2020年高考理科数学易错题 《二项式定理》题型归纳与训练

合集下载

2020年高考理科数学一轮复习题型归纳与变式演练专题13《二项式定理》

2020年高考理科数学一轮复习题型归纳与变式演练专题13《二项式定理》

2020年高考理科数学一轮复习题型归纳与变式演练专题13《二项式定理》 【题型一】、求特定项和特定项的系数 【题型二】、二项式系数的性质【题型三】、多项式转化为二项式的问题 【题型四】、赋值法的应用【题型五】、二项式定理的综合应用 【题型一】、求特定项和特定项的系数【例1】已知在n xx )21(33-的展开式中,第6项为常数项.(1)求n ;(2)求含x 2项的系数; (3)求展开式中所有的有理项.【思路点拨】利用展开式的通项公式求解。

【解析】:(1)根据题意,可得n xx )21(33-的展开式的通项为3231311)21()21()(rn r n r r rn r nr xC x x C T ---+-=-⋅=,又由第6项为常数项,则当r =5时,032=-rn 即0310=-n ,解可得n =10, (2)由(1)可得,3210101)21(r rr r xC T -+-=令03210=-r,可得r =2, 所以含x 2项的系数为,445)21(2102=-C (3)由(1)可得,3210101)21(r r r r xC T -+-=若T r +1为有理项,则有Z r∈-3210,且0≤r≤10, 分析可得当r =2,5,8时,3210r-为整数, 则展开式中的有理项分别为2445x 、863-、225645-x 【总结升华】解决二项式问题要注意区分两种系数:一种是某一项的系数,按通常的多项式系数去理解、认定;一种是某项的二项式系数,仅指这一项中所含的那个组合数。

二者在特殊情况下方为同一数值。

【例2】371(2)x x-的展开式中常数项是( ) A.14 B.-14 C.42 D.-42【思路点拨】利用二项式定理展开式通项公式进行求解。

【解析】展开式的通项3(7)37721771(2)()2(1)rr r rr r r r r T C x C x x-+---+=-=⋅-⋅,当3(7)02rr -+-=,即r=6时,它为常数项,∴常数项为66772(1)14T C =⋅⋅-=. 【总结升华】利用二项式定理展开式通项公式求特定项问题是高考常见题型,要注意掌握和应用。

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结知识点精讲一、二项式定理()nn n r r n r n n n n n nb a C b a C b a C b a C b a 01100+⋯++⋯++=+--()*Nn ∈.展开式具有以下特点: (1)项数:共1+n 项.(2)二项式系数:依次为组合数nn n n n C C C C ,⋯,,,21.(3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地,()nn n n n n x C x C x C x +⋯+++=+22111.二、二项式展开式的通项(第1+r 项)二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ⋯=.其中rn C 的二项式系数.令变量(常用x )取1,可得1+r T 的系数.注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r rn rn b aC -是第1+r 项,而不是第r 项;②在通项公式r r n r n r b a C T -+=1中,含n r b a C T rn r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数二项式系数仅指nn n n n C C C C ,⋯,,,21而言,不包括字母b a ,所表示的式子中的系数.例如:()nx +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而rx 的系数应该是r n r n C -2(即含r x 项的系数).(2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=.②二项展开式中间项的二项式系数最大.如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2最大;如果二项式的幂指数n是奇数,中间项有两项,即为第21+n 项和第121++n 项,它们的二项式系数21-n n C 和21+n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和011+12n nnn n n C C C ++⋯+==() .奇数项二项式系数和等于偶数项二项式系数和,02413512n n n n n n n C C C C C C -+++⋯=+++⋯=即 .②系数和求所有项系数和,令1x =;求变号系数和,令1x =-;求常数项,令0x =。

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

二项式定理经典题型及详细答案

二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。

冲刺2020年高考满分数学(理)纠错《专题26二项式定理》(原卷版)

冲刺2020年高考满分数学(理)纠错《专题26二项式定理》(原卷版)

专题26 二项式定理(原卷版)易错点1:混淆通项公式1r n r r r n T C a b -+=与展开式中的第r 项易错点2:混淆二项式展开式中a,b 排列顺序设置陷阱易错点3:混淆二项式系数和项的系数易错点4:混淆二项式最大项与展开式系数最大项考点1 求二项展开式中特定项或指定项的系数题组一1.10)21(x +的展开式的第4项是 . 题组二 2.(2016年全国I)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案) 3.(2018全国卷Ⅲ)252()x x +的展开式中4x 的系数为( )A .10B .20C .40D .80 4.6(42)x x --(x ∈R )展开式中的常数项是______. 题组三5.(2019全国III 理4)24(12)(1)x x ++的展开式中x 3的系数为( )A .12B .16C .20D .246.(2017新课标Ⅰ)621(1)(1)x x++展开式中2x 的系数为( ) A .15 B .20 C .30 D .357.64(1)(1)x x -+的展开式中x 的系数是_____.(用数字作答).题组四8.25()x x y ++的展开式中, 52x y 的系数为_______.(用数字作答). 9.(2017新课标Ⅲ)5()(2)x y x y +-的展开式中33x y 的系数为 A .-80 B .-40 C .40 D .8010.(2014新课标1)8()()x y x y -+的展开式中27x y 的系数为 .(用数字填写答案) 考点2 已知二项展开式某项的系数求参数题组五11.(2014新课标2)()10x a +的展开式中,7x 的系数为15,则a =___.(用数字填写答案)12.()()511ax x ++的展开式中2x 的系数为5,=a ______.13.(2015新课标2)4()(1)a x x ++ 的展开式中x 的奇数次幂项的系数之和为32,则a =______.题组六14.若n x x )2(-二项展开式的第5项是常数项,则自然数n 的值为______. 15.二项式1()nx x x -的展开式中含有x 4的项,则n 的一个可能值是( ). A .4 B .6 C .8 D .1016.(13)(6)n x n N n +∈其中且≥的展开式中5x 与6x 的系数相等,则n =_____. 17.若)(13N n x x n ∈⎪⎭⎫ ⎝⎛-的展开式中第3项为常数项,则展开式中二项式系数最大的是第____项。

