完整的单因素方差分析实例

合集下载

SPSS中的单因素方差分析(One-Way Anova)

SPSS中的单因素方差分析(One-Way Anova)

SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) (一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。

(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。

(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。

(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。

(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。

(5)在主对话框中,单击“OK”提交进行。

(五)输出结果及分析灯泡使用寿命的单因素方差分析结果该表各部分说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。

第二列:离差平方和,组间离差平方和为39776.46,组内离差平方和为178088.9,总离差平方和为217865.4,是组间离差平方和与组内离差平方和相加而得。

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。

单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。

单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。

•水平:因素变化的各种状态或因素变化所分的等级或组别。

•单因素试验:考虑的因素只有一个的试验叫单因素试验。

单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。

设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都相同。

这就是单因素试验。

试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。

即考察抗生素这一因素对这些百分比有无显著影响。

这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。

本节将借用上面的实例来讨论单因素试验的方差分析问题。

2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。

这些结果是一个随机变量。

表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。

样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。

第一节单因素方差分析演示文档

第一节单因素方差分析演示文档

5.1.2 单因素方差分析的数学模型
进行单因素方差分析时,需要得到如表1所示 的数据结构.

表1 单因素方差分析中数据结构
观测值(j) A1
1
x11
2
x12
… ni 平均值

x1n1 x1.
A因素(i)
A2 x21 x22 …
x 2n2 x 2.
… … … … …
Am xm1 xm2 …
x mn m xm.
(3) 在打开的“方差分析:单因素方差分析”对话框中, 输入“输入区域”:B2:D8,“分组方式”取默认的 “列”方式,选中“标志位于第一行”复选框,如图2 所示,单击“确定”按钮.
表中用A表示因素,A的m个取值称为m个水平分别用 A1,A2,…,Am表示,每个水平对应一个总体.
从不同水平(总体)中抽出的样本容量可以相同,也
可以不同.若不同水平抽出的样本容量相同则称为均衡 数据,否则称非均衡数据.
设xij表示第i个总体的第j个观测值(j = 1, 2, …,ni, i =
由于在实际中有充分的理由认为粮食产量服从正态 分布, 且在安排试验时, 除所关心的因素(这里是化肥)外, 其它试验条件总是尽可能做到一致.
这使我们可以认为每个总体的方差相同
即 Xi~N(i,σ2) i = 1, 2, 3
因此,推断三个总体是否具有相同分布的问题就简 化为:检验几个具有相同方差的正态总体均值是否相等 的问题,即只需检验
(2) 把同一化肥(A的同一水平)得到的粮食产量看作同 一总体抽得的样本,施用不同化肥得到的粮食产量视为 不同总体下抽得的样本,表中数据应看成从三个总体X1, X2,X3中分别抽了容量为6的样本的观测值.
推断甲乙丙三种化肥的肥效是否存在差异的问题, 就是要辨别粮食产量之间的差异主要是由随机误差造成 的,还是由不同化肥造成的,这一问题可归结为三个总 体是否有相同分布的讨论.

生物统计第三节单因素试验资料的方差分析

生物统计第三节单因素试验资料的方差分析

C T / N 460.5 / 25 8482.41
2
2
上一张 下一张 主 页
退 出
SST x C
2
ij
(21.5 2 19.5 2 17.0 2 16.0 2 ) 8482 . 41
8567 . 75 8482 . 41
Байду номын сангаас85.34
MSE
P
⑥ 列出方差分析表
df
3、确定P值、下结论
•从上表得F=14.32,查附表5(方差分析界值表,
单侧),自由度相同时,F界值越大,P值越小。
因F0.01,2,27= 5.49;故P<0.01,按α=0.05水准
拒绝H0,接受HA,可认为三个不同时期切痂对
ATP含量的影响有统计显著性差异。
方差分析的结果只能总的来说多组间是否
S,即
x
得各最小显著极差,所得结果列于表6-15。
上一张 下一张 主 页
退 出
表6-15 SSR值及LSR值
dfe
上一张 下一张 主 页
退 出
将表6-14中的差数与表6-15中相应的最小显
著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数
极显著高于2号品种母猪,显著高于4号和1号品
③ 计算总的变异及总的自由度
SST x C
2
ij
dfT kn 1 N 1
④ 计算组间变异及相应的自由度
SSB Ti 2 / ni C
df b k 1
⑤ 计算组内变异及相应的自由度
SSE SST SSB
df e dfT df b
N k

