第6章 连续系统的离散化方法及近似解
连续属性离散化
根据学习环境选择离散化方法
虽然已有很多离散化方法,但是没有一种离散 化方法对任何数据集以及任何算法都是有效的,也 没有一种离散化方法一定比其他方法产生更好的离 散化结果。因为离散化本身就是一个NP-hard 问题, 所以在使用时一定要根据数据集的特点和学习环境 以及使用者个人的偏好理解等选择合适的离散化方 法,以取得尽可能好的离散化效果。如决策树学习 容易受到碎片问题(碎片是指一个给定分枝中的样 本数太小,没有统计意义)的影响,所以离散化时 更偏好得到较少的离散化区间;决策规则希望离散 化得到的区间中的实例的类标号是唯一的;关联规 则重视特征间的相关性,所以在离散化时不能对各 个特征进行单一的离散化。
离散化结果的评价
• 完全离散化:指算法要能够完成数据集的多个 连续属性的离散化处理。因为我们不太可能只 需要对数据集的某一个连续属性进行离散化处 理,除非数据集只包含一个连续属性。 • 具有最简单的离散化结果:如果离散化处理完 成后,属性空间的规模越小,由这些离散化处 理所产生出来的数据所生成的规则越简单。因 此,由这样的属性所获得的知识就更是通用。
• 基于熵的离散化方法:该方法使用类信息计算 和确定分割点,是一种有监督的、自顶向下的 分裂技术。首先,将初始值切分成两部分,让 两个结果区间产生最小熵;然后,取一个区间, 通常选取具有最大熵的区间,重复此分割过程, 直到区间的个数达到用户指定的个数,或满足 终止条件(当得到的每个区间中的类标号都是 一样时,即停止离散化过程)。 最常用的基于熵的离散化方法是:基于最 短描述长度原则(MDLP)方法。
连续属性离散化方法
1.连续属性离散化的定义? 2.为什么要对连续属性离散化?
3.连续属性离散化方法有哪些?
定义
连续属性离散化就是采取各种方法将 连续的区间划分为小的区间,并将这连续 的小区间与离散的值关联起来。
连续系统模型的离散化处理方法
在离散化后,模型精度变差,可能不稳定。
S域到Z域的最基本映射关系是:Z=e (T— TS 数值积分法:将微分方程转换成差分方程,这中间是一步步离散,每一步离散都用到连续系统的原模型,这样的速度就慢了。
TeAT
m T
T eATA Bd
0
xKTTTxKTmTUKT
x(k1) TxkmTUk
B 当输入函数u(KT)在两采样 点间线性变化时(一阶保持)
uuKTukT
p
T
TeATABd
0
xkTTTxkTmTUkTpTUkT
xk1TxkmTUkpTUk
当连续系统状态方程系数A、B已知时,
可求出……
此法相比于数值积分法;只要T不变,三个系 数均不变,可以在仿真前预先计算好,这样 就减少了以后的计算工作量。
2 典型环节的离散状态方程
A 积分环节:G(S)=K/S f1=x2 ; f2=x3 ;
依据各环节的连接关系及外部作用函数 稳定性不及双线性替换法,Ts或信号重构器选择不当,离散模型的稳定性变差
二、Z域离散相似方法
1 基本方法
G z
y z u z
z G h s G s
1
z
s a
z exp( aT )
e TS 1 z
1 z
s
z 1
1
Tz
s* s
( z 1 )( z 1 )
Gz
yz uz
zGh
sGs
Gs k
sa
Gh
s
1
第6章连续系统的离散化方法及近似解
第6章连续系统的离散化方法及近似解在连续系统中,我们经常需要将其离散化为离散系统以便于分析和求解。
离散化方法能够将连续系统的微分方程转化为差分方程,从而得到近似解。
本章将介绍连续系统的离散化方法及近似解的计算。
连续系统的离散化方法有许多种,常见的有Euler方法、Runge-Kutta方法和有限差分方法等。
其中,Euler方法是最简单和最基础的离散化方法,其基本思想是将连续时间轴划分为若干个小时间间隔,并用差分逼近连续系统的导数。
具体地,对于一阶常微分方程:\[\frac{{dy}}{{dt}} = f(y, t)\]可以使用Euler方法将其离散化为:\[y_{n+1} = y_n + h \cdot f(y_n, t_n)\]其中,\(y_n\)是时间点\(t_n\)的近似解,\(h\)是时间步长。
Runge-Kutta方法是一种更精确的离散化方法,其基本思想是利用多个中间步骤来更准确地逼近连续系统的导数。
常见的是四阶Runge-Kutta 方法,其公式为:\[y_{n+1} = y_n + \frac{h}{6} \cdot (k_1 + 2k_2 + 2k_3 +k_4)\]其中\[k_1=f(y_n,t_n)\]\[k_2 = f(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2})\]\[k_3 = f(y_n + \frac{h}{2}k_2, t_n + \frac{h}{2})\]\[k_4 = f(y_n + hk_3, t_n + h)\]这样可以得到更准确的近似解。
有限差分方法是一种常用的离散化方法,其基本思想是将连续的导数用差分逼近。
