b-5cd=____. 6.若(a +3)2+|b ﹣2|=0,则(a +b )2011=______.7.若a 是绝对值最小的数,b 是最大的负整数,则a ﹣b=_____.二、解答题8.已知a.b.c 在数轴上的位置如图所示,化简:9.如图,已知数轴上的点A 表示的数为6,点B 表示的数为﹣4,点C 是AB 的中点,动点P 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x 秒(x >0).(1)当x = 秒时,点P 到达点A ;(2)运动过程中点P 表示的数是 (用含x 的代数式表示);(3)当P ,C 之间的距离为2个单位长度时,求x 的值.10.在数轴上表示下列各数,并用“>”把它们连接起来.3- 2.5 0 4.5- 10.5? 2-. 11.已知点A ,B 在数轴上对应的实数分别是a ,b ,其中a ,b 满足|a ﹣2|+(b+1)2=0. (1)求线段AB 的长;(2)点C 在数轴上对应的数为x ,且x 是方程x ﹣1=13x+1的解,在数轴上是否存在点P ,使PA+PB=PC ,若存在,求出点P 对应的数;若不存在,说明理由; (3)在(1)和(2)的条件下,点A ,B ,C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,点B 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,设运动时间为t 秒,试探究:随着时间t 的变化,AB 与BC 满足怎样的数量关系?请写出相应的等式.12.已知数轴上有A ,B ,C 三个点,分别表示有理数﹣24,﹣10,10,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=________,PC=________;(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后,P ,Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.三、1313.点M 在数轴上距原点6个单位长度,将M 向左移动2个单位长度至N 点,点N 表示的数是( )A .4B .-4C .8或-4D .-8或414.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+ 15.下列实数中的有理数是( )A .B .πC .D .16.下列说法中.正确的是 ( )A .0是最小的有理教B .0是最小的整数C .0的倒数和相反数都是0D .0是最小的非负数17.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A .>0B .ab >0C .a <bD .a ﹣b >018.下列四个数中最小的数是A .B .C .0D .519.下列各对数中,不是互为相反数的是( )A .()3--与3--B .23-与(-3)²C .100-与(-10)²D .3(2)-与32-20.一个点在数轴上移动时,它所对应的数,也会有相应的变化.若点A 先从原点开始,先向右移动3个单位长度,再向左移动5个单位长度,这时该点所对应的数的相反数是( )A .2B .-2C .8D .-821.有理数a ,b ,c 在数轴上的位置如图所示,则下列结论正确的是( )A .a+c=0B .a+b >0C .b ﹣a >0D .bc <022.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( )A .0ab >B .0a b +>C .0a b -<D .0a b -< 23.在0,-1,-2,1这四个数中,最小的数是( ) A .0B .-1C .-2D .1 24.在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数的个数有( ) A .1个B .2个C .3个D .4个 25.A 为数轴上表示1-的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的实数为( )A .3B .2C .4-D .2或 4-【参考答案】***试卷处理标记,请不要删除一、填空题1.>【解析】【分析】比较的方法是:两个负数绝对值大的其值反而小【详解】解:(1)∵|-3|=3|-2|=2而3>2∴-2>-3故答案为:>【点睛】本题主要考查了有理数的大小比较解题时注意:正数都大于0 解析:>【解析】【分析】比较的方法是:两个负数,绝对值大的其值反而小.【详解】解:(1)∵|-3|=3,|-2|=2,而3>2,∴-2>-3,故答案为:>.【点睛】本题主要考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.2.-25【解析】【分析】设所求的数为x 结合数轴上两点间的距离求解即可【详解】设所求的数为x 依据题意可得2-x=x-(-7)解得x=-25【点睛】本题考查了数轴上两点间的距离求法即数轴上分别表示xy 的两解析:-2.5【解析】【分析】设所求的数为x,结合数轴上两点间的距离求解即可.【详解】设所求的数为x,依据题意可得2-x=x-(-7)解得x=-2.5.【点睛】本题考查了数轴上两点间的距离求法,即数轴上分别表示x、y的两点间的距离为|x−y|. 3.2a+3b-1【解析】试题解析:由图可得b<-1a>2所以b+1<0a-2>0则2|a-2|-3|b+1|=2(a-2)+3(b+1)=2a+3b-1解析:2a+3b-1【解析】试题解析:由图可得,b<-1, a>2,所以b+1<0,a-2>0,则2|a-2|-3|b+1|=2(a-2)+3(b+1)= 2a+3b-1.4.0【解析】试题解析:根据题意得x+1=0y-2=0解得x=-1y=2所以2x+y=2×(-1)+2=-2+2=0故答案为0点睛:非负数的性质:几个非负数的和为0时这几个非负数都为0解析:0【解析】试题解析:根据题意得,x+1=0,y-2=0,解得x=-1,y=2,所以2x+y=2×(-1)+2=-2+2=0.故答案为0.点睛:非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.-5【分析】利用相反数倒数的定义求出a+bcd的值代入原式即可得到结果【详解】根据题意得:a+b=0cd=1则原式=2(a+b)-5cd=0-5=-5故答案为-5【点睛】本题考查了相反数倒数代数式求解析:-5【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式即可得到结果.【详解】根据题意得:a+b=0,cd=1,则原式=2(a+b)-5cd=0-5=-5,故答案为-5.【点睛】本题考查了相反数、倒数、代数式求值,熟练掌握各自的定义是解本题的关键.6.﹣1【解析】【分析】根据非负数的性质列式求出ab 的值然后代入代数式进行计算即可得解【详解】根据题意得a+3=0b −2=0解得a=−3b=2所以故答案为−1【点睛】考查非负数的性质两个非负数的和为0则解析:﹣1【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】根据题意得,a +3=0,b −2=0,解得a =−3,b =2,所以,()20112011()32 1.a b +=-+=-故答案为−1.【点睛】考查非负数的性质,两个非负数的和为0,则它们都为0是解题的关键. 7.1【解析】【详解】分析:根据a 是绝对值最小的数b 是最大的负整数求得ab 的值再代入求值即可详解:若a 是绝对值最小的数b 是最大的负整数则a=0b=﹣1a ﹣b=0﹣(﹣1)=1故答案为:1点睛:本题考查了解析:1【解析】【详解】分析:根据a 是绝对值最小的数,b 是最大的负整数,求得a 、b 的值,再代入求值即可. 详解:若a 是绝对值最小的数,b 是最大的负整数,则a=0,b=﹣1,a ﹣b=0﹣(﹣1)=1.故答案为:1.点睛:本题考查了绝对值的性质、负整数、有理数的减法等知识点,根据题意求得a 、b 的值是解题的关键.二、解答题8.【解析】【分析】先根据数轴上各点的位置确定2a 、a+c 、1-b 、-a-b 的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.【详解】 由图易知原式===【点睛】本题考查的是绝对值的性质及数轴的特点,根据数轴上各点的位置对2a、a+c、1-b、-a-b 的符号作出判断是解答此题的关键.9.(1)5;(2)2x﹣4;(3)x=1.5或3.5.【分析】(1)直接得出AB的长,进而利用P点运动速度得出答案;(2)根据题意得出P点运动的距离减去4即可得出答案;(3)利用当点C运动到点P左侧2个单位长度时,当点C运动到点P右侧2个单位长度时,分别得出答案.