初二(下册)数学题精选

合集下载

初二数学经典试题及答案

初二数学经典试题及答案

初二数学经典试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333...D. √2答案:D2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是?A. 16B. -16C. 4D. 2答案:A4. 一个正数的倒数是1/8,这个正数是?A. 8B. 1/8C. 1/7D. 7答案:A5. 一个二次方程x² - 5x + 6 = 0的解是?A. x = 2, 3B. x = 3, 4C. x = 1, 6D. x = 2, 4答案:A二、填空题(每题2分,共10分)6. 一个数的立方根是2,这个数是______。

答案:87. 一个圆的半径是5厘米,那么它的面积是______平方厘米。

答案:78.58. 如果一个数的绝对值是5,那么这个数可以是______或______。

答案:5,-59. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是______立方米。

答案:2410. 一个数的平方是25,这个数可以是______或______。

答案:5,-5三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) (-2)³ + √4 - 2π答案:-7 + 2 - 6.28 = -11.28(2) √(3² + 4²) - 1/2答案:√(9 + 16) - 0.5 = √25 - 0.5 = 5 - 0.5 = 4.5(3) (-3)² ÷ 2 - 1/3答案:9 ÷ 2 - 1/3 = 4.5 - 0.333... = 4.166...四、解答题(每题10分,共20分)12. 解方程:2x - 5 = 3x + 1答案:首先将方程两边的x项聚集在一边,得到2x - 3x = 1 + 5,即-x = 6,解得x = -6。

初二数学下册练习题湘教版

初二数学下册练习题湘教版

初二数学下册练习题湘教版数学是一门需要不断练习的学科,通过练习题可以帮助我们巩固和提高数学知识。

下面是初二数学下册湘教版的一些练习题,希望能够帮助大家更好地掌握数学知识。

一、填空题1. 已知一条直角边长为3,求斜边的长度为______。

2. 一只青蛙在一个深度为20米的井里,白天它每次往上跳3米,夜晚会下滑2米,问它需要跳多少次才能跳出井口?3. 小明家的电费是每度0.5元,上个月共用电100度,应缴纳的电费为______元。

4. 甲、乙两个数的和为75,乙数是甲数的2倍减去10,求甲、乙两个数各是多少?5. 一个正方形的边长为4厘米,它的周长为______厘米。

二、选择题1. 已知点A(2,3),点B(x,5),若AB的距离等于5,则x的值为:A. -1B. 1C. 3D. 72. 一个数减去它的四分之一等于15,这个数是:A. 10B. 20C. 25D. 303. 一个数的一半加上它的四分之一等于15,这个数是:A. 10B. 15C. 20D. 304. 一个长方形的长是宽的2倍,它的周长是24,求长方形的长和宽分别是多少?A. 长:6,宽:12B. 长:4,宽:6C. 长:8,宽:4D. 长:12,宽:65. A、B两个数的和为100,若B大于A,则A、B两个数可能是:A. 20、80B. 30、70C. 40、60D. 50、50三、解答题1. 用竖式计算:(1)345 + 78 = ________(2)789 - 256 = ________(3)23 × 4 = ________(4)78 ÷ 6 = ________(5)136 ÷ 17 = ________(结果保留一位小数)2. 小明每天步行上学,来回共需用时1小时40分钟,若小明来回步行时间的比为5:8,那么小明步行去学校的时间是多少分钟?3. 一个线段长14米,将它分成3段,第一段、第二段和第三段的长度之比为2:3:4,求第一段的长度。

初二数学试题带解析及答案

初二数学试题带解析及答案

初二数学试题带解析及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333D. 1/3解析:无理数是不能表示为两个整数的比值的实数。

选项A是圆周率π的近似值,是无理数;选项B的√2是无理数,因为不能表示为两个整数的比;选项C是有限小数,可以表示为1/3;选项D是分数,也是有限小数。

因此,正确答案是B。

答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8解析:根据勾股定理,直角三角形的斜边长度等于两直角边的平方和的平方根。

即c = √(a² + b²),其中a和b是直角边,c是斜边。

将3和4代入公式得c = √(3² + 4²) = √(9 + 16) = √25 = 5。

答案:A3. 下列哪个代数式是二次方程?A. x + 2 = 0B. x² + 3x - 2 = 0C. 2x - 5 = 0D. x³ - 4 = 0解析:二次方程是形如ax² + bx + c = 0的方程,其中a、b、c是常数,且a≠0。

选项B符合这个形式,是二次方程。

答案:B4. 一个数的平方根是8,这个数是?A. 64B. 16C. -64D. -16解析:一个数的平方根是8,意味着这个数是8的平方。

即x =8² = 64。

负数没有实数平方根,所以选项C和D不正确。

答案:A5. 如果一个多项式f(x) = ax³ + bx² + cx + d,其中a ≠ 0,那么这个多项式的次数是?A. 1B. 2C. 3D. 4解析:多项式的次数是多项式中最高次项的次数。

在这个多项式中,最高次项是ax³,所以次数是3。

答案:C二、填空题(每题2分,共10分)6. 一个数的相反数是-5,这个数是______。

初二数学下册第六章练习题含答案

初二数学下册第六章练习题含答案

初二数学下册第六章练习题含答案第一节选择题1. 下面哪个选项中的数是有理数?A. πB. √3C. 0.5D. -√2答案:C. 0.52. 以下哪个数是无理数?A. -4B. 1C. 2D. √7答案:D. √73. 下列数中,哪个数是无理数?A. -5B. 3/4C. √10D. 2.5答案:C. √104. 若一个数是有理数,是否一定是整数?A. 是B. 否答案:B. 否5. 下列选项中,哪个选项的数是有理数?A. -3B. 0C. 7/10D. √5答案:A. -3第二节填空题1. -√16的值是____。

答案:-42. 已知√25 = ___。

答案:53. (√2 + √3)²的值是_____。

答案:5 + 2√64. (1/2)³的结果是_____。

答案:1/85. -√9的值是_____。

答案:-3第三节计算题1. 计算:(-5) + 7 + (-3) + (-1) + 8。

答案:62. 计算:4 × (-3) × (-2) × 5。

答案:1203. 计算:(-2) × (-3) × (-4) ÷ (-6)。

答案:44. 计算:3 - 4 × (-2) - 5 ÷ 5。

答案:55. 计算:(-√4) × √16 ÷ (-2)。

答案:4第四节应用题1. 已知a = √3,b = √2,请问 a² + 2ab + b²的值是多少?答案:52. 设有一个正方形,边长为√5 cm,求该正方形的周长和面积。

答案:周长为4√5 cm,面积为 5 cm²。

3. 一根长方形木板的宽度为√3 m,长度是2√2 m。

求该木板的面积。

答案:6 m²4. 一辆汽车从甲地到乙地,全程10 km。

它先以60 km/h的速度行驶5 km,然后以30 km/h的速度行驶剩下的路程。

沪教版初二数学题(下册期末试卷及答案)

沪教版初二数学题(下册期末试卷及答案)