二项式定理高考常见题型及其解法

二项式定理高考常见题型及其解法

第二讲 二项式定理高考常见题型及解法二项式定理的问题相对较独立,题型繁多,虽解法灵活但较易掌握.二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系.二项式定理在每年的高考中基本上都有考查,题型多为选择题,填空题,偶尔也会有大题出现. 本讲将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用. 【知识要点】1、二项式定理:∑=-∈=+nk kkn k nnn b aCb a 0*)()(N2、二项展开式的通项: )0(1n r b a C T r r n r n r ≤≤=-+它是展开式的第r +1项.3、二项式系数:).0(n r C r n ≤≤4、二项式系数的性质: ⑴ ).0(n k C C k n n k n ≤≤=-⑵ ).10(111-≤≤+=---n k C C C k n k n k n ⑶ 若n 是偶数,有n nn nn n nn C CC C C >>><<<-1210,即中间一项的二项式系数2nn C 最大.若n 是奇数,有n nn nn n n n nnC C C C C C >>>=<<<-+-1212110 ,即中项二项的二项式系数212+n n nn C C 和相等且最大.⑷ 各二项式系数和:0122n r nn n n n n C C C C C =++++++⑸在二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和即:021312n n n n n C C C C -++=++=【典型考题】一、求二项展开式:1.“(a +b )n”型的展开式例1.求4)13(x x +的展开式.解:原式=4)13(xx +=24)13(xx +=])3()3()3()3([14434224314442CCCCC x x x x x ++++=)112548481(12342++++x x x x x=54112848122++++xxx x小结:这类题目直接考查二项式定理掌握,高考一般不会考到,但是题目解决过程中的这种“先化简再展开”的思想在高考题目中会有体现的. 2. “(a -b )n ”型的展开式例2.求4)13(xx -的展开式.分析:解决此题,只需要把4)13(x x -改写成4)]1(3[xx -+的形式然后按照二项展开式的格式展开即可.本题主要考察了学生的“问题转化”能力. 3.二项式展开式的“逆用”例3.计算cC C C n nnnn n n 3)1( (279313)21-++-+-;解:原式=nnnn n n n n C C C C C )2()31()3(....)3()3()3(3332211-=-=-++-+-+-+小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质. 二、通项公式的应用:1.确定二项式中的有关元素 例4.已知9)2(x xa -的展开式中x 3的系数为49,常数a 的值为解:9239299912)1()2()(----+⋅⋅⋅-=-=r rr rr rr r r x aC x x aC T令3923=-r ,即8=r ,依题意,得492)1(894889=⋅⋅---aC ,解得1-=a2.确定二项展开式的常数项例5.103)1(x x -展开式中的常数项是解:rr rr rr r xCxx C T 65510310101)1()1()(--+⋅-=-= ,令0655=-r ,即6=r .所以常数项是210)1(6106=-C小结:可以讲2011陕西高考题—例1⑴ 3.求单一二项式指定幂的系数 例6.(03全国)92)21(xx -展开式中x 9的系数是 .解:29191()()2rr rr T x xC -+=-=182911()()2rr r r x xC --=18391()2rr x x C --令,9318=-x 则3=r ,从而可以得到9x 的系数为:339121()22C -=-,∴填212-三、求几个二项式的和(积)的展开式中的条件项的系数例7.5432)1()1()1()1()1(-+---+---x x x x x 的展开式中,x 2的系数等于 解:2x 的系数是四个二项展开式中4个含2x 的,则有20)()1()1()1()1(35241302335224113002-=+++-=-+---+--C C C C C C C C例8.(02全国)72)2)(1-+x x (的展开式中,x 3项的系数是 . 解:在展开式中,3x 的来源有:⑴第一个因式中取出2x ,则第二个因式必出x ,其系数为667)2(-C ; ⑵第一个因式中取出1,则第二个因式中必出3x ,其系数为447)2(-C3x ∴的系数应为:∴=-+-,1008)2()2(447667C C 填1008.四、利用二项式定理的性质解题 1、求中间项例9.求101的展开式的中间项;解:,)1()(310101r r r r xx T C -=-+ ∴展开式的中间项为5555610(252x C =-.小结: 当n 为奇数时,nb a )(+的展开式的中间项是212121-+-n n n n baC 和212121+-+n n n n baC ;当n 为偶数时,nb a )(+的展开式的中间项是222nnnnb a C . 2、求有理项 例10.求103)1(xx -的展开式中有理项共有 项;解:341010310101)1()1()(r rr rrr r xxr T CC--+-=-=∴当9,6,3,0=r 时,所对应的项是有理项.故展开式中有理项有4项.小结:⑴当一个代数式各个字母的指数都是整数时,那么这个代数式是有理式;⑵当一个代数式中各个字母的指数不都是整数(或说是不可约分数)时,那么这个代数式是无理式.3、求系数最大或最小项 ⑴ 特殊的系数最大或最小问题例11.(2000上海)在二项式(x -1)11的展开式中,系数最小的项的系数是 . 解:rrr r xT C)1(11111-=-+∴要使项的系数最小,则r 必为奇数,且使C r11为最大,由此得5=r ,从而可知最小项的系数为5511(1)462C-=- ⑵一般的系数最大或最小问题例12.求84)21(xx +展开式中系数最大的项;解:记第r 项系数为r T ,设第k 项系数最大,则有 ⎩⎨⎧≥≥+-11k kk k T T T T 又1182.+--=r r r CT ,那么有⎪⎩⎪⎨⎧≥≥-+--+--+--k k k k k k k k C C C C 2.2.2.2.8118228118即8!8!2(1)!.(9)!(2)!.(10)!8!8!2(1)!.(9)!!(8)!k k k k k k k k ⎧≥⨯⎪----⎪⎨⎪⨯≥⎪---⎩1212219k k k k ⎧≥⎪⎪--⇒⎨⎪≥⎪-⎩,解得43≤≤k ,故系数最大的项为第3项2537x T =和第4项2747x T =. ⑶系数绝对值最大的项例13.在(x -y )7的展开式中,系数绝对值最大项是 .解:求系数绝对最大问题都可以将“n b a )(-”型转化为")("n b a +型来处理, 故此答案为第4项4347y x C ,和第5项5257y x C -.五、利用“赋值法”求部分项系数,二项式系数和(参考例题2) 例14.若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为 . 解: 443322104)32(x a x a x a x a a x ++++=+令1=x ,有432104)32(a a a a a ++++=+, 令1-=x ,有)()()32(314204a a a a a +-++=+-故原式=)]()).[((3142043210a a a a a a a a a a +-++++++=44)32.()32(+-+=1)1(4=-小结:在用“赋值法”求值时,要找准待求代数式与已知条件的联系,一般而言:0,1,1-特殊值在解题过程中考虑的比较多.例15.设0155666...)12(a x a x a x a x ++++=-,则=++++6210...a a a a .分析:解题过程分两步走;第一步确定所给绝对值符号内的数的符号;第二步是用赋值法求的化简后的代数式的值. 解:rrr r x T C)1()2(661-=-+∴65432106210...a a a a a a a a a a a +-+-+-=++++=)()(5316420a a a a a a a ++-+++=0六、利用二项式定理求近似值例16.求0.9986的近似值,使误差小于0.001;分析:因为6998.0=6)002.01(-,故可以用二项式定理展开计算.解:6998.0=6)002.01(-=621)002.0(...)002.0.(15)002.0.(61-++-+-+001.000006.0)002.0(15)002.0.(22263<=-⨯=-=C T ,且第3项以后的绝对值都小于001.0,∴从第3项起,以后的项都可以忽略不计.∴6998.0=6)002.01(-)002.0(61-⨯+≈=988.0012.01=-小结:由122(1)1...nn n n n n x x x x C C C +=++++,当x 的绝对值与1相比很小且n 很大时,n x x x ,....,32等项的绝对值都很小,因此在精确度允许的范围内可以忽略不计,因此可以用近似计算公式:nx x n+≈+1)1(,在使用这个公式时,要注意按问题对精确度的要求,来确定对展开式中各项的取舍,若精确度要求较高,则可以使用更精确的公式:22)1(1)1(x n n nx x n -++≈+.利用二项式定理求近似值在近几年的高考没有出现题目,但是按照新课标要求,对高中学生的计算能力是有一定的要求,其中比较重要的一个能力就是估算能力.所以有必要掌握利用二项式定理来求近似值. 七、利用二项式定理证明整除问题 例17.求证:5151-1能被7整除. 证明:15151- =1)249(51-+=12.2.49.....2.49.2.49.49515151505051249251501515151-+++++C C C C C=49P +1251-(*∈N P ) 又 1)2(1217351-=-=(7+1)171-=01216171716151717171717.7.7.7.....71C C C C C +++++- =7Q (Q *∈N ))(77715151Q P Q P +=+=-∴15151-∴能被7整除.小结:在利用二项式定理处理整除问题时,要巧妙地将非标准的二项式问题化归到二项式定理的情境上来,变形要有一定的目的性,要凑 出相关的因数. 八、知识交汇型在知识点的交汇处命题,已成为新高考命题的一个趋势.二项式定理可以与组合、数列极限、杨辉三角等知识进行综合,而设计出新题. 例18 如图,在由二项式系数所构成的杨 辉三角形中,第_____行中从左至右第14 与第15个数的比为2:3.分析:本题是杨辉三角与二项式定理的交汇题,而本题的解题关键在于将表格语言转化为组合数语言. 解:设所求的行数为n ,将条件转换为组合数语言,得 131423n nC C =,即142133n =-,解得n =34.第0行 1 第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 …… …… ……二项式定理中的五大热点二项式定理有关知识是每年高考必考内容之一,本文总结出了近年高考中的五大热点题型,供参考. 一、通项运用型凡涉及到展开式的项及其系数(如常数项,x 3项的系数等)及有理项,无理项,或逆向问题,常是先写出其通项公式1r T +=r n r r n C a b -,然后再据题意进行求解,有时需建立方程才能得以解决. 例1 9)12(xx -的展开式中,常数项为 .(用数字作答).解:由99921991(2)(1)2rrr r rr r r r T C x C x ----+⎛⎫=-=-∙∙∙ ⎝. 令9-r -2r =0,得r =6.故常数项为63679(1)2672T C =-∙∙=.故填672.练习:1.10112x ⎛⎫+ ⎪⎝⎭的二项展开式中x 3的系数为_______.[15]2.(x -1)-(x -1)2+(x -1)3-(x -1)4-(x -1)5的展开式中,x 2的系数是_______.[-20]3.9a x ⎛-⎝展开式中x 3的系数为94,常数a =______.[4] 二、系数配对型是指求两个二项式的积或可化两个二项式的积的展开式中某项的系数问题,通常转化为乘法分配律问题来解决.例2 (x 2+1)(x -2)7的展开式中x 3项的系数是______.解: 由x 3项的系数分别来自两个二项式的展开式中两项乘积的系数,应为如下表搭配:因此,x 3项的系数是()4472C -+()6672C -=1008.练习:(x +2)10(x 2-1)的展开式中x 10的系数为____________(用数字作答).[179]三、系数和差型是指求二项展开式系数的和或差等问题,常可用赋值法加以解决. 例3 若2004220040122004...(12)x a a x a x a x -=++++(x ∈R ),则=++++++++)(...)()()(20040302010a a a a a a a a (用数字作答).解:取x =0,得a 0=1;取x =1,得a 0+a 1+a 2+…+a 2004=(1-2)2004=1.故010********...()()()()a a a a a a a a ++++++++ =2003a 0+(a 0+a 1+a 2+…+a 2004)=2003+1=2004.评注:若f (x )=a 0+a 1x +a 2x 2+…+a n x n.则有①a 0=f (0),②a 0+a 1+a 2+…+a n =f (1);③a 0-a 1+a 2-…=f (-1);④a 0+a 2+a 4+…=(1)(1)2f f +-;a 1+a 3+a 5+…=(1)(1)2f f --.练习:若(),32443322104x a x a x a x a a x ++++=+则()()2312420a a a a a +-++的值为_________.[1]四、综合应用型应用意识是数学的归宿,二项式定理主要应用于近似计算、证明整除、证明不等式、证明组合数恒等式、求组合数及求余数等问题.例4 9192除以100的余数是_______. 解:9192=(90+1) 92=0929290C +1919290C +…+9029290C +919290C +9292C=M ×102+92×90+1(M 为整数) =100M +82×100+81. ∴ 9192除以100的余数是81.练习:⑴求0.9986近似值(精确到0.001).[0.998]⑵设*∈N n ,则=++++-12321666n n n n n n C C C C _________.[1(71)6n-]五、知识交汇型在知识点的交汇处命题,已成为新高考命题的一个趋势.二项式定理可以与组合、数列极限、杨辉三角等知识进行综合,而设计出新题.例5 如图,在由二项式系数所构成的杨 辉三角形中,第_____行中从左至右第14 与第15个数的比为2:3.分析:本题是杨辉三角与二项式定理的交汇题,而本题的解题关键在于将表格语言转化为组合数语言. 解:设所求的行数为n ,将条件转换为组合数语言,得第0行 1第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 …… …… ……131423n nC C =,即142133n =-,解得n =34.练习:若(1-2x )9展开式的第3项为288,则2111lim ()nx xxx→∞+++的值是_________.[2]。

(完整版)二项式定理知识点和各种题型归纳带答案

(完整版)二项式定理知识点和各种题型归纳带答案

二项式定理1.二项式定理:(a b)n C n0a n C1n a n 1b L C n r a n r b r L C n n b n (n N ),2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式。

②二项式系数:展开式中各项的系数C n r (r 0,1,2, ,n) .③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项C n r a n r b r叫做二项式展开式的通项。

用T r 1 C n r a n r b r表示。

3.注意关键点:①项数:展开式中总共有(n 1) 项。

②顺序:注意正确选择a, b ,其顺序不能更改。

(a b)n与(b a)n是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是数是a与b 的系数(包括二项式系数) 。

4.常用的结论:令a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L C n n x n(n N )5.性质:①二项式系数的对称性:与首末两端“对距离” 的两个二项式系数相等,即C n0 C n n,···C n k C n k 1②二项式系数和:令a b 1, 则二项式系数的和为C n0C n1C n2L C n r L C n n2n,变形式C1n C n2 L C n r L C n n2n 1 。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令a1,b 1 ,则C n0 C n1 C n2C n3 L ( 1)n C n n (1 1)n 0 ,从而得到:C n0 C n2C n4C n2r C n1 C n3 L 2r 1Cn12n2n 1 2④奇数项的系数和与偶数项的系数和:C n,C n,C n , ,C n, ,C n .项的系令a 1,b x, (1 x)n C n0 C1n x C n2x2 L C n r x r L ( 1)n C n n x n (n N )n 2 2解:由条件知 C n n 2 45 ,即 C n 2 45 , 2n 2 n 90 0 ,解得 n9(舍去 )或n 10 ,由(a x)nC n 0a n0xC n 1a n 1xC n 2a n 22 x L n 0 n 1 C n a x a 0 a 1x 2na 2x La n x(x a)nC n 0a0nx 1C n axn1C n 2a 2 n2xLn n 0 nC n a x a n x L21 a 2x a 1x a令x 1, 则 a 0 a 1 a 2a 3Lan(a 1)n①令x 1,则a 0a1a2a3L a n (a 1)n②① ②得,a 0 a2a 4L an(a1)n (a 2 1)(奇数项的系数和 )①②得,a 1a3a 5La n(a 1)n (a21)(偶数项的系数和)n⑤二项式系数的最大项: 如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 C n 2 取得最大值。