【详解】(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点C运动到点P左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点C运动到点P右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.【点睛】此题主要考查了数轴,正确分类讨论得出PC的长是解题关键.10.画图见解析,12.50.503 4.52>>>->->-.【解析】【分析】首先根据在数轴上表示数的方法,把所给的各数在数轴上表示出来;然后根据当数轴方向朝右时,右边的数总比左边的数大,把所给的各数用“>”连接起来即可.【详解】如图所示:,用“>”把它们连接起来为:2.5>0.5>0>-12>-3>-4.5.(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了数轴的特征,以及在数轴上表示数的方法,要熟练掌握,解答此题的关键是要明确:一般来说,当数轴方向朝右时,右边的数总比左边的数大.11.(1)3;(2)﹣2或0;(3)t≤35时,AB+BC=7;当t>35时,BC﹣AB=7.【分析】(1)根据绝对值及平方的非负性,可得出a、b的值,继而可得出线段AB的长;(2)先求出x的值,再由P A+PB=PC,可得出点P对应的数;(3)根据A,B,C的运动情况确定AB,BC的变化情况,再根据t的取值范围即可求出AB与BC满足的数量关系.【详解】(1)∵|a﹣2|+(b+1)2=0,∴a=2,b=﹣1,∴线段AB的长为:2﹣(﹣1)=3;(2)解方程x﹣1=13x+1,得x=3,则点C在数轴上对应的数为3.由图知,满足P A+PB=PC时,点P不可能在C点右侧,不可能在线段AC上,①如果点P 在点B左侧时,2﹣x+(﹣1)﹣x=3﹣x,解得:x=﹣2;③当P在A、B之间时,3﹣x=3,解得:x=0.故所求点P对应的数为﹣2或0;(3)t秒钟后,A点位置为:2﹣t,B点的位置为:﹣1+4t,C点的位置为:3+9t,BC=3+9t ﹣(﹣1+4t)=4+5t,AB=|﹣1+4t﹣2+t|=|5t﹣3|,分两种情况讨论:①当t≤35时,AB+BC=3﹣5t+4+5t=7;②当t>35时,BC﹣AB=4+5t﹣(5t﹣3)=7.综上所述:当t≤35时,AB+BC=7;当t>35时,BC﹣AB=7.【点睛】本题考查了一元一次方程的实际运用,实数与数轴,非负数的性质,正确理解AB,BC的变化情况是关键.12.(1)t;34﹣t;(2)点P表示的数为﹣4,﹣2,3,4 .【解析】试题分析:(1)根据P点位置进而得出PA,PC的距离;(2)分别根据P点与Q点相遇前以及相遇后进行讨论,进而分别分析得出即可.试题解析:(1)∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间∴P到点A的距离为:PA=t,P到点C的距离为:PC=(24+10)-t=34-t;故答案为t,34-t;(2)当P点在Q点右侧,且Q点还没有追上P点时,3t+2=14+t,解得:t=6,∴此时点P表示的数为﹣4,当P点在Q点左侧,且Q点追上P点后,相距2个单位,3t﹣2=14+t解得:t=8,∴此时点P表示的数为﹣2,当Q点到达C点后,当P点在Q点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P表示的数为3,当Q点到达C点后,当P点在Q点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P表示的数为4,综上所述:点P表示的数为﹣4,﹣2,3,4 .【点睛】本题主要考查了一元一次方程的应用以及利用数轴确定点的位置,利用分类讨论得出结果是解题关键.三、1313.D解析:D【解析】【分析】首先根据绝对值的意义“数轴上表示一个数的点到原点的距离,即为这个数的绝对值”,求得点M对应的数;再根据平移和数的大小变化规律,进行分析:左减右加.【详解】因为点M在数轴上距原点6个单位长度,点M的坐标为±6,(1)点M坐标为-6时,N点坐标为-6-2=-8;(2)点M坐标为6时,N点坐标为6-2=4.所以点N表示的数是-8或4.故选D.【点睛】此题考查了绝对值的几何意义以及平移和数的大小变化规律.14.D解析:D根据数轴得出a<b<0<c,|b|<|a|,|b|<|c|,再逐个判断即可.【详解】从数轴可知:a<b<0<c,|b|<|a|,|b|<|c|.A.a<b,故本选项错误;B.因为a﹣c<0,所以 |a﹣c|=c﹣a,故本选项错误;C.﹣a>﹣b,故本选项错误;D.因为b+c>0,所以|b+c|=b+c,故本选项正确.故选D.【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a<b<0<c,|b|<|a|,|b|<|c|,用了数形结合思想.15.C解析:C【解析】【分析】有理数包含整数和分数.【详解】解:由有理数的定义可知只有C是有理数,故选择C.【点睛】本题考查了有理数的定义.16.D解析:D【分析】根据有理数、非负数、倒数与相反数的定义逐一判断即可.【详解】A错误,因为有理数包括正数和负数,负数比0小,所以错误;B错误,因为整数包括正整数和负整数和0,负整数比0还小,所以错误;C错误,因为0没有倒数,所以错误;D正确,非负数包括0和正数,正数都比0大,所以本项说法正确.故答案选:D.【点睛】本题考查了有理数与相反数的定义,解题的关键是熟练的掌握有理数与相反数的定义. 17.D解析:D【解析】【分析】根据数轴可以判断a、b的正负,进而解答即可.【详解】由表示a和b的点位置可知,b<0<a且|b|<|a|,所以<0,ab<0,a>b;故A,B,C不成立;a-b>0,故D成立.故选:D.【点睛】本题考查了数轴上的点表示的数和数的大小的比较,以及两数相乘或相除的符号的判断,会根据数轴比较数的大小是解题的关键.18.A解析:A【解析】【分析】负数<0<正数;负数的绝对值越大,该数越小.【详解】解:<-3<0<5,故选择A.【点睛】本题考查了有理数的比较大小.19.D解析:D【解析】【分析】分别根据绝对值的性质、有理数的乘方及相反数的定义对各选项进行逐一分析即可.【详解】A.∵-(-3)=3,-|-3|=-3,3与-3互为相反数,∴-(-3)与-|-3|互为相反数,故本选项错误;B.∵-32=-9,(-3)2=9,-9与-9互为相反数,∴、-32与(-3)2互为相反数,故本选项错误;C.∵(-10)2=100,100与-100互为相反数,∴100与(-10)2互为相反数,故本选项错误;D.∵(-2)3=-8,-23=-8,∴(-2)3与-23相等,故本选项正确.故选:D.【点睛】本题考查了相反数的定义及绝对值的性质、有理数的乘方法则,解题的关键是掌握只有符号不同的两个数叫做互为相反数.20.A解析:A【解析】【分析】数轴原点坐标为0,数轴的单位长度为1,向右移动n个单位则加n,向左移动n个单位则减n.【详解】由分析得A经移动得到的数为0+3-5=-2,所以它的相反数为2.故选:A.【点睛】本题考查数轴的性质和相反数的定义.注意点在数轴上移动时,所对应的数变化的规律是左减右加.21.B解析:B【分析】根据数轴上a、b、c的位置可以判定a、b、c的大小与符号;据此逐项分析得出答案即可.【详解】由图可知:c<b<0< a,A. a+c<0,故此选项错误;B. a+b>0,故此选项正确;C. b−a<0,故此选项错误;D. bc>0,故此选项错误.故答案选:B.【点睛】本题考查了数轴的知识点,解题的关键是根据数轴上的位置判定其大小符号.22.D解析:D【分析】由数轴的特征可知a<0,b>0,且a>b,由此对选项逐一判断即可.【详解】由数轴可知a<0,b>0,且a>b,所以ab<0,故A选项错误,a+b<0,故B选项错误,a-b>0,故C选项错误,a-b<0,故D选项正确,故选D.【点睛】此题主要考查了数轴的特征和应用,判断出:a<0<b,而且|a|>|b|是解题关键.23.C解析:C【解析】【分析】根据负数小于0和正数,得到最小的数在-2和-1中,然后比较它们的绝对值即可得到答案.【详解】 ∵2=21=1--,,∴-2<-1<0<1,故本题C 为正确选项. 【点睛】本题考查了有理数的大小比较,负数小于0和正数,0小于正数,知道负数的绝对值越大,这个数越小是解决本题的关键.24.D解析:D【分析】负数就是小于0的数,依据定义即可求解.【详解】在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数有﹣(+2),﹣5,﹣|﹣3|,+(﹣4),一共4个.故选D.【点睛】本题考查了正数和负数,判断一个数是正数还是负数,要化简成最后形式再判断.25.B解析:B【分析】结合数轴的特点,运用数轴的平移变化规律即可计算求解.【详解】根据题意,点B 表示的数是-1+3=2.故选B.【点睛】本题主要考查了实数与数轴之间的对应关系,解决此类问题,一定要结合数轴的特点,根据数轴的平移变化规律求解.第II 卷(非选择题)请点击修改第II 卷的文字说明。