以二阶偏微分方程为例,该方程的一般形式为:\[\frac{{\partial^2u}}{{\partial x^2}} +\frac{{\partial^2u}}{{\partial y^2}} = f(x, y)\]可以使用中心差分公式将其离散化为:\[\frac{{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}}{{\Delta x^2}} + \frac{{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}}{{\Delta y^2}} =f_{i,j}\]其中,\(u_{i,j}\) 是近似解在网格点 \((i, j)\) 处的值,\(\Delta x\) 和 \(\Delta y\) 分别是网格在 \(x\) 和 \(y\) 方向的步长,\(f_{i,j}\) 是离散化后的右侧函数。
连续传递函数离散化的方法与原理
连续传递函数离散化的方法与原理连续传递函数离散化是将连续时间域中的传递函数转换为离散时间域中的传递函数的过程。
在控制系统设计中,离散化是非常重要的一步,因为大多数数字控制器本质上只能处理离散的输入和输出信号。
离散化方法的选择对系统的稳定性、性能和可实现性都有很大的影响。
离散化方法分为两大类:时域方法和频域方法。
时域方法根据传递函数的时间响应,或者根据传递函数的微分方程进行转换。
频域方法通过拉普拉斯变换和z变换之间的等价关系进行转换。
时域离散化方法:1. 脉冲响应不变法(Impulse Invariance Method):这是最常用的离散化方法之一、它通过将连续时间系统的脉冲响应对应到离散时间系统的单位冲激响应上来实现离散化。
该方法的原理是保持连续系统和离散系统的单位冲激响应相同,从而尽可能保持系统的动态特性。
2. 零阶保持法(Zero Order Hold Method):这个方法假设连续时间系统在每个采样周期内是恒定的,即将采样周期内的连续时间系统输出等效为一个恒定值。
这个方法的原理是根据离散系统的输出间隔和连续时间系统的采样间隔,使用插值方法得到离散系统的输出值。
3. 一阶保持法(First Order Hold Method):这个方法在零阶保持法的基础上改进,考虑了连续时间系统在每个采样周期内的变化趋势。
它假设连续时间系统在每个采样周期内是线性变化的。
通过插值方法得到离散系统的输出值。
4. 向后微分法(Backward Difference Method):这个方法根据连续时间系统微分方程中的向后差分近似来实现离散化。
它假设离散时间系统输出的变化率等于连续时间系统输出的变化率。
频域离散化方法:1. 频率响应匹配法(Frequency Response Matching Method):这个方法将连续时间系统和离散时间系统的频率响应函数进行匹配,使它们在一定频率范围内的增益和相位相近。
通过频率响应函数的等价性,可以使用拉普拉斯变换和z变换之间的关系得到离散时间系统的传递函数。
连续系统离散化方法
其中 y ( kT ) 为到 kT 时刻的阴影总面积。对式(5.15)进行 Z 变换,并整理得到
Y ( z ) T 1 + z −1 = X ( z ) 2 1 − z −1
(5.16)
图 5-5 梯形面积近似积分
D( z ) = D( s )
由式 (5.16) , 也可得双线性变换:
s=
2 1− z −1 T 1+ z −1
3、双线性变换法
双线性变换法又称突斯汀(Tustin)法,是一种基于梯形积分规则的数字积分变换方法。 由 Z 变换定义 z = e ,将 e 改写为如下形式:
Ts Ts
第 2 章 计算机控制系统的信号转换
Ts
21
eTs =
e2 e
− Ts 2
(5.12)
然后将分子和分母同时展成泰勒级数,取前两项,得:
Ts 2 z= Ts 1− 2 1+
由上式计算出 s ,得双线性变换公式。
(5.13)
s=
2 1 − z −1 T 1 + z −1
T [ x[(k − 1)T ] + x( kT )] 2
(5.14)
另外,由图 5-5 所示的梯形面积近似积分可得
y (kT ) = y[(k − 1)T ] +
(5.15)
s=Biblioteka z −1 T(5.11)
另外还可将 z 级数展开 :
z = eTs = 1 + Ts +
T 2s2 + ... 2
20
第 2 章 计算机控制系统的信号转换
取一阶近似 z ≈ 1 + Ts ,也可得到:
s=
z −1 T
连续系统的离散化方法课件
离散化方法的意义
精确性
离散化方法可以提供对连续系统的精 确近似,特别是在计算机仿真和数字 控制系统中。
可计算性
离散化方法可以将不可计算的分析转 化为可计算的形式,便于进行数值计 算和控制器设计。
离散化方法的应用场景
01
02
03
数字控制
在数字控制系统中,连续 系统的离散化是必要的步 骤,以便在数字计算机上 进行数值计算和控制。
小波基选择
常用的小波基包括Haar小波、Daubechies小波、Morlet 小波等。
误差分析
小波变换法的误差主要来自于变换误差和离散化误差。
05