初二数学(沪教版)一、填空题:(本大题共16题,每题2分,满分32分)1.如果k kx y -=是一次函数,那么k 的取值范围是 k ≠0 . 2.已知直线)3(2+=x y ,那么这条直线在y 轴上的截距是 6 .3.函数mx y +=2中的y 随x 的增大而增大,那么m 的取值范围是 m >0 . 4.一元二次方程0132=++x x 的根是(-3加减根号5) /25.已知方程0732=+-kx x 的一个根是-1,那么这个方程的另一个根是 -7/3 6.设方程012=-+x x 的两个实根分别为1x 和2x ,那么2111x x += 1 . 7.二次函数322-+=x x y 图象的对称轴是直线 x=-1 .8.如果二次函数的图象与x 轴没有交点,且与y 轴的交点的纵坐标为-3,那么这个二次函数图象的开口方向是 向下 . !9.把抛物线2x y -=向上平移2个单位,那么所得抛物线与x 轴的两个交点之间的距离是 2根号2 .10.用一根长为60米的绳子围成一个矩形,那么这个矩形的面积y (平方米)与一条边长x(米)的函数解析式为 y=-x 2+30x ,定义域为 0<x <30 米. 11.已知等边三角形的边长为4cm ,那么它的高等于 2根号3 cm . 12.梯形的上底和下底长分别为3cm 、9cm ,那么这个梯形的中位线长为 6 cm . 13.已知菱形的周长为20cm ,一条对角线长为5cm ,那么这个菱形的一个较大的内角为 120 度.14.在梯形ABCD 中,AD ∥BC ,S △AOD ∶S △AOB =2∶3,那么S △COD ∶S △BOC = 2:3 . 15.如果四边形的两条对角线长都等于14cm ,那么顺次连结这个四边形各边的中点所得四边形的周长等于 28 cm .16.以不在同一条直线上的三点为顶点作平行四边形,最多能作 3 个.二、选择题:(本大题共4题,每题2分,满分8分) *17.如果a 、c 异号,那么一元二次方程02=++c bx ax ………………………………( A ) (A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )根的情况无法确定. 18.已知二次函数bx ax y +=2的图象如图所示,那么a 、b 的符号 为…………………………………………………………( C(A )a >0,b >0; (B )a >0,b <0; (C )a <0,b >0; (D )a <0,b <0. ~19.下列图形中,是轴对称图形,但不是中心对称图形的是…………………………( C ) (A )矩形; (B )菱形; (C )等腰梯形; (D )直角梯形. 20.下列命题中,正确的是………………………………………………………………( B ) (A )一组对边平行且另一组对边相等的四边形是平行四边形; (B )一组对边平行且相等的四边形是平行四边形; (C )两条对角线相等的四边形是等腰梯形; (D )两条对角线相等的四边形是矩形. 三、(本大题共6题,每题6分,满分36分) 21.已知一次函数的图象经过点(0,4),并且与直线x y 2-=相交于点(2,m ),求这个一次函数的解析式.解:设一次函数的解析式是y=kx+b (k ≠0).则根据题意,得 $4=b m=-2×2 m=2k+b , 解得 k=-4 b=4 m=-4 ,∴该一次函数的解析式是:y=-4x+4.22.求证:当0≠k 时,方程02)1(22=-+--k x k kx 有两个不相等的实数根. 证明:∵k ≠0,∴方程kx2-2(k-1)x+k-2=0为一元二次方程, ∴△=4(k-1)2-4×k ×(k-2) =4k2-8k+4-4k2+8k 【=4>0,∴当k ≠0时,方程kx2-2(k-1)x+k-2=0有两个不相等的实数根.23.已知一元二次方程0532=-+x x ,求这个方程两根的平方和. 解:设一元二次方程x2+3x-5=0的两根为a 、b , ∴a+b=-3, ab=-5,∴两根的平方和为a2+b2=(a+b )2-2ab=(-3)2-2×(-5)=19. 故答案为:19.24.如图,M 是Rt △ABC 斜边AB 上的中点,D 是边BC 延长线上一点,∠B =2∠D ,AB =16cm ,求线段CD 的长. 解:连接CM , )∵∠ACB=90°,M 为AB 的中点, ∴CM=BM=AM=8cm , ∴∠B=∠MCB=2∠D ,。

