函数的最大值和最小值ppt

合集下载

高中数学 1.3.1.2 第2课时 函数的最大值、最小值课件 新人教A版必修1

高中数学 1.3.1.2 第2课时 函数的最大值、最小值课件 新人教A版必修1

(2)存在x0∈I,使 _f_(x_0_)=__M__
结论
M是函数y=f(x)的最 大值
M是函数y=f(x)的 最小值
第五页,共42页。
1.函数 f(x)(-2≤x≤2) 的图象如图所示,则函数 的最大值、最小值分别为
()
A.f(2),f(-2) C.f(12),f(-32) 答案(dáàn): C
第二十页,共42页。
2.已知函数 f(x)=x-a 1(x∈[2,6])的 最大值为 2,求 a 的值. 解析: 首先讨论 f(x)在[2,6]上的单调性: 设 x1,x2∈[2,6],且 x1<x2,则 f(x1)-f(x2)=x1-a 1-x2-a 1 =x1a-x12-xx2-1 1. ∵2≤x1<x2≤6, ∴x2-x1>0,x1-1>0,x2-1>0.
当x=0
最小值
时,y=0是所有函数值中_______.而对于f(x)
=_最__-大__x值_2_来.说,x=0时,y=0是所有函数值中
第三页,共42页。
2.二次函数的最值 二次函数 y=ax2+bx+c(a≠0)的图象为抛物线, 当 a>0 时,ymin=4ac4-a b2, 当 a<0 时,ymax=4ac4-a b2.
第八页,共42页。
3.函数(hánshù)y=x2-4x+5,x∈[0,3]的最大 值为________. 解析: ∵y=(x-2)2+1,x∈[0,3], ∴原函数(hánshù)在[0,2]上为减函数(hánshù), 在[2,2]上为增函数(hánshù). ∴最大值为f(0)与f(3)中的最大者,而f(0)=5, f(3)=2, ∴最大值为5. 答案: 5
第二十八页,共42页。
②当 t≤1≤t+1, 即 0≤t≤1 时, f(x)在区间[t,t+1]上先减再增, 故当 x=1 时,f(x)取得最小值, 此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上单 调递减,

高等数学-第七版-课件-3-6 函数的极值与最大值最小值

高等数学-第七版-课件-3-6 函数的极值与最大值最小值

o
x
定义 设函数f(x)在点x0的某邻域U(x0)内有定义, 如果对于去心邻域U0(x0)内的任一x,有 y f(x)<f(x0)(或f(x)>f(x0)) 称f(x0)为函数f(x)的一个极大值(极小值) 函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点 注 极值是一个局部的概念
海岸位于A点南侧40km,是一条东西走向的笔直长堤. 演习中部队先从A出发陆上行军到达海堤,再从海堤处乘舰艇 到达海岛B. 已知陆上行军速度为每小时36km,舰艇速度为
每小时12km.问演习部队在海堤的何处乘舰艇才能使登岛用 y 时最少? 分析 陆上行军耗时 o 海上行军耗时 A
(0,40)
? R(x,0) B
x
(140,-60)
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
例4 从边长为a的一张正方形薄铁皮的四角切去 边长为x的四个小正方形,折转四边,作一 个盒子,问x为何值时盒子的容积最大?
例5 某企业以钢材为主要生产材料。设该厂每天的钢材需求量为 R吨,每次订货费为C1元,每天每吨钢材的存贮费为C2元 (其中R、 C1、 C2为常数),并设当存贮量降为零时,能 立即得到补充(在一个订货周期内每天的平均存贮量为订货 量的二分之一)求一个最佳的订货周期,使每天的平均费用 最小? q(t) Q o T C C0
o
x
定义 设函数f(x)在区间I上有定义,如果存在x0∈I,使得对于区间I内 的任一x,有 f(x)≤f(x0)(或f(x)≥f(x0)),则称f(x0)为函数f(x) 在区间I上的最大值(或最小值).