(完整版)高中数学二项式定理题型总结

(完整版)高中数学二项式定理题型总结

二项式定理知识点归纳1.二项式定理及其特例:(1)01()()nn n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈L L ,(2)1(1)1n r r nn n x C x C x x +=+++++L L2.二项展开式的通项公式:rr n r n r b a C T -+=1210(n r ,,,Λ=3.常数项、有理项和系数最大的项:求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性 4 二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和 5.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .rn C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n L ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(mn m nn C C -=) 直线2nr =是图象的对称轴 (2)增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值(3)各二项式系数和:∵1(1)1n r rn n n x C x C x x +=+++++L L ,令1x =,则0122nr nn n n n n C C C C C =++++++L L题型讲解例1 如果在(x +421x)n 的展开式中,前三项系数成等差数列,求展开式中的有理项解:展开式中前三项的系数分别为1,2n ,8)1(-n n ,由题意得2×2n=1+8)1(-n n ,得n =8设第r +1项为有理项,T 1+r =C r8·r 21·x4316r -,则r 是4的倍数,所以r =0,4,8,有理项为T 1=x 4,T 5=835x ,T 921点评:求展开式中某一特定的项的问题常用通项公式,用待定系数法确定r例2 求式子(|x |+||1x -2)3的展开式中的常数项 解法一:(|x |+||1x -2)3=(|x |+||1x -2)(|x |+||1x -2)(|x |+||1x -2)得到常数项的情况有:①三个括号中全取-2,得(-2)3;②一个括号取|x |,一个括号取||1x ,一个括号取-2,得C 13C 12(-2)=-12,∴常数项为(-2)3+(-12)=-20解法二:(|x |+||1x -2)3=(||x -||1x )6设第r +1项为常数项,则T 1+r =C r 6·(-1)r ·(||1x )r ·|x |r -6=(-1)6·C r 6·|x |r26-,得6-2r =0,r =3∴T 3+1=(-1)3·C 36=-20例3 ⑴求(1+x +x 2+x 3)(1-x )7的展开式中x 4的系数;⑵求(x +x4-4)4的展开式中的常数项; ⑶求(1+x )3+(1+x )4+…+(1+x )50的展开式中x 3的系数解:⑴原式=x x --114(1-x )7=(1-x 4)(1-x )6,展开式中x 4的系数为(-1)4C 46-1=14⑵(x +x4-4)4=442)44(x x x +-=48)2(xx -,展开式中的常数项为C 4482·(-1)4=1120⑶方法一:原式=1)1(]1)1[()1(483-+-++x x x xx x 351)1()1(+-+展开式中x 3的系数为C 451方法二:原展开式中x 3的系数为C 33+C 34+C 35+…+C 350=C 44+C 34+…+C 350=C 45+C 35+…+C 350=…=C 4点评:把所给式子转化为二项展开式形式是解决此类问题的关键例4 求9221⎪⎭⎫ ⎝⎛-x x 展开式中9x 的系数解:()r rr r rr r rrr r x C x x C x xC T318921899291212121----+⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=令22121C :,3,93183399=-的系数为故则⎪⎭⎫ ⎝⎛-==-x r r 点评:①r rn rn b a-C 是()nb a +展开式中的第1+r 项,n rΛ,2,1,0=②注意二项式系数与某项系数的区别在本题中,第4项的二项式系数是39C ,第4项9x 的系数为33921⎪⎭⎫ ⎝⎛-C ,二者并不相同例5 求()100323+x 展开所得x 的多项式中,系数为有理数的项数解:()()32100100100310010012323r rr r rrr r x C x C T ⋅⋅=⋅=---+依题意:Z rr ∈-3,2100,r ∴为3和2的倍数,即为6的倍数,又1000≤≤r Θ,N r ∈,96,,6,0Λ=∴r ,构成首项为0,公差为6,末项为96的等差数列,由6)1(096⨯-+=n 得17=n ,故系数为有理数的项共有17项点评:有理项的求法:解不定方程,注意整除性的解法特征例6 求()5223++x x展开式中x 的系数解法一:()()()55523212xx x x ++=+⋅+()()0514450514445555555555222C x C x C x C C x C x C x C =++++⋅+++⋅+L L 故展开式中含x的项为x x C C C x C 240224455555545=⋅⋅+⋅⋅,故展开式中x 的系数为240,解法二:()()[]52523223xx x x ++=++()()()N r r x x C T rrrr ∈≤≤⋅+=-+,50325251,要使x 指数为1,只有1=r 才有可能,即()()424684215228446241532+⋅+⋅+⋅+=⋅+=x x x x x x x C T ,故x 的系数为2402154=⋅,解法三:()5232x x ++()()()()()222223232323232x x x x x x x x x x =++++++++++,由多项式的乘法法则,从以上5个括号中,一个括号内出现x ,其它四个括号出现常数项,则积为x 的一次项,此时系数为2402344415=⋅⋅C C点评:此类问题通常有两个解法:化三项为二项,乘法法则及排列、组合知识的综合应用例7 设a n =1+q +q 2+…+q1-n (n ∈N *,q ≠±1),A n =C 1n a 1+C 2n a 2+…+C nn a n(1)用q 和n 表示A n ;(2)(理)当-3<q <1时,求lim∞→n nn解:(1)因为q ≠1,所以a n =1+q +q 2+…+q 1-n q q n --11于是A n =qq --11 C 1n +q q --112 C 2n +…+q q n --11C n n =q -11[(C 1n +C 2n +…+C n n )-(C 1n q +C 2n q 2+…+C nn q n )]=q -11{(2n -1)-[(1+q )n -1]}=q -11[2n -(1+q )n ](2)n n A 2=q -11[1-(21q +)n ]因为-3<q <1,且q ≠-1,所以0<|21q + |<1所以lim∞→n n n A 2=q-11例8 已知729222221=++++n n n n n n C C C C Λ,求n n n n C C C +++Λ21分析:在已知等式的左边隐含一个二项式,设法先求出n解:在()nn n n n n n n n n bC b a C b a C a C b a ++++=+--Λ222110中,令2,1==b a 得()72921=+n67293=∴=∴n n 12126666n n n n C C C C C C ∴+++=+++L L ()012606666662163C C C C C =++++-=-=L点评:①记住课本结论:n n n n n nC C C C 2210=++++Λ,15314202-=+++=+++n n n n n n n C C C C C C ΛΛ②注意所求式中缺少一项,不能直接等于62例9 已知()4433221432x a x a x a x a a x ++++=+,求()()2312420a a a a a +-++解: 令1=x 时,有()43210432a a a a a ++++=+,令1-=x 时,有()43210432a a aa a +-+-=+-∵()()2202413a a a a a ++-+()()0123401234a a a a a a a a a a =++++-+-+∴ ()()()()()1132324442312420=-=+-⋅+=+-++a a a a a点评:赋值法是由一般到特殊的一种处理方法,在高考题中屡见不鲜,特别在二项式定理中的应用尤为明显赋值法是给代数式(或方程或函数表达式)中的某些字母赋予一定的特殊值,从而达到便于解决问题的目的望同学们在学习中举一反三例10 求()72y x +展开式中系数最大的项解:设第1+r 项系数最大,则有⎩⎨⎧≥≥+++项系数项系数项系数项系数2r 1r 1T T T T r r ,即⎪⎩⎪⎨⎧≥≥++--117711772222r r r r r r r r C C C C()()()()()()117!7!22!7!1!71!7!7!22!7!1!71!r r r r r r r r r r r r -+⎧≥⎪---+⎪⇒⎨⎪≥⎪-+--⎩2181271r r r r ⎧≥⎪⎪-⇒⎨⎪≥⎪-+⎩163133r r ⎧≤⎪⎪⎨⎪≥⎪⎩又5,,70=∴∈≤≤r N r r Θ故系数最大项为525525766722y x y x C T =⋅=点评:二项式系数最大的项与系数最大的项不同二项式系数最大的项也即中间项:当n 为偶数时中间项12+nT 的二项式系数最大;当n 为奇数时,中间两项121+-n T ,121++n T 的二项式系数相等且为最大小结:1在使用通项公式T 1+r =C rnr n a -b r 时,要注意:①通项公式是表示第r +1项,而不是第r 项②展开式中第r +1项的二项式系数C rn 与第r +1项的系数不同③通项公式中含有a ,b ,n ,r ,T 1+r 五个元素,只要知道其中的四个元素,就可以求出第五个元素在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组)这里必须注意n 是正整数,r 是非负整数且r ≤n2证明组合恒等式常用赋值法 学生练习1已知(1-3x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于 A 29 B 49 C 39 D 1解析:x 的奇数次方的系数都是负值,∴|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-a 3+…-a 9∴已知条件中只需赋值x =-1即可答案:B2 2x +x )4的展开式中x 3的系数是A 6B 12C 24D 48解析:(2x +x )4=x 2(1+2x )4,在(1+2x )4中,x 的系数为C 24·22=24答案:C3(2x 3-x1)7的展开式中常数项是 A 14B -14C 42D -42解析:设(2x 3-x1)7的展开式中的第r +1项是T 1+r =C r7(2x 3)r-7(-x1)r =C r 72r-7·(-1)r ·x )7(32x r-+-,当-2r +3(7-r )=0,即r =6时,它为常数项,∴C 67(-1)6·21=14答案:A 4一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为A 20B 219C 220D 220-1解析:C 120+C 220+…+C 2020=220-1答案:D5已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 A 28B 38C 1或38D 1或28解析:T 1+r =C r8·x 8-r ·(-ax -1)r =(-a )r C r8·x 8-2r,令8-2r =0,∴r =4,∴(-a )4C 48=1120∴a =±2当a =2时,令x =1,则(1-2)8=1,当a =-2时,令x =-1,则(-1-2)8=38答案:C6已知(x23+x 31-)n 的展开式中各项系数的和是128,则展开式中x 5的系数是_____________(以数字作答)解析:∵(x 23+x 31-)n 的展开式中各项系数和为128,∴令x =1,即得所有项系数和为2n =128,∴n =7设该二项展开式中的r +1项为T 1+r =C r7(x23)r-7·(x31-)r =C r7·x61163r -,令61163r -=5即r =3时,x 5项的系数为C 37=35答案:35 7若(x +1)n =x n +…+ax 3+bx 2+cx +1(n ∈N *),且a ∶b =3∶1,那么n =________解析:a ∶b =C 3n ∶C 2n =3∶1,n =11 答案:118(x -x1)8展开式中x 5的系数为_____________解析:设展开式的第r +1项为T 1+r =C r 8x 8-r ·(-x1)r =(-1)r C r 8x238r-令8-23r =5得r =2时,x 5的系数为(-1)2·C 28=28答案:289若(x 3+xx 1)n 的展开式中的常数项为84,则n =_____________解析:T 1+r =C rn(x 3)n -r·(x23-)r =Cr n·xrn 293-,令3n -29r =0,∴2n =3r ∴n 必为3的倍数,r 为偶数试验可知n =9,r =6时,C rn =C 69=84答案:910已知(xxlg +1)n 展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x 的值解:由题意C 2-n n+C 1-n n +C n n =22,即C 2n +C 1n +C 0n =22,∴n =6∴第4项的二项式系数最大∴C 36(xxlg )3=20000,即x 3lg x =1000∴x =10或x 101 11若(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11 求:(1)a 1+a 2+a 3+…+a 11; (2)a 0+a 2+a 4+…+a 10 解:(1)(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11令x =1,得 a 0+a 1+a 2+…+a 11=-26, ① 又a 0=1,所以a 1+a 2+…+a 11=-26-1=-65 (2)再令x =-1,得a 0-a 1+a 2-a 3+…-a 11=0 ②①+②得a 0+a 2+…+a 10=21(-26+0)=-32 点评:在解决此类奇数项系数的和、偶数项系数的和的问题中常用赋值法,令其中的字母等于1或-112在二项式(ax m +bx n )12(a >0,b >0,m 、n ≠0)中有2m +n =0,如果它的展开式里最大系数项恰是常数项(1)求它是第几项;(2)求ba的范围 解:(1)设T 1+r =C r12(ax m )12-r ·(bx n )r =C r12a 12-r b r x m(12-r )+nr为常数项,则有m (12-r )+nr =0,即m (12-r )-2mr =0,∴r =4,它是第5项(2)∵第5项又是系数最大的项,∴有C 412a 8b 4≥C 312a 9b 3 ① C 412a 8b 4≥C 512a 7b 5 ② 由①得2349101112⨯⨯⨯⨯⨯a 8b 4≥23101112⨯⨯⨯a 9b 3,∵a >0,b >0,∴49b ≥a ,即b a 9 由②得b a ≥58,∴58≤b a 4913在二项式(x +421x)n 的展开式中,前三项的系数成等差数列,求展开式中的有理项分析:根据题意列出前三项系数关系式,先确定n ,再分别求出相应的有理项解:前三项系数为C 0n ,21C 1n ,41C 2n ,由已知C 1n =C 0n +41C 2n ,即n 2-9n +8=0, 解得n =8或n =1(舍去)T 1+r =C r8(x )8-r(24x )-r=C r 8·r 21·x 434r-∵4-43r∈Z 且0≤r ≤8,r ∈Z , ∴r =0,r =4,r =8∴展开式中x 的有理项为T 1=x 4,T 5=835x ,T 9=2561 x -2 点评:展开式中有理项的特点是字母x 的指数4-43r ∈Z 即可,而不需要指数4-43r∈N14求证:2<(1+n1)n <3(n ≥2,n ∈N *)证明:(1+n 1)n =C 0n +C 1n ×n 1 +C 2n (n 1)2+…+C nn (n 1)n=1+1+C 2n ×21n +C 3n ×31n+…+C nn ×n n 1=2+!21×2)1(n n n -+!31×3)2)(1(n n n n --+…+!1n ×n nn n 12)1(⨯⨯⨯-⨯Λ <2+!21+!31+!41+…+!1n <2+21+221+321+…+121-n=2+211])21(1[211---n =3-(21)1-n <3显然(1+n 1)n =1+1+C 2n ×21n +C 3n ×31n +…+C nn ×n n 1>2所以2<(1+n1)n<3。

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。

+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。

C(n,2)。

…。

C(n,n)2)指数的特点①a的指数由n到0(降幂)。

②b的指数由0到n(升幂)。

XXX和b的指数和为n。

3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。

4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。

m) + C(n。

m-1)C(n,0) + C(n,1) +。

+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。

= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。

+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。

二项式定理易错题归类剖析

二项式定理易错题归类剖析

解题篇易错题归类剖析高考数学2020年11月二顶式定理易错题归类剖折■河南省许昌高级中学郭曼曼二项式定理揭示了二项式展开式的项、项数、系数、指数等内容之间的联系和基本规律。

通过对近几年全国各地高考试卷的分析可以看出,二项式定理是历年高考的必考内容,高考试题多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题。

考查的题型也比较稳定,主要考查两点:(1)考查二项式展开式的通项公式,以求二项式展开式中的特定项或特定项的系数为载体,特别关注两个多项式乘积展开式指定需的系数,以及三项式展示式指定需的系数#(2)考查二项式的系数的性质,特别关注赋值法处理系数和及二项式系数和。