单因素方差分析例题

单因素方差分析例题

SPSS单因素方差分析例题在消费者市场,消费者和生产者之间常因商品质量或者服务质量发生纠纷。

消费者在发生纠纷而无法解决时,便会选择消费者协会进行投诉。

为了评价不同行业的服务质量,消费者协会分别在零售业、旅游业、航空公司、家电制造业抽取了不同的企业作为样本,其中零售业7家,旅游业6家,航空公司5家,家电制造业5家,然后统计出近期消费者对这23家企业的投诉次数,如下表所示:表1 消费者对4个行业的投诉次数观测值行业零售业旅游业航空公司家电制造业1 57 68 31 442 66 39 49 513 49 29 21 654 40 45 34 775 34 56 40 586 53 517 44针对上表给出的数据进行单因素方差分析,并利用LSD(最小显著差异检验)和Bonferroni(修正的最小显著差异检验)方法,检验各行业间均值是否存在显著性差异;同时,选择线性多项式比较各均值,共指定两组多项式系数,检验行业对投诉次数的效应,多项式系数由下列公式给出:● 1.0*mean1-1.0*mean2+1.0*mean3-1.0*mean4 检验零售业和航空公司的投诉之和与旅游业和家电业的投诉之和是否有显著差异。

● 1.0*mean1+1.0*mean2-1.0*mean3-1.0*mean4 检验零售业和旅游业的投诉之和与航空公司和家电业的投诉之和是否有显著差异。

基本操作提示:Step 1:建立数据文件,其中值1、2、3、4分别代表零售业、旅游业、航空公司、家电业这4个不同行业。

打开数据文件。

Step 2:Analyz e→Compare mean s→One-Way ANOV A。

变量“投诉次数”指定为“Dependent List”(样本观测值),“行业”指定为“Factor”(因素)。

Step 3:单击“Option”按钮,依次选择“Descriptive”(描述性统计量)、“Homogeneity of variance test”(方差齐性检验)、“Meanplot”(均值连线图)选项,单击“Continue”,返回主对话框。

方差分析第2部分单因素试验资料的方差分

方差分析第2部分单因素试验资料的方差分

(一)两因素单独观测值试验资料的方差分析 对于A、B两个试验因素的全部ab个水 平组合,每个水平组合只有一个观测值, 全
试验共有ab个观测值,其数据模式如表620所示。
上一张 下一张 主 页 退 出
表6-20 两因素单独观测值试验数据模式
表6-20中
x i.
x
j 1
bБайду номын сангаас
ij
, x. j x..
Cx /N
2 ..
SST x C
2 ij
dfT N 1
df t k 1 df e dfT df t
上一张 下一张 主 页 退 出
SSt xi2 . / ni C
SSe SST SSt
【例6.4】 5个不同品种猪的育肥试验,后期30天增 重(kg)如下表所示。试比较品种间增重有无差异。
这是一个单因素试验,k=5,n=5。
上一张 下一张 主 页 退 出
1、计算各项平方和与自由度
C
2 SST xij C (82 132 142 132 ) 2809.00
2 x..
/ kn 265 /(5 5) 2809 .00
2
2945.00 2809.00 136.00 1 1 2 2 SSt xi. C (51 412 60 2 482 652 ) 2809.00 n 5 2882.20 2809.00 73.20
系统分组方差分析两种,现分别介绍如下。
上一张 下一张 主 页 退 出
一、交叉分组资料的方差分析
设试验考察A、B两个因素,A因素分a个水
平,B因素分b个水平 。 所谓交叉分组是指A因

单因素试验的方差分析

单因素试验的方差分析

实验二 单因素试验的方差分析
实验目的:1.掌握单因素实验方差分析的方法与步骤;
2.正确分析输出结果中的各参数,并得出正确结论。

实验内容:
采用四种不同产地的原料萘,按同样的工艺条件合成β—萘酚,测定所得产品的
熔点如表1所示,问原料萘的产地是否显著影响产品的熔点?
表2.1 不同产地原料萘合成β—萘酚的熔点℃
操作步骤:
1.excel 的工作表中输入如表1.1所示的的样本数据, 2.点击“工具—数据分析—方差分析:单因素方差分析”,在弹出对话框的输入区域,拖动鼠标选择样本值A2:D5;分组方式,选择列;显著性水平α设置为0.1,如图
2.1所示。