离散化方法的评估与优化
评估离散化方法优劣的标准
01
02
03
04
精度
离散化方法是否能准确代表原 连续系统。
稳定性
离散化方法在一定参数变化范 围内是否能保持稳定。
状态空间模型
用状态变量和输入、输出变量描述连续系统的动态特性。
状态空间模型通常形式为:`x'(t) = Ax(t) + Bu(t)` 和 `y(t) = Cx(t) + Du(t)`,其中 `x(t)` 表 示系统状态,`u(t)` 表示系统输入,`y(t)` 表示系统输出,`A`, `B`, `C`, `D` 是系数矩阵。
化率。
通过求解 ODE,可以得到系统 在任意时刻的状态。
传递函数
表示连续系统在输入和输出之间的传递 特性。
传递函数通常形式为:`G(s) = Y(s) / U(s)`,其中 `Y(s)` 和 `U(s)` 分别是输 出和输入的拉普拉斯变换,`s` 是复变
量。
通过分析传递函数的零点、极点和增益 ,可以得到系统的稳定性和性能特性。
2.6 连续时间系统状态方程的离散化
0 0 1 1 0 1 1 0 0 0 1 0 0.63 1 1 0.37 0 1.37 0.37 0 0 0.63 1 0.63 0.865 1.37 1 0.135 0 2.05 0.135 0.63 0 0.865 1 0.95
1 (3)H(T) 0 0
T
T 1 1 / 2(1 e2 t ) 0 dt 0 2 t e 1 0
x 1[(k 1)T] x 1 (kT) (4) G(T) H(kT) U(kT) x 2 [(k 1)T] x 2 (kT)
1
解:
例2.5已知控制对象满足 0 1 0 x x u,求其离散化方程 2 0 1
2 t 1 1 / 2 ( 1 e ) 1 1 ( 1 )( t ) L [SI A] 2 t e 0 1 1 / 2(1 e 2 t ) (2)G (T) ( t ) t T 2 t e 0
1 2T 2 t ( 2 T e 1 ) 1 / 2(1 e ) 4 dt 1 2 t 2 T e (1 e ) 2
说明:(1)当T选定后(如T=0.5秒)G(t)和
H(t)都是确定的系数矩阵
(2)离散化后得状态方程,可按递推法或
At 1 1
(2)由u(kT)=r(kT)-y(kT)=r(kT)-x1 (kT),代入,得系统的离散化 状态方程。
x1[(k 1)] 1 1 e T x1 (kT ) T e T 1 u (kT ) x [(k 1)] T T e x2 (kT ) 1 e 2 0 2 T e T 1 e T x1 (kT ) T e T 1 T r (kT ) T T e x2 (kT ) 1 e e 1
计算机控制原理第6章2
7
数字PID 数字PID 控制器的另一个参数对系统 性能的影响
(4) 采样周期T的选择原则 采样周期T
从信号不失真要求上,必须满足采样定理的要求。 从控制系统的随动和抗干扰的性能来看,则T小些好。 根据执行机构的类型,当执行机构动作惯性大时,T应取大些。否则执行 机构来不及反应控制器输出值的变化。 从计算机的工作量及每个调节回路的计算成本来看,T应选大些。T大对 每个控制回路的计算控制工作量相对减小,可以增加控制的回路数。 从计算机能精确执行控制算式来看,T应选大些。因为计算机字长有限, T过小,偏差值e(k)可能很小,甚至为0,调节作用减弱,各微分、积分作用 不明显。
• 将连续系统的时间离散化:
t = KT ,
• 积分用累加求和近似:
t K
( K = 0, 1, L , n)
K
∫ e(t )dt = ∑ e( j )T = T ∑
0 j =0 j =0
e( j )
• 微分用一阶后向差分近似:
de(t ) e(k ) − e(k − 1) ≈ dt T
12
TD u (k ) = K p {e(k ) + ∑ e( j ) + [e(k ) − e(k − 1)]} TI j =0 T
TD u (k − 1) = K p {e(k − 1) + ∑ e( j ) + [e(k − 1) − e(k − 2)] TI j =0 T T
6
PID 控制器参数对系统性能的影响
(3) 微分时间常数TD对系统性能的影响 微分时间常数T 微分控制可以改善动态特性,如超调量减小,调节时间缩短 ,允许加大比例控制,使稳态误差减小,提高控制精度。 当TD偏大时,超调量较大,调节时间较长; 当TD偏小时,超调量也较大,调节时间也较长; 只有TD合适时,可以得到比较满意的过渡过程。
连续系统模型的离散化处理方法课件
离散系统模型是指系统的状态变化在时间上是离散的,即只在特定的时间点上 发生变化。其输入和输出信号也是离散的。这种模型通常用差分方程进行描述 。
离散化的定义及其必要性
离散化定义
离散化是将连续时间信号或系统转换为离散时间信号或系统 的过程。它涉及对连续信号的采样以及将微分方程转换为差 分方程。
数值积分法
数值积分法使用数值方法求解微分方程的解,并将连续时间微分方程转换为离散时间差分 方程。常用的数值积分法包括欧拉法、龙格-库塔法等。
z变换法