不少同学由于对知识的理解不够或思维不严密,在解题中易产生各种各样的错误,本文就几种常见错误作了介绍,以帮助同学们归类总结,避免类似的错误产生。

易错点一:对二项式(a+b)n的展开式的通项公式理解不透彻而致错!!二项式$+2)的展开式的第二项是()。

A.60$4B.12$5C.12$D.60$2错解:因为+2=C2$422=60$4,所以选A。

错因分析:利用二项式展开式的通项公式求展开式的时候要注意展开式的通项公式+”+i=C n a n—b*指的是第*+1项,错解中将*直接用2代入而引起错误。

正解:二项式$+2)6的展开式的通项为+*+1=C$6—*2",令*=1,贝IJ+2=12$5。

故选C。

易错点二:混淆二项式系数最大项与展开式系数最大项而致错!"在(/T+二)"(n#N.)的展开式中,若二项式系数最大的项仅有第6项,则展开式中的常数项是()。

A.180B.120C.50D.452C5$!4C4错解:由(""解得n=7或n=$26c,,8,而展开式的通项为+*+i=C;2$2,得*无解。

错因分析:二项式系数最大项是指c n (0,*,n),当n是偶数时,中间项的二项式系数C2最大;当n是奇数时,中间两项的项式系数C;2'C;2相等且最大。

二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)

二项式定理、复数(5大易错点分析+解题模板+举一反三+易错题通关)

专题14二项式定理、复数易错点一:忽略了二项式中的负号而致错((a-b )n 化解问题)Ⅰ:二项式定理一般地,对于任意正整数n ,都有:011()()n n n r n r r n nnn n n a b C a C a b C a b C b n N --*+=+++++∈ ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r r nC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=,其中的系数rn C (r =0,1,2,…,n )叫做二项式系数,Ⅱ:二项式()n a b +的展开式的特点:①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).Ⅲ:两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅ (*N n ∈)②122(1)1n r r nn n n x C x C x C x x+=++++++Ⅳ:二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是rn C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项rn rr n C ab -和()n b a +的二项展开式的第r +1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把b -看成b 代入二项式定理).易错提醒:在二项式定理()n a b -的问题要注意b 的系数为1-,在展开求解时不要忽略.例、已知5的展开式中含32x 的项的系数为30,则=a ()AB .C .6D .6-变式1:在5223x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是.变式2:621x x ⎛⎫- ⎪⎝⎭展开式的常数项为.变式3:612x x ⎛⎫- ⎪⎝⎭的展开式中4x 的系数为.1.712x x ⎛⎫- ⎪⎝⎭的二项式展开式中x 的系数为()易错点二:三项式转化不合理导致计算麻烦失误(三项展开式的问题)求三项展开式式中某些特定项的系数的方法第一步:通过变形先把三项式转化为二项式,再用二项式定理求解第二步:两次利用二项式定理的通项公式求解第三步:由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量易错提醒:对于三项式的展开问题,一般采取转化为二项式再展开的办法进行求解,但在转化为二项式的时候,又有不同的处理策略:一是如果三项式能够化为完全平方的形式,或者能够进行因式分解,则可通过对分解出来的两个二项展开式分别进行分析,进而解决问题(如本例中的解法二);二是不能化为完全平方的形式,也不能进行因式分解时,可直接将三项式加括号变为二项式,套用通项公式展开后对其中的二项式再利用通项展开并进行分析求解,但要结合要求解的问题进行合理的变形,以利于求解.例、()5232x x ++的展开式中,x 的一次项的系数为()A .120B .240C .320D .480变式1:在()523a b c ++的展开式中,含22a b c 的系数为.变式2:()521x y --展开式中24x y 的系数为(用数字作答).变式3:在5(2)x y z ++的展开式中,形如3(,)m n x y z m n ∈N 的所有项系数之和是.1.811x ⎫+⎪⎭的展开式中的常数项为()易错点三:混淆项的系数与二项式系数致误(系数与二项式系数问题)Ⅰ:二项式展开式中的最值问题1.二项式系数的性质①每一行两端都是1,即0n n n C C =;其余每个数都等于它“肩上”两个数的和,即11m m m n n n C C C -+=+.②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n mn n C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++= ,变形式1221r nn n n n n C C C C +++++=- .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-= ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅= .⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12nT 的二项式系数2nnC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T+的二项式系数12n nC-,12n nC+相等且最大.2.系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来.Ⅱ:二项式展开式中系数和有关问题常用赋值举例:(1)设()011222nn n n r n r r n n n nn n n a b C a C a b C a b C a b C b ---+=++++++ ,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令1a b ==,可得:012n nn n nC C C =+++ ②令11a b ==,,可得:()012301nn n n n n n C C C C C =-+-+- ,即:02131n n n n n n n n C C C C C C -+++=+++ (假设n 为偶数),再结合①可得:0213112n n n n n n n n n C C C C C C --+++=+++= .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++ ,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++ .注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.易错提醒:二项式定理()n a b +的问题要注意:项的系数与二项式系数的区别与联系(求所有项的系数只要令字母值为1).例、设(n x 的展开式中,第三项的系数为36,试求含2x 的项.变式1:求5的展开式中第3项的系数和二项式系数.变式2:计算()92x y +的展开式中第5项的系数和二项式系数.变式3:求6⎛⎝的展开式中常数项的值和对应的二项式系数.1.在二项式612x ⎫⎪⎭的展开式中,二项式系数最大的是()Ⅰ:复数的概念①复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,a ,b 分别是它的实部和虚部,i 叫虚数单位,满足21i =-(1)当且仅当b =0时,a +b i为实数;(2)当b ≠0时,a +b i 为虚数;(3)当a =0且b ≠0时,a +b i 为纯虚数.其中,两个实部相等,虚部互为相反数的复数互为共轭复数.②两个复数,(,,,)a bi c di a b c d R ++∈相等a c b d=⎧⇔⎨=⎩(两复数对应同一点)③复数的模:复数(,)a bi a b R +∈的模,其计算公式||||z a bi =+=Ⅱ:复数的加、减、乘、除的运算法则1、复数运算(1)()()()()i a bi c di a c b d +±+=±+±(2)()()()()a bi c di ac bd ad bc i +⋅+=-++22222()()z z ||||)2a bi a bi a b z z z z z a⎧+⋅-=⋅=+=⎪⎪=⎨⎪+=⎪⎩(注意其中||z =z 的模;z a bi =-是z a bi =+的共轭复数(,)a b R ∈.(3)2222()()()()(0)()()a bi a bi c di ac bd bc ad i c d c di c di c di c d++⋅-++-==+≠++⋅-+.实数的全部运算律(加法和乘法的交换律、结合律、分配律及整数指数幂运算法则)都适用于复数.2、复数的几何意义(1)复数(,)z a bi a b R =+∈对应平面内的点(,)z a b ;(2)复数(,)z a bi a b R =+∈对应平面向量OZ;(3)复平面内实轴上的点表示实数,除原点外虚轴上的点表示虚数,各象限内的点都表示复数.(4)复数(,)z a bi a b R =+∈的模||z 表示复平面内的点(,)z a b 到原点的距离.易错提醒:1、求一个复数的实部与虚部,只需将已知的复数化为代数形式z =a +b i(a ,b ∈R ),则该复数的实部为a ,虚部为b .2、复数是实数的条件:①z =a +b i ∈R ⇔b =0(a ,b ∈R );②z例、复数113i-的虚部是()A.110i -B.110-C.310D.310i 变式1:已知复数1i2i z -=+(i 为虚数单位),则z 的虚部为()A .35-B .3i5-C .35D .35i变式2:已知i 是虚数单位,则复数12i1i--的虚部是()A .12-B .12C .32-D .32变式3:已知复数()()2i 1i z =-+,则复数z 的虚部为,z =.1.5(2i)(12i)i-++的虚部为()易错点五:复数的几何意义应用错误(复数有关模长的求算)复数的模:复数(,)a bi a b R +∈的模,其计算公式||||z a bi =+=易错提醒:复数与复平面内的点、平面向量存在一一对应关系,两个复数差的模可以理解为两点之间的距离.例、若z C ∈,且22i 1z +-=,则22i z --的最小值为()A .2B .3C .4D .5变式1:已知复数z 满足1i z -+=,z 为z 的共轭复数,则z z ⋅的最大值为.变式2:已知i 为虚数单位,且2i 1z -=,则z 的最大值是.变式3:已知复数z 满足|2|2|2i |z z -=-,则||z 的最大值为.1.设复数z 满足|2i |z -=z 在复平面内对应的点为(,)x y ,则()。

二项式定理九种常见的考查题型归纳

二项式定理九种常见的考查题型归纳

二项式定理常见的题型归纳吴友明 整理题型一:指定项有关的问题 例1.在12)13(xx -展开式中,3-x 的系数为 . 解析:由二项式定理的通项公式得1121212211212(3)(3(1)r r rr r r r rr T C x C x x ----+=⋅⋅=⋅-⋅⋅⋅ 312122123(1)rrrr C x--=⋅-⋅⋅.令31232r -=-可得10r =,即121010103311123(1)594T C x x ---=⋅-⋅⋅=.故3-x 项的系数为594.点评:解决此类问题的一般策略是:先求二项式展开式的通项,再利用化简后的通项与指定项之间的联系求解。

特别题型解题之前先确认题目是求二项式的展开式的系数或二项式的系数,另外二项式的展开式的通项化简时,要注意指数运算的性质的准确运用.练习.若n xx x )1(3+的展开式的常数项为84,则n = .解析:由二项式定理的通项公式得333321()r r n rrr n rr nnT C x C xx---+=⋅⋅=⋅⋅932n rr nC x-=⋅.令9302n r -=可设3,2n k r k ==,其中k N +∈. 故有23384r k kn k k C C C ===,解得3k =.故39n k ==.题型二:有理项有关的问题例2. 二项式24展开式中,有理项的项数共有( )项A. 3B. 4C. 5D. 7 解析:由二项式定理的通项公式得241136424r !2424T ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭rrr r r C x x C x,其中0,1,2,,24r =L , 由题意得364r Z -∈,则0,4,8,12,16,20,24r =,所以共有7个有理项点评: 有理项是指变量的指数是整数(可以是正整数,也可以是负整数和零)的项,所以此类问题的一般解题思路是:先求二项式的展开式的通项,化简后令x 的指数为整数解决问题。