图2.1 应用excel “数据分析”功能求单因素方差分析的有关参数
3.点击确定,输出参数的窗口如图2.2所示。

图2.2 应用excel“数据分析”功能求单因素方差分析的有关参数
结果分析:
(1)SUMMARY给出的是该因子各水平的扼要分析结果,包括各样本的容量、数据、样本均值和样本方差。

(2)在输出的方差分析表中,组间即“产地因子”;组内即指“误差”;SS 为平方和;df 是自由度;P-value 为P 值,即所达到的临界显著水平;F crit 是Fα(t-1,N-t)的值。

由于P
值为0.231767>0.1,所以萘的产地对萘酚熔点无显著影响。

关于ANOVA分析例题

关于ANOVA分析例题

Single(7)单因素单向分组方差分析例1、北京农业大学从南斯拉夫引进15个T型恢复材料,为了研究其应用价值,以农大139为对照,进行了个农艺性状表现的观察。

其中6个恢复材料和农大139各5个单株抽穗期观察结果如表1:表1 引进恢复系抽穗期观察资料恢复系单株抽穗期1 2 3 4 5PI277016 11 11 10 12 11Lot-1 13 13 12 14 14Texas 12 12 13 12 12 zgR2806-78 13 12 12 13 13zgR2268-78 18 19 18 18 19vk-64-28 19 18 20 19 19农大139 10 11 10 11 10 例2、5个玉米品种的盆栽试验,调查了穗长(cm)性状,得资料如下表2,试检验品种穗长间有无差异。

(各处理的重复数不等)表2 5个玉米品种的穗长品种穗长(cm)重复数B121.5 19.5 20 22 18 20 6B216 18.5 17 15.5 20 16 6B319 17.5 20 18 17 5B421 18.5 19 20 4B515.5 18 17 16 4例3、表3为同一公猪配种的3头母猪所产的各头仔猪的断奶时体重(斤),试分析母猪对仔猪体重效应的差异显著性。

(每组样本容量不等)表3 三头母猪的仔猪断奶时体重母猪别n i观察值No.1 8 24 22.5 24 20 22 23 22 22.5No.2 7 19 19.5 20 23.5 19 21 16.5No.3 9 16 16 15.5 20.5 14 17.5 14.5 15.5 19单因素双向分组方差分析小区内没有重复观察值例4、5个水稻品种的产量比较试验,随机区组设计,4次重复,获得每个小区产量(Kg)资料如表4所示:试分析这5个水稻品种间产量水平有无显著差异。

表4 水稻5个品种的每区产量(Kg)品种区组(重复)ⅠⅡⅢⅣ农林130 61 57 55 56西海67 53 52 50 51十石52 58 55 57农林87 58 56 53 53农林18 53 51 54 55 例5、将一种生长激素配成M1、M2、M3、M4、M5五种浓度,并用H1、H2、H3、三种时间浸渍某大豆品种的种子,45天后得各处理每一植株的平均干物重(g)于下表5,试作方差分析。

单因素方差分析和多因素方差分析简单实例

单因素方差分析和多因素方差分析简单实例

单因素方差分析和多因素方差分析简单实例
单因素方差分析与多因素方差分析(即分析方差分析,简称 ANOVA)是统计学中常用
的一种方法。

它可以用来评估相关变量之间的差异程度,以确定这些变量对数据集的影响
程度。

本文将对两种方法进行简单介绍,并通过一个实例来帮助大家更好地理解。

1、单因素方差分析
单因素方差分析是统计学中最常见的研究方法之一,可以用来评估一个单独变量的影响。

在这种情况下,我们分别将多个样本分为两组或以上,每组有不同的自变量。

然后使
用单因素处方差分析检验来检验这些样本组之间的均值的差异,从而得出该自变量对样本
组之间的均值的影响大小。

举个例子,假设我们有一个取自不同地区的样本,想要测试该样本收入水平是否受某
个城市所在地区影响,那么我们可以把这些样本分为两组:一组是属于某个城市所在地区,另一组是其他地区,然后使用单因素方法分析测试这两组样本收入水平是否显著不同。

拿前面的例子来说,我们在检验受某个城市影响的收入水平的时候如果只用单因素分
析可能不太准确,因为受某个城市影响的收入水平还可能受到一些其他因素的影响,比如
年龄、阶层等,这时就可以使用多因素方差分析来进行检验和确定不同因素的影响程度。

