函数的最大值和最小值ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单调减区间为[-3,-1],[2,5],[7,8].
-
变式练习
1.试求函数 y=|x-2|+ (x+1)2的最值.
【解析】 原函数变为
y=|x-2|+|x+1|
-2x+1 =3
2x-1
(x≤-1) (-1<x≤2)
(Baidu Nhomakorabea>2)
-
利用单调性求函数的最值
求函数 y=xx+ -21 x∈[2,3]上的最值. 【思路点拨】 定义法判断函数的单调 性―→求最值 【解析】 函数 y=xx+ -21=x-x-1+1 3=1+x-3 1 设 2≤x1<x2≤3, 则 f(x1)-f(x2)=x1-3 1-x2-3 1 =(x13-(x12)-(xx2-1) 1) -
∵2≤x1<x2≤3 ∴x2-x1>0,x1-1<0,x2-1<0 ∴f(x1)-f(x2)>0 即 f(x1)>f(x2) ∴函数 y=xx+ -21在[2,3]上是减函数 ∴f(x)的最小值为 f(3)=33-+12=52. f(x)的最大值为 f(2)=22+ -21=4.
-
(1)运用函数单调性求最值是求函数最值的重要 方法,特别是当函数图象不好作或作不出来时, 单调性几乎成为首选方法.
-
变式练习
函数解析式为“y=x2-2x” ,求 函数的在定义域 [2,4)上的最值.
-
课堂小结
(1)掌握函数最大值、最小 值的概念。
(2)熟悉求最大值、最小值 的方法。
-
Thanks for listening (=^ ^=)
-
-
利用函数图象求最值
如图为函数y=f(x),x∈[-3,8]的图象, 指出它的最大值、最小值及单调区间.
-
【解析】 观察函数图象可以知道,图象 上位置最高的点是(2,3),最低的点是(-1, -3),所以函数y=f(x)当x=2时,取得最大 值,最大值是3,当x=-1.5时,取得最小值 ,最小值是-3.函数的单调增区间为[-1,2] ,[5,7].
-
二次函数最值问题
求二次函数f(x)=x2-6x+4在区间[-2,2]上的 最大值和最小值.
【思路点拨】由题目可获取以下主要信息 ①所给函数为二次函数; ②在区间[-2,2]上求最值. 解答本题可先确定函数在区间[-2,2]上的单调 性,再求最值.
-
【解析】 f(x)=x2-6x+4=(x -3)2-5,
(2)函数的最值与单调性的关系 ①若函数在闭区间[a,b]上是减函数,则f(x) 在[a,b]上的最大值为f(a),最小值为f(b); ②若函数在闭区间[a,b]上是增函数,则f(x) 在[a,b]上的最大值为f(b),最小值为f(a).
-
思考
当一个函数有多个单调增区间 和多个单调减区间时,我们该如何 简单有效的求解函数最大值和最小 值呢?
函数的最大值和最小值
-
缺钱花啊!!
赶时间??
-
二次函数图象
一次函数图象
-
1.函数的最大值 设函数y=f(x)的定义域为I,如果 存在实数M满足: ①对于任意x∈I ,都有f(x)≤M, ②存在x0∈I,使f(x0)=M. 那么称M是函数y=f(x)的最大值 .
-
准确理解函数最大值的概念 (1)对于定义域内全部元素,都有 f(x)≤M成立,“任意”是说对每一个值 都必须满足不等式. (2)定义中M首先是一个函数值,它是 值域的一个元素,注意对②中“存在” 一词的理解
-
2.函数的最小值 设函数y=f(x)的定义域为I,如果 存在实数M满足: ①对于任意x∈I,都有f(x)≥M, ②存在x0∈I ,使f(x0)=M. 那么称M是函数y=f(x)的最小值 .
-
思考 函数最大值、最小值的几何
意义是什么? 【提示】 函数最大值或最小
值是函数的整体性质,从图象上 看,函数的最大值或最小值是图 象最高点或最低点的纵坐标.
其对称轴为x=3,开口向上, ∴f(x)在[-2,2]上为减函数, ∴f(x)min=f(2)=-4,f(x)max= f(-2)=20.
-
在求二次函数的最值时,要注意定义 域.定义域若是区间[m,n],则最大(小) 值不一定在顶点处取得,而应看对称轴是 在区间[m,n]内还是在区间左边或右边, 在区间的某一边时应该利用函数单调性求 解.
相关文档
最新文档