高等数学课件5第五节(2)函数的最大值最小值ppt

高等数学课件5第五节(2)函数的最大值最小值ppt
故 在 x2 2 2 处 达 到 最 大 利 润.
例7. 由直线 y 0, x 8 及抛物线 y x2 围成一个 曲边三角形, 在曲边 y x2 上求一点, 使曲线在该 点处的切线与直线 y 0 及 x 8 所围成的三角形 面积最大.
解: 如图,
y
设所求切点为P( x0, y0 ),
解: 设A点到水面的垂直距离为AO h1,
B点到水面的垂直距离为BQ h2 , OQ l. 设OP x,
则光线从 A 到 B 所需要的传播时间为 A
T( x) h12 x2 h22 (l x)2 , x [0, l]. h1
v1
v2
Ox P
T( x) 1 x 1 l x v1 h12 x2 v2 h22 (l x)2
计算 f (3) 23;
f (2) 34;
f (1) 7;
f (4) 142;
比较得 最大值 f (4) 142, 最小值 f (1) 7.
例2. 求函数 f ( x) x2 3x 2 在 [3,4] 上的 最大值与最小值.
解:
x2 3x 2,
f
(
x)
x2
3
x
2,
x [3,1] [2,4] x (1,2).
解: 由力学分析知矩形梁的抗弯截面模量为
1 b(d 2 b2 ), b(0,d) 6
令 W 1 (d 2 3b2 ) b 1 d
6
3
从而有
2
h
d 2 b2
d 3
dh b

d :h:b 3 : 2 :1
由实际意义可知 , 所求最值存在 , 驻点只一个, 故所求
结果就是最好的选择 .
A 若 f ( x0 ) 0 且 f ( x0 ) 0, 则 f ( x)在 x0(

5.3.2函数的极值与最大(小)值课件(人教版)

5.3.2函数的极值与最大(小)值课件(人教版)
最小值.
高中数学
探究新知
问题4 最大(小)值与极值有什么区分和联系?
最大(小)值与极值的区分是:
1.极值是函数的局部性质,最大(小)值是函数
的整体性质;
高中数学
探究新知
2.函数的极大(小)值可以有多个,而最大(小)值
是唯一的;
高中数学
探究新知
3.函数的极大值不一定大于极小值,极小值不
一定小于极大值,而最大值一定大于最小值(常值函
解: 函数定义域为(∞,+∞).
1
3
因为 f(x)= x34x+4,所以f′(x)=x24=(x+2)(x2).
令 f′(x)=0,解得x=2或x=2.
当x变化时,f′(x),f(x)的变化情况如下表所示
高中数学
知识应用
x (∞,2) 2
f′(x)
+
0
f(x) 单调递增
(2,2)
那么,我们称M是函数y=f(x)的最大值
(maximum value).
高中数学
探究新知
问题1 函数的最大值与最小值的定义是什么?
一般地,设函数y=f(x)的定义域为I,如果存在
实数m满足:
(1)∀x∈I,都有f(x)≥m;
(2)∃x0∈I,使得f(x0)=m.
那么,我们称m是函数y=f(x)的最小值