所以,单因素方差分析和多因素方差分析都是用来评估变量之间差异程度的统计方法,但并不能确定变量之间的关联性和互动作用。

至于哪一个方法更适合于某种特定情况,需
要结合实际情况,根据具体分析需求而定。

单因素方差分析范文

单因素方差分析范文

单因素方差分析范文单因素方差分析(One-way Analysis of Variance,简称ANOVA)是统计学中一种常用的方法,用于比较三个或三个以上的组的均值是否存在显著差异。

本篇文章将从原理、假设、步骤和应用等方面进行介绍。

一、原理二、假设在进行单因素方差分析时,需要假设组间均值是否存在显著差异。

具体的假设如下:H0:各组均值相等(即组间均值差异不显著)H1:至少有两组均值不相等(即组间均值差异显著)三、步骤进行单因素方差分析的步骤如下:1.根据研究目的和问题选择合适的统计方法;2.收集数据,涉及到多个组的测量值;3. 计算总平方和(SS_total),表示总变异性大小;4. 计算组间平方和(SS_between),表示组间变异性大小;5. 计算组内平方和(SS_within),表示组内变异性大小;6. 根据以上计算结果,计算组间均方(MS_between)和组内均方(MS_within);7. 计算F值,即F=MS_between/MS_within;8.根据设定的显著性水平(通常为0.05),查表或计算得到临界值;9.比较计算得到的F值与临界值,判断是否达到显著性水平。

四、应用1.医学研究:比较不同药物对疾病治疗效果的影响;2.教育研究:比较不同教学方法对学生学习成绩的影响;3.市场调查:比较不同广告对产品销量的影响;4.农业实验:比较不同施肥方式对作物产量的影响。

五、总结单因素方差分析是一种常用的统计方法,通过比较三个或三个以上组的均值差异来判断各组之间是否存在显著差异。

它的优点是可以同时比较多个组均值的差异,从而提高实验效率和减少误判,应用广泛且实用。

因此,研究者在进行多组均值比较时,可以选择单因素方差分析方法进行分析。

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:⽅差分析(单因素⽅差分析)在试验中,把考察的指标称为试验指标,影响试验指标的条件称为因素。

因素可分为两类,⼀类是⼈为可控的测量数据,⽐如温度、⾝⾼等;⼀类是不可控的随机因素,例如,测量误差,⽓象条件等。

因素所处的状态称为因素的⽔平。

如果在试验过程中,只有⼀个因素在改变,称为单因素试验。

⽅差分析(Analysis of Variance,简称ANOVA)主要⽤于验证两组样本,或者两组以上的样本均值是否有显著性差异(是否⼀致)。

举个例⼦,有三台机器⽤来⽣产规格相同的铝合⾦薄板,试验的指标是铝合⾦薄板的厚度,机器是因素,不同的三台机器是因素的三个⽔平。

试验的⽬的是为了考察每台机器所⽣产的薄板的厚度是否有显著的差异,即考察机器这⼀因素对薄板厚度有⽆显著的影响,如果厚度有显著差异,就表明机器对厚度的影响是显著的。

⼀,单因素⽅差分析对多个总体均值进⾏检验,需要⽤到⽅差分析⽅法,例如,某⼯⼚有A、B、C三台轧制板材的设备,如果想知道这三台设备轧制板材的厚度是否⼀致,就可以转化为检验来⾃三个总体的均值是否相同的问题。

以上⾯所说轧制板材为例,检验A、B、C三台设备轧制的板材厚度是否⼀致,可以建⽴如下假设:H0: µ1=µ2=…=µr;H1: µ1,µ2,…,µr不全相等。

三个总体均值是否相等⽆从知道,但是可以通过样本均值是否有显著差异来检验总体均值是否相等。

因为,如果H0为真时,则可以期望样本均值很接近,如果样本均值很接近,则推断总体均值相等的证据很充分,就可以接受H0。

否则,当样本均值相距较远,就认为总体均值相等的证据不充分,从⽽拒绝H0,接受H1。

样本均值之间距离的所谓远近是相对的,是通过假定的共同⽅差的两个点估计值⽐较得出的。

第⼀个点估计是组内⽅差,⽤各个样本⽅差估计得到的,只与每个样本内部的⽅差有关,反映各个⽔平内部随机性的变动。

单因素方差分析步骤(1)