高中数学《二项式定理》复习小结与训练

高中数学《二项式定理》复习小结与训练

§6.3 二项式定理 (第一课时 二项式定理)【学习目标】1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会用二项式定理解决与二项展开式有关的简单问题. 【知识梳理】 知识点一 二项式定理(a +b)n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n∈N *).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b)n 的二项展开式,展开式中一共有n +1项.(3)二项式系数:各项的系数C k n (k∈{0,1,2,…,n})叫做二项式系数. 知识点二 二项展开式的通项(a +b)n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n an -k b k . 思考 二项式系数与二项展开式中项的系数相同吗?答案 一般不同.前者仅为C k n ,而后者是字母前的系数,故可能不同. 【判断正误】1.(a +b)n 展开式中共有n 项.( × )2.在公式中,交换a ,b 的顺序对各项没有影响.( × )3.C k n an -k b k 是(a +b)n 展开式中的第k 项.( × ) 4.(a -b)n 与(a +b)n 的二项展开式的二项式系数相同.( √ ) 5.二项式(a +b)n 与(b +a)n 的展开式中第k +1项相同.( × ) 【题型探究】一、二项式定理的正用、逆用 例1 (1)求⎝⎛⎭⎪⎫3x +1x 4的展开式. 解 方法一 ⎝ ⎛⎭⎪⎫3x +1x 4=C 04(3x)4+C 14(3x)3·1x+C 24(3x)2⎝ ⎛⎭⎪⎫1x 2+C 34(3x)⎝ ⎛⎭⎪⎫1x 3+C 44⎝ ⎛⎭⎪⎫1x 4=81x 2+108x +54+12x +1x 2.方法二 ⎝ ⎛⎭⎪⎫3x +1x 4=⎝ ⎛⎭⎪⎫3x +1x 4=1x 2(1+3x)4=1x 2·[1+C 14·3x+C 24(3x)2+C 34(3x)3+C 44(3x)4]=1x 2(1+12x +54x 2+108x 3+81x 4)=1x 2+12x+54+108x +81x 2.(2)化简:C 0n (x +1)n -C 1n (x +1)n -1+C 2n (x +1)n -2-…+(-1)k C k n (x +1)n -k+…+(-1)n C n n .解 原式=C 0n (x +1)n +C 1n (x +1)n -1(-1)+C 2n (x +1)n -2(-1)2+…+C k n (x +1)n -k(-1)k +…+C n n (-1)n =[(x +1)+(-1)]n =x n .延伸探究若(1+3)4=a +b 3(a ,b 为有理数),则a +b =________. 答案 44解析 ∵(1+3)4=1+C 14×(3)1+C 24×(3)2+C 34×(3)3+C 44×(3)4=1+43+18+123+9=28+163,∴a=28,b =16,∴a+b =28+16=44. 反思感悟 (1)(a +b)n 的二项展开式有n +1项,是和的形式,各项的幂指数规律是:①各项的次数和等于n ;②字母a 按降幂排列,从第一项起,次数由n 逐项减1直到0;字母b 按升幂排列,从第一项起,次数由0逐项加1直到n. (2)逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.跟踪训练1 化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).解 原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-1=[(x-1)+1]5-1=x 5-1. 二、二项展开式的通项的应用例2 若⎝⎛⎭⎪⎪⎫x +124x n 展开式中前三项系数成等差数列,求: (1)展开式中含x 的一次项; (2)展开式中所有的有理项.解 (1)由已知可得C 0n +C 2n ·122=2C 1n ·12,即n 2-9n +8=0,解得n =8或n =1(舍去). T k +1=C k 8(x)8-k ·⎝ ⎛⎭⎪⎪⎫124x k =C k 8·2-k ·344k x -,令4-34k =1,解得k =4.所以含x 的一次项为T 5=C 482-4x =358x. (2)令4-34k∈Z ,且0≤k≤8,则k =0,4,8,所以含x 的有理项分别为T 1=x 4,T 5=358x ,T 9=1256x 2.反思感悟 求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项).(2)对于有理项,一般是先写出通项公式,求其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数集,再根据数的整除性来求解.(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.跟踪训练2 在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求: (1)第3项的二项式系数及系数; (2)含x 2的项.解 (1)第3项的二项式系数为C 26=15, 又T 3=C 26(2x)4⎝⎛⎭⎪⎫-1x 2=240x ,所以第3项的系数为240. (2)T k +1=C k 6(2x)6-k⎝ ⎛⎭⎪⎫-1x k=(-1)k 26-k C k 6x3-k, 令3-k =2,解得k =1,所以含x 2的项为第2项,且T 2=-192x 2. 三、求两个多项式积的特定项例3 (1)已知(1+ax)(1+x)5的展开式中,含x2的项的系数为5,则a等于( )A.-4 B.-3 C.-2 D.-1(2)(1+2x)3(1-x)4的展开式中,含x项的系数为( )A.10 B.-10 C.2 D.-2答案(1)D (2)C解析(1)由二项式定理得(1+x)5的展开式的通项为Tk+1=C k5·x k,所以(1+ax)(1+x)5的展开式中含x2的项的系数为C25+C15·a=5,所以a=-1,故选D.(2)(1+2x)3(1-x)4的展开式中含x项的系数是由两个因式相乘而得到的,即第一个因式的常数项和一次项分别乘第二个因式的一次项与常数项,为C0 3·(2x)0·C14·(-x)1+C13·(2x)1·C04·14·(-x)0,其系数为C03×C14×(-1)+C1 3×2×C04=-4+6=2.反思感悟求多项式积的特定项的方法——“双通法”所谓的“双通法”是根据多项式与多项式的乘法法则得到(a+bx)n(s+tx)m的展开式中一般项为:Tk+1·Tr+1=C kna n-k(bx)k·C rms m-r(tx)r,再依据题目中对指数的特殊要求,确定r与k所满足的条件,进而求出r,k的取值情况.跟踪训练3 (x-y)(x+y)8的展开式中x2y7的系数为________.(用数字作答) 答案-20解析由二项展开式的通项公式可知,含x2y7的项可表示为x·C78xy7-y·C68x2y6,故(x-y)(x+y)8的展开式中x2y7的系数为C78-C68=8-28=-20.四、二项式定理的应用例4 (1)试求2 01910除以8的余数;(2)求证:32n+2-8n-9(n∈N*)能被64整除.(1)解 2 01910=(8×252+3)10.∵其展开式中除末项为310外,其余的各项均含有8这个因数,∴2 01910除以8的余数与310除以8的余数相同.又∵310=95=(8+1)5,其展开式中除末项为1外,其余的各项均含有8这个因数,∴310除以8的余数为1,即2 01910除以8的余数也为1.(2)证明32n+2-8n-9=(8+1)n+1-8n-9=C 0n +18n +1+C 1n +18n +…+C n +1n +1-8n -9=C 0n +18n +1+C 1n +18n +…+C n -1n +182+(n +1)×8+1-8n -9 =C 0n +18n +1+C 1n +18n +…+C n -1n +182.①①式中的每一项都含有82这个因数,故原式能被64整除.反思感悟 利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系. 跟踪训练4 (1)已知n∈N *,求证:1+2+22+…+25n -1能被31整除. 证明 1+2+22+23+…+25n -1=1-25n1-2=25n -1=32n -1=(31+1)n -1=31n +C 1n×31n -1+…+C n -1n ×31+1-1=31×(31n -1+C 1n ×31n -2+…+C n -1n), 显然括号内的数为正整数,故原式能被31整除. (2)求0.9986的近似值,使误差小于0.001.解 0.9986=(1-0.002)6=1+C 16·(-0.002)+C 26·(-0.002)2+…+C 66·(-0.002)6.由题意知T 3=C 26(-0.002)2=15×0.0022=0.000 06<0.001,且第3项以后(包括第3项)的项的绝对值都远小于0.001, 故0.9986=(1-0.002)6≈1-6×0.002=0.988. 【跟踪训练】1.⎝⎛⎭⎪⎫x -1x 5的展开式中含x 3项的二项式系数为( ) A .-10 B .10 C .-5 D .5 答案 D2.⎝⎛⎭⎪⎫x 2-2x 35的展开式中的常数项为( )A .80B .-80C .40D .-40 答案 C3.设S =(x -1)3+3(x -1)2+3(x -1)+1,则S 等于( ) A .x 3 B .-x 3 C .(1-x)3 D .(x -1)3 答案 A4.若(x +2)n 的展开式共有12项,则n =________. 答案 115.C 0n ·2n +C 1n ·2n -1+…+C k n ·2n -k+…+C n n =________.答案 3n解析 原式=(2+1)n =3n . 【课堂小结】 1.知识清单: (1)二项式定理.(2)二项展开式的通项公式. 2.方法归纳:转化化归.3.常见误区:二项式系数与系数的区别,C k n a n -kb k是展开式的第k +1项.【同步练习】1.1-2C 1n +4C 2n -8C 3n +…+(-2)n C n n 等于( )A .1B .-1C .(-1)nD .3n 答案 C解析 原式=(1-2)n =(-1)n .2.⎝⎛⎭⎪⎫x -2x 6的展开式中的常数项为( )A .60B .-60C .250D .-250 答案 A解析 ⎝ ⎛⎭⎪⎫x -2x 6的展开式中的常数项为C 26(x)4·⎝ ⎛⎭⎪⎫-2x 2=60. 3.⎝⎛⎭⎪⎫x +1x 9的展开式中的第4项是( )A .56x 3B .84x 3C .56x 4D .84x 4 答案 B解析 由通项知T 4=C 39x 6⎝ ⎛⎭⎪⎫1x 3=84x 3.4.(x -2y)10的展开式中x 6y 4的系数是( ) A .840 B .-840 C .210 D .-210 答案 A解析 在通项T k +1=C k 10(-2y)k x 10-k 中,令k =4,即得(x -2y)10的展开式中x 6y 4项的系数为C 410×(-2)4=840. 5.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( ) A .-5 B .5 C .-10 D .10 答案 D解析 (1-x)5中x 3的系数为-C 35=-10,-(1-x)6中x 3的系数为-C 36·(-1)3=20,故(1-x)5-(1-x)6的展开式中x 3的系数为10.6.若(x +a)10的展开式中,x 7的系数为15,则a =______.(用数字填写答案) 答案12解析 二项展开式的通项为T k +1=C k 10x 10-k a k,当10-k =7时,k =3,T 4=C 310a 3x 7,则C 310a 3=15,故a =12.7.如果⎝ ⎛⎭⎪⎫3x 2+1x n 的展开式中,x 2项为第3项,则自然数n =________,其x 2项的系数为________. 答案 8 28 解析 T k +1=C k n(3x 2)n -k⎝ ⎛⎭⎪⎫1x k =C kn 253n kx -,由题意知,k =2时,2n -5k 3=2,∴n=8,此时该项的系数为C 28=28.8.在⎝ ⎛⎭⎪⎫1x -1(x +1)5的展开式中常数项等于________.答案 9解析 二项式(x +1)5的展开式的通项为 T k +1=C k 5(x)5-k=C k 552k x -(k =0,1,2,…,5),∴⎝ ⎛⎭⎪⎫1x -1(x +1)5展开式中的常数项为C 35+(-1)×C 55=10-1=9. 9.已知⎝⎛⎭⎪⎫x -2x n 的展开式中第3项的系数比第2项的系数大162. (1)求n 的值;(2)求展开式中含x 3的项,并指出该项的二项式系数.解 (1)因为T 3=C 2n(x)n -2⎝ ⎛⎭⎪⎫-2x 2=4C 2n 62n x -, T 2=C 1n(x)n -1⎝ ⎛⎭⎪⎫-2x =-2C 1n 32n x -, 依题意得4C 2n +2C 1n =162,所以2C 2n +C 1n =81,所以n 2=81,又n∈N *,故n =9. (2)设第k +1项含x 3项,则T k +1=C k9(x)9-k⎝ ⎛⎭⎪⎫-2x k =(-2)k C k9932kx -,所以9-3k 2=3,k =1,所以含x 3的项为T 2=-2C 19x 3=-18x 3.二项式系数为C 19=9.10.已知m ,n∈N *,f(x)=(1+x)m +(1+x)n 的展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数.解 由题设知,m +n =19,又m ,n∈N *,∴1≤m≤18. x 2的系数为C 2m +C 2n =12(m 2-m)+12(n 2-n)=m 2-19m +171.∴当m =9或10时,x 2的系数有最小值为81,此时x 7的系数为C 79+C 710=156.11.(多选)对于二项式⎝ ⎛⎭⎪⎫1x +x 3n (n∈N *),下列判断正确的有( )A .存在n∈N *,展开式中有常数项B .对任意n∈N *,展开式中没有常数项C .对任意n∈N *,展开式中没有x 的一次项D .存在n∈N *,展开式中有一次项 答案 AD解析 二项式⎝ ⎛⎭⎪⎫1x +x 3n 的展开式的通项公式为T k +1=C k n x 4k -n,由通项公式可知,当n =4k(k∈N *)和n =4k -1(k∈N *)时,展开式中分别存在常数项和一次项,故选AD.12.已知2×1010+a(0≤a<11)能被11整除,则实数a 的值为( )A .7B .8C .9D .10 答案 C解析 由于2×1010+a =2×(11-1)10+a,2×1010+a(0≤a<11)能被11整除,又根据二项展开式可知,2×(11-1)10被11除的余数为2,从而可知2+a 能被11整除,可知a =9.13.(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是( )A .-3B .-2C .2D .3 答案 D解析 ⎝ ⎛⎭⎪⎫1x 2-15的展开式的通项为T k +1=C k 5·⎝ ⎛⎭⎪⎫1x 25-k ·(-1)k =(-1)k C k51x 10-2k .令10-2k =2或10-2k =0,解得k =4或k =5. 故(x 2+2)·⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是(-1)4×C 45+2×(-1)5×C 55=3.14.已知在⎝ ⎛⎭⎪⎫12x 2-1x n的展开式中,第9项为常数项,则:(1)n 的值为________;(2)含x 的整数次幂的项有________个. 答案 (1)10 (2)6解析 二项展开式的通项为T k +1=C kn⎝ ⎛⎭⎪⎫12x 2n -k ·⎝⎛⎭⎪⎫-1x k =(-1)k ⎝ ⎛⎭⎪⎫12n -k C kn 522n k x -.(1)因为第9项为常数项,所以当k =8时,2n -52k =0,解得n =10.(2)要使20-52k 为整数,需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.15.(a +b +c)n (n∈N *)的展开式中的项数为________. 答案n +2n +12解析(a+b+c)n=C0n (a+b)n+C1n(a+b)n-1c+…+C nnc n,所以,其展开式中的项数为(n+1)+n+(n-1)+…+2+1=n+2n+12.16.已知数列{an }(n为正整数)是首项为a1,公比为q的等比数列.(1)求和:a1C02-a2C12+a3C22,a1C03-a2C13+a3C23-a4C33;(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.解(1)a1C02-a2C12+a3C22=a1-2a1q+a1q2=a1(1-q)2,a 1C03-a2C13+a3C23-a4C33=a1-3a1q+3a1q2-a1q3=a1(1-q)3.(2)归纳概括的结论为:若数列{an }是首项为a1,公比为q的等比数列,则a 1C0n-a2C1n+a3C2n-a4C3n+…+(-1)n an+1·C nn=a1(1-q)n,n为正整数.