(完整版)初二下学期数学练习题含答案及解析

(完整版)初二下学期数学练习题含答案及解析

初二放学期数学练习题一、选择题(每题 3 分)1.以下各数是无理数的是()A.B.﹣C.πD.﹣2.以下对于四边形的说法,正确的选项是()A.四个角相等的菱形是正方形B.对角线相互垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式存心义的x 的取值范围()A. x> 2B. x≥ 2C. x>3D. x≥2 且 x≠3 4.如图,将△ABC绕着点 C顺时针旋转50°后获取△ A′B′C′,若∠ A=45°,∠B′=110°,则∠ BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣ 3, y ),( 1, y2)都在直线y=kx+2 ( k< 0)上,则 y ,y大小关系是()112A. y1> y2B. y1=y 2C. y1<y2D.不可以比较6.如图,在四边形ABCD中,对角线 AC, BD订交于点 E,∠ CBD=90°, BC=4, BE=ED=3, AC=10,则四边形 ABCD 的面积为()A. 6B. 12C. 20D. 247.不等式组的解集是x > 2,则 m的取值范围是()A. m< 1B. m≥ 1C. m≤1D. m>18.若+|2a ﹣ b+1|=0 ,则( b﹣ a)2016的值为()A.﹣ 1B. 1C.52015D.﹣ 520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中暗影部分构成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10.按序连结一个四边形的各边中点,获取了一个矩形,则以下四边形中知足条件的是()①平行四边形;②菱形;③矩形;④对角线相互垂直的四边形.A.①③B.②③C.③④11.如图,在□ABCD中,已知AD= 8 ㎝, AB =6 ㎝,DE均分∠ ADC交BC边于点E,则BE等于()A. 2cm B. 4cm C. 6 cm D. 8cmD.②④A D BE C第11 题图12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15 公斤,付西红柿的钱26 元,若再加买0.5 公斤的西红柿,需多付 1 元,则空竹篮的重量为多少?()A.1.5B. 2C. 2.5D. 313.如图,在 ?ABCD中,对角线 AC与 BD订交于点 O,过点 O作 EF⊥ AC交 BC于点 E,交 AD于点 F,连结 AE、CF.则四边形 AECF是()A.梯形B.矩形C.菱形D.正方形14.已知 xy> 0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣15.某商品原价 500 元,销售时标价为900 元,要保持收益不低于26%,则起码可打()A.六折B.七折C.八折D.九折16.已知 2+的整数部分是 a,小数部分是b,则 a2+b2=()A. 13﹣ 2B. 9+2C. 11+D. 7+417.某礼拜天下午,小强和同学小颖相约在某公共汽车站一同搭车回学校,小强从家出发先步行到车站,等小颖到了后两人一同乘公共汽车回学校,图中折线表示小强走开家的行程y(公里)和所用时间x(分)之间的函数关系,以下说法中错误的选项是()A.小强乘公共汽车用了20 分钟B.小强在公共汽车站等小颖用了10 分钟C.公共汽车的均匀速度是30 公里 / 小时D.小强从家到公共汽车站步行了 2 公里17.如图,直线 y=﹣ x+m与 y=x+3 的交点的横坐标为﹣2,则对于 x 的不等式﹣ x+m> x+3> 0 的取值范围为()A. x>﹣ 2B. x<﹣ 2C.﹣ 3< x<﹣ 2D.﹣ 3< x<﹣ 119.如图,四边形ABCD是菱形, AC=8, DB=6,DH⊥ AB于 H,则 DH=()A.B.C. 12D. 2420.如图,正方形 ABCD中,点 E、F 分别在 BC、CD上,△AEF是等边三角形,连结 AC交 EF 于 G,以下结论:①BE=DF;②∠ DAF=15°,③ AC 垂直均分 EF,④ BE+DF=EF,⑤S△AEC=S△ABC,此中正确结论有()个.A. 5B. 4C. 3D. 2二、填空题(本大题共 4 小题,满分12 分)21.已知直线y=2x+( 3﹣ a)与 x 轴的交点在A( 2, 0)、 B( 3, 0)之间(包含 A、 B 两点),则a 的取值范围是.22.以下图,正方形ABCD的面积为 12,△ ABE是等边三角形,点 E 在正方形ABCD内,在对角线AC上有一点P,使 PD+PE的和最小,则这个最小值为.23.在下边的网格图中,每个小正方形的边长均为1,△ ABC的三个极点都是网格线的交点,已知B,C 两点的坐标分被为(﹣ 1,﹣ 1),( 1,﹣ 2),将△ ABC绕着点 C 顺时针旋转90°,则点 A 的对应点的坐标为.24.若对于x 的不等式组有4个整数解,则 a 的取值范围是.三、解答题(本大题共 5 个小题,共48 分)25.( 1)计算(+1)(﹣ 1) + +﹣ 3( 2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l 1的分析式为y=﹣ x+2,l 1与 x 轴交于点B,直线 l 2经过点 D( 0, 5),与直线l 1交于点C(﹣ 1, m),且与x 轴交于点A(1)求点 C的坐标及直线 l 2的分析式;(2)求△ ABC的面积.27.如图,在△ABC中, D 是 BC边上的一点, E 是 AD的中点,过A 点作 BC的平行线交CE的延伸线于点F,且AF=BD,连结 BF.(1)证明: BD=CD;(2)当△ ABC知足什么条件时,四边形 AFBD是矩形?并说明原因.28.如图,点 P 是正方形 ABCD内一点,点 P 到点 A、 B 和 D 的距离分别为1, 2,,△ ADP沿点 A 旋转至△ABP′,连结 PP′,并延伸 AP与 BC订交于点 Q.(1)求证:△ APP′是等腰直角三角形;(2)求∠ BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80 元,售价120 元;乙种每双进价60 元,售价 90 元,计划购进两种运动鞋共100 双,此中甲种运动鞋许多于65 双.( 1)若购进这100 双运动鞋的花费不得超出7500 元,则甲种运动鞋最多购进多少双?( 2)在( 1)条件下,该运动鞋店在 6 月 19 日“父亲节”当日对甲种运动鞋以每双优惠a( 0<a< 20)元的价格进行优惠促销活动,乙种运动鞋价钱不变,请写出总收益w 与 a 的函数关系式,若甲种运动鞋每双优惠11 元,那么该运动鞋店应怎样进货才能获取最大收益?2015-2016 学年山东省泰安市新泰市八年级(下)期末数学试卷参照答案与试题分析一、选择题(每题 3 分)1.以下各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【剖析】依据无理数的判断条件判断即可.【解答】解:=2 ,是有理数,﹣= ﹣ 2 是有理数,∴只有π 是无理数,应选 C.【评论】本题是无理数题,熟记无理数的判断条件是解本题的要点.2.以下对于四边形的说法,正确的选项是()A.四个角相等的菱形是正方形B.对角线相互垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【剖析】依据菱形的判断方法、正方形的判断方法逐项剖析即可.【解答】解: A、四个角相等的菱形是正方形,正确;B、对角线相互均分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线均分且垂直的四边形是菱形,错误;应选 A【评论】本题考察了对菱形、正方形性质与判断的综合运用,特别四边形之间的相互关系是考察要点.3.使代数式存心义的x 的取值范围()A. x> 2B. x≥ 2C. x>3D. x≥2 且 x≠3【考点】二次根式存心义的条件;分式存心义的条件.【剖析】分式存心义:分母不为0;二次根式存心义,被开方数是非负数.【解答】解:依据题意,得,解得, x≥2 且 x≠ 3.应选 D.( a≥ 0)叫二次根式.性质:【评论】本题考察了二次根式存心义的条件、分式存心义的条件.观点:式子二次根式中的被开方数一定是非负数,不然二次根式无心义.4.如图,将△ ABC绕着点 C 顺时针旋转50°后获取△ A′B′C′,若∠ A=45°,∠ B′=110°,则∠ BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【剖析】依据旋转的性质可得∠ B=∠B′,而后利用三角形内角和定理列式求出∠ ACB,再依据对应边 AC、A′C的夹角为旋转角求出∠ ACA′,而后依据∠ BCA′=∠ ACB+∠ACA′计算即可得解.【解答】解:∵△ ABC绕着点 C 顺时针旋转 50°后获取△ A′B′C′,∴∠ B=∠B′=110°,∠ ACA′=50°,在△ ABC中,∠ ACB=180°﹣∠ A﹣∠ B=180°﹣ 45°﹣ 110°=25°,∴∠ BCA′=∠ ACB+∠ACA′=50° +25°=75°.应选 B.【评论】本题考察了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角确实定是解题的要点.5.已知点(﹣3, y1),(1, y2)都在直线y=kx+2 ( k< 0)上,则y1,y2大小关系是()A. y1> y2B. y1=y 2C. y1<y2D.不可以比较【考点】一次函数图象上点的坐标特色.【剖析】直线系数k< 0,可知 y 随 x 的增大而减小,﹣3< 1,则 y1> y2.【解答】解:∵直线y=kx+2 中 k< 0,∴函数 y 随 x 的增大而减小,∵﹣ 3< 1,∴ y1> y2.应选 A.y=kx+b :当k> 0 时, y 随x 的增大而增大;【评论】本题考察的是一次函数的性质.解答本题要熟知一次函数当 k< 0 时, y 随 x 的增大而减小.6.如图,在四边形ABCD中,对角线AC, BD订交于点 E,∠ CBD=90°, BC=4, BE=ED=3, AC=10,则四边形ABCD的面积为()A. 6B. 12C. 20D. 24【考点】平行四边形的判断与性质;全等三角形的判断与性质;勾股定理.【剖析】依据勾股定理,可得 EC的长,依据平行四边形的判断,可得四边形 ABCD的形状,依据平行四边形的面积公式,可得答案.【解答】解:在 Rt △ BCE中,由勾股定理,得CE===5.∵ BE=DE=3, AE=CE=5,∴四边形ABCD是平行四边形.四边形 ABCD的面积为BCBD=4×( 3+3) =24,应选: D.CE的长,又利用对角线相互均分的四边形【评论】本题考察了平行四边形的判断与性质,利用了勾股定理得出是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是x > 2,则 m的取值范围是()A. m< 1B. m≥ 1C. m≤1D. m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【剖析】依据不等式的性质求出不等式的解集,依据不等式组的解集获取2≥m+1,求出即可.