单因素方差分析步骤(1)

单因素方差分析步骤:对于只有一种因素影响的资料,例如本例只检测血型这一种变量是否影响肺活量。

我们先确立假设和确立检验标准H0:假设不同血型的人的肺活量是有差异的H1:假设不同血型的人的肺活量是没有差异的。

第一步:选择检验方式第二步:确定比较方式第三布:在选项里选择描述方式第四步:得出结果:由本图可知,p》0.05,可知肺活量的总体方差无差异,方差齐则可做方差分析再有下图可知:p= 0.789是大与0.05的,所以不是小概率事件,不拒绝H0,所以认为不同血型的人的肺活量是没有差异的。

随机区组设计资料的方差分析2.如果对四种饲料对猪体重增加量有无差异进行分析,则可将猪随机分组,本例中以a代表分组,b代表饲料,x代表体重增加量如图:对于这种资料分析,应选用单变量方差分析,主要是影响因素是多样的,主要描述的是体重增加量。

那么我们首先应1、确定假设:对于处理组:H0,假设三种处理方式体重增加量是相等的H1,假设三种处理方式体重增加量是不等的。

对于区组:H0,假设三组之间体重增加量是相等的H1,假设三组之间体重增加量是不等的。

2、确立检验标准a=0.053、计算统计量F F1=MS处理/MS误差F2=MS区组/MS误差4、确定p值,做出推断结论。

第一步:选择分析方式第二步:选择确立因变量,本题描述的是体重增加量,故选用x,确立区间,处理措施。

如图:第三步:确定模型,本题为确定区组a与处理措施b的交互作用,因此选用a,b交互模式。

如图:如需作图比较分组a 与处理措施b 的交互作用对体重影响有无差异可添加对比组,如图:确定观察均值的两两比较,主要针对与各分组的均值比较,及各处理方式的均值比较:在选项里设定输出,描述统计及方差齐性检验,显示分组及处理方式的均值。

最后得出结果:有本图可知F<3,p>0.05,可知各组间方差齐,可做方差检验。

如下图所示,可知p≥0.05,统计无差异,所以可知,三种处理方式对体重增加是无差异的。

单因素试验的方差分析

单因素试验的方差分析

>weight=c(51,40,43,48,23,25,26,23,28) >A=factor(c(rep(1,4),rep(2,3),rep(3,2))) >result=aov(weight~A) >summary(result)
方差分析表
方差来源 平方和 自由度 均方和 F 值
F 值临介值
组间
1)组间差别:因素效应
灯泡的使用寿命——试验指标
灯丝的配料方案——试验因素(唯一的一个) 四种配料方案(甲乙丙丁)——四个水平
因此,本例是一个四水平的单因素试验。
用X1,X2,X3,X4分别表示四种灯泡的使用寿命,即为 四个总体。假设X1,X2,X3,X4相互独立,且服从方差 相同的正态分布,即Xi~N(i,2)(i=1,2,3,4)
单因素试验方差分析表
方差来源 平方和 自由度 均方和
F值
组间 组内
SS A
df A
MS A
SS A df A
F MSA MSE
SSE
df E
MSE
SSE df E
总和 SST dfT
r ni
2
SST
Xij X
i1 j1
dfT n 1
r ni
2
SSA
Xi X
i1 j1
dfA r 1
引言
在工农业生产和科研活动中,我们经常遇到这样 的问题:影响产品产量、质量的因素很多,例如影 响农作物的单位面积产量有品种、施肥种类、施肥 量等许多因素。我们要了解这些因素中哪些因素对 产量有显著影响,就要先做试验,然后对测试结果 进行分析,作出判断。方差分析就是分析测试结果 的一种方法。
Hale Waihona Puke 基本概念本例问题归结为检验假设 H0:1= 2= 3= 4 是否成立

单因素方差分析经典例题

单因素方差分析经典例题

单因素方差分析经典例题单因素方差分析(AnalysisofVariance,简称ANOVA)是一种统计技术,可以用来确定两个或多个样本组(population)之间是否存在显著差异。