人教版初中七年级数学上册第一章《有理数》经典测试题(含答案解析)

人教版初中七年级数学上册第一章《有理数》经典测试题(含答案解析)

1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C【分析】 根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.5.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.6.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;7.下列说法:①a④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.8.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.9.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.10.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B 解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D 解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.13.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45=B 解析:B根据计算器的使用方法,结合各项进行判断即可.【详解】 解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B .【点睛】 此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键. 14.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C 解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.15.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.1.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.2.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.3.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.4.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.5.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.6.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元). 故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.8.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.9.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 10.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 11.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.计算:-32+2×(-1)3-(-9)÷2 1 3⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.3.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.解析:(1)﹣8;(2)13. 【分析】 (1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 4.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++- 9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯ 1(6)2=-+-⨯ 112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。

有理数专题练习题(有答案)

有理数专题练习题(有答案)

【典型例题】一、有理数的概念及分类1、对有理数的分类进行考查20|,0,-(-2017),-2,95%,5.7-3.8,-10,5,-|-7正数集合:{ 5、-(-2017)、95% 、5.7 };20| 、-2 };负数集合:{-3.8、-10、 -|-7非负整数集合:{ 5、0 、-(-2017) };20| };负分数集合:{ -|-72、对有理数的概念进行考查下列说法中正确的是( D )A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称有理数二、数轴1、综合互为相反数、互为倒数、绝对值来进行考查已知a,b互为相反数,c,d互为倒数,x的绝对值是2,试求代数式20032)2004+x-a++-的值.+b+x()()(cdabcd解:因为a,b 互为相反数,c,d 互为倒数,所以a+b=0,cd=1, |x|=2,所以x=2或x=-2,x ²=4.代入原式中 当x=2时,原式=4-(0+1)×2+0+(-1)=1 当x=-2时,原式=4-(0+1)×(-2)+0+(-1)=5 三、绝对值1、绝对值的几何意义若a,b,c,d 为有理数,且|a-b|=|b-c|=|c-d|=1,则|a-d|= . 3或12、化简绝对值若有理数a,b,c 在数轴上的位置如图所示,则|a+b|-|b-1|-|a-c|-|1-c|= .|a+b|-|b-1|-|a-c|-|1-c|=-(a+b )-(1-b)-(c-a)-(1-c)=-2 3、零点分段法已知632=++-x x ,则x = .当x<-3时,|x-2|+|x+3|=-(x-2)-(x+3)=6 x=-7/2 当-3<x<2时,|x-2|+|x+3|=-(x-2) +(x+3)=6 x 无解a b 1c当x>2时,|x-2|+|x+3|=(x-2) +(x+3)=6 x=5/2 4、绝对值的非负性及分数列项综合考查①已知|2|-ab 与|1|-a 互为相反数,试求下式的值:)2017)(2017(1...)2)(2(1)1)(1(11++++++++++b a b a b a ab . ②若c b a 、、为有理数,且0≠abc ,则abcabc c c b b a a ||||||||-++= . 解:①因为|2|-ab 与|1|-a 互为相反数,则|2|-ab =0,|1|-a =0, 所以ab=2,即a=1, b=2,所以原式=1/(1*2)+1/(2*3)+....+1/(2018*2019) =1-1/2+1/2-1/3+.....+1/2018-1/2019 (约去中间项) =1-1/2019 =2018/2019②当a 、b 、c 、都为正时,原式=1+1+1-1=2当a 、b 、c 、有一个为负,两个正时,原式=1+1-1+1=2 当a 、b 、c 、有两个为负,一个正时,原式=1-1-1-1=-2 当a 、b 、c 、都为负时,原式=-1-1-1-1=-4 四、科学记数法(此类考题很简单)据统计,2016年“十一”国庆长假期间,成都市共接待国内外游客约319万人次,与2015年同比增长16.43%,数据319万用科学记数法表示为 。