【解答】解:,由①得: x> 2,由②得: x> m+1,∵不等式组的解集是 x >2,∴2≥ m+1,∴m≤ 1,应选 C.【评论】本题主要考察对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能依据不等式的解集和已知得出 2≥ m+1是解本题的要点.8.若+|2a ﹣ b+1|=0 ,则( b﹣ a)2016的值为()A.﹣ 1B. 1C. 52015D.﹣ 52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【剖析】第一依据非负数的性质,几个非负数的和是 0,则每个非负数等于 0 列方程组求得 a 和 b 的值,而后辈入求解.【解答】解:依据题意得:,解得:,20162016则( b﹣ a)=(﹣ 3+2)=1.【评论】本题考察了非负数的性质,几个非负数的和是 0,则每个非负数等于 0,正确解方程组求得 a 和 b 的值是要点.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中暗影部分构成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【剖析】依据中心对称图形的特色进行判断即可.【解答】解:应当将②涂黑.应选 B.【评论】本题考察了中心对称图形的知识,中心对称图形是要找寻对称中心,旋转180 度后与原图重合.10.按序连结一个四边形的各边中点,获取了一个矩形,则以下四边形中知足条件的是()①平行四边形;②菱形;③矩形;④对角线相互垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【剖析】有一个角是直角的平行四边形是矩形,依据此可知按序连结对角线垂直的四边形是矩形.【解答】解: AC⊥ BD, E, F, G, H 是 AB, BC,CD, DA的中点,∵EH∥ BD,FG∥BD,∴ EH∥ FG,同理; EF∥HG,∴四边形 EFGH是平行四边形.∵AC⊥ BD,∴EH⊥ EF,∴四边形EFGH是矩形.因此按序连结对角线垂直的四边形是矩形.而菱形、正方形的对角线相互垂直,则菱形、正方形均切合题意.应选: D.【评论】本题考察矩形的判断定理和三角形的中位线的定理,从而可求解.11.已知 a, b, c 为△ ABC三边,且知足(a2﹣ b2)( a2+b2﹣ c2) =0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【剖析】第一依据题意可得(a2﹣ b2)( a2+b2﹣ c2) =0,从而获取a2+b2=c2,或 a=b,依据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:( a2﹣b2)( a2+b2﹣ c2) =0,22∴ a +b ﹣ c2,或a﹣ b=0,解得: a2+b2=c2,或 a=b,∴△ ABC的形状为等腰三角形或直角三角形.应选 D.【评论】本题主要考察了勾股定理逆定理以及非负数的性质,要点是掌握勾股定理的逆定理:假如三角形的三边长 a, b, c 知足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为 15 公斤,付西红柿的钱26 元,若他再加买0.5 公斤的西红柿,需多付 1 元,则空竹篮的重量为多少公斤?()A. 1.5B. 2C. 2.5D. 3【考点】一次函数的应用.【剖析】设价钱 y 与重量 x 之间的函数关系式为y=kx+b ,由( 15, 26)、( 15.5 ,27)利用待定系数法即可求出该一次函数关系式,令y=0 求出 x 值,即可得出空蓝的重量.【解答】解:设价钱 y与重量 x 之间的函数关系式为y=kx+b ,将( 15, 26)、( 15.5, 27)代入 y=kx+b 中,得:,解得:,∴ y 与 x 之间的函数关系式为y=2x ﹣ 4.令y=0,则 2x﹣ 4=0,解得: x=2.应选 B.【评论】本题考察了待定系数法求函数分析式,解题的要点是求出价钱y 与重量x 之间的函数关系式.本题属于基础题,难度不大,依据给定条件利用待定系数法求出函数关系式是要点.13.如图,在 ?ABCD中,对角线 AC与 BD订交于点 O,过点 O作 EF⊥ AC交 BC于点 E,交 AD于点 F,连结 AE、CF.则四边形 AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判断;平行四边形的性质.【剖析】第一利用平行四边形的性质得出AO=CO,∠ AFO=∠CEO,从而得出△ AFO≌△ CEO,再利用平行四边形和菱形的判断得出即可.【解答】解:四边形AECF是菱形,原因:∵在 ?ABCD中,对角线AC与 BD订交于点 O,∴AO=CO,∠ AFO=∠ CEO,∴在△ AFO和△ CEO中,∴△ AFO≌△ CEO( AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥ AC,∴平行四边形AECF是菱形.应选: C.【评论】本题主要考察了菱形的判断以及平行四边形的判断与性质,依据已知得出EO=FO是解题要点.14.已知 xy> 0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【剖析】二次根式存心义,y<0,联合已知条件得y< 0,化简即可得出最简形式.【解答】解:依据题意,xy> 0,得 x 和 y 同号,又 x中,≥ 0,得y< 0,故x< 0, y< 0,因此原式 ====﹣.故答案选D.【评论】主要考察了二次根式的化简,注意开平方的结果为非负数.15.某礼拜天下午,小强和同学小颖相约在某公共汽车站一同搭车回学校,小强从家出发先步行到车站,等小颖到了后两人一同乘公共汽车回学校,图中折线表示小强走开家的行程y(公里)和所用时间x(分)之间的函数关系,以下说法中错误的选项是()A.小强乘公共汽车用了20 分钟B.小强在公共汽车站等小颖用了10 分钟C.公共汽车的均匀速度是30 公里 / 小时D.小强从家到公共汽车站步行了 2 公里【考点】函数的图象.【剖析】直接利用函数图象从而剖析得出切合题意跌答案.【解答】解: A、小强乘公共汽车用了60﹣ 30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的均匀速度是:15÷ 0.5=30 (公里 / 小时),正确;2 公里,正确.D、小强从家到公共汽车站步行了应选: A.【评论】本题主要考察了函数图象,正确利用图象得出正确信息是解题要点.16.某商品原价500 元,销售时标价为900 元,要保持收益不低于26%,则起码可打()A.六折B.七折C.八折D.九折【考点】由实质问题抽象出一元一次不等式.【剖析】由题意知保持收益不低于26%,就是收益大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得 x≥ 7,故起码打七折,应选B.【评论】要抓住要点词语,弄清不等关系,把文字语言的不等关系转变为用数学符号表示的不等式.17.如图,直线 y=﹣ x+m与 y=x+3 的交点的横坐标为﹣2,则对于 x 的不等式﹣ x+m> x+3> 0 的取值范围为()A. x>﹣ 2B. x<﹣ 2C.﹣ 3< x<﹣ 2D.﹣ 3< x<﹣ 1【考点】一次函数与一元一次不等式.【剖析】解不等式x+3> 0,可得出x>﹣ 3,再依据两函数图象的上下地点关系联合交点的横坐标即可得出不等式﹣ x+m> x+3 的解集,联合两者即可得出结论.【解答】解:∵ x+3> 0∴ x>﹣ 3;察看函数图象,发现:当 x<﹣ 2 时,直线y=﹣ x+m的图象在y=x+3 的图象的上方,∴不等式﹣ x+m> x+3 的解为 x<﹣ 2.综上可知:不等式﹣x+m> x+3> 0 的解集为﹣ 3< x<﹣ 2.应选 C.x+m>【评论】本题考察了一次函数与一元一次不等式,解题的要点是依据函数图象的上下地点关系解不等式﹣x+3.本题属于基础题,难度不大,解集该题型题目时,依据函数图象的上下地点要点解不等式是要点.18.已知 2+的整数部分是 a,小数部分是b,则 a2+b2=()A. 13﹣ 2B. 9+2C. 11+D. 7+4【考点】估量无理数的大小.【剖析】先估量出的大小,从而获取a、 b 的值,最后辈入计算即可.【解答】解:∵ 1< 3< 4,∴ 1<<2.∴ 1+2< 2+<2+2,即3<2+<4.∴a=3, b= ﹣ 1.∴a2+b2=9+3+1﹣ 2 =13﹣ 2 .应选: A.【评论】本题主要考察的是估量无理数的大小,依据题意求得a、 b 的值是解题的要点.19.如图,四边形ABCD是菱形, AC=8, DB=6,DH⊥ AB于 H,则 DH=()A.B.C. 12D. 24【考点】菱形的性质.【剖析】设对角线订交于点O,依据菱形的对角线相互垂直均分求出AO、 BO,再利用勾股定理列式求出AB,然后依据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线订交于点O,∵AC=8, DB=6,∴AO= AC= ×8=4,BO= BD=× 6=3,由勾股定理的,AB===5,∵DH⊥ AB,∴ S 菱形ABCD=ABDH= ACBD,即5DH= × 8× 6,解得 DH=.应选 A.【评论】本题考察了菱形的性质,勾股定理,主要利用了菱形的对角线相互垂直均分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形 ABCD中,点 E、F 分别在 BC、CD上,△AEF是等边三角形,连结 AC交 EF 于 G,以下结论:①BE=DF;②∠ DAF=15°,③ AC垂直均分EF,④ BE+DF=EF,⑤S△AEC=S△ABC,此中正确结论有()个.A. 5B. 4C. 3D. 2【考点】正方形的性质;全等三角形的判断与性质;等边三角形的性质.【剖析】由正方形和等边三角形的性质得出△ ABE≌△ ADF,从而得出∠ BAE=∠ DAF,BE=DF,①正确;②正确;由正方形的性质就能够得出 EC=FC,就能够得出 AC垂直均分 EF,③正确;设 EC=x,由勾股定理和三角函数就能够表示出BE与 EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形 ABCD是正方形,∴AB=BC=CD=AD,∠ B=∠ BCD=∠D=∠BAD=90°.∵△ AEF等边三角形,∴AE=EF=AF,∠ EAF=60°.∴∠ BAE+∠DAF=30°.在 Rt △ ABE和 Rt △ ADF中,,∴Rt △ ABE≌ Rt △ ADF( HL),∴BE=DF(故①正确).∠BAE=∠ DAF,∴∠ DAF+∠DAF=30°,即∠ DAF=15°(故②正确),∵BC=CD,∴BC﹣ BE=CD﹣ DF,即CE=CF,∵ AE=AF,∴AC垂直均分 EF..