它可以用于研究不同课程在一类学生的表现,不同治疗方案的治疗效果,不同品牌的某一产品性能等等。

经典的单因素方差分析例题通常包括一组由测量数据组成的样本,这些样本可以分为若干组,每组由不同类型的数据组成,用来衡量变量之间的关系。

下面以一个三组数据的单因素方差分析为例,来介绍单因素方差分析的具体步骤。

首先,我们要说明需要分析的数据集。

本例中,数据集由三组数据组成,包括组1、组2和组3,它们的每组样本数目分别为10、15和20。

接下来,我们需要在数据集中定义一些变量,这些变量就是用来衡量两个或多个样本之间差异的指标,我们称之为“因变量”(dependent variables)。

在本例中,因变量可以是某种课程的平均成绩、某种药物的治疗效果或某种产品的性能指标等等。

最后,进行数据分析。

单因素方差分析的基本步骤包括一项假设检验,这项假设检验的目的是判断多组数据的方差是否相等,也就是要判断它们之间是否存在具有统计意义的差异。

如果存在某组数据的方差显著较大,那么就可以说它们之间存在显著差异。

如果多组数据的方差相等,那么就可以说它们之间没有显著差异。

最后,我们还要使用相关技术,如t检验或F检验,进一步确认多组数据之间是否存在显著差异,以及它们之间差异的程度有多大。

综上,我们可以总结单因素方差分析的基本步骤:首先将数据集定义为不同的组别,然后在数据集中定义一些变量,最后使用假设检验和相关技术来判断多组数据之间是否存在显著差异。

此外,单因素方差分析还可以被用来分析数据的分布特征,包括正态分布、偏态分布和椭圆分布等等。

如果实验结果显示数据分布类型有显著差异,那么我们就可以认为多组样本之间存在显著差异。

总之,单因素方差分析是一种统计技术,可以用来衡量两个或多个样本之间的差异,做出有参考价值的判断。

SAS 单因素方差分析

SAS 单因素方差分析
第三Байду номын сангаас 单因素试验的方差分析,案例
• 例2. 设有三台机器,用来生产规格相同的铝合金薄板. 取样,测量薄板的厚度精确至 • 千分之一厘米. 得结果如表所示. • 问不同机器对生产的铝合金板的厚度有无影响 • 请看分别用菜单系统和程序进行讨论 • 程序名data lb给出了单因素方差分析的典型解法,进行 了方差分析同时又在各水平组间 • 进行了均值的比较,作了直方图,菜单系统和程序中均有 选项”Dunnett”进行某一水平和其余水平的均值差异 比较和检验,选项”snk”则进行所有水平间均值差异的 比较和检验.
自由度公式 总自由度ft=试验次数n-1; 误差自由度fe=总自由度ft-模型自由度f模型 方差分析中 (单因素模型)因素A (即模型)的自由度fA=水平数-1 (A,B双因素考虑交互效应模型) 因素A的自由度fA=水平数-1 因素B的自由度fB=水平数-1 交互效应A*B的自由度fA*B= fA* fB 模型自由度f模型= fA +fB +fA*B 回归分析中 项自由度=1 模型自由度f模型=项自由度之和

SPSS单因素方差分析案例

SPSS单因素方差分析案例

SPSS单因素方差分析案例
一、案例简介
本案例主要探讨不同年龄组对对不同种类游戏的不同评价。

采用
SPSS软件进行单因素方差分析,研究对象为50名参与游戏评测的受试者,其中25名为年龄段20-30,25名为年龄段30-40。

每位受试者都被分配3
种不同类型的游戏来评价,评价方式为3分制,值得1,2,3分,分别表
示很差,一般,不错。

二、SPSS分析
1.数据的输入
①打开SPSS软件,点击“文件”-“打开”,选择需要进行分析的数据;
②若原始数据是excel格式,选择“所有的excel文件”,点击“打开”;
③若原始数据是文本格式,选择“所有文本文件”,点击“打开”;
④若原始数据是spss格式,选择“spss 调查”,点击“打开”;
⑤若原始数据是SAS格式,选择“所有SAS文件”,点击“打开”。