(完整版)第一章《有理数》测试题(含答案)

(完整版)第一章《有理数》测试题(含答案)

第一章《有理数》测试题一、填空题(每小题4分,共20分):1.下列各式-12,323,0,(-4)2,-|-5|,-(+3.2),422,0.815的计算结果,是整数的有________________,是分数的有_________________,是正数的有_________________,是负数的有___________________;2.a 的相反数仍是a ,则a =______;3.a 的绝对值仍是-a ,则a 为______;4.绝对值不大于2的整数有_______;5.700000用科学记数法表示是_ __,近似数9.105×104精确到_ _位,有___有效数字.二、判断正误(每小题3分,共21分):1.0是非负整数………………………………………………………………………( )2.若a >b ,则|a |>|b |……………………………………………………………( )3.23=32………………………………………………………………………………( )4.-73=(-7)×(-7)×(-7)……………………………………………( )5.若a 是有理数,则a 2>0…………………………………………………………( )6. 若a 是整数时,必有a n ≥0(n 是非0自然数) …………………………………………( )7. 大于-1且小于0的有理数的立方一定大于原数……………… …………( )三、选择题(每小题4分,共24分):1.平方得4的数的是…………………………………………………………………( )(A )2 (B )-2 (C )2或-2 (D )不存在2.下列说法错误的是…………………………………………………………………( )(A )数轴的三要素是原点,正方向、单位长度(B )数轴上的每一个点都表示一个有理数(C )数轴上右边的点总比左边的点所表示的数大(D )表示负数的点位于原点左侧3.下列运算结果属于负数的是………………………………………………………( )(A )-(1-98×7) (B )(1-9)8-17(C )-(1-98)×7 (D )1-(9×7)(-8)4.一个数的奇次幂是负数,那么这个数是…………………………………………( )(A )正数 (B )负数 (C )非正数 (D )非负数5.若ab =|ab |,必有………………………………………………………………( )(A )ab 不小于0 (B )a ,b 符号不同 (C )ab >0 (D )a <0 ,b <0 6.-133,-0.2,-0.22三个数之间的大小关系是……………………………( ) (A )-133>-0.2>-0.22 (B )-133<-0.2<-0.22 (C )-133>-0.22>-0.2 (D )-0.2>-0.22>-133 四、计算(每小题7分,共28分)1.(-85)×(-4)2-0.25×(-5)×(-4)3; 2.-24÷(-232)×2+521×(-61)-0.25;3.4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-; 4.(1876597-+-)×(-18)+1.95×6-1.45×0.4.五、(本题7分)当321-=a ,322-=b 时,求代数式3(a +b )2-6ab 的值.参考答案一、答案:1、-12,0,(-4)2,-|-5|,422; 323,-(+3.2),0.815; 323(-4)2,422,0.815; -12,-|-5|,-(+3.2).2、答案:0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为a =03、答案:负数或0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为负数.4、答案:0,±1,±2.解析:不大于2的整数包括2,不小于-2的整数包括-2,所以不应丢掉±2.5、答案:7×105;十;4个.解析:700000=7×100000=7×105;9.105×104=9.105×1000=91050,所以是精确到十位;最后的0前的数字5直到左面第一个不是0的数字9,共有4个数字,所以有4个有效数字.二、1、答案:√解析:0既是非负数,也是整数.2、答案:×解析:不仅考虑正数,也要考虑负数和0 .当a =0,b <0 时,或a <0且b <0时, |a |>|b |都不成立.3、答案:×解析:23=2×2×2=8,32=3×3=9,所以23≠324、答案:×解析:-73不能理解为-7×3.5、答案:×解析:不能忘记0.当a=0时,a2 ≯0.6、答案:×解析:注意,当a<0时,a的奇次方是负数,如(-3)3 =-27<0.7、答案:√解析:大于-1且小于0的有理数的绝对值都是小于1的正数,它们的乘积的绝对值变小;又,大于-1且小于0的有理数的立方一定是负数,所以大于-1且小于0的有理数的立方一定大于原数.三、1、答案:C.解析:平方得4的数不仅是2,也不仅是-2,所以答2或-2才完整.2、答案:B.解析:虽然每一个有理数都可以用数轴上唯一的一个点来表示,但是数轴上的每一个点不都表示一个有理数.3、答案:B.解析:负数的相反数是正数,所以(A)和(C)是正数;“减去负数等于加上它的相反数(正数)”所以(D)也是正数;只有(B):(1-9)8-17 =-8×8-17 =-64-17 =-81.可知只有(B)正确.4、答案:B.解析:正数的奇次幂是正数,0的奇次幂是0,所以(A)、(C)(D)都不正确.5、答案:A.解析:(B)显然不正确;(C)和(D)虽然都能使ab=|ab|成立,但ab=|ab|成立时,(C)和(D)未必成立,所以(C)和(D)都不成立.6、答案:D.解析:比较各绝对值的大小.由于133-≈0.23,所以有133->22.0->2.0-,则有-0.2>-0.22>-133. 四、1、答案:-90. 解析:注意运算顺序,且0.25 =41. (-85)×(-4)2-0.25×(-5)×(-4)3=(-85)×16-0.25×(-5)×(-64) =(-5)×2-(-16)×(-5)=-10-80=-90.应注意,计算-10-80 时应看作-10 与-80 的和.2、答案:1065. 解析:注意-24=-2×2×2×2 =-16,再统一为分数计算:-24÷(-232)×2+521×(-61)-0.25 =-16÷(-38)×2+211×(-61)-41 =-16×(-83)×2+(-1211)-123 = 12+(-1214) = 12-67 =665. 3、答案:50.解析:注意统一为真分数再按括号规定的顺序计算: 4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-= 52)491(25)51(12⨯⎥⎦⎤⎢⎣⎡+--÷- = 52452525⨯⎥⎦⎤⎢⎣⎡-÷ = ⎥⎦⎤⎢⎣⎡-÷21125 = 2125÷ = 25×2= 50.注意分配律的运用.4、答案:17.12.解析:注意分配律的运用,可以避免通分. (1876597-+-)×(-18)+1.95×6-1.45×0.4 = 14-15+7+11.7-0.58= 6+11.12= 17.12. 五、答案:389. 解析:3(a +b )2-6ab = 36)322321(2---(-1)322)(32- = 3(-313)2-6)38)(35(--= 3×9169-380= 389.。