0
+
f(x) 单调递减 0 单调递增
所以,当x=1时,f(x)取得最小值.
1

所以f(x)≥f(1)=0. 即 1+lnx≥0.
1

所以当x>0时,1 ≤lnx.
高中数学
知识应用
小结 求函数在某区间上的最大(小)值,

同济第五版高数3-5极值最值.ppt

同济第五版高数3-5极值最值.ppt

• 对于应用问题 有时可根据实际意义判别 对于应用问题,有时可根据实际意义判别 求出的可疑点是否为最大值点或最小值点. 求出的可疑点是否为最大值点或最小值点
例4 求函数 上的最大值和最小值 . 解
在闭区间
′( x) =6x2 − 18x + 12 f = 6( x − 1)( x − 2), 0 < x < 5 2
极 大 值
极大值 f ( −1) = 10, 极小值 f (3) = −22.
图形如下: f ( x ) = x − 3 x − 9 x + 5 图形如下:3 2来自yf ( −1)
−1 o
3
f ( 3)
x
定理3 第二充分条件 第二充分条件) 定理 (第二充分条件 处具有二阶导数,且 设 f (x)在 x0 处具有二阶导数 且 f ′( x0 ) = 0,
思考题
1.下列命题正确吗? 1.下列命题正确吗? 下列命题正确吗
的极小值点, 如果 x 0 为 f ( x ) 的极小值点,那么必存在 的某邻域,在此邻域内, x0 的某邻域,在此邻域内, f ( x ) 在 x0 的左侧 下降, 的右侧上升. 下降,而在 x 0 的右侧上升.
例3 求出函数 f ( x ) = 1 − ( x − 2) 的极值 .
2 解 f ′( x ) = − ( x − 2 ) ( x ≠ 2) 3 当x = 2时 , f ′( x )不存在 . y
− 1 3
2 3
但 函 数 f ( x )在 该 点 连 续 . 当x < 2时, f ′( x ) > 0; 当x > 2时,f ′( x ) < 0. o ∴ f (2) = 1为f ( x )的极大值 .

《函数的最大(小)值》函数的概念与性质PPT

《函数的最大(小)值》函数的概念与性质PPT
有几个?举例说明.
1
提示:一个函数不一定有最值,例如y= 在定义域内没有最大值也
没有最小值.有的函数可能只有一个最大(或小)值,例如y=2x+1,x∈[-1,+∞).如果一个函数存在最值,那么函数的最大值和最
小值都是唯一的,但取最值时的自变量可以有多个,如y=x2,x∈[-2,2],
最大值只有一个为4,而取最大值的x有x=±2两个.
提示:点C是图象的最高点,即对定义域内任意x,均有f(x)≤f(x0)成
立.
(4)一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对
∀x∈I,都有f(x)≤M;
②∃x0∈I,使得f(x0)=M,那么我们就称M是函数y=f(x)的最大值.
其几何意义:函数y=f(x)的最大值是图象最高点的纵坐标.
第2课时
函数的最大(小)值
-1-
首页
课标阐释
1.理解函数的最大值和最小值的
概念及其几何意义.
2.能借助函数的图象和单调性,求
一些简单函数的最值(或值域).
3.能利用函数的最值解决有关的
实际应用问题.
思维脉络
课前篇
自主预习


一、函数的最大(小)值的定义
1.(1)如图所示是函数y=-x2-2x、y=-2x+1,x∈[-1,+∞)、y=f(x)的图
(5)类比函数最大值的定义,请你给出最小值的定义及其几何意义.
提示:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
①∀x∈I,都有f(x)≥M;
②∃x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.
函数最小值的几何意义:函数图象上最低点的纵坐标.

函数的最大值和最小值[1].ppt1

函数的最大值和最小值[1].ppt1
函数的最大值 和最小值
一、复习提问:
用导数来确定函数的极值步骤: (1)先求函数的导数 f / (x);(注意定义域) (2)再求方程 f /(x) = 0 的根; (3)列出导函数值符号变化规律表;
f’(x)符号
f (x)
+ 增函数
(-∞,a)
a
(a,b)
0
极大值
0 + 减函数 极小值 增函数
b
a 2 b 3 29 当x 0时.最大值为 3 ,求得b 3.

函数最小值为 16a b 29 可 可 - -1 0 0 + 2 能 能 f(x) a 2 3 小
-1 (-1,0)
0
(0,2)
2 (2,4)
4 3
f/(x)
五、练习题: 已知函数 y x3 3x 2 9 x a
f/(x)
-
0 4
+
0 5
-
五、练习题:
• 求下列函数在指定区间上的最大值与最小值:
( 1 ) y x 12 x 16 , x [ 3 ,3 ]
3
先求函数的导数 y 3( x 4 ) 驻点为x1 2、x2 2.
-3 (-3,-2)
/
2
-2 (-2,2)
2
(2,3)
-2 (-2,-1)
/
2
-1
(-1,1)
1
(1,2)
2
f/(x) f(x)
-1
+
0 11
0 -1
+
11
当x 1或2时,函数有最大值 11 ; 当x 2或1时,函数有最小值 1。
(3)求函数 f ( x ) 5 x 2 x 3 4 x的值域.