设EC=x,由勾股定理,得 EF= x,CG= x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴ AC=,∴ AB=,∴ BE=AB﹣ x=,∴ BE+DF= x﹣ x≠x,(故④错误),∵S△AEC=CEAB, S△ABC=BCAB,CE< BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,应选: C.【评论】本题考察了正方形的性质的运用,全等三角形的判断及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时要点.二、填空题(本大题共 4 小题,满分 12 分)21.已知直线 y=2x+( 3﹣ a)与 x 轴的交点在A( 2, 0)、 B( 3, 0)之间(包含A、 B 两点),则 a 的取值范围是7≤ a≤9.【考点】一次函数图象上点的坐标特色.【剖析】依据题意获取x 的取值范围是值范围来求 a 的取值范围.【解答】解:∵直线y=2x+( 3﹣ a)与2≤ x≤ 3,则经过解对于x 的方程 2x+( 3﹣ a)=0 求得 x 的值,由x 轴的交点在A(2, 0)、 B( 3, 0)之间(包含A、 B 两点),x 的取∴2≤ x≤ 3,令y=0,则 2x+( 3﹣a) =0,解得 x=,则 2≤≤ 3,解得 7≤ a≤ 9.故答案是: 7≤ a≤ 9.【评论】本题考察了一次函数图象上点的坐标特色.依据一次函数分析式与一元一次方程的关系解得x 的值是解题的打破口.22.以下图,正方形ABCD的面积为 12,△ ABE是等边三角形,点 E 在正方形ABCD内,在对角线AC上有一点P,使 PD+PE的和最小,则这个最小值为2.【考点】轴对称 - 最短路线问题;正方形的性质.【剖析】因为点 B 与 D 对于 AC对称,因此连结BD,与 AC的交点即为 F 点.此时PD+PE=BE最小,而BE是等边△ABE的边, BE=AB,由正方形 ABCD的面积为 12,可求出 AB 的长,从而得出结果.【解答】解:连结 BD,与 AC交于点 F.∵点 B 与 D对于 AC对称,∴ PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形 ABCD的面积为 12,∴AB=2 .又∵△ ABE是等边三角形,∴BE=AB=2 .故所求最小值为 2 .故答案为: 2 .【评论】本题主要考察轴对称﹣﹣最短路线问题,要灵巧运用对称性解决此类问题.23.在下边的网格图中,每个小正方形的边长均为1,△ ABC的三个极点都是网格线的交点,已知B,C 两点的坐标分被为(﹣ 1,﹣ 1),( 1,﹣ 2),将△ ABC绕着点 C 顺时针旋转90°,则点 A 的对应点的坐标为(5,﹣1).【考点】坐标与图形变化- 旋转.【剖析】先利用 B,C 两点的坐标画出直角坐标系获取 A 点坐标,再画出△ABC绕点 C顺时针旋转90°后点 A 的对应点的A′,而后写出点A′的坐标即可.【解答】解:如图, A 点坐标为( 0, 2),将△ ABC绕点 C 顺时针旋转90°,则点 A 的对应点的A′的坐标为( 5,﹣ 1).故答案为:(5,﹣ 1).【评论】本题考察了坐标与图形变化:图形或点旋转以后要联合旋转的角度和图形的特别性质来求出旋转后的点的坐标.常有的是旋转特别角度如:30°, 45°, 60°, 90°, 180°.24.若对于x 的不等式组有4个整数解,则 a 的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【剖析】第一确立不等式组的解集,先利用含 a 的式子表示,依据整数解的个数就能够确立有哪些整数解,依据解的状况能够获取对于 a 的不等式,从而求出 a 的范围.【解答】解:,由①得, x> 8,由②得, x< 2﹣ 4a,∵此不等式组有解集,∴解集为 8< x< 2﹣4a,又∵此不等式组有 4 个整数解,∴此整数解为 9、 10、 11、 12,∵ x< 2﹣ 4a, x 的最大整数值为12,,∴ 12< 2﹣ 4a≤ 13,∴﹣≤a<﹣.【评论】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出对于 a 的不等式组,临界数的弃取是易错的地方,要借助数轴做出正确的弃取.三、解答题(本大题共 5 个小题,共 48 分)25.( 1)计算(+1)(﹣ 1) ++﹣ 3( 2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混淆运算;在数轴上表示不等式的解集;解一元一次不等式组.【剖析】(1)利用平方差公式、二次根式的性质化简计算即可;( 2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:( 1)原式 =()2﹣ 12+ + ×3 ﹣ 3×=3﹣ 1++﹣2=2+;( 2),解①得, x< 2,解②得, x≥﹣ 1,则不等式组的解集为:﹣1≤x< 2.【评论】本题考察的是二次根式的混淆运算、一元一次不等式组的解法,掌握二次根式的和和运算法例、一元一次不等式组的解法是解题的要点.26.如图,直线l 1的分析式为y=﹣ x+2,l 1与 x 轴交于点B,直线 l 2经过点 D( 0,5),与直线 l 1交于点 C(﹣ 1,m),且与x 轴交于点A(1)求点 C的坐标及直线 l 2的分析式;(2)求△ ABC的面积.【考点】两条直线订交或平行问题.【剖析】(1)第一利用待定系数法求出 C 点坐标,而后再依据D、C 两点坐标求出直线l 2的分析式;( 2)第一依据两个函数分析式计算出A、 B 两点坐标,而后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:( 1)∵直线l 1的分析式为y=﹣ x+2 经过点 C(﹣ 1, m),∴m=1+2=3,∴C(﹣ 1,3),设直线 l 2的分析式为y=kx+b ,∵经过点D( 0, 5), C(﹣ 1, 3),∴,解得,∴直线 l 2的分析式为y=2x+5;(2)当 y=0 时, 2x+5=0,解得 x=﹣,则 A(﹣,0),当y=0 时,﹣ x+2=0解得 x=2,则 B( 2, 0),△ ABC的面积:×(2+)× 3=.【评论】本题主要考察了待定系数法求一次函数分析式,要点是掌握凡是函数图象经过的点必能知足分析式.27.如图,在△ ABC中, D 是 BC边上的一点, E 是 AD的中点,过 A 点作 BC的平行线交 CE的延伸线于点 F,且AF=BD,连结 BF.(1)证明: BD=CD;(2)当△ ABC知足什么条件时,四边形 AFBD是矩形?并说明原因.【考点】全等三角形的判断与性质;矩形的判断.【剖析】( 1)由 AF 与 BC平行,利用两直线平行内错角相等获取一对角相等,再一对对顶角相等,且由 E 为 AD 的中点,获取 AE=DE,利用 AAS获取三角形 AFE与三角形 DCE全等,利用全等三角形的对应边相等即可得证;AFBD为平行( 2)当△ ABC知足: AB=AC时,四边形AFBD是矩形,原因为:由AF 与 BD平行且相等,获取四边形四边形,再由AB=AC, BD=CD,利用三线合一获取AD垂直于 BC,即∠ ADB为直角,即可得证.【解答】解:( 1)∵ AF∥ BC,∴∠ AFE=∠DCE,∵ E 为 AD的中点,∴ AE=DE,在△ AFE和△ DCE中,,∴△ AFE≌△ DCE( AAS),∴AF=CD,∵AF=BD,∴ CD=BD;( 2)当△ ABC知足: AB=AC时,四边形 AFBD是矩形,原因以下:∵AF∥ BD, AF=BD,∴四边形AFBD是平行四边形,∵ AB=AC, BD=CD,∴∠ ADB=90°,∴四边形AFBD是矩形.【评论】本题考察了全等三角形的判断与性质,以及矩形的判断,娴熟掌握全等三角形的判断与性质是解本题的要点.28.如图,点P 是正方形ABCD内一点,点P 到点 A、 B 和 D 的距离分别为1, 2,,△ ADP沿点A旋转至△ABP′,连结PP′,并延伸AP与 BC订交于点 Q.(1)求证:△ APP′是等腰直角三角形;(2)求∠ BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【剖析】(1)依据正方形的性质得AB=AD,∠ BAD=90°,再利用旋转的性质得AP=AP′,∠ PAP′=∠DAB=90°,于是可判断△ APP′是等腰直角三角形;( 2)依据等腰直角三角形的性质得PP′=PA=,∠ APP′=45°,再利用旋转的性质得PD=P′B=,接着依据勾股定理的逆定理可证明△PP′B为直角三角形,∠ P′PB=90°,而后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠ BAD=90°,∵△ ADP沿点 A 旋转至△ ABP′,∴AP=AP′,∠ PAP′=∠DAB=90°,∴△ APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′= PA= ,∠ APP′=45°,∵△ADP沿点 A 旋转至△ ABP′,∴P D=P′B=,在△ PP′B中, PP′=,PB=2,P′B=,∵(222) +( 2) =(),222∴PP′ +PB=P′B,∴△ PP′B为直角三角形,∠ P′PB=90°,∴∠ BPQ=180°﹣∠ APP′﹣∠ P′PB=180°﹣ 45°﹣ 90°=45°.【评论】本题考察了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考察了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价 120 元;乙种每双进价 60 元,售价 90 元,计划购进两种运动鞋共100 双,此中甲种运动鞋许多于65双.( 1)若购进这100 双运动鞋的花费不得超出7500 元,则甲种运动鞋最多购进多少双?( 2)在( 1)条件下,该运动鞋店在 6 月 19日“父亲节”当日对甲种运动鞋以每双优惠a( 0<a< 20)元的价格进行优惠促销活动,乙种运动鞋价钱不变,请写出总收益w 与 a 的函数关系式,若甲种运动鞋每双优惠11 元,那么该运动鞋店应怎样进货才能获取最大收益?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【剖析】(1)设购进甲种运动鞋x 双,依据题意列出对于x 的一元一次不等式,解不等式得出结论;( 2)找出总收益w对于购进甲种服饰x 之间的关系式,依据一次函数的性质判断怎样进货才能获取最大收益.【解答】解:( 1)设购进甲种运动鞋x 双,由题意可知:80x+60 ( 100﹣ x)≤ 7500 ,解得: x≤ 75.答:甲种运动鞋最多购进75 双.( 2)因为甲种运动鞋许多于65 双,因此 65≤x≤ 75,总收益 w=( 120﹣ 80﹣ a) x+( 90﹣ 60)( 100﹣x) =(10﹣ a) x+3000,。