有理数的运算经典测试题含答案

有理数的运算经典测试题含答案

有理数的运算经典测试题含答案一、选择题1.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是( )A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯【答案】D【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D .点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.为促进义务教育办学条件均衡,2019年某地区计划投入4200000元资金为该地区农村学校添置实验仪器,4200000这个数用科学记数法表示为( )A .44210⨯B .64.210⨯C .84210⨯D .60.4210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4200000=4.2×106,故选:B .【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A .4B .6C .7D .10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B .【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n 还成成原数时, n >0时,小数点就向右移动n 位得到原数;n<0时,小数点则向左移动|n|位得到原数.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1a D .a 的相反数的绝对值是它本身【答案】B【解析】【分析】A 、根据平方和绝对值的意义即可作出判断;B 、根据算术平方根的意义即可作出判断;C 、根据倒数的定义即可作出判断;D 、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.6.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为()A.6⨯D.41.41101.4110⨯1.4110⨯C.5⨯B.71.4110【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1410000用科学记数法表示为6⨯,1.4110故选:A.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.6⨯C.71161011.610⨯B.71.1610⨯⨯D.81.1610【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.2019的倒数的相反数是()A.-2019 B.12019C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.11.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2 B.x=﹣4,y=﹣2 C.x=﹣3,y=4 D.x=12,y=3【答案】D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384 000km 用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】解:第一次是12m,第二次是211112224⎛⎫⨯==⎪⎝⎭m,第三次是31111122228⎛⎫⨯⨯==⎪⎝⎭m,第四次是411216⎛⎫= ⎪⎝⎭m ,…, ∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.15.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为( ) A .0.278 09×105B .27.809×103C .2.780 9×103D .2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】27 809=2.780 9×410,故选D .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值16.2019年我省实施降成本的30条措施,全年为企业减负960亿元以上,用科学记数法表示数据960亿为( )A .79.610⨯B .89.610⨯C .99.610⨯D .109.610⨯【答案】D【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:960亿=96000000000=109.610⨯故选:D.此题主要考查科学记数法,熟练确定a和n是解题的关键.17.用科学记数方法表示0.0000907,得()A.49.0710-⨯B.59.0710-⨯C.690.710-⨯D.790.710-⨯【答案】B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na⨯,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.18.按如图所示的运算程序,能使输出y的值为1的是()A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考x=时,y的值是()19.如图,是一个计算流程图.当16A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.。