z变换法是一种在复平面上进行的离散化方法。它通过将连续时间信号的拉普拉斯变换转 换为z变换,将连续系统的传递函数转换为离散系统的传递函数。
02
常用的连续系统模型离散化方 法
03
提高精度的方法
为了提高离散系统的精度,可以采用更小的离散化步长, 使用更高阶的数值积分方法,或者采用自适应离散化技术 等。此外,还可以通过增加离散点的数量和优化插值方法 来实现更高精度的离散化。
效率问题
效率定义
离散化对效率的影响
提高效率的方法
效率问题涉及离散化过程的计算复杂 度和计算资源消耗。
改进型龙格-库塔法
针对经典四阶龙格-库塔法的不足进行 改进,如变步长龙格-库塔法等,以提 高数值解的精度和稳定性。
牛顿法
基本牛顿法
利用泰勒级数展开,将非线性方程线性化,通过迭代求解线性方程组来逼近非线 性方程的解。该方法收敛速度快,但初始值选取对结果影响较大。
牛顿-拉夫逊法
结合牛顿法和拉夫逊法的特点,通过迭代过程中修改雅可比矩阵,提高求解速度 和精度。该方法适用于大规模非线性系统的求解。
THANKS。
保持稳定性的方法
常用的保持稳定性的方法包括选择合适的离散化步长、使用稳定性更好 的数值积分方法等。此外,还可以通过引入阻尼项或者采用隐式离散化 方案来提高离散系统的稳定性。
连续系统离散化方法
连续系统离散化方法连续系统离散化方法是一种常用的数值计算方法,它将连续系统转化为离散系统,从而使得计算机可以进行处理。
本文将从离散化方法的定义、应用、实现以及优缺点等方面进行介绍。
一、离散化方法的定义离散化方法是指将连续系统转化为离散系统的过程。
在计算机中,所有的数值都是离散的,而实际上很多系统是连续的,比如电路、机械系统、化学反应等等。
离散化方法就是将这些连续系统转化为可以在计算机中处理的离散系统。
离散化方法可以通过采样和量化来实现。
二、离散化方法的应用离散化方法在很多领域都有应用,比如电路设计、控制系统设计、信号处理等等。
在电路设计中,离散化方法可以将连续电路转化为数字电路,从而实现数字信号的处理。
在控制系统设计中,离散化方法可以将连续控制器转化为数字控制器,从而实现数字化自动控制。
在信号处理中,离散化方法可以将连续信号转化为数字信号,从而实现对信号的数字处理。
三、离散化方法的实现离散化方法的实现可以通过采样和量化来实现。
采样是指对连续信号进行离散化,将其转化为一系列的采样值。
量化是指对采样值进行离散化,将其转化为一系列的离散数值。
采样和量化的具体实现方式包括正弦采样、脉冲采样、最大值采样、平均值采样等等。
量化的具体实现方式包括线性量化、对数量化、非线性量化等等。
四、离散化方法的优缺点离散化方法的优点是可以将连续系统转化为离散系统,从而可以在计算机中进行处理。
离散系统具有稳定性、可控性、可观性等优点。
离散化方法的缺点是会引入误差,因为离散化过程中会丢失一些信息。
此外,离散化方法需要选取适当的采样周期和量化精度,否则会影响系统的性能。
离散化方法是一种常用的数值计算方法,它将连续系统转化为离散系统,从而使得计算机可以进行处理。
离散化方法的应用广泛,包括电路设计、控制系统设计、信号处理等等。
离散化方法的实现可以通过采样和量化来实现。
离散化方法既有优点,又有缺点,需要在具体应用中对其进行合理的选择和设计。
第6章 离散系统
采样周期T 对采样信号 的影响:
0
t (a)
0 T1
t
f(t)
T
f * (t )
0
t (b)
0 T2
t
采样定理也称shannon(香农)定理,叙述如下:
若对于一个具有有限频谱( w wmax)的连续信 号f(t)进行采样,当采样角频率满足 ws 2wmax
时,则采样函数f*(t)能无失真地恢复原来的连 续信号f(t)。wmax为信号有效频谱的最高角频 率, ws 为采样角频率。 当采样角频率 ws 2wmax 时,从采样信号中不 能完全的恢复出原连续信号。
* n 0
2. 采样定理
从理论上讲,离散系统的采样周期T越小, 离散系统越接近连续系统。因为采样周期T太 长,采样点很少时,在两个采样点之间可能丢 失信号中的重要信息。因此,采样周期T不能 太大。只有当把采样周期T缩短以后,得到的 采样值才保留了原信号的主要特征。
f(t)
T
f * (t )
F ( z) e
n 0
anT
z
n
1 e
aT
z e
1
2 aT
z
2
aT 1 e z 1 时,上式的无穷级数也是收敛 当 的。于是求得e-at的Z变换为:
Z [e ] F ( z )
at
1 1 e
aT
z
1
z aT z e
D/A转换器:把离散的数字信号转换成连续的 模拟信号。
f (t )
f (t)
解码
f h(t)
信号复现
0111 1000 0010 0100 1001 0011 0 T 2T 3T 4T 5T (a) t 0 T 2T 3T 4T 5T (b) t 0 T 2T 3T 4T 5T (c) t
连续控制器离散化方法
u ( ) d
T [u (( k 1)T ) u ( kT )] 2
T z 1 u ( kT ) 2 z 1 1 T z 1 2 z 1 , s s 2 z 1 T z 1 2 z 1 ) C ( Cd ( z ) C ( s ) T z 1