2.数据分析
①点击“统计”菜单,在下拉菜单中选择“多元统计分析”;
②在多元统计分析对话框中,在“因变量”栏中选择需要分析的评测
结果;
③在“自变量”栏中选择“受试者的年龄”;
④点击“确定”按钮,开始进行单因素方差分析;
⑤点击“分析”按钮,在下拉菜单中选择“单因素方差分析”;
⑥点击“分析”按钮。

i第八章单因素方差分析

i第八章单因素方差分析

第二节 固定效应模型
一、线性统计模型
yij i ij
要检验a个处理效应的相等性,就要判断各αi是否为0。
H0:α1= α2 =……= αa =0
HA:αi ≠ 0
(至少有1个
i)
若接受H0,则不存在处理效应,每个观测值是由总
平均数加上随机误差构成;
若拒绝H0,则存在处理效应,每个观测值是由总平
34.7 33.3 26.2 31.6 125.8 31.450
33.2 26.0 28.6 32.3 120.1 30.025
27.1 23.3 27.8 26.7 104.9 26.225
32.9 31.4 25.7 28.0 118.0 29.500
2、单因素方差分析的数据格式:
Y1
Y2
Y3
均数、处理效应及误差三部分构成。
总变异
处理间 (组间)变异
误差或处理内 (组内)变异
1. 总变异是测量值yij与总的均数间的差异。
2. 处理间变异是由处理效应引起的变异。 3. 处理内变异是由随机误差引起的变异。
用离均差平方和的平均(均方、方差)反映变异的大小
二、平方和与自由度的分解
1. 总平方和(total sum of squares, SST): 每
著性t 检验的延伸。
ANOVA 由 英 国 统 计 学 家 R.A.Fisher 首 创 , 用 于 推 断多个总体均数有无差异。
单因素方差分析(一种方式分组的方差分析): 研究对象只包含一个因素(factor)的方差分析 。单因素实验:实验只涉及一个因素,该因素
有a个水平(处理),每个水平有n次实验重复
na 4 4
SST
a i1

生物统计——单因素完全随机设计试验资料的方差分析

生物统计——单因素完全随机设计试验资料的方差分析

( LSR法) ( LSD法)
S xi x j
【例5-4】 5个玉米品种的盆栽试验, 调查了穗长(cm)性状,得资料如表5-17 所示。试比较品种穗长间有无差异。
1、计算各项平方和与自由度
x 460.5 C 8482.41 N 25
SST
2
2
x
2
2 ij
C
2
(21.5 19.5
3、多重比较
n 1 n0 [ ni ] k 1 ni
2 i
1 6 6 5 4 4 [25 ] 4.96 5 1 25
2 2 2 2 2
Sx S xi
MSe n0
1.94 0.625 4.96 2 1.94 0.884 4.96
(LSR法) (LSD法)
2 i
SSe SST SSt 85.34 46.50 38.84
dfT N 1 25 1 24 dft k 1 5 1 4 df e dfT dft 24 4 20
2、列出方差分析表,进行F检验。 F检验结果表明品种间穗长差异极显著。
3、多重比较
计算标准误
MSe 6.5333, df e 20, n 6
Sx MSe n 6.5333 1.0435 6
最小显著极差LSR值的计算
LSR0.05 SSR0.05( k ,dfe ) S x LSR0.01 SSR0.01( k ,dfe ) S x
多重比较结果表
SSe SST SSt 197.8333 67.1667 130.6666
dfT kn 1 4 6 1 23 dft k 1 4 1 3 df e dfT dft 23 3 20