函数的极值,最大值与最小值PPT课件

函数的极值,最大值与最小值PPT课件
(1) 求f (x).
(2) 找出f (x)的所有驻点和f (x)不存在的点
x1,, xk .
(3) 判定每个驻点和导数不存在的点
xi (i 1,2,, k) 两侧(在xi 较小的邻域内)
f (x)的符号, 依定理判定xi 是否为f(x)的 极值点.
例1.求y 3x4 8x3 6x2的极值与极值点.
2. 极值存在的必要条件
定理1 设函数f(x)在点x0处可导, 且在x0处取 得极值, 那么f (x0)0.
证明: 以f(x0)是极大值来证明.
因为f(x0)是极大值, 故在x0的某邻域内,
对任意的 x x0都有 f (x) f (x0 ), 所以,
当 x x0时,
f (x) f (x0 ) 0, x x0
(2)当f (x0 ) 0时,x0为f (x)的极小值点.
证: (1)
f
(
x0
)
lim
x x0
f (x) f (x0 ) lim f (x)
x x0
xx0 x x0
由 f (x0 ) 0 知, 存在x0的某邻域, 使
f (x) x x0
0,
故当 x x0 时,f (x) 0; 当 x x0时, f (x) 0,
则x0为f (x)的极大值点.
(2)当x x0时, f (x) 0,当x x0时, f (x) 0,
则x0为f (x)的极小值点. 如果f(x)在x0的两侧保持相同符号, 则x0 不是f(x)的极值点.
(1)当x x0时,f (x) 0,当x x0时,f (x) 0,
则x0为f (x)的极大值点.
令 0, 得驻点 x 2.4 (0, )
根据问题的实际意义, 观察者最佳站位存在, 驻点 又唯一, 因此他站在距墙 2.4 m 处看图最清楚 .

函数的最大值与最小值》课件

函数的最大值与最小值》课件
最优决策
在资源分配、投资决策等场景中,企业需要找到 最优决策,这通常涉及到最大化或最小化某个目 标函数。
在物理中的应用
能量最小化
01
在物理问题中,能量通常是最小化的目标,例如在弹性力学中,
物体的变形能就是最小化的目标。
振动分析
02
在分析物体的振动时,通常需要找到振幅的最大值和最小值,
这涉及到求函数的极值问题。
率至关重要。
电流的最大值和最小值取决 于电路中的电阻、电压和电
感等参数。
通过分析电路中的电流最大值 和最小值,工程师可以优化电 路设计,提高电路的性能和稳
定性。
THANKS
感谢观看
凹凸性判定法
在极值点处,函数的凹凸性发生改变。
如果函数在某点之前为下凸,之后为上凸,则该点为极大值点;如果函数在某点之前为上凸,之后为下 凸,则该点为极小值点。
凹凸性可以通过绘制函数图像或计算二阶导数来判断。
特殊函数的极值判定法
对于一些特殊函数,如常数函数、一次函数、二次函数等,可以根据函数的特性直接判断极值点。
商品价格的最优策略分析
在商品价格最优策略分析中,企业需要确定商品 价格的最大值和最小值,以实现利润最大化。
企业பைடு நூலகம்以根据市场需求、竞争状况、成本等因素, 制定最优的商品价格策略。
商品价格的最优策略需要考虑市场需求的变化、 竞争对手的价格策略以及成本等因素。
电路中的电流最大值与最小值分析
在电路分析中,电流的最大值 和最小值对于电路的安全和效
二阶导数判定法
01
二阶导数大于0的点可能是极 小值点,二阶导数小于0的点 可能是极大值点。
02
在二阶导数等于0的点两侧, 判断函数的凹凸性,如果凹凸 性发生改变,则该点为极值点 。