连续控制器离散化方法 前提条件:连续系统中已经设计好了模拟控制器,具有满意 的控制性能。 目标:得到一个具有相近控制性能的离散化数字控制器。 方法:
1使
和
具有相同的响应特征。 脉冲不变性方法:脉冲响应相同 阶跃不变性方法:阶跃响应相同 2 直接对C(s)中的S变量进行近似,得到Cd(z)
1.阶跃不变性方法
1 z 1 sT z 1 s zT Cd ( z ) C ( s ) C ( z 1 ) zT
3、塔斯廷(Tustin)近似法 Tustin法也称为双线性近似法 考虑一个积分器
y( s) 1 u (s) s y[( k 1)T ] y ( kT ) y[( k 1)T ] y ( kT ) y ( kT )
SYSD = C2D(SYSC,Ts,METHOD) converts the continuous-time LTI model SYSC to a discrete-time model SYSD with sample time Ts. The string METHOD selects the discretization method among the following: 'zoh' Zero-order hold on the inputs 'foh' Linear interpolation of inputs (triangle appx.) 'imp' Impulse-invariant discretization 'tustin' Bilinear (Tustin) approximation 'prewarp' Tustin approximation with frequency prewarping. The critical frequency Wc (in rad/sec) is specified as fourth input by SYSD = C2D(SYSC,Ts,'prewarp',Wc) 'matched' Matched pole-zero method (for SISO systems only). The default is 'zoh' when METHOD is omitted.
连续系统模型的离散化处理方法
计算各环节输出量
打印间隔到否 N
打印Yn+1 计算次数到否 N
结束
*
31
五、离散相似模型的精度与稳定性
离散相似模型只能等效于原来的连续系统 其精度受采样周期和信号重构器性能的影响 信号重构器存在一定程度的幅值减小和相位
滞后 在离散化后,模型精度变差,可能不稳定。
*
32
1 采样周期对精度的影响
Tmin—系统中反应最快的那个闭环子系统的 最小时间常数
*
34
2 信号重构器对仿真模型精度的影响
加入一个理想滤波器,保留输入信号主频段,滤 掉附加的频谱分量,不失真
理想滤波器不存在,一般用零阶、一阶、三角 保持器来近似
3 离散相似模型的稳定性
稳定性不及双线性替换法,Ts或信号重构器 选择不当,离散模型的稳定性变差
*
22
离散模型
C 惯性环节
*
23
D 超前-滞后环节
*
24
四、采用离散化模型的系统仿真
把各个环节有机地连接起来。 1 连接矩阵(面向结构图)
1
2
-
-
4
6
5
3 -
a
*
25
*
26
*
27
连接方程
U=w yK U—输入向量 YK—输出向量 W—连接矩阵
*
28
2 仿真计算过程
基本计算单元:各环节的离散化模型
两种形式:传递函数的离散化相似处理— 离散传递函数;连续状态方程的离散相似 处理—离散化状态方程
*
11
二、Z域离散相似方法
1 基本方法
*
12
Z反变换得差分模型
*
连续系统离散化方法
连续系统离散化方法一、概述连续系统离散化方法是一种将连续系统转化为离散系统的方法,常用于控制系统的设计和分析。
该方法可以将一个无限维度的连续系统转化为有限维度的离散系统,使得控制器设计和分析变得更加简单和可行。
二、连续系统模型在开始进行连续系统离散化的过程中,需要先建立一个连续系统模型。
通常情况下,这个模型可以由微分方程或者差分方程来表示。
三、离散化方法1. 时域离散化方法时域离散化方法是最基本的离散化方法之一。
它通过将时间轴上的信号进行采样,从而将一个连续时间信号转换为一个离散时间信号。
这个过程中需要确定采样周期以及采样点数目等参数。
2. 频域离散化方法频域离散化方法是一种利用傅里叶变换将一个连续时间信号转换为一个频域信号,然后再对该频域信号进行采样得到一个离散时间信号的方法。
这个过程中需要确定采样频率以及采样点数目等参数。
3. 模拟器法模拟器法是一种将连续系统转化为离散系统的方法。
这个方法的核心思想是利用一个数字模拟器来模拟连续系统的行为,从而得到一个离散时间信号。
4. 差分方程法差分方程法是一种将连续系统转化为离散系统的方法。
这个方法的核心思想是利用微分方程在离散时间点上进行近似,从而得到一个差分方程。
四、误差分析在进行离散化过程中,会产生一定的误差。
因此,需要对误差进行分析和评估,以确保离散化后的结果与原始连续系统相近。