证明:a1C0n-a2C1n+a3C2n-a4C3n+…+(-1)n an+1·C nn=a1C0n-a1qC1n+a1q2C2n-a1q3C3n+…+(-1)n a1q n C nn=a1[C0n-qC1n+q2C2n-q3C3n+…+(-1)n q n C nn]=a1(1-q)n.§6.3二项式定理(第二课时二项式系数的性质)【学习目标】1.理解二项式系数的性质.2.会用赋值法求展开式系数的和.【知识梳理】知识点二项式系数的性质对称性在(a+b)n的展开式中,与首末两端“等距离”的两个二项式系数相等,即C mn=C n-mn增减性与最增减性:当k<n+12时,二项式系数是逐渐增大的;当k>n+12思考若(a+b)n的展开式中第5项的二项式系数最大,则n的值可以为多少?答案n=7或8或9.【判断正误】1.令f(r)=C rn (0≤r≤n,且r∈N),则f(r)的图象关于直线r=n2对称.( √)2.二项展开式中各项系数和等于二项式系数和.( ×)3.二项展开式的二项式系数和为C1n +C2n+…+C nn.( ×)4.二项展开式中系数最大项与二项式系数最大项相同.( ×) 【题型探究】一、二项展开式的系数和问题例1 已知(2x-1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5.求下列各式的值:(1)a0+a1+a2+…+a5;(2)|a0|+|a1|+|a2|+…+|a5|;(3)a1+a3+a5.解(1)令x=1,得a0+a1+a2+…+a5=1.(2)令x=-1,得-35=-a0+a1-a2+a3-a4+a5.由(2x-1)5的通项Tk+1=C k5(-1)k·25-k·x5-k,知a1,a3,a5为负值,所以|a0|+|a1|+|a2|+…+|a5|=a-a1+a2-a3+a4-a5=35=243.(3)由a0+a1+a2+…+a5=1,-a0+a1-a2+…+a5=-35,得2(a1+a3+a5)=1-35,所以a1+a3+a5=1-352=-121.延伸探究在本例条件下,求下列各式的值:(1)a0+a2+a4;(2)a1+a2+a3+a4+a5;(3)5a0+4a1+3a2+2a3+a4.解(1)因为a0+a1+a2+…+a5=1,-a0+a1-a2+…+a5=-35.所以a0+a2+a4=1+352=122.(2)因为a是(2x-1)5的展开式中x5的系数,所以a=25=32.又a0+a1+a2+…+a5=1,所以a1+a2+a3+a4+a5=-31.(3)因为(2x-1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,所以两边求导数得10(2x-1)4=5a0x4+4a1x3+3a2x2+2a3x+a4.令x=1得5a0+4a1+3a2+2a3+a4=10.反思感悟二项展开式中系数和的求法(1)对形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R,m,n∈N*)的式子求其展开式的各项系数之和,常用赋值法,只需令x=1即可,对(ax+by)n(a,b∈R,n∈N*)的式子求其展开式的各项系数之和,只需令x=y=1即可.(2)一般地,若f(x)=a0+a1x+a2x2+…+anx n,则f(x)展开式中各项系数之和为f(1),奇数项系数之和为a0+a2+a4+…=f1+f-12,偶数项系数之和为a1+a3+a5+…=f1-f-12.跟踪训练1 已知(x2-2x-3)10=a0+a1(x-1)+a2(x-1)2+…+a20(x-1)20.(1)求a2的值;(2)求a1+a3+a5+…+a19的值;(3)求a0+a2+a4+…+a20的值.解∵(x2-2x-3)10=a0+a1(x-1)+a2(x-1)2+…+a20(x-1)20,令x-1=t,展开式化为(t2-4)10=a0+a1t+a2t2+…+a20t20.(1)a2=C910(-4)9=-49×10.(2)令t=1,得a0+a1+a2+…+a20=310,令t=-1,得a0-a1+a2-…+a20=310,∴a1+a3+a5+…+a19=0.(3)由(2)得a0+a2+a4+…+a20=310.二、二项式系数性质的应用例2 已知f(x)=(3x2+3x2)n的展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.解令x=1,则二项式各项系数的和为f(1)=(1+3)n=4n,又展开式中各项的二项式系数之和为2n.由题意知,4n-2n=992.∴(2n)2-2n-992=0,∴(2n+31)(2n-32)=0,∴2n=-31(舍去)或2n=32,∴n=5.(1)由于n=5为奇数,∴展开式中二项式系数最大的项为中间的两项,它们分别为T3=C25(23x)3·(3x2)2=90x6,T 4=C35(23x)2·(3x2)3=223270x.(2)展开式的通项公式为Tk+1=C k5·3k·2(52)3kx+,假设Tk+1项系数最大,则有⎩⎨⎧C k53k≥C k-153k-1,C k53k≥C k+153k+1,∴⎩⎪⎨⎪⎧5!5-k !k !×3≥5!6-k !k -1!,5!5-k !k !≥5!4-k!k +1!×3,即⎩⎪⎨⎪⎧3k ≥16-k ,15-k ≥3k +1,∴72≤k≤92, ∵k∈N ,∴k=4,∴展开式中系数最大的项为T 5=C 4523x (3x 2)4=263405x . 反思感悟 (1)二项式系数最大的项的求法求二项式系数最大的项,根据二项式系数的性质对(a +b)n 中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大; ②当n 为偶数时,中间一项的二项式系数最大. (2)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx)n (a ,b∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项.跟踪训练2 已知⎝ ⎛⎭⎪⎫x -2x 2n (n∈N *)的展开式中第5项的系数与第3项的系数的比是10∶1.(1)求展开式中各项系数的和; (2)求展开式中含32x 的项;(3)求展开式中系数的绝对值最大的项.解 ∵⎝ ⎛⎭⎪⎫x -2x 2n 的展开式的通项是T k +1=C k n (x)n -k ·⎝ ⎛⎭⎪⎫-2x 2k =(-2)k C kn 52n kx -(0≤k≤n,k∈N ), ∴T 5=T 4+1=24C 4n102n x-,T 3=T 2+1=22C 2n52n x-.∵24C 4n22C 2n =101, ∴n 2-5n -24=0,解得n =8或n =-3(舍去). (1)令x =1,则⎝ ⎛⎭⎪⎫x -2x 28=(1-2)8=1,即所求各项系数的和为1. (2)展开式的通项为T k +1=(-2)k C k 8852k x -(0≤k≤8,k∈N ).令8-5k 2=32,解得k =1,∴展开式中含32x 的项为 T 2=T 1+1=(-2)1C 1832x =3216x -.(3)展开式的第k 项、第k +1项、第k +2项的系数的绝对值分别为C k -182k -1,C k 82k ,C k +182k +1. 若第k +1项的系数绝对值最大,则有⎩⎨⎧C k -182k -1≤C k 82k ,C k 82k≥C k +182k +1,解得5≤k≤6,故系数的绝对值最大的项为第6项和第7项, 即T 6=-1 792172x -,T 7=1 792x -11.【跟踪训练】1.已知(ax +1)n 的展开式中,二项式系数的和为32,则n 等于( ) A .5 B .6 C .7 D .8 答案 A2.(多选)⎝ ⎛⎭⎪⎫x -1x 11的展开式中二项式系数最大的项是( )A .第5项B .第6项C .第7项D .第8项 答案 BC解析 由于n =11为奇数,则展开式中第11+12项和第11+12+1项,即第6项和第7项的二项式系数相等,且最大.3.设(2-x)6=a 0+a 1(1+x)+a 2(1+x)2+…+a 6(1+x)6,则a 0+a 1+a 2+a 3+a 4+a 5+a 6等于( )A .4B .-71C .64D .199 答案 C解析 ∵(2-x)6=a 0+a 1(1+x)+a 2(1+x)2+…+a 6(1+x)6,令x =0,∴a 0+a 1+a 2+a 3+a 4+a 5+a 6=26=64.4.⎝ ⎛⎭⎪⎫x -1x 10的展开式的各项系数的和为________.答案 05.(2x -1)6的展开式中各项系数的和为________;各项的二项式系数的和为________. 答案 1 64解析 令x =1,得各项系数的和为1;各二项式系数之和为26=64. 【课堂小结】 1.知识清单:(1)二项式系数的性质. (2)赋值法求各项系数的和.2.方法归纳:一般与特殊、函数与方程.3.常见误区:赋值时应注意展开式中项的形式,杜绝漏项. 【同步练习】1.在(a +b)n 的二项展开式中,与第k 项的二项式系数相同的项是( ) A .第n -k 项 B .第n -k -1项 C .第n -k +1项 D .第n -k +2项答案 D解析 第k 项的二项式系数是C k -1n ,由于C k -1n =C n -k +1n,故第n -k +2项的二项式系数与第k 项的二项式系数相同.2.已知(1+x)n 的展开式中只有第6项的二项式系数最大,则展开式中的奇数项的二项式系数之和为( ) A .212 B .211 C .210 D .29答案 D解析 ∵展开式中只有第6项的二项式系数最大, ∴n=10,∵奇数项的二项式系数之和等于偶数项的二项式系数之和, ∴展开式中奇数项的二项式系数之和为2102=29.3.(1+x)+(1+x)2+…+(1+x)n 的展开式中各项系数之和为( ) A .2n +1 B .2n -1 C .2n +1-1 D .2n +1-2答案 D解析 令x =1,则2+22+…+2n =2n +1-2.4.(x -1)11的展开式中x 的偶次项系数之和是( ) A .-2 048 B .-1 023 C .1 024 D .-1 024 答案 D解析 (x -1)11=C 011x 11+C 111x 10·(-1)+C 211x 9·(-1)2+…+C 1111(-1)11,x 的偶次项系数为负数,其和为-210=-1 024. 5.在⎝⎛⎭⎪⎪⎫1x +51x 3n 的展开式中,所有奇数项系数之和为1 024,则中间项系数是( )A .330B .462C .682D .792 答案 B解析 ∵二项展开式中所有项的二项式系数之和为2n ,而所有偶数项的二项式系数之和与所有奇数项的二项式系数之和相等,故由题意得2n -1=1 024,∴n =11,∴展开式共12项,中间项为第6项、第7项,其系数为C 511=C 611=462.6.若(x +3y)n 的展开式中各项系数的和等于(7a +b)10的展开式中二项式系数的和,则n 的值为________. 答案 5解析 (7a +b)10的展开式中二项式系数的和为C 010+C 110+…+C 1010=210,令(x +3y)n 中x =y =1,则由题设知,4n =210,即22n =210,解得n =5.7.(2x-1)10的展开式中x的奇次幂项的系数之和为______.答案1-310 2解析设(2x-1)10=a0+a1x+a2x2+…+a10x10,令x=1,得a0+a1+a2+…+a10=1,再令x=-1,得310=a0-a1+a2-a3+…+a10,两式相减,可得a1+a3+…+a9=1-3102.8.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a+a2+a4)(a1+a3+a5)的值等于________.答案-256解析令x=1,得a0+a1+a2+a3+a4+a5=0,令x=-1,得a0-a1+a2-a3+a4-a5=25=32,两式相加可得2(a0+a2+a4)=32,两式相减可得2(a1+a3+a5)=-32,则a0+a2+a4=16,a1+a3+a5=-16,所以(a0+a2+a4)(a1+a3+a5)=-256.9.在二项式(2x-3y)9的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和.解设(2x-3y)9=a0x9+a1x8y+a2x7y2+…+a9y9.(1)二项式系数之和为C09+C19+C29+…+C99=29.(2)各项系数之和为a0+a1+a2+…+a9,令x=1,y=1,所以a0+a1+a2+…+a9=(2-3)9=-1.(3)令x=1,y=-1,可得a 0-a1+a2-…-a9=59,又a0+a1+a2+…+a9=-1,将两式相加可得a0+a2+a4+a6+a8=59-12,即所有奇数项系数之和为59-12.10.已知⎝ ⎛⎭⎪⎫12+2x n .(1)若展开式中第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式中前三项的二项式系数之和等于79,求展开式中系数最大的项.解 (1)由已知得2C 5n =C 4n +C 6n ,即n 2-21n +98=0,解得n =7或n =14.当n =7时展开式中二项式系数最大的项是第4项和第5项, ∵T 4=C 37⎝ ⎛⎭⎪⎫124(2x)3=352x 3,T 5=C 47⎝ ⎛⎭⎪⎫123(2x)4=70x 4,∴第4项的系数是352,第5项的系数是70. 当n =14时,展开式中二项式系数最大的项是第8项,它的系数为C 714⎝ ⎛⎭⎪⎫127×27=3 432.(2)由已知得C 0n +C 1n +C 2n =79,即n 2+n -156=0. 解得n =-13(舍去)或n =12. 设T k +1项的系数最大, ∵⎝ ⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x)12, 由⎩⎨⎧C k 12·4k ≥C k -112·4k -1,C k12·4k ≥C k +112·4k +1,解得9.4≤k≤10.4.又∵0≤k≤n,k∈N ,∴k=10. ∴展开式中系数最大的项是第11项, 即T 11=⎝ ⎛⎭⎪⎫1212·C 1012·410·x 10=16 896x 10.11.(1+3x)n 的展开式中x 5与x 6的系数相等,则含x 4项的二项式系数为( )A .21B .35C .45D .28 答案 B解析 ∵T k +1=C k n (3x)k =3k C k n x k ,又由已知得35C 5n =36C 6n ,即C 5n =3C 6n ,∴n=7,因此,含x 4项的二项式系数为C 47=35,故选B.12.在(1+x)5+(1+x)6+(1+x)7的展开式中,x 4的系数是首项为-2,公差为3的等差数列的( ) A .第11项 B .第13项 C .第18项 D .第20项答案 D解析 (1+x)5+(1+x)6+(1+x)7的展开式中,x 4的系数为C 45+C 46+C 47=C 15+C 26+C 37=55,以-2为首项,3为公差的等差数列的通项公式为a n =-2+3(n -1)=3n -5,令a n =55,即3n -5=55,解得n =20.13.(多选)设二项式⎝ ⎛⎭⎪⎫3x +1x n的展开式中第5项是含x 的一次项,那么这个展开式中系数最大的项是( ) A .第8项 B .第9项 C .第10项 D .第11项答案 CD解析 因为展开式的第5项为T 5=C 4n443n x--,所以令n -43-4=1,解得n =19.所以展开式中系数最大的项是第10项和第11项.故选CD.14.设m 为正整数,(x +y)2m 的展开式中二项式系数的最大值为a ,(x +y)2m +1的展开式中二项式系数的最大值为b ,若13a =7b ,则m =________. 答案 6解析 (x +y)2m 的展开式中二项式系数的最大值为C m 2m ,∴a=C m 2m .同理,b =C m +12m +1. ∵13a=7b ,∴13·C m 2m =7·C m +12m +1.∴13·2m !m !m !=7·2m +1!m +1!m !.∴m=6.15.(多选)(1+ax+by)n的展开式中不含x的项的系数的绝对值的和为243,不含y的项的系数的绝对值的和为32,则a,b,n的值可能为( )A.a=1,b=2,n=5 B.a=-2,b=-1,n=6C.a=-1,b=2,n=6 D.a=-1,b=-2,n=5答案AD解析只要令x=0,y=1,即得到(1+ax+by)n的展开式中不含x的项的系数的和为(1+b)n,令x=1,y=0,即得到(1+ax+by)n的展开式中不含y的项的系数的和为(1+a)n.如果a,b是正值,这些系数的和也就是系数绝对值的和,如果a,b中有负值,相应地,分别令y=-1,x=0;x=-1,y=0.此时的和式分别为(1-b)n,(1-a)n,由此可知符合要求的各项系数的绝对值的和为(1+|b|)n,(1+|a|)n.根据题意得,(1+|b|)n=243=35,(1+|a|)n=32=25,因此n=5,|a|=1,|b|=2.故选AD.16.已知(1+m x)n(m是正实数)的展开式的二项式系数之和为256,展开式中含有x项的系数为112.(1)求m,n的值;(2)求展开式中偶数项的二项式系数之和;(3)求(1+m x)n(1-x)的展开式中含x2项的系数.解(1)由题意可得2n=256,解得n=8,∴展开式的通项为Tk+1=C k8m k2kx,∴含x项的系数为C28m2=112,解得m=2或m=-2(舍去).故m,n的值分别为2,8.(2)展开式中偶数项的二项式系数之和为C18+C38+C58+C78=28-1=128.(3)∵(1+2x)8(1-x)=(1+2x)8-x(1+2x)8,∴含x2项的系数为C4824-C2822=1 008.。