第五节函数的极值与最大最小值

第五节函数的极值与最大最小值

(2) 最大值
M m f(x1),a f(x2), x ,f(xm), f (a), f (b)
最小值
m m f (x1), fi (x2n ),,f(xm), f (a), f (b)
特别:
• 当 f (x) 在 [a,b]内只有一个极值可疑点时,
若在此点取极大 (小)值 , 则也是最大 (小)值 .

x0

ma mn
是区间唯一的驻点,
故 f ( x0 ) 为区间(0, a)之间的最大值
fma x f(m m n)a m m nn(m a n)m n
例7. 铁路上 AB 段的距离为100 km , 工厂C 距 A 处20
Km , AC⊥ AB , 要在 AB 线上选定一点 D 向工厂修一条
实际问题求最值应注意:
(1)建立目标函数; (2)求最值;
若 目 标 函 数 只 有 点,则 唯该 一点 驻的 函 数 值 即 为 所 求 的 最 小( )或 值最 .
例8. 一张 1.4 m 高的图片挂在墙上 , 它的底边高于
观察者的眼睛1.8 m , 问观察者在距墙多远处看图才最
清楚(视角 最大) ?
例6. 设 x1是, x任2 意两正数,满足: x 1 x 2 a (a 0 )
求 x1m x2n 最大值。
解: 设 f (x) xm(ax)n
0xa
即求 f (x) 在 ( 0, a ) 内的最大值
f'(x ) x m 1 ( a x )n 1 [ m ( m a n )x ]令 f'(x)0

o
x0
x
求极值的步骤:
(1)给出定义域,并找出定义域内所给函数的驻点及连续不可导点; (2)考察这些点两侧导函数的符号,从而确定极值点; (3)求出极值点的函数值,即为极值.

陕西省户县第四中学高中数学北师大版选修2-2课件:322最大值与最小值(共18张PPT)

陕西省户县第四中学高中数学北师大版选修2-2课件:322最大值与最小值(共18张PPT)

题号
探究二
探究三 探究四
展示小组
展示要求
1组1号 4组4号
1.展示者要字迹清晰思路严谨,格式规 范
2.非展示同学要认真倾听,用红笔随时 修改自己的答案,并及时质疑,进行点 评、拓展。
2组1号
题号
探究二 探究三 探究四
点评小组
点评要求
3组3号 6组1号 10组3号
1.点评者要先就展示内容进行讲述, 可用不同颜色笔在展示题目上勾画 或补充,然后对展示内容进行评价, 最后可进行一定的拓展
最小值. 解: y4x34x 令 y 0 ,有 4x34x0,解得 x1,0,1
当x 变化时,y, y 的变化情况如下表:
x -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,2) 2
y'

0 + 0— 0 +
单调性
y 13
4
5
4
13
从表上可知,最大值是13,最小值是4.
思考:
在(a,b)内解方程 f (x) , 0但不想判断是否是极值点, 更不想判断是极大值还是极小值,只想将 f (x) 0的解对应的 函数值f(x)与f(a)、f(b)比较,确定最大值最小值,这样可以吗?
2.未点评的同学注意倾听,认真记 录。对展示点评的内容可进行补充 或拓展。比一比哪个小组的点评最 精彩!
课堂小结 1.利用导数求闭区间上连续函数的最值的方法与步骤; 2.恒成立问题三种情况的准确分析及应用。
课后作业
分层作业:检测案基础试题:1--5 检测案提高试题:6--7
3.2.2 函数的最大值与最小值
复习引入
1、求极值的步骤;
2、如何求连续函数的最值动画演示