语法知识—有理数的经典测试题及答案

语法知识—有理数的经典测试题及答案

一、填空题1.有理数a ,b ,c 在数轴上表示的点如图所示,则化简|a|﹣|b ﹣a|+|c ﹣a|=_____.2.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有______个,负整数点有______个,被淹没的最小的负整数点所表示的数是______.3.如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是_________.4.若2(2)30x y -+-=,则代数式xy 的值是 ________.5.已知||3-=a ,||5=b ,0abc >,且b a c <<,2a b c ++=,则c =_______. 6.已知4x =,12y =,且x y <,则x y ÷的值为______. 7.若m n - =n-m ,且m =4,n =3,则m +n =_________ 8.32-的相反数是_________; 二、解答题9.已知关于x 、y 的方程组2743x y m x y m +=+⎧⎨-=-⎩的解都为正数.(1)求m 的取值范围; (2)化简:|3m+2|﹣|m ﹣5|.10.有理数a ,b ,c 在数轴上的位置如图所示: (1)比较a ,|b|,c 的大小(用“<”连接);(2)若m =|a+b|﹣|c ﹣a|﹣|b ﹣1|,求1﹣2019(m+c)2019的值.11.若一数轴上存在两动点,当第一次相遇后,速度都变为原来的两倍,第二次相遇后又都能恢复到原来的速度,则称这条数轴为魔幻数轴.如图,已知一魔幻数轴上有A ,O ,B 三点,其中A ,O 对应的数分别为﹣10,0,AB 为47个单位长度,甲,乙分别从A ,O 两点同时出发,沿数轴正方向同向而行,甲的速度为3个单位/秒,乙的速度为1个单位/秒,甲到达点B 后以当时速度立即返回,当甲回到点A 时,甲、乙同时停止运动.问:(1)点B 对应的数为 ,甲出发 秒后追上乙(即第一次相遇) (2)当甲到达点B 立即返回后第二次与乙相遇,求出相遇点在数轴上表示的数是多少? (3)甲、乙同时出发多少秒后,二者相距2个单位长度?(请直接写出答案) 12.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7. (1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.13.如图,点P 、Q 在数轴上表示的数分别是-8、4,点P 以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P 、Q 同时出发向右运动,运动时间为t 秒.(1)若运动2秒时,则点P 表示的数为_______,点P 、Q 之间的距离是______个单位; (2)求经过多少秒后,点P 、Q 重合?(3)试探究:经过多少秒后,点P 、Q 两点间的距离为6个单位. 14.有理数a ,b ,c 在数轴上的位置如图所示:(1)在数轴标出表示||a ,b -的点的位置,并用“<”将0,c ,||a ,b -连接起来; (2)化简|||2||||2|+------a b b a c c .15.某食品厂从生产的食品罐头中抽出20听检测质量,将超过标准质量用正数表示,不足标准质量的用负数表示,结果记录如下表: 偏差/克 -10 -5 0 +5 +10 +15 听数127541三、1316.一个数的相反数与该数的倒数的和等于0,则这个数的绝对值等于( ) A .2B .-2C .1D .-117.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .+2.4B .−0.5C .+0.6D .−3.418.学校、家、书店座落在一条南北走向的大街上,学校在家南边20米,书店在家北边10米,张明从家里出发,向北走了50米,又向南走了70米,此时张明的位置在( ) A .在家 B .在学校 C .在书店D .不在上述地方19.若数轴上A ,B 两点之间的距离为8个单位长度,点A 表示的有理数是﹣10,并且A ,B 两点经折叠后重合,此时折线与数轴的交点表示的有理数是( )A .﹣6B .﹣9C .﹣6或﹣14D .﹣1或﹣920.如图,a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .a+b <0B .ab <0C .b ﹣a <0D .0ab≥ 21.已知3m +与2(2)n -互为相反数,则2m 等于( )A .6B .6-C .9D .9-22.已知ab <0,则2a b -化简后为:( ) A .--a bB .a b -C .a bD .-a b23.已知2x =,9y =,则x y +的值为( ) A .11B .7C .11 或 7D .11 或-724.如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<25.对于有理数,a b ,有以下四个判断:①若a b =则a=b ;②若a b >则a b >;③若a=-b,则a b =;④若a b <则a<b ,其中正确的判定个数是( ) A .4个B .3个C .2个D .1个【参考答案】***试卷处理标记,请不要删除一、填空题1.a ﹣b ﹣c 【分析】根据数轴上点的位置判断出ab ﹣a 及c ﹣a 的正负利用绝对值的代数意义化简去括号合并即可得到结果【详解】解:由数轴得:c <a <0b >0∴b﹣a >0c ﹣a <0∴|a|﹣|b ﹣a|+|c ﹣ 解析:a ﹣b ﹣c 【分析】根据数轴上点的位置判断出a ,b ﹣a 及c ﹣a 的正负,利用绝对值的代数意义化简,去括号合并即可得到结果. 【详解】解:由数轴得:c <a <0,b >0, ∴b ﹣a >0,c ﹣a <0,∴|a|﹣|b ﹣a|+|c ﹣a|=﹣a ﹣b+a+a ﹣c =a ﹣b ﹣c , 故答案为:a ﹣b ﹣c . 【点睛】此题考查的是去绝对值化简,掌握绝对值的性质和利用数轴判断符号是解决此题的关键.2.52-72【分析】通过观察数轴列出淹没的整数点根据题目的要求计算出个数即可【详解】由数轴可知:和之间的整数点有:-72-71-42共个;和之间的整数点有:-21-201516共个;其中非负整数点有:解析:52 -72 【分析】通过观察数轴,列出淹没的整数点,根据题目的要求计算出个数即可. 【详解】 由数轴可知:1722-和1415-之间的整数点有:-72,-71,,-42,共()4272131--+-=个;3214-和2163之间的整数点有:-21,-20,,15,16,共()1621138-+-=个; 其中非负整数点有:0,1,2,3,,15,16,共17个;所以淹没的整数点有69个,负整数点有691752-=个; 被淹没的最小的负整数点所表示的数是:-72 故答案是:69;52;-72 【点睛】本题考查了数轴上两点之间的距离,注意数形结合是解题的关键.3.1【分析】首先确定原点位置可得B 点对应的数进而可得C 点对应的数【详解】解:∵点AB 对应的数互为相反数∴线段AB 的中点为数轴的原点∵AB=6∴B 点对应的数为3∵BC=2且C 点在B 点左侧∴点C 对应的数为解析:1 【分析】首先确定原点位置,可得B 点对应的数,进而可得C 点对应的数. 【详解】解:∵点A 、B 对应的数互为相反数, ∴线段AB 的中点为数轴的原点, ∵AB=6,∴B 点对应的数为3, ∵BC=2,且C 点在B 点左侧, ∴点C 对应的数为1. 故答案为:1 【点睛】本题主要考查了数轴,正确确定原点位置是解答此题的关键.4.9【分析】要求的值必须先求出的值而通过已知条件可知则可求的值【详解】代入中得【点睛】本题主要考查平方数和绝对值的性质都是非负性两个非负数相加为零则这两个数都为零利用这点解题即可解析:9 【分析】要求xy 的值,必须先求出,x y 的值,而通过已知条件可知20,30x y ∴-=-=,则可求,x y 的值.【详解】2(2)30x y -+-=20,30x y ∴-=-= 2,3x y ∴==代入xy 中,得239= 【点睛】本题主要考查平方数和绝对值的性质都是非负性,两个非负数相加为零,则这两个数都为零,利用这点解题即可.5.10【分析】先根据绝对值的性质和已知条件得出abc 的值再根据进行判断得出c 的值即可【详解】解:∵∴a=b=∵∴a=b=;∵∴a=3b=-5c=4或a=-3b=-5c=10∵∴c=10故答案为10【点解析:10 【分析】先根据绝对值的性质和已知条件2a b c ++=,b a c <<得出a 、b 、c 的值,再根据0abc >进行判断得出c 的值即可. 