八年级下册数学《勾股定理》练习题精选

八年级下册数学《勾股定理》练习题精选

八年级下册数学《勾股定理》练习题精选一.选择题(共15小题)1.下列条件中,不能判定△ABC(a,b、c为△ABC的三边)是直角三角形的是()A.∠A+∠B=∠C B.a:b:c=5:12:13C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=3:4:52.下列各组数中,是勾股数的是()A.3,4,7B.7,24,25C.,,D.3,﹣4,53.如图,在△ABC中,AB=AC=10,BC=12,AD是△ABC的中线,则AD长为()A.2B.6C.8D.24.下列条件中,不能判断△ABC是直角三角形的是()A.AB:BC:AC=3:4:5B.AB:BC:AC=1:2:C.∠A﹣∠B=∠C D.∠A:∠B:∠C=3:4:55.若5,a,12是一组勾股数,则a的值为()A.B.13C.或13D.146.“绿水青山,就是金山银山”,党的十八大以来,生态文明建设,可持续发展理念深入人心,我们泰安的城市绿化率持续增加.△ABC是某小区一块三角形空地,已知∠A=150°,AB=30m,AC=20m,如果在这块空地上种草皮,每平方米草皮费用按120元计算,则这块空地种植草皮需要资金()元.A.36000B.24000C.18000D.120007.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76B.57C.38D.198.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1,2,3B.5,10,12C.,,D.13,12,5 9.下列各组数中,能构成直角三角形的是()A.,,B.4,5,6C.6,8,10D.9,16,25 10.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.7C.5或D.7或2511.如图,在3×3的正方形网格中,每个小正方形的边长为1,A,B,C均为格点(网格线的交点),以点A为圆心,AB的长为半径作弧,交格线于D,则CD的长为()A.3﹣B.﹣2C.3﹣2D.2﹣212.如图,∠AOB=90°,OA=36cm,OB=12cm,一个小球从点A出发沿着AO方向滚向点O,另一小球立即从点B出发,沿BC匀速前进拦截小球,恰好在点C处截住了小球.若两个小球滚动的速度相等,则另一个小球滚动的路程BC是()cm.A.13B.20C.24D.1613.已知:a、b、c满足a2﹣2b=5,b2﹣4c=﹣4,c2﹣6a﹣2b=﹣18,则以a、b、c为边长的三角形是个().A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形14.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC 于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.∠CED=∠FDB B.DC=3C.AE=5D.AC=1015.将一个等腰三角形ABC纸板沿垂线段AD,DE进行剪切,得到三角形①②③,再按如图2方式拼放,其中EC与BD共线.若BD=6,则AB的长为()A.B.C.D.7二.填空题(共9小题)16.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E.若AB =10cm,AC=6cm,则BE的长为cm.17.如图,有一块四边形花圃ABCD,AB=3m,AD=4m,BC=13m,DC=12m,∠A=90°,若在这块花圃上种植花草,已知每种植1m2需50元,则共需元.18.已知三角形的两边分别为6和8,当第三边为时,此三角形是直角三角形.19.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.20.在平面直角坐标系中,点A(2,0)与B(﹣2,3)之间的距离为.21.如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,连接PQ.当动点P、Q运动2s时,PQ=.22.已知x,y分别为直角三角形的两边长,并且满足(x﹣2)2+=0,则第三边长度为.23.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.若AB=14cm,且AH:AE=3:4,则AH=cm.24.我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=3米,AD=4米,AB=13米,BC=12米.求出空地ABCD的面积为平方米.三.解答题(共9小题)25.如图,在四边形ABCD中,AB=BC,AD2+CD2=2AB2,CD⊥AD.则∠ABC=90°,请说明理由.26.如图,在Rt△AOB和Rt△COD中,AB=CD=25,OB=7,AC=4.求BD的长.27.如图,在△ABC中,AB=13,AC=15,BC边上的高AD=12,求BC的长.28.如图,Rt△ABC中,∠B=90°,AB=8,BC=6,AC的垂直平分线DE分别交AB,AC于D,E两点,求CD的长.29.《中华人民共和国道路交通安全法实施条例》规定:同方向只有一条机动车道的道路,小汽车在城市公路上行驶的速度不得超过70km/h.如图,一辆小汽车在一条城市公路上沿直道行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪之间的距离为50m.这辆小汽车超速了吗?30.如图,四边形ABCD是果农王大爷家的果园平面图,王大爷准备沿AC将果园分为△ABC 和△ACD两个区域,分别种植两种不同的果树.经测量,∠ACD=90°,AD=100米,CD=60米,AB=BC=85米,求△ABC区域的面积.31.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为点E.若AB=15cm,AC=9cm,求BE的长度.32.如图,在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点B出发,以每秒4cm的速度沿折线B→A→C→B运动,设运动时间为t秒(t>0).(1)若点P在AC上,求出此时线段PC的长(用含t的代数式表示);(2)在运动过程中,当t为何值时,△BCP是以PB为底边的等腰三角形.33.如图:学校A和铁路CM的夹角∠ACM=30°,学校A与车站C的距离AC=320m,火车经过时,周围200m内会受到火车噪声的干扰.(1)经过计算说明学校为什么会受到经过火车噪声的影响;(2)若火车的速度为30m/s,求一列火车经过时学校受到影响的时间.(火车车长忽略不计)。

初二下册数学题200道(带答案)

初二下册数学题200道(带答案)

八年级下学期数学练习题及答案
22.(8分)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
根据以下信息,解答下列问题:
(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.
【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.
【解答】解:(1)设y1=k1x+80,
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80<30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.。

初二数学下册试题及答案

初二数学下册试题及答案

初二数学下册试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 3.1415926B. 2.71828C. πD. √2答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数可能是:A. 1B. -1C. 0D. 4答案:C4. 以下哪个表达式是正确的?A. |-3| = -3B. |-3| = 3C. -|-3| = 3D. -|-3| = -3答案:B5. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 28cmD. 21cm答案:A6. 以下哪个是二次根式?A. √3B. -√3C. √-3D. √3x答案:D7. 一个数的立方根是它本身,这个数可能是:A. 1B. -1C. 0D. 8答案:C8. 以下哪个是多项式?A. 2x^2 + 3x + 1B. 2xC. 2x + 1D. 2x^2答案:A9. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 以上都是答案:D10. 以下哪个是单项式?A. 2x^2B. 2x + 3C. 2x^2 - 3xD. 2x答案:D二、填空题(每题2分,共20分)1. 如果一个数的绝对值是5,那么这个数可能是______。

答案:5或-52. 一个圆的周长是44cm,那么它的直径是______。

答案:22cm3. 一个数的平方是16,那么这个数可能是______。

答案:4或-44. 一个数的立方是-8,那么这个数是______。

答案:-25. 一个三角形的内角和是______。

答案:180°6. 如果一个数的平方根是4,那么这个数是______。

答案:167. 一个数的倒数是1/2,那么这个数是______。

答案:28. 一个数的相反数是-3,那么这个数是______。

答案:39. 一个数的立方根是2,那么这个数是______。

初中二年级数学下册期末专项训练题(972)

初中二年级数学下册期末专项训练题(972)

初中二年级数学下册期末专项训练题(972)好的,以下是针对初中二年级数学下册期末专项训练题的内容:一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √(-4)D. √(0)2. 一个等腰三角形的两边长分别为4和6,它的周长是多少?A. 14B. 16C. 18D. 203. 已知函数y=2x+3,当x=-1时,y的值是多少?A. 1B. -1C. 5D. -54. 下列哪个选项是不等式?A. 2x+3=7B. 3x-5>0C. 4x-2<0D. 5x+65. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 一个样本数据为1, 2, 3, 4, 5,它的中位数是多少?A. 2B. 3C. 4D. 57. 一个正方体的棱长为a,它的体积是多少?A. a^2B. 2a^2C. a^3D. 2a^38. 一个二次函数的顶点坐标为(2,-3),且开口向上,它的一般式可以是?A. y=(x-2)^2-3B. y=-(x-2)^2-3C. y=(x+2)^2-3D. y=-(x+2)^2-39. 一个样本数据为1, 2, 3, 4, 5,它的众数是多少?A. 1B. 2C. 3D. 510. 一个等腰直角三角形的斜边长为5,它的直角边长是多少?A. 2.5B. 3C. 4D. 5二、填空题(每题4分,共40分)11. 已知一个三角形的两边长分别为6和8,且夹角为60°,则第三边长为_________。