高中数学必修一(人教版)《3.2.1 第二课时 函数的最大(小)值》课件

高中数学必修一(人教版)《3.2.1 第二课时 函数的最大(小)值》课件

因为-1<x1<x2⇒x1+1>0,x2+1>0,x1-x2<0, 所以 f(x1)-f(x2)<0⇒f(x1)<f(x2), 所以 f(x)在(-1,+∞)上为增函数. (2)由(1)知 f(x)在[2,4]上单调递增, 所以 f(x)的最小值为 f(2)=2×2+2+1 1=53, 最大值为 f(4)=2×4+4+1 1=95.
A.-1,0
B.0,2
()
C.-1,2
D.12,2
解析:由图可知,f(x)的最大值为 f(1)=2,f(x)的最小值为 f(-2)=-1. 答案:C
3.设函数f(x)=3x-1(x<0),则f(x)
A.有最大值
B.有最小值
C.既有最大值又有最小值 D.既无最大值又无最小值
解析:∵f(x)在(-∞,0)上单调递增,
[微思考] 若函数f(x)≤M,则M一定是函数的最大值吗? 提示:不一定,只有定义域内存在一点x0, 使f(x0)=M时,M才是函数的最大值,否则不是.
(二)基本知能小试
1.判断正误:
(1)若对任意x∈I,都有f(x)≤M,则M是函数f(x)的最大值.
()
(2)如果函数有最值,则最值一定是其值域中的一个元素.
(2)当 a=1 时,f(x)=x2-x+1,其图象的对称轴为 x=12. ①当 t≥12时,f(x)在[t,t+1]上是增函数, 所以 f(x)min=f(t)=t2-t+1; ②当 t+1≤12,即 t≤-12时,f(x)在[t,t+1]上是减函数, 所以 f(x)min=f(t+1)=t2+t+1; ③当 t<12<t+1,即-12<t<12时,函数 f(x)在t,12上单调递减,在12,t+1上 单调递增, 所以 f(x)min=f12=34.