(完整版)高考数学二项式定理专题复习(专题训练)

(完整版)高考数学二项式定理专题复习(专题训练)

(a
x )n
Cn0a n x0
Cn1a n 1x
C
2 n
a
n
2 x2
L
C
n n
a
0
x
n
a0 a1x 1 a 2 x 2
( x a)n
Cn0a 0 xn
Cn1ax n 1
C
2 n
a
2
x
n
2
L
C
n n
a
n
x
0
an xn L
a2 x2
令 x 1, 则 a0 a1 a2 a3L an (a 1)n

令 x 1,则 a0 a1 a2 a3 L an (a 1)n

① ②得 , a0 a2 a4 L
n
n
an (a 1) ( a 1) (奇数项的系数和 )
2
① ②得 , a1 a3 a5L
an ( a 1)n (a 1)n (偶数项的系数和 ) 2
L anx n a1x1 a0
( 5)二项式系数的最大项 :如果二项式的指数 n 是偶数时,则中间项为第 ( n 1)项的二项式 2
( 6)系数的最大、最小项的求法:求 (a bx) n 展开式中最大、最小项,一般采用待定系数
法。设展开式中各项系数分别为 A1 , A2 , , An 1 ,设第 r 1 项系数最大,应有:
Ar 1 Ar 且 Ar 1 Ar 2 ;如果设第 r 1 项系数最小,应有 Ar 1 Ar 且 Ar 1 Ar 2 ,从而解出 r 的范围。
与 (b a)n 的二项展开式是不同的。
( 3)二项式项数共有 (n 1) 项,是关于 a 与 b 的齐次多项式。
( 4)二项式系数:展开式中各项的系数为

二项式定理公式、各种例题讲解及练习

二项式定理公式、各种例题讲解及练习

二项式定理例题讲解分类计数原理分步计数原理做一件事,完成它有n 类不同的办法。

第一类办法中有m1种方法,第二类办法中有m2种方法……,第n 类办法中有mn 种方法,则完成这件事共有:N=m1+m2+…+mn 种方法。

做一件事,完成它需要分成n 个步骤。

第一步中有m1种方法,第二步中有m2种方法……,第n 步中有mn 种方法,则完成这件事共有:N=m1 m2 … mn … mn 种方法。

注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。

排列组合从n 个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n 个不同的元素中取m个元素的排列。

从n 个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同的元素中取m 个元素的组合。

排列数组合数从n 个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,记为Pnm 从n 个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记为Cnm 选排列数全排列数二项式定理二项展开式的性质(1)项数:n+1项(2)指数:各项中的a 的指数由n 起依次减少1,直至0为止;b 的指出从0起依次增加1,直至n 为止。

而每项中a 与b 的指数之和均等于n 。

(3)二项式系数:各奇数项的二项式数之和等于各偶数项的二项式的系数之和例1.试求:试求:(1)(x 3-22x)5的展开式中x 5的系数;的系数;(2)(2x 2-x1)6的展开式中的常数项;的展开式中的常数项;(3)(x -1)9的展开式中系数最大的项;的展开式中系数最大的项;(4)在1003)23(+x 的展开式中,系数为有理数的项的个数.的展开式中,系数为有理数的项的个数. 解:(1)T r +1=rr rr rrxC xx C 51552535)2()2()(---=-依题意15-5r =5,解得r =2 故(-2)2r C 5=40为所求x 5的系数的系数(2)T r +1=r C 6(2x 2)6- rrx)1(-=(-1)r·26- r·rrxC 3126-依题意12-3r =0,解得r =4 故4)1(-·2226C =60为所求的常数项.为所求的常数项.(3)T r +1=r )1(-rrxC -99∵1265949==C C ,而(-1)4=1,(-1)5=-1 ∴ T 5=126x 5是所求系数最大的项是所求系数最大的项 (4)T r +1=rr r rrr rxCx C ---××=1003250100310010023)2()3(, 要使x 的系数为有理数,指数50-2r 与3r 都必须是整数,都必须是整数,因此r 应是6的倍数,即r =6k (k ∈Z ), 又0≤6k ≤100,解得0≤k ≤1632(k ∈Z ) ∴x 的系数为有理数的项共有17项.项.评述评述 求二项展开式中具有某特定性质的项,关键是确定r 的值或取值范围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.项展开式中各项的系数不是同一概念,要加以区分.例2.试求:试求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;的系数;(2)(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数;的系数;(3)321÷÷øöççèæ-+xx 的展开式中的常数项. 解:(1)∵)∵ (x +2)10=x 10+20x 9+180x 8+…+…∴ (x +2)10(x 2-1)的展开式中x 10的系数是-1+180=179 (2)∵)∵ (x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5=x x x x x x 65)1()1()]1([1})]1([1){1(-+-=------- ∴所求展开式中x 2的系数就是(x -1)6的展开式中x 3的系数36C -=-20 (3)∵)∵ 321÷÷øöççèæ-+x x =61÷÷øöççèæ-x x ∴ 所求展开式中的常数项是-36C=-20 评述评述 这是一组将一个二项式扩展为若干个二项式相乘或相加,或扩展为简单的三项展开式,求解的关键在于转化为二项展开式的问题,转化时要注意分析题目中式子的结构特征.在于转化为二项展开式的问题,转化时要注意分析题目中式子的结构特征.例3.(1)已知(1+x )n 的展开式中,x 3的系数是x 的系数的7倍,求n 的值;的值;(2)已知(ax +1)7(a ≠0)的展开式中,x 3的系数是x 2的系数与x 4的系数的等差中项,求a 的值;的值; (3)已知(2x +gx x1)8的展开式中,二项式系数最大的项的值等于1120,求x 的值.的值.解:(1)依题意137nnC C =,即6)2)(1(--n n n =7n由于n ∈N ,整理得n 2-3n -40=0,解得n =8 (2) 依题意3474372572a C a C a C =+由于a ≠0,整理得5a 2-10a +3=0,解得a =1±510(3)依题意T 5=4lg 448)()2(xx x C =1120,整理得x4(1+lg x )=1,两边取对数,得,两边取对数,得lg 2x +lg x =0,解得lg x =0或lg x =-1 ∴x =1或x =101评述评述 (a +b)n的展开式及其通项公式是a ,b ,n ,r ,T r +1五个量的统一体,已知与未知相对的,运用函数与方程的思想方法,应会求其中居于不同位置,具有不同意义的未知数.例4.(1)若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4则(a 0+a 2+a 4)2-(a 1+a 3)2的值等于的值等于 ;(2)1+210101021011024C C C +¼++= . 解(1)令x =1,得a 0+a 1+a 2+a 3+a 4=(32+)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=4)23(-,由此可得(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)( a 0-a 1+a 2-a 3+a 4) =[)23)(23(-+]4=1 (2)在(1+x )10=rrr x C 1010å=中,中,令x =2,得1+25904932410101010210110==+¼++C C C评述评述 这是一组求二项式系数组成的式子的值的问题,其理论依据是(a +b)n=rrn rnnr b aC -=å10为恒等式.二项式定理练习题1.在()103x -的展开式中,6x 的系数为的系数为( )A .610C 27-B .410C 27C .610C 9-D .410C 92. 已知a 4b ,0b a =>+, ()nb a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n等于等于( )A .4 B .9 C .10 D .11 3.已知(naa )132+的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )A .10 B .11 C .12 D .134.5310被8除的余数是除的余数是( ) A .1 B .2 C .3 D .7 5. (1.05)6的计算结果精确到0.01的近似值是的近似值是( )A .1.23 B .1.24 C .1.33 D .1.34 6.二项式n4x 1x 2÷øöçèæ+(n ÎN)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是( ) A .1 B .2 C .3 D .4 7.设(3x 31+x 21)n展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是项的系数是( )A .21B .1 C .2 D .38.在62)1(x x -+的展开式中5x 的系数为( )A .4 B .5 C .6 D .7 9.n x x)(5131+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是( )A .330 B .462 C .680 D .790 10.54)1()1(-+x x 的展开式中,4x 的系数为的系数为( )A .-40 B .10 C .40 D .45 11.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为值为( )A .6p 或3p B .6p 或65pC .3p 或32pD .3p 或65p12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列项的系数是等差数列a n =3n -5的 ( )A .第2项B .第11项C .第20项D .第24项二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果. 13.92)21(x x -展开式中9x 的系数是的系数是. 14.若()44104x a x a a 3x 2+×××++=+,则()()2312420a a a a a +-++的值为__________. 15.若.若 32()nx x -+的展开式中只有第6项的系数最大,则展开式中的常数项是 . 16.对于二项式(1-x)1999,有下列四个命题:,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;项; ④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上)(把你认为正确的命题序号都填上)三、解答题:本大题满分74分. 17.(12分)若n xx )1(66+展开式中第二、三、四项的二项式系数成等差数列.展开式中第二、三、四项的二项式系数成等差数列.(1)(1) 求n 的值;的值;(2)此展开式中是否有常数项,为什么?(2)此展开式中是否有常数项,为什么?18.(12分)已知(124x +)n的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.数.19.(12分)是否存在等差数列{}n a ,使nnn 1n 2n 31n 20n 12n C a C a C a C a ×=+×××++++对任意*N n Î都成立?若存在,求出数列{}n a 的通项公式;若不存在,请说明理由.的通项公式;若不存在,请说明理由.20.(12分)某地现有耕地100000亩,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%。