单因素随机化区组设计的方差分析例子

单因素随机化区组设计的方差分析例子

例子:研究者想考察三种背景音乐(摇滚乐、爵士乐和古典音乐)对英语单词记忆效果的影响。

从同一班级中挑选了45人参加实验,事先对他们的智商、英语基础等方面进行了评定,按照评定情况以及其他特点对被试进行了配伍,每三人一伍。

在进行实验时,每个配伍组的三个被试分别分配给一种背景音乐,在该背景音乐中学习40个陌生的英语单词。

30分钟后进行测试,要求被试根据中文意思默写出刚才学习过的单词,写对一个积一分。

被试的成绩如表12章-数据1所示。

问:不同的背景音乐对英文单词的记忆效果是否有显著影响?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接种后存活日数 4 10 7 7 7 9 7 12 5 2 6 10 5 6 6 3 10 4
单因素方差分析例题:
(1)正态性检验 重排顺序统计量(由小到大)
顺序统计量 A1 A2 A3 2 5 3 2 5 5 2 6 6 3 6 6 4 6 6 4 7 7 4 8 7 5 10 9 7 12 10 10 11 7
0.01 时,ds12 3.44
0.05时,ds12 2.69
单因素方差分析例题:
d12 1 2 4 7.22 3.22 d13 1 3 4 7.27 3.27 d 23 2 3 7.22 7.27 0.05 显然d12与d13大于2.69小于3.44 A1 A2之间和A1 A3之间均有不大的差异, 2 A3之间无明显差异 A
2 r
其中:Si
*2
1 ni ( ij i ) 2 ni 1 j 1
1 ni i ij ni j 1
理论准备方差齐性检验:
记: Q (n r ) ln S r (ni 1) ln S
2 i 1 r *2 i
1 r 1 1 h 1 n 1 n r 3(r 1) i 1 i 构造Bartlett统计量: Q B 2.3026 h B近似服从于 2 (r 1)
5.69 S
*2 3
6.02
2 1 r S (ni 1)Si* 5.36 n r i 1
Q (n r ) ln S r (ni 1) ln S
2 i 1
r
*2 i
0.03
单因素方差分析例题:
1 r 1 1 h 1 n 1 n r 1.05 3(r 1) i 1 i 0.03 2 b 2.3026 0.065 0.95 (2) 5.99 1.05 故接受H 0, 2 3
理论准备方差齐性检验:
根据抽样数据,得到 的观测值b。 B 于是有: 若b 12 (r 1),则拒绝H 0,认为r个正态总体的方差不全 相等。 若b 12 (r 1),则接受H 0,认为r个正态总体的方差都相 等。
单因素方差分析例题:
菌型 A1 A2 A3 2 5 7 4 6 11 3 8 6 2 5 6
2 1 2 2
单因素方差分析例题:
方差分析表
方差来源 因素 A 误差 e 总和
平方和 S
自由度 f
均方和 S
F值
70.4293 137.7374 208.1667
2 27 29
35.2147 5.1014
6.903
显著性 显著
单因素方差分析例题:
(4)多重比较:可以参考商务p648的追踪分析
n1 10 n2 9 n3 11 Se 1 1 ds12 ( )(r 1) F1 (r 1, n r ) n r n1 n2 137.7374 1 1 ( ) 2 F1 (2,27) ds23 ds13 27 10 9
W2
L2 2 ( x1i x1 ) 2
i 1 2 L1
W1
( x1i x1 ) 2
i 1
10
单因素方差分析例题:
(2)方差齐性检验
检验假设H 0: 1 2 3
2 2 2
r 3
n 10 9 11 30
S
*2 1 2 r
3.56 S
*2 2
单因素方差分析例题:
计算L
1 2 3 4 5 L1 1 2 3 4 L2 1 2 3 4 5 L3 2 2 2 3 4 5 5 6 6 3 5 6 6 6 7 7 5 4 4 12 10 8 7 11 10 10 9 7 0.574 0.329 0.214 0.122 0.04 0.589 0.324 0.198 0.095 0.56 0.332 0.226 0.143 0.07 2.8695 1.6455 0.6423 0.1224 0 5.2797 4.1216 1.622 0.3952 0.0947 6.2335 4.4808 1.6575 0.904 0.4287 0.0695 7.5405
完整的单因素方差分析实例
Step1 正态性检验 Step2 方差齐性检验 Step3 方差检验(方差分析表) Step4 追踪分析:多重比较 Step5 区间估计
理论准备方差齐性检验:
方差齐性的检验: 检验假设H 0: 2 r
2 1 2 2
1 r *2 记S (ni 1)Si n r i 1
单因素方差分析Leabharlann 题:(5)区间估计:1 r ni ij 6.167 n i 1 j 1

1 4 2 7.22 1 7.27




2
Se 137.7374 5.1014 nr 27
单因素方差分析例题:
则 k l的95%区间估计分别为: 1 1 ( 1 2: 4 7.22) t1 0.025 (27) 5.1014 (5.35,1.09) 10 9 (4 7.27) t1 0.025 (27) 5.1014 1 1 (5.25,1.29) 1 3: 10 12 1 1 ( 2 3: 7.22 7.27) t1 0.025 (27) 5.1014 (2.09,1.99) 9 12
单因素方差分析例题:
( x1i x1 ) 32
2 i 1 10
( x2i x2 ) 45.56
2 i 1
9
( x3i x3 ) 2 60.18
i 1
11

W1
2 L1
(x
i 1 9
10
1i
x1 ) 2
5.27972 0.871 W (10) 0.842 32 6.23352 0.852 W (9) 0.8293 45.56 7.54052 0.945 W (11) 0.850 60.18
相关文档
最新文档