新人教版高中数学必修一函数的最大值最小值课件

新人教版高中数学必修一函数的最大值最小值课件
-m2-15,0≤m≤2.
本例的条件不变,试求函数 g(x)的最大值.
【解析】当 m≤1 时,g(x)max=g(2) =-4m-11;
当 m>1 时 g(x)max=g(0)=-15. 综上所述,g(x)max=- -415m,-m11>,1. m≤1,
含参数的一元二次函数的最值
以一元二次函数图象开口向上、对称轴为 x=m 为例,区间为[a,b] ,则有
函数 f(x)=-x2 的定义域为 R,存在实数 1,∀ x∈R,都有 f(x)≤1.那么 1 是函数 f(x)=-x2 的最大值吗?为什么?
提示:不是.因为不存在 x0∈R,使得 f(x0) =-x20 =1.
1.任何函数都有最大值、最小值吗? 2.如果函数有最大值,那么最大值是唯一的吗?
3.如果一个函数 f(x)是区间[a,b] 上的减函数,那么函数的最大值是 f(a) 还是
月产量. (1)将利润表示为关于月产量的函数 f(x); (2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成 本+利润)
【问题 1】要求公司所获利润最大,需要研究函数的哪个性质? 【问题 2】对于函数 R(x),要求函数的最值需要用到什么知识? 【问题 3】我们学习过哪些求二次函数最值的方法?
点拨:考查对称轴与区间的关系.
不含参数的最值问题 首先配方,确定对称轴,考查对称轴与区间的关系, (1)当对称轴不在区间上时,该区间是单调区间,最值在端点处取到; (2)当对称轴在区间上时,最值在对称轴、距离对称轴较远的端点处取得.
含参数的最值问题 【典例】已知 g(x)=x2-2mx-15,求函数 g(x)在 x∈[0,2]上的最小值.
2 3 ,当且仅当-x=-3x ,x=- 3 时等号成立.所以函数 f(x)=x+x3 的值域为(-∞,-2 3]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
二次函数最值问题
求二次函数f(x)=x2-6x+4在区间[-2,2]上的 最大值和最小值.
【思路点拨】由题目可获取以下主要信息 ①所给函数为二次函数; ②在区间[-2,2]上求最值. 解答本题可先确定函数在区间[-2,2]上的单调 性,再求最值.
-
【解析】 f(x)=x2-6x+4=(x -3)2-5,
-
2.函数的最小值 设函数y=f(x)的定义域为I,如果 存在实数M满足: ①对于任意x∈I,都有f(x)≥M, ②存在x0∈I ,使f(x0)=M. 那么称M是函数y=f(x)的最小值 .
-
思考 函数最大值、最小值的几何
意义是什么? 【提示】 函数最大值或最小
值是函数的整体性质,从图象上 看,函数的最大值或最小值是图 象最高点或最低点的纵坐标.
-
利用函数图象求最值
如图为函数y=f(x),x∈[-3,8]的图象, 指出它的最大值、最小值及单调区间.
-
【解析】 观察函数图象可以知道,图象 上位置最高的点是(2,3),最低的点是(-1, -3),所以函数y=f(x)当x=2时,取得最大 值,最大值是3,当x=-1.5时,取得最小值 ,最小值是-3.函数的单调增区间为[-1,2] ,[5,7].
单调减区间为[-3,-1],[2,5],[7,8].
-
变式练习
1.试求函数 y=|x-2|+ (x+1)2的最值.
【解析】 原函数变为
y=|x-2|+|x+1|
-2x+1 =3
2x-1
(x≤-1) (-1<x≤2)
(x>2)
-
利用单调性求函数的最值
求函数 y=xx+ -21 x∈[2,3]上的最值. 【思路点拨】 定义法判断函数的单调 性―→求最值 【解析】 函数 y=xx+ -21=x-x-1+1 3=1+x-3 1 设 2≤x1<x2≤3, 则 f(x1)-f(x2)=x1-3 1-x2-3 1 =(x13-(x12)-(xx2-1) 1) -
∵2≤x1<x2≤3 ∴x2-x1>0,x1-1<0,x2-1<0 ∴f(x1)-f(x2)>0 即 f(x1)>f(x2) ∴函数 y=xx+ -21在[2,3]上是减函数 ∴f(x)的最小值为 f(3)=33-+12=52. f(x)的最大值为 f(2)=22+ -21=4.
-
(1)运用函数单调性求最值是求函数最值的重要 方法,特别是当函数图象不好作或作不出来时, 单调性几乎成为首选方法.
-
变式练习
函数解析式为“y=x2-2x” ,求 函数的在定义域 [2,4)上的最值.
-
课堂小结
(1)掌握函数最大值、最小 值的概念。
(2)熟悉ning (=^ ^=)
-
其对称轴为x=3,开口向上, ∴f(x)在[-2,2]上为减函数, ∴f(x)min=f(2)=-4,f(x)max= f(-2)=20.
-
在求二次函数的最值时,要注意定义 域.定义域若是区间[m,n],则最大(小) 值不一定在顶点处取得,而应看对称轴是 在区间[m,n]内还是在区间左边或右边, 在区间的某一边时应该利用函数单调性求 解.
(2)函数的最值与单调性的关系 ①若函数在闭区间[a,b]上是减函数,则f(x) 在[a,b]上的最大值为f(a),最小值为f(b); ②若函数在闭区间[a,b]上是增函数,则f(x) 在[a,b]上的最大值为f(b),最小值为f(a).
-
思考
当一个函数有多个单调增区间 和多个单调减区间时,我们该如何 简单有效的求解函数最大值和最小 值呢?
函数的最大值和最小值
-
缺钱花啊!!
赶时间??
-
二次函数图象
一次函数图象
-
1.函数的最大值 设函数y=f(x)的定义域为I,如果 存在实数M满足: ①对于任意x∈I ,都有f(x)≤M, ②存在x0∈I,使f(x0)=M. 那么称M是函数y=f(x)的最大值 .
-
准确理解函数最大值的概念 (1)对于定义域内全部元素,都有 f(x)≤M成立,“任意”是说对每一个值 都必须满足不等式. (2)定义中M首先是一个函数值,它是 值域的一个元素,注意对②中“存在” 一词的理解
相关文档
最新文档