12. 已知一个样本数据为2, 3, 3, 4, 5, 6,它的平均数为_________。

13. 已知一个二次函数的顶点坐标为(1,-2),且开口向下,它的一般式可以是y=-(x-1)^2+_________。

14. 已知一个圆的半径为7,它的周长为_________。

15. 已知一个样本数据为1, 2, 2, 3, 4,它的众数为_________。

初二数学试题精选及答案

初二数学试题精选及答案

初二数学试题精选及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 如果一个三角形的两边长分别为3和4,第三边长为整数,那么第三边长可能是:A. 1B. 2C. 3D. 43. 一个数的立方根是它本身的数是:A. 0B. 1C. -1D. 以上都是4. 在直角坐标系中,点(2, -3)关于y轴的对称点的坐标是:A. (-2, -3)B. (-2, 3)C. (2, 3)D. (-2, 3)5. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或06. 一次函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 一个数的相反数是它本身,那么这个数是:A. 正数B. 负数C. 0D. 以上都不是8. 以下哪个选项是方程2x-3=7的解?A. x=-1B. x=2C. x=5D. x=39. 一个数的平方是它本身,那么这个数是:A. 1或-1B. 0或1C. 0或-1D. 以上都不是10. 一个等腰三角形的两个底角相等,那么这个三角形的顶角可能是:A. 30°B. 45°C. 60°D. 90°二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可能是______。

2. 如果一个三角形的两个内角分别为30°和60°,那么第三个内角是______。

3. 一个数的立方是27,这个数是______。

4. 一个数的相反数是-8,这个数是______。

5. 一个数的平方是25,这个数是______。

6. 一次函数y=3x-2与y轴的交点坐标是______。

7. 一个等腰三角形的顶角是100°,那么它的底角是______。

8. 一个数的平方根是4,这个数是______。

八年级数学下册期末试卷(附含答案)精选全文完整版

八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。

【必考题】初二数学下期中试题(附答案)

【必考题】初二数学下期中试题(附答案)
【详解】
由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,
∴①②都正确;
设小带车离开A城的距离y与t的关系式为y小带=kt,
把(5,300)代入可求得k=60,
∴y小带=60t,
设小路车离开A城的距离y与t的关系式为y小路=mt+n,
【分析】
先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.
【详解】
解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC= = .
∴OM= .
故选:B.
【点睛】
本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.
2.C
解析:C
【解析】
【分析】
仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
考点:1.众数;2.中位数
5.B
解析:B
【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;
菱形的四个角不一定相等,而正方形的四个角一定相等.故选B.
6.A
解析:A
【解析】
【分析】
∵一条对角线的长为12,当AC=12,
∴AO=CO=6,
在Rt△AOB中,根据勾股定理,得BO=8,
∴BD=2BO=16,
∴菱形的面积= AC•BD=96,
故选:C.
【点睛】
此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.

初二数学经典题目精选(附答案)

初二数学经典题目精选(附答案)

数学经典题目(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)APCDB AFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M中点,AD 、BC 的延长线交MN 于E 、F 求证:∠DEN =∠F .D 2C 2B 2 A 2D 1C 1B 1CBDAA 1B数学经典题目(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM ⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A线,交圆于B、C及D、E,直线EB及CD 求证:AP=AQ.(初二)F3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点AEB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 求证:点P 到边AB 的距离等于AB数学经典题目(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.4、如图,PC切圆O于C,AC与直线PO相交于B、D.求证:AB数学经典题目(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC =5.2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)数学经典题目(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.APCBACBPD3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a方形的边长.4、如图,△ABC 中,∠ABC =∠ACB=800,D 、E 分别是点,∠DCA =300,∠EBA =200,求∠BED 的度数.数学经典题目(一)1.如下图做GH ⊥AB,连接EO 。

八年级下册数学计算题大全及答案

八年级下册数学计算题大全及答案

八年级下册数学计算题大全及答案第一章:整数运算知识点1:加法和减法1.计算:73 + 48 = 1212.计算:312 - 145 = 1673.计算:-86 + 64 = -224.计算:-126 - 83 = -209知识点2:乘法和除法1.计算:25 × 8 = 2002.计算:84 ÷ 6 = 143.计算:-32 × 5 = -1604.计算:-72 ÷ -9 = 8第二章:分数运算知识点1:分数的加法和减法1.计算:1/3 + 1/4 = 7/122.计算:2/5 - 1/3 = 1/153.计算:3/8 + 5/6 = 49/244.计算:4/9 - 3/7 = 13/63知识点2:分数的乘法和除法1.计算:2/5 × 3/4 = 6/202.计算:3/8 ÷ 1/4 = 12/83.计算:-1/3 × 5/6 = -5/184.计算:-2/7 ÷ -1/5 = 10/7第三章:代数式和代数方程知识点1:代数式运算1.计算:2x + 3y - x + 5y = x + 8y2.计算:4a - 2b + 3a + b = 7a - b3.计算:3m + 2n - 4m + 3n = -m + 5n4.计算:-5x + 2y + 3x - y = -2x + y知识点2:代数方程求解1.解方程:5x - 12 = 8–解:x = 42.解方程:3y + 7 = 4y - 9–解:y = 163.解方程:2z - 5 = -3z + 4–解:z = 14.解方程:4a + 3 = 2a + 9–解:a = 3第四章:几何运算知识点1:图形的周长和面积1.求矩形的周长:长为10cm,宽为4cm–解:周长 = 2(长 + 宽) = 2(10 + 4) = 28cm2.求正方形的面积:边长为6cm–解:面积 = 边长 × 边长 = 6 × 6 = 36cm²3.求三角形的周长:边长分别为5cm、7cm、8cm–解:周长 = 边1 + 边2 + 边3 = 5 + 7 + 8 = 20cm4.求圆的面积:半径为3cm–解:面积= π × 半径² = 3.14 × 3² = 28.26cm²知识点2:相似图形和全等图形1.判断下列图形是否相似:–三角形ABC与三角形DEF,∠ABC = ∠DEF,∠ACB = ∠DFE,∠BAC = ∠EDF–解:相似2.判断下列图形是否全等:–三角形ABC与三角形DEF,∠ABC = ∠DEF,∠BAC = ∠EDF–解:不全等以上是八年级下册数学计算题的大全及答案,包括整数运算、分数运算、代数式和代数方程、几何运算等多个知识点。

初二(下册)数学最经典题

初二(下册)数学最经典题

初二(下册)数学题精选分式:一:如果abc=1,求证11++a ab +11++b bc +11++c ac =1解:二:已知a 1+b 1=)(29b a +,则a b +b a等于多少?解:三:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。

向容器中注满水的全过程共用时间t 分。

求两根水管各自注水的速度。

解:四:联系实际编拟一道关于分式方程2288+=xx 的应用题。

要求表述完整,条件充分并写出解答过程。

解略五:已知M =222y x xy -、N =2222yx y x -+,用“+”或“-”连结M 、N,有三种不同的形式,M+N 、M-N 、N-M,请你任取其中一种进行计算,并简求值,其中x :y=5:2.解:反比例函数:一:一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E"图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:(1)求y与x之间的函数关系式;(2)“E”图案的面积是多少?(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围。

二:是一个反比例函数图象的一部分,点(110)A ,,(101)B ,是它的两个端点.(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.三:如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x的图象上,则图中阴影部分的面积等于 。

四:如图11,已知正比例函数和反比例函数的图像都经过点M (-2,1),且P (1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x轴,QB 垂直于y 轴,垂足分别是A 、B . (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.五:如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点8,与反比例函数y 一罟在第一象限的图象交于点c(1,6)、点D(3,x ).过点C 作CE 上y 轴于E,过点D 作DF 上X 轴于F . (1)求m ,n 的值;(2)求直线AB 的函数解析式;勾股定理:图11xyB()AOMQP图xy()BCA OMPQ一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,•设其面积为S ,则第一步:6S=m;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长".(1)当面积S 等于150时,请用康熙的“积求勾股法"求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.二:一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张C .第6张D .第7张三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,且A 与B 相距350米,若小明的身高忽略不计,则乙楼的高度是 米.四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A 和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X 同侧,50km AB A =,、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和1S PA PB =+,图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接BA '交直线X 于点P ),P 到A 、B 的距离之和2S PA PB =+. (1)求1S 、2S ,并比较它们的大小; (2)请你说明2S PA PB =+的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.五:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,P图(1)图(3)图(2) A交BC 于点G ,交AB 的延长线于点E ,且AE AC =. (1)求证:BG FG =;(2)若2AD DC ==,求AB 的长.四边形:一:如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形。