五、应用实例1. 机械控制系统机械控制系统中通常需要对连续时间信号进行采样和处理。
通过使用离散化方法,可以将连续信号转换为数字信号,并且可以在数字域上进行控制器设计和分析。
2. 电力电子控制系统电力电子控制系统中通常需要对高频信号进行处理。
通过使用频域离散化方法,可以将高频信号转换为数字信号,并且可以在数字域上进行控制器设计和分析。
六、总结连续系统离散化方法是一种将连续系统转化为离散系统的方法。
通过使用不同的离散化方法,可以将连续时间信号转换为数字信号,并且可以在数字域上进行控制器设计和分析。
连续状态空间方程离散化 离散精度
一、概述连续状态空间方程是描述系统状态随时间演化的重要数学模型,在许多领域都有着广泛的应用。
然而,实际系统往往是离散的,为了将连续状态空间方程应用到离散系统中,需要进行离散化处理。
离散化是指将连续系统的状态空间方程转化为离散系统的状态空间方程,以便于在计算机上进行分析和仿真。
二、连续状态空间方程连续状态空间方程可被描述为:dx/dt = f(x,u)y = h(x)其中,x表示系统状态,u表示输入,f(x,u)表示状态方程,h(x)表示输出方程。
连续状态空间方程描述了系统状态随时间的变化规律,是控制系统、信号处理、通信系统等领域的重要数学工具。
三、离散化方法对于离散系统,通常使用下面的方法将连续状态空间方程离散化:1. Euler方法Euler方法是一种简单且常用的数值积分方法,可以用来离散化连续状态空间方程。
通过欧拉方法,可以将连续时间上的状态方程转化为离散时间上的状态更新方程。
2. 隐式Euler方法隐式Euler方法相比于显式Euler方法,具有更好的数值稳定性。
使用隐式Euler方法进行离散化处理,可以有效解决一些数值不稳定的问题。
3. 4阶Runge-Kutta方法4阶Runge-Kutta方法是一种更加精确的数值积分方法,同样可以应用于连续状态空间方程的离散化处理。
相比于Euler方法,Runge-Kutta方法通常能够提供更准确的结果。
四、离散化精度在进行连续状态空间方程的离散化处理时,离散化精度是一个重要的衡量指标。
离散化精度决定了离散系统模型的精确程度,对系统分析和控制设计都具有重要的影响。
1. 离散化步长离散化步长是指在进行离散化处理时,时间或空间上的离散化间隔大小。
步长越小,离散化的精度越高,但计算负荷也越大。
2. 离散化误差离散化误差是指离散系统模型与连续系统模型之间的差距。
通过控制离散化步长和选择合适的离散化方法,可以有效降低离散化误差,提高系统模型的精确度。
五、离散化应用离散化处理后的系统模型可以在计算机上进行仿真和实时控制,应用十分广泛。
连续函数离散化
连续函数离散化1.1替换法传递函数是控制系统应用最广泛的模型描述形式,连续系统为S域的传递函数G(S),离散系统为Z域的脉冲传递函数G(Z)。
替换法的基本思想:对给定的连续系统模型G(S) ,设法找到S域到Z域的某种映射关系,将S域的变量映射到Z平面上,由此得到与连续系统G(S)相对应的离散系统的脉冲传递函数G(Z)。
然后,再由G(Z)通过Z反变换得到系统的时域离散模型——差分方程,从而快速求解。
G(S) G(Z) 差分方程根据Z变换理论,S域到Z域的最基本的映射关系是:Ts e Z =或Z Ts ln 1=其中T是采样周期若直接将这个映射关系代入G(S)得到G(Z)将会很复杂,不便于计算,实际应用中是利用Z变换理论的基本映射关系进行简化处理,得到近似的离散模型。
1.1.1 简单替换法由幂级数展开式: +++++=!!212n x x x e nx+++++==!)(!2)(12n Ts Ts Ts e Z nTs取近似式:Ts e Z Ts +≈=1 或:TZ s 1-=用此式代入G(S)就得到G(Z),这就是简单替换法,又称Euler 法。
例:二阶连续系统ss s U s Y s G 50400)()()(2+==,001.0=T 解:简单替换法TZ s 1-=代入G(s) )()(501)250(400)1(50)1(400)(2222z U z Y T z T z T T z T z z G =-+-+=-+-=)(400)()501()()250()(22z U T z Y T z zY T z Y z =-+-+⇒ )(400)()501()()250()(2221z U z T z Y z T z Y z T z Y ---=-+-+⇒ )2(400)2()501()1()250()(2-+------=⇒k u T k y T k y T k y001.0=T 代入)2(104.0)2(95.0)1(95.1)(3--⋅+---=k u k y k y k y 1.1.2 双线性替换法+-++-+-+++++===---!)2/(!2)2/(21!)2/(!2)2/(21222/2/)2(2k Ts Ts Ts k Ts Ts Ts ee e e k kTs Ts Ts Ts Ts 取近似式:2121Ts Ts e Z Ts -+==或)1()1(2+-=Z T Z s 用此式代入G(S)就得到G(Z),这就是双线性替换法,又称Tustin 变换。