2020高考复习 二项式定理易错专练

2020高考复习 二项式定理易错专练

2020高考复习 二项式定理易错专练1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.562.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C n n 的值等于( ) A.64B.32C.63D.313.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.参考答案1.解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x 8-2r ,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-48。

2020年高考理科数学 《二项式定理》题型归纳与训练

2020年高考理科数学 《二项式定理》题型归纳与训练

2020年高考理科数学 《二项式定理》题型归纳与训练【题型归纳】题型一 二项式定理展开的特殊项例 在二项式521⎪⎭⎫ ⎝⎛-x x 的展开式中,含4x 的项的系数是( ) A .10- B .10C .5-D .5【答案】B【解析】对于()()r r r rr r r x C x xC T 3105525111--+-=⎪⎭⎫ ⎝⎛-=,对于2,4310=∴=-r r ,则4x 的项的系数是()101225=-C 【易错点】公式记错,计算错误。

【思维点拨】本题主要考查二项式定理的展开公式,知道什么是系数,会求每一项的系数.题型二 求参数的值例 若二项式n x x ⎪⎭⎫ ⎝⎛+21的展开式中,第4项与第7项的二项式系数相等,则展开式6x 的系数为________.(用数字作答)【答案】9【解析】根据已知条件可得: 96363=+=⇒=n C C n n , 所以nx x ⎪⎭⎫ ⎝⎛+21的展开式的通项为23999912121C r r rr r x C x x T --+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=,令26239=⇒=-r r ,所以所求系数为921292=⎪⎭⎫ ⎝⎛C . 【易错点】分数指数幂的计算【思维点拨】本题主要考查二项式定理的展开公式,并用其公式求参数的值.题型三 展开项的系数和例 已知()()()()10102210101...111x a x a x a a x -++-+-+=+,则8a 等于( ) A .180-B .180C .45D .45-【答案】B【解析】由于()()[]1010121x x --=+,又()[]1012x --的展开式的通项公式为: ()[]()()rr r r r r r r x C x C T -⋅⋅⋅-=--⋅⋅=--+12112101010101,在展开式中8a 是()81x -的系数,所以应取8=r ,∴()18021281088=⋅⋅-=C a . 【易错点】对二项式的整体理解【思维点拨】本题主要对二项式定理展开式的综合考查,学会构建模型题型四 二项式定理中的赋值二项式()932y x -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和.【答案】(1)92 (2)-1 (3)2159- 【解析】设()9927281909...32y a y x a y x a x a y x ++++=+ (1)二项式系数之和为9992919092...=++++C C C C . (2)各项系数之和为()132 (9)9210-=-=++++a a a a (3)由(2)知1...9210-=++++a a a a ,令1,1-==y x ,得992105...=++++a a a a ,将两式相加,得215986420-=++++a a a a a ,即为所有奇数项系数之和. 【思维点拨】本题主要学会赋值法求二项式系数和、系数和,难点在于赋值【巩固训练】题型一 二项式定理展开的特殊项1.在 ()102-x 的展开式中,6x 的系数为( ) A .41016C B .41032C C .6108C - D .61016C -【答案】A【解析】解:()4,610,210101==-∴-=-+r r x C T r r r r ,6x 的系数为()4104410162C C =- 2.822⎪⎭⎫ ⎝⎛+x x 的展开式中4x 的系数是________ 【答案】1120【解析】解:r r r r r r r x C xx C T 316--88281+2=)2()(=,4=316∴r -,解得4=r ,所以4x 的系数为11202484=C3.在()()6321x x +-的展开式中,5x 的系数是________ . (用数字作答) 【答案】228-【解析】解:()()6321x x +-的展开式中,5x 的系数是2282226456-=-C C 题型二 求参数的值1.已知()nx 31+的展开式中含有2x 的系数是54,则n =________ . 【答案】4【解析】解:()n x 31+的展开式中通项公式:()rr n r n r x C T 311-+= ∵含有2x 的系数是54,∴r =2. ∴ 54322=n C ,可得 62=nC ,∴()*,621N n n n ∈=÷- ,解得4=n . 2.在 6⎪⎭⎫ ⎝⎛+x a x ()0>a 的展开式中常数项的系数是60,则a 的值为________ . 【答案】2【解析】解:r r r r r rr x C a x a x C T 2336661+=)()(=--,令0=233r -,解得r=2. ∴ 60262=C a ,a >0,解得a=2.3.在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【解析】利用通项公式,,2551r r r r x C T -+=,令3=r ,得出3x 的系数为402352=C题型三 展开项的系数和1.在 n x x ⎪⎭⎫ ⎝⎛+3的展开式中,各项系数和与二项式系数和之比为64,则 的系数为( )A .135B .405C .15D .45【答案】A 【解析】由题意可得6424=n n ,6=∴n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考理科数学 《二项式定理》题型归纳与训练
【题型归纳】
题型一 二项式定理展开的特殊项
例 在二项式5
21⎪⎭⎫ ⎝

-x x 的展开式中,含4x 的项的系数是( )
A .10-
B .10
C .5-
D .5 【答案】B
【解析】对于()
()r
r r r
r
r
r x
C x x
C T 3105525
111--+-=⎪⎭
⎫ ⎝⎛-=,对于2,4310=∴=-r r ,则4x 的项的系数是()1012
2
5
=-C 【易错点】公式记错,计算错误。

【思维点拨】本题主要考查二项式定理的展开公式,知道什么是系数,会求每一项的系数.
题型二 求参数的值
例 若二项式n
x x ⎪⎭⎫ ⎝⎛
+21的展开式中,第4项与第7项的二项式系数相等,则展开式6x 的系数为
________.(用数字作答) 【答案】9
【解析】根据已知条件可得: 9636
3=+=⇒=n C C n n , 所以n
x x ⎪⎭⎫ ⎝⎛+21的展开式的通项为
239999
12121C r
r r
r r x C x x
T --+⎪⎭
⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=,令26239=⇒=-r r ,所以所求系数为921292
=⎪⎭⎫
⎝⎛C .
【易错点】分数指数幂的计算
【思维点拨】本题主要考查二项式定理的展开公式,并用其公式求参数的值.
题型三 展开项的系数和
例 已知()()()()10
102
21010
1...111x a x a x a a x -++-+-+=+,则8a 等于( )
A .180-
B .180
C .45
D .45-
【答案】B
2
【解析】由于()()[]10
10
121x x --=+,又()[]10
12x --的展开式的通项公式为:
()[]()()r
r r
r r r r r x C x C T -⋅⋅⋅-=--⋅⋅=--+12112101010101,在展开式中8a 是()81x -的系数,所以应取
8=r ,
∴()1802128108
8=⋅⋅-=C a .
【易错点】对二项式的整体理解
【思维点拨】本题主要对二项式定理展开式的综合考查,学会构建模型
题型四 二项式定理中的赋值
二项式()9
32y x -的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和.
【答案】(1)9
2 (2)-1 (3)2
1
59-
【解析】设()9927281909
...32y a y x a y x a x a y x ++++=+
(1)二项式系数之和为9992919
092...=++++C C C C . (2)各项系数之和为()132 (9)
9210-=-=++++a a a a
(3)由(2)知1...9210-=++++a a a a ,令1,1-==y x ,得992105...=++++a a a a ,将两式相加,
得2
1
5986420-=++++a a a a a ,即为所有奇数项系数之和.
【思维点拨】本题主要学会赋值法求二项式系数和、系数和,难点在于赋值
【巩固训练】
题型一 二项式定理展开的特殊项
1.在 ()10
2-x 的展开式中,6x 的系数为( )
A .41016C
B .41032
C C .6108C -
D .6
1016C -
【答案】A
【解析】解:()4,610,210101==-∴-=-+r r x C T r
r r r ,6x 的系数为()4
104
410
162C C =- 2.8
22⎪⎭⎫ ⎝

+x x 的展开式中4x 的系数是________
【答案】1120
【解析】解:r r r r r r r x C x x C T 316--88281+2=)2
()(=,4=316∴r -,解得4=r ,所以4x 的系数为
11202484=C
3.在()()6
321x x +-的展开式中,5x 的系数是________ . (用数字作答)
【答案】228-
【解析】解:()()6
321x x +-的展开式中,5x 的系数是228222645
6
-=-C C 题型二 求参数的值
1.已知()n
x 31+的展开式中含有2x 的系数是54,则n =________ .
【答案】4
【解析】解:()n
x 31+的展开式中通项公式:()r
r
n r n r x C T 311-+= ∵含有2x 的系数是54,∴r =2.
∴ 54322=n C ,可得 62
=n
C ,∴()*,621N n n n ∈=÷- ,解得4=n . 2.在 6
⎪⎭⎫ ⎝

+x a x ()0>a 的展开式中常数项的系数是60,则a 的值为________ .
【答案】2
【解析】解:r
r r r r
r
r x C a x a x C T 23
3666
1+=)()
(=--,令0=2
33r -,解得r=2. ∴ 60262=C a ,a >0,解得a=2. 3.在()5
2x +的展开式中,3x 的系数为
.(用数字作答)
【答案】40
【解析】利用通项公式,,2551r r r r x C T -+=,令3=r ,得出3x 的系数为4023
5
2=C
4
题型三 展开项的系数和
1.在 n
x x ⎪⎭⎫ ⎝⎛
+3的展开式中,各项系数和与二项式系数和之比为64,则
的系数为( )
A .135
B .405
C .15
D .45 【答案】A
【解析】由题意可得6424=n n ,6=∴n 。

r
r r r r r r x C x x C T 23
66661+3=)3(=--,32
36=-∴r ,2=r ,
则3x 的系数为1353262=C
2.若二项式n
x x ⎪⎭⎫ ⎝

+1的展开式中各项的系数和为32,则该展开式中含x 的系数为( )
A .1
B .5
C .10
D .20 【答案】B
【解析】解:令1=x ,则5,322==n n , ∴r
r r r r r x C x
x C T 23
255551+=)1()(=--
令 1,12
325==-r r ,.∴该展开式中含x 的系数为51
5
=C
3.n
x x ⎪⎭⎫ ⎝

-2 的二项展开式中第五项和第六项的二项式系数最大,则各项的系数和为
________ . 【答案】-1
【解析】解:因为n
x x ⎪⎭⎫ ⎝⎛
-2的展开式中第五项和第六项的二项式系数最大 所以n =9
令()121,19
-=-=x
题型四 二项式定理中的赋值
1.已知()6626
...1211x a bx x ax ++++=+,则实数b 的值为( )
A .15
B .20
C .40
D .60 【答案】D
【解析】解:其展开式的通项为()r
r
r ax C T 61=+ , 则x 的系数为12116=a C ,解得2=a , 则
602226==C b
2.若()6622106
...1x a x a x a a mx ++++=+,且63...621=+++a a a ,则实数m 的值为 ( )
A .1或3
B .-3
C .1
D .1或-3
【答案】D
【解析】令x =0,得()1016
0=+=a ,令x =1,得()62106
...1a a a a m ++++=+,又
64...6210=++++a a a a ,∴()66
2641==+m ,∴m =1或m =-3.
3.的展开式中x 的奇数次幂项的系数之和为32,则__________. 【答案】3
【解析】由已知得()4324
46411x x x x x ++++=+,故()()4
1x x a ++的展开式中x 的奇数次冥项
分别为533,6,,4,4x x x ax ax ,其系数之和为3216144=++++a a ,解得a =3
4()(1)a x x ++a =。

相关文档
最新文档