【详解】解:∵3a -=,5b =,∴a=3±,b=5± ∵b a c <<,∴a=3±,b=5-; ∵2a b c ++=,∴a=3,b=-5,c=4或a=-3,b=-5,c=10 ∵0abc > ∴c=10 故答案为10 【点睛】本题考查了绝对值、有理数的加减法和乘法法则,熟练掌握相关的知识是解题的关键.6.±8【分析】根据绝对值的意义求出x 与y 的值然后因为所以判别出符号题意的x 与y 的值代入计算即可【详解】∵∴又∵∴当时=当时=所以答案为±8【点睛】本题主要考查了绝对值的性质以及有理数的运算熟练掌握相关解析:±8【分析】根据绝对值的意义求出x 与y 的值,然后因为x y <,所以判别出符号题意的x 与y 的值代入计算即可 【详解】 ∵4x =,12y =∴4x =±,12y =± 又∵x y < ∴当4x =-,12y =时,x y ÷=8- 当4x =-,12y =-时,x y ÷=8 所以答案为±8 【点睛】本题主要考查了绝对值的性质以及有理数的运算,熟练掌握相关概念是解题关键7.-1或-7【分析】根据绝对值的意义求出m 和n 的值然后分别代入m+n 中计算即可【详解】解:∵|m|=4|n|=3∴m=±4n=±3而|m-n|=n-m∴n>m∴n=3n=-4或n=-3m=-4∴m+n解析:-1或-7 【分析】根据绝对值的意义求出m 和n 的值,然后分别代入m+n 中计算即可. 【详解】解:∵|m|=4,|n|=3, ∴m=±4,n=±3, 而|m-n|=n-m , ∴n >m ,∴n=3,n=-4或n=-3,m=-4,∴m+n=3+(-4)=-1;或m+n=-3+(-4)=-7. 故答案为-1或-7. 【点睛】本题考查了绝对值,掌握:若a >0,则|a|=a ;若a=0,则|a|=0;若a <0,则|a|=-a ,是解题的关键.8.【分析】利用相反数的概念可得的相反数等于【详解】的相反数是故答案为【点睛】本题考查了相反数的意义一个数的相反数就是在这个数前面添上-号;一个正数的相反数是负数一个负数的相反数是正数0的相反数是0解析:32. 【分析】利用相反数的概念,可得32-的相反数等于32. 【详解】32-的相反数是32. 故答案为32. 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.二、解答题9.(1)﹣23<m <5;(2)4m ﹣3 【分析】(1)利用加减消元法解关于x 、y 的二元一次方程,用m 表示出x 、y ,再根据方程组的解都是正数列出不等式组,然后解不等式组即可; (2)根据m 的取值范围去掉绝对值号合并同类项即可. 【详解】 解:(1)2743x y m x y m +=+⎧⎨-=-⎩①②,①+②得,2x =6m+4, 解得x =3m+2,①﹣②得,2y =﹣2m+10, 解得y =﹣m+5, ∵x 、y 都是正数, ∴32050m m +>⎧⎨-+>⎩③④,由③得,m >﹣23, 由④得,m <5,∴m 的取值范围是﹣23<m <5;(2)根据(1)﹣23<m <5, ∴|3m+2|﹣|m ﹣5| =3m+2+m ﹣5 =4m ﹣3.【点睛】本题考查了解一元一次不等式组,解二元一次方程组,把方程组中的字母m看作常数求出x、y的表达式是解题的关键.10.(1)a<c<|b|;(2)2020.【分析】(1)直接利用a,b,c在数轴上的位置得出答案;(2)直接利用绝对值的性质化简得出答案.【详解】(1)∵0<c<1,b<a<﹣1,∴a<c<|b|;(2)∵a+b<0,c﹣a>0,b﹣1<0,∴m=(﹣a﹣b)﹣(c﹣a)﹣(﹣b+1)=﹣a﹣b﹣c+a+b﹣1=﹣c﹣1,∴原式=1﹣2019×(﹣1)2019=2020.【点睛】、、的情况以及本题考查了数轴与绝对值的性质,根据数轴判断出a b c()()()1﹣﹣、﹣、﹣的正负情况是解题的关键,也是难点.a b c a b+11.(1)点B对应的数为37,甲出发5秒后追上乙(即第一次相遇);(2)相遇点在数轴上表示的数是21;(3)甲、乙同时出发4秒或5.5秒或12.75秒或13.5秒后,二者相距2个单位长度.【分析】(1)根据两点间的距离可求点B对应的数,可设甲出发x秒后追上乙(即第一次相遇),根据速度差×时间=路程差,列出方程求解即可;(2)先求出第二次与乙相遇需要的时间,进一步可求相遇点在数轴上表示的数;(3)分第一次相遇前后相距2个单位长度,第二次相遇前后相距2个单位长度,进行讨论即可求解.【详解】解:(1)点B对应的数为:﹣10+47=37,设甲出发x秒后追上乙(即第一次相遇),依题意有:(3﹣1)x=10,解得:x=5.故甲出发5秒后追上乙(即第一次相遇);(2)﹣10+5×3=﹣10+15=5,37﹣5=32,32×2÷(3×2+1×2)=8(秒),5+1×2×8=21.故相遇点在数轴上表示的数是:21;(3)第一次相遇前后相距2个单位长度,5﹣2÷(3﹣1)=5﹣1=4(秒)5+2÷(3×2﹣1×2)=5+0.5=5.5(秒)第二次相遇前后相距2个单位长度,5+8﹣2÷(3×2+1×2)=12.75(秒)5+8+2÷(3+1)=13.5(秒)故甲、乙同时出发4秒或5.5秒或12.75秒或13.5秒后,二者相距2个单位长度.【点睛】考查了一元一次方程的应用、数轴,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.12.(1)3a2-ab+7;(2)12.【分析】(1)把B代入A-B=7a2-7ab可以求得A的值,本题得以解决;(2)根据|a+1|+(b-2)2=0,可以求得a、b的值,然后代入(1)中的A的代数式,即可解答本题.【详解】解:(1)∵A-B=7a2-7ab,且B=-4a2+6ab+7,∴A-(-4a2+6ab+7)=7a2-7ab,解得,A=3a2-ab+7;(2)∵|a+1|+(b-2)2=0,∴a+1=0,b-2=0,解得,a=-1,b=2,∴A=3a2-ab+7=3×(-1)2-(-1)×2+7=12.【点睛】本题考查整式的加减、非负数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用非负数的性质解答.13.(1)-4,10;(2)12秒;(3)6秒或18秒【分析】(1)根据数轴上的数向右移动加列式计算即可得解,写出出P、Q两点表示的数,计算即可;(2)用t列出P、Q表示的数,列出等式求解即可;(3)点P、Q同时出发向右运动,运动时间为t秒,分为两种情况讨论①未追上时,②追上且超过时,分别算出即可.【详解】解:(1)点P表示的数是: -8+2×2=-4点Q表示的数是: 4+2×1=6点P、Q之间的距离是: 6-(-4)=10;(2)∵点P、Q同时出发向右运动,运动时间为t秒,点P、Q重合时,-8+2t=4+t, 解得:t=12 (秒)经过12秒后,点P、Q重合;(3)点P、Q同时出发向右运动,运动时间为t秒,故分为两种情况讨论:①未追上时:(4+t)-(-8+2t)= 6解得:t= 6 (秒)②追上且超过时:(-8+2t)—(4+t)= 6解得:t= 18 (秒)答:经过6秒或18秒后,点P、Q两点间的距离为6个单位.【点睛】本题考查了数轴,主要利用了数轴上两点间的距离的表示,数轴上的数向右移动加向左移动减,难点在于(3)分情况讨论.14.(1)图见解析,0<||a<b-<c,(2)-4【分析】(1)根据绝对值和相反数的意义,再根据数轴上点的位置判断大小即可;(2)判断出绝对值里边式子的正负,利用绝对值的代数意义化简即可得到结果.【详解】解:(1)-<c,由图可得:0<||a<b<(2)由数轴可得:b<a<0<c2a+b<0,b-2<0,a-c<0,2-c>0,a b b a c c+------|||2||||2|=-(a+b)+(b-2)+(a-c)-(2-c)=-a-b+b-2-c+a-2+c=-4.【点睛】本题考查了绝对值、数轴和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.15.这批样品平均每听的质量比标准质量多,相差3克【分析】首先计算出与标准质量的偏差总量,再计算平均质量比标准质量相差多少,如果得到正数则多,否则少【详解】由题意得:-⨯-⨯+⨯+⨯+⨯+⨯=60与标准质量的偏差总量为:101520755104151平均质量比标准质量相差为:60÷20=3∵60是正数∴这批罐头的平均质量比标准质量多答:这批样品平均每听的质量比标准质量多,相差3克本题主要考查了正负数意义的运用以及有理数混合运算,熟练掌握相关概念是解题关键三、1316.C解析:C【解析】【分析】根据只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数得出此数具体为何数,然后求出其绝对值即可.