连续系统的离散化方法及近似解课件
离散化后的控制系统可以用差分方程来描述,差分方程是连续时间微分方程在离散时间域 上的对应形式。通过求解差分方程,可以得到离散控制系统的输出响应。
Z变换
Z变换是离散时间信号和系统分析的重要工具,它可以将差分方程转换为代数方程,从而 简化离散系统的分析和设计。
电路模拟中的离散化方法及近似解应用
离散系统
离散系统是指系统状态在时间上 是离散的,即系统的状态变量只 在某些特定的时刻有定义,且在 这些时刻间不发生变化。
连续系统与离散系统的区别与联系
区别
连续系统和离散系统最主要的区别在于时间的连续性。连续系统的时间变量是连 续的,而离散系统的时间变量是离散的。
联系
两者之间存在密切的联系。实际上,许多连续系统可以通过离散化方法转化为离 散系统进行处理,这是因为数字计算机在处理问题时,只能处理离散的时间信号 。反之,离散系统的某些理论和方法也可以用来处理连续系统。
连续系统的离散化方法 及近似解课件
目 录
• 连续系统与离散系统概述 • 连续系统的离散化方法 • 离散系统的近似解法 • 连续系统离散化及近似解的应用案例 • 实验与仿真
01
连续系统与离散系统概述
连续系统与离散系统的定义
连续系统
连续系统是指系统状态在时间上 是连续的,即系统的状态变量在 任何时刻都有定义且随时间连续 变化。
感谢观看
前向差分法:前向差分法使用当前时刻及其前一时刻的输入信号来近似 计算下一时刻的输出信号。这种方法简单直观,但离散化误差相对较大 。
后向差分法:后向差分法使用当前时刻及其下一时刻的输入信号来近似 计算当前时刻的输出信号。相比前向差分法,后向差分法具有较小的离
散化误差。
以上内容即为连续系统的离散化方法及近似解课件的部分内容。在实际 应用中,可以根据具体需求和场景,选择合适的离散化方法和参数,以 实现连续系统的高效、准确离散化处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0 i 1 n n 1 mij qi (t )q j (t ) 2 i 1 j 1 j 1
0
l
设梁上分别受到分布力f(x,t)和 x xd 处的集中力F(x,t)
当梁上有虚位移
l 0
w( x, t ) i qi 外力虚功为
i 1
n
ቤተ መጻሕፍቲ ባይዱ
W f ( x, t ) F (t ) ( x xd ) w( x, t )dx
l f ( x, t )i ( x)dx F (t )i ( xd ) qi 0 i 1 n
T
0.5199 2 0 Al 0.7746
T
求梁的响应时,将位移写作假设模态的线性组合
i x w( x, t ) i ( x)qi (t ) qi (t )sin l i 1 i 1
1 l n n EI ( x) i( x)qi (t ) j ( x) q j (t ) dx 0 2 i 1 j 1
1 n n k1 i( xb )qi (t ) j ( xb ) q j (t ) 2 i 1 j 1
得到原来问题的模态向量
3 x ( x) sin 0.0681sin 2l 2l
(1)
x
(2) ( x) 0.1955sin
x
2l
sin
3 x 2l
例:等截面简支梁中部有集中质量,并受有集中力 设集中质量 M a 等于梁的质量
集中力的变化的频率
50 EI / Al 4
M AT dx
0
0 l
广义质量系数
广义质量矩阵
若梁上还有集中质量,如右图
则梁的动能为
1 l 1 2 T Aw dx mw2 ( xa ) 2 0 2 n 1 l n A( x ) i ( x )qi (t ) j ( x)q j (t ) dx 2 0 i 1 j 1 n n 1 m i ( xa )qi (t ) j ( xa )q j (t ) 2 i 1 j 1 n n 1 mij qi (t )q j (t ) 1 qT Mq 2 i 1 j 1 2 l 则质量系数为 mij A( x)i ( x) j ( x)dx mi ( xa ) j ( xa )
第六章 连续系统的离散化方法及近似解
连续系统的精确解只适用于简单构件形状和边界条件,关 于这些精确解的讨论和分析有助于理解连续体振动的基本 特征,也有助于构造近似解和检验近似方法的误差。 当构件形状复杂或边界条件复杂时,只能求近似解 各种近似方法的共同点是:将无限自由度系统离散为有限 自由度系统。离散的自由度数由取决于所要求的计算精度。 常用的近似解法大致分为两大类:物理离散法和函数展开法 物理离散法: 集中质量法 传递矩阵法 假设模态法 加权残数法
1 l T A( x )w2 dx 2 0
mij A( x)i ( x) j ( x)dx
l
1 l n n A( x ) i ( x )qi (t ) j ( x)q j (t ) dx 2 0 i 1 j 1 1 n n 1 mij qi (t )q j (t ) qT Mq 2 i 1 j 1 2
0
梁的弯曲势能