【详解】∵一个数的相反数与该数的倒数的和等于0,∴这个数为±1,∴|±1|=1,故选:C.【点睛】本题主要考查了相反数与倒数及绝对值相关性质的综合运用,熟练掌握相关概念是解题关键.17.B解析:B【分析】根据绝对值的意义,求得绝对值最小的即可得答案.【详解】|+2.5|=2.5,|-0.5|=0.5,|+0.6|=0.6,|-3.4|=3.4,3.4>2.5>0.6>0.5,故选B.【点睛】本题考查了正数和负数,利用绝对值的意义是解题关键.18.B解析:B【分析】可规定家的位置为0,向北走为正,向南走为负,把所得数相加即可得到相应位置.【详解】解:规定家的位置为0,向北走为正,向南走为负,则0-50+70=20米,张明的位置在家南边20米处.即在学校,故选:B.【点睛】本题考查了数轴的性质,解决本题的关键是确定原点和正负方向.解析:C【分析】分点B在点A的左侧和点B在点A的右侧两种情况找出点B表示的有理数,结合折线与数轴的交点表示的有理数为点A,B表示的有理数的平均数,即可求出结论.【详解】解:当点B在点A的左侧时,点B表示的有理数是﹣10﹣8=﹣18,∴折线与数轴的交点表示的有理数是10182--=﹣14;当点B在点A的右侧时,点B表示的有理数是﹣10+8=﹣2,∴折线与数轴的交点表示的有理数是1022--=﹣6.故选:C.【点睛】此题综合考查了数轴上的点和数之间的对应关系以及数轴上中点的求法.注意数轴上的点和数之间的对应关系.20.B解析:B【分析】先根据a、b在数轴上的位置确定出a、b的符号即|a|、|b|的大小,再进行解答即可.【详解】∵a在原点的左侧,b在原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴ab<0,∴D错误.故选B.【点睛】本题考查了数轴的特点,即原点左边的数都小于0,右边的数都大于0,右边的数总大于左边的数.21.C解析:C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n−2)2互为相反数,∴|m+3|+(n−2)2=0,∴m+3=0,n−2=0,解得m=−3,n=2,所以,m 2=(−3)2=9.故选C.【点睛】此题考查非负数的性质:绝对值,非负数的性质:偶次方,解题关键在于掌握运算法则.22.D解析:D【分析】根据二次根式有意义的条件结合ab <0,可得出0,0b a ≤>.再根据算术平方根和绝对值的||a =,进行化简即可.【详解】根据二次根式有意义的条件20a b -≥,20a ≥0b ∴-≥,即0b ≤,又∵ab <0∴a>0,|a ==故选D.【点睛】本题考查二次根式的性质与化简,二次根式有意义的条件.解决本题需注意两点:①能根据二次根式有意义的条件和ab <0得出a>0||a =对根式进行化简.23.C解析:C【分析】本题主要考查的是绝对值的相关知识.绝对值:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.当已知|a|=b(b >0),则a=±b. 【详解】 ∵2x =,∴x=2或x=-2,∴x y +=2+9=11或x y +=-2+9=7,故选:C.【点睛】此题考查绝对值,解题关键在于掌握绝对值的定义.24.C解析:C【分析】根据数轴上的各数右边的数总比左边的大进行比较即可.【详解】因为数轴上的数右边的总比左边的大,所以从左到右把各字母用“<”连接为:b<a<c .故选C .【点睛】考查的是数轴的特点及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.25.D解析:D【分析】分别判断①②③④是否正确即可解答.【详解】 解:①若a b =,则a= b 或a=-b ;②若a b >,则a b 不一定大于;③若a=-b,则a b =;④若a b <则a 不一定大于b ;所以正确的个数是1;故选D【点睛】本题考查了绝对值的性质,熟练掌握是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数经典测试题含答案一、选择题1.在–2,+3.5,0,23-,–0.7,11中.负分数有( )A.l个B.2个C.3个D.4个【答案】B【解析】根据负数的定义先选出负数,再选出分数即可.解:负分数是﹣23,﹣0.7,共2个.故选B.2.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在﹣3,﹣1,1,3四个数中,比2大的数是()A.﹣3 B.﹣1 C.1 D.3【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.4.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C 【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a<b,∴选项B正确;∵1<|a|<|b|,∴选项C正确;∵-b<a<-1,∴选项D正确.故选:A.【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.6.16的绝对值是( )A.﹣6 B.6 C.﹣16D.16【答案】D【解析】【分析】利用绝对值的定义解答即可.【详解】1 6的绝对值是16,故选D.【点睛】本题考查了绝对值得定义,理解定义是解题的关键.7.和数轴上的点一一对应的是()A.整数B.实数C.有理数D.无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.8.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是()A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.11.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.12.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b【答案】B【解析】【分析】 根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<, ∴22a a b a b a a b ,故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.13.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.14.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的15.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.b>a B.ab>0 C.a>b D.|a|>|b|【答案】C【解析】【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、∵b<﹣1<0<a<1,∴b<a,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a>b,故选项C正确;D、∵b<﹣1<0<a<1,∴|b|>|a|,即|a|<|b|,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.16.已知有理数a、b在数轴上的位置如图所示,则下列代数式的值最大的是()A.a+b B.a﹣b C.|a+b| D.|a﹣b|【答案】D【解析】【分析】根据数轴确定出a是负数,b是正数,并且b的绝对值大于a的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.17.下列结论中:①若a=b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离正确的个数有②④两个故选B18.12的相反数与﹣7的绝对值的和是()A.5 B.19 C.﹣17 D.﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D.【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.19.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.20.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .。

相关文档
最新文档