1 l V EI ( x )w2 dx 2 0 1 l n n EI ( x ) i( x)qi (t ) ( x)q j (t ) dx j 2 0 i 1 j 1
1 n n kij qi (t )q j (t ) 2 i 1 j 1
i ( x) 应该是实际的模态函数,但实际计算时,常无法得到,
所以通常以假设模态代替
i 1
假设模态一般为满足全部或部分边界条件(至少应满足位移 边界条件),但不一定满足动力平衡方程的试函数族
用假设模态法可以建立有限个广义坐标表示的动力学方程, 也可以直接利用能量法,即Rayleigh和Ritz法计算固有频率 。
W qT Q
(i 1, 2, n)
L T V
Lagrange函数
得到有限个广义坐标表示的动力学方程
(m q
j 1 ij
n
j
kij q j ) Qi
(i 1, 2,
n)
矩阵形式为
Mq Kq Q
连续系统的问题转化成了有限自由度问题 以上讨论是针对梁的弯曲振动,但该方法同样也适用于如 轴的扭转振动等其它形式的振动。以例说明
i 1
n
其中
mij m ji I P ( x)i ( x) j ( x)dx
0
l
1 l V GI P ( x)[ (x, t )]2dx 2 0
1 l n n GI P ( x) i ( x)qi (t ) j ( x)q j (t ) dx 2 0 i 1 j 1 n n 1 kij qi (t )q j (t ) 2 i 1 j 1
16l 3 22 768 EI
11l 12 21 23 32 768EI
3
768 EI
7
11
9
如此,可计算系统的固有频率 也可将梁简化成两个自由度或单自由度系统
在求得相应的质量矩阵和 柔度矩阵后,便可计算系 统的固有频率 计算结果可见下表
连续系统
自由度越多,计算精度越高;基频的精度要高于高频的精度; 频率的阶次越高,误差越大。 注:集中质量法的计算精度与梁的边界条件有关
例:设图示变截面轴一端固定,另一端自由 距固定端x处截面的二次极矩为
x I P ( x) I 0 1 2l
O
x
l
x
I 0 为固定端处截面的二次极矩
求:该轴扭转振动的前二阶固有频率
解:将轴的扭转振动写作假设模态的线性组合
( x, t ) i ( x)qi (t )
1 n n k2 i ( xc )qi (t ) j ( xc )q j (t ) 2 i 1 j 1
1 n n 1 kij qi (t )q j (t ) qT Kq 2 i 1 j 1 2
其中,刚度系数为
Kij EI ( x)i( x) j ( x)dx k1i ( xb ) j ( xb ) k2i ( xc ) j ( xc )
m1 m2 m3 m / 4
1 0 0 m M 0 1 0 4 0 0 1
各质点间有相同的弹性性质,可利用材料力学或结构力学知 识计算各点的柔度影响系数并由此得到柔度矩阵。 7l 3 9l 3 9 11 7 13 31 3 11 33 l 11 16 11 768 EI 768 EI
K - 2M 0
EI 2 39.4784 Al 4
解得
EI 3 68.9944 Al 4
正则特征向量
a (1) 0.5742 2 0 Al 0.0048
T
a (2)
0 2 (3) 1 a Al 0
0
l
k11 GI P ( x)[1( x)]2 dx 1.0503GI 0 / l
0
l
因此有
k11 G 1 1.7996 m11 l 2
若欲求前二阶频率,可取n=2,计算得到
0.3243 0.0380 M I 0l 0.0380 0.3806
函数展开法
有限元法
里茨法
兼有上面这两类方法的特点
§6.1 集中质量法
以等截面简支梁为例 设梁的长度为l 密度为 弯曲刚度为EI 截面积为A 则梁的质量为 m Al 将梁分为四段,再将每小段的质量平均分到该段的两端 支点处的质量不影响梁的弯曲振动 连续梁可用三个集中质量代替 得到图示的三自由度系统 系统的质量矩阵为
GI 0 K l
代入本征方程
K - 2M 0
1.0503 0.375 0.375 8.4525
G G 1 1.7723 2 4.7795 解得 2 l l 2 T (1) T (2) a 1 0.0681 并有特征向量 a 0.1955 1
1 T q Kq 2
Kij EI ( x)i ( x) j ( x )dx K EI T dx
0 l 0
l
广义刚度系数 广义刚度矩阵
显然M和K都是对称矩阵 若梁上还有弹簧支承,如下图
则梁的势能为
1 l 1 1 2 2 V EI ( x) w dx k1w ( xb ) k2 w2 ( xc ) 2 0 2 2
Qi qi qT Q
Qi f ( x, t )i ( x)dx F (t )i ( xd )
Q Q1 Q2
0 l
n
i 1
广义力
Qn
T
广义力列阵
系统的动能、势能及外力虚功为
1 T T q Mq 2
由Lagrange方程
1 T V q Kq 2 d L L Qi dt qi qi
其中
kij k ji GI P ( x)i( x) j ( x)dx
0
l
取一端固定另一端自由的等截面轴的模态函数为试函数
2i 1 x i ( x) sin 2 l