初二数学计算练习题

初二数学计算练习题

初二数学计算练习题题目一:整数运算1. 求下列整数的和:24 + (-17) =2. 求下列整数的差:34 - (-18) =3. 求下列整数的积:(-5) × (-9) =4. 求下列整数的商:(-36) ÷ 6 =题目二:分数运算1. 将 3/4 与 5/6 相加,并化简结果。

2. 将 2/3 与 1/8 相减,并化简结果。

3. 将 2/5 与 3/4 相乘,并化简结果。

4. 将 2/9 除以 5/6,并化简结果。

题目三:小数运算1. 求下列小数的和:2.34 + 1.17 =2. 求下列小数的差:5.68 -3.41 =3. 求下列小数的积:1.5 × 0.25 =4. 求下列小数的商:3.6 ÷ 1.8 =题目四:单位换算1. 将 6千米转换为米。

2. 将 350克转换为千克。

3. 将 300毫升转换为升。

4. 将 4小时转换为分钟。

题目五:面积计算1. 若正方形的边长为 5厘米,求其面积。

2. 若长方形的长为 8厘米,宽为 4厘米,求其面积。

3. 若圆的半径为 3厘米,求其面积。

4. 若三角形的底边长为 6厘米,高为 2厘米,求其面积。

题目六:周长计算1. 若正方形的边长为 6厘米,求其周长。

2. 若长方形的长为 10厘米,宽为 3厘米,求其周长。

3. 若圆的半径为 5厘米,求其周长。

4. 若三角形的边长分别为 4厘米、7厘米、9厘米,求其周长。

题目七:百分数计算1. 将 4/5 转换为百分数并化简。

2. 将 3/10 转换为百分数并化简。

3. 将 75% 转换为分数并化简。

4. 将 35% 转换为分数并化简。

以上是初二数学计算练习题,希望能够帮助你加深对数学运算的理解和掌握。

请认真计算,并写下你的答案。

初二数学下册考试试题

初二数学下册考试试题

初二数学下册考试试题初二数学下册考试试题完成了小学阶段的学习,进入紧张的初中阶段。

以下是初二数学下册考试试题,欢迎阅读。

一、选择题(每小题3分,共30分)1.当分式|x|-3x+3的值为零时,x的值为()A、0B、3C、-3D、±32.化简m2-3m9-m2的结果是()A、mm+3B、-mm+3C、mm-3D、m3-m3.下列各式正确的是()A、-x+y-x-y=x-yx+yB、-x+yx-y=-x-yx-yC、-x+y-x-y=x+yx-yD、-x+y-x-y=-x-yx+y4.如果把分式x+2yx中的x和y都扩大10倍,那么分式的值()A.扩大10倍B、缩小10倍C、扩大2倍D、不变5.计算(x-y)2等于()A、x2-yB、x2yC、-x2y2D、x2y26、化简a2a-1-a-1的结果为()A.2a-1a-1B、-1a-1C、1a-1D、27、把分式x2-25x2-10x+25约分得到的结果是()A、x+5x-5B、x-5x+5C、1D、110x8、分式1x2-1有意义的条件是()A、x≠1B、x≠-1C、x≠±1D、x≠09、已知1<x<2,则分式|x-2|x-2-|x-1|x-1+|x|x的值为()A、2B、1C、0D、-110、一项工程,甲单独做需要x天完成,乙单独做需要y天完成,则甲、乙合做需几天完成()A、x+yB、x+yxyC、xyx+yD、x+y2二、填空题(每小题3分,共15分)11.当x=_________时,分式x+1x-1无意义。

12.若代数式x-1x2+1的值等于0,则x=_____________。

13、分式34xy,12x-2y,23x2-3xy的最简公分母是_______________14、已知a-b=5,ab=-3,则1a-1b=______________15、约分3m2n3(x2-1)9mn2(1-x)=______________________。

初二下册数学题

初二下册数学题

初二下册数学题(总20页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除o y x yx o yxo y xo八年级下册数学期末测试题一一、选择题 1. 当分式13-x 有意义时,字母x 应满足( ) A. 0=x B. 0≠x C. 1=x D. 1≠x 2.若点(-5,y 1)、(-3,y 2)、(3,y 3)都在反比例函数y= -3x 的图像上,则( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 2 3.如图,在直角梯形ABCD 中,AD BC ∥,点E 是边CD 的中点,若52AB AD BC BE =+=,,则梯形ABCD 的面积为( ) A .254B .252C .258D .254.函数ky x =的图象经过点(1,-2),则k 的值为( )A. 12B. 12- C. 2 D. -25.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )A B C D6.顺次连结等腰梯形各边中点所得四边形是( )A .梯形 B.菱形 C.矩形 D.正方形7.若分式34922+--x x x 的值为0,则x 的值为( )A .3 B.3或-3 C.-3 D.08.甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的( ) A.bba +倍 B.ba b+倍 C.ab ab -+倍 D.ab ab +-倍 9.如图,把一张平行四边形纸片ABCD 沿BD 对折。

使C 点落在E 处,BE 与AD 相交于点D .若∠DBC=15°,则∠BOD=A D E BA .130 ° B.140 ° C.150 ° D.160°10.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( ) A .4 B.5 C.6 D.7 二、填空题11.边长为7,24,25的△ABC 内有一点P 到三边距离相等,则这个距离为12. 如果函数y=222-+k k kx是反比例函数,那么k=____, 此函数的解析式是__ ______13.已知a 1-b 1=5,则bab a b ab a ---+2232的值是 14.从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm )都减去165.0cm ,其结果如下:1.2,0.1,8.3,1.2,10.8,7.0这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)15.如图,点P 是反比例函数2y x=-上的一点,PD⊥x 轴于点D ,则△POD 的面积为 三、计算问答题16.先化简,再求值:112223+----x x xx x x ,其中x =2 17.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元) 1015305060人数3611136因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元. (1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少?18.已知如图:矩形ABCD 的边BC 在X 轴上,E 为对角线BD 的中点,点B 、D 的坐标分别为B (1,0),D (3,3),反比例函数y (1)写出点A 和点E 的坐标; (2)求反比例函数的解析式; (3)判断点E 是否在这个函数的图象上19.已知:CD 为ABC Rt ∆h CD =(如图)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一:如果abc=1,求证11++a ab +11++b bc +11++c ac =1解:原式=11++a ab +a ab abc a +++ababc bc a ab ++2=11++a ab +a ab a ++1+ab a ab++1=11++++a ab a ab=1二:已知a 1+b 1=)(29b a +,则a b +b a等于多少解:a 1+b 1=)(29b a + ab b a +=)(29b a + 2(b a +)2=9ab 22a +4ab +22b =9ab 2(22b a +)=5abab b a 22+=25a b +b a =25 三:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。

向容器中注满水的全过程共用时间t 分。

求两根水管各自注水的速度。

解:设小水管进水速度为x ,则大水管进水速度为4x 。

由题意得:t x v x v =+82 解之得:t vx 85=经检验得:tvx 85=是原方程解。

∴小口径水管速度为t v 85,大口径水管速度为tv 25。

四:联系实际编拟一道关于分式方程2288+=xx 的应用题。

要求表述完整,条件充分并写出解答过程。

解略五:已知M =222yx xy-、N =2222y x y x -+,用“+”或“-”连结M 、N,有三种不同的形式,M+N 、M-N 、N-M ,请你任取其中一种进行计算,并简求值,其中x :y=5:2。

解:选择一:22222222()()()xy x y x y x y M N x y x y x y x y x y++++=+==--+--,当x ∶y =5∶2时,52x y =,原式=572532y yy y +=-.选择二:22222222()()()xy x y x y y xM N x y x y x y x y x y+----=-==--+-+,当x ∶y =5∶2时,52x y =,原式=532572y yy y -=-+.选择三:22222222()()()x y xy x y x yN M x y x y x y x y x y+---=-==--+-+,当x ∶y =5∶2时,52x y =,原式=532572y yy y -=+.反比例函数:一:一张边长为16cm 正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E ”图案如图1所示.小矩形的长x (cm )与宽y (cm )之间的函数关系如图2所示:(1)求y 与x 之间的函数关系式;(2)“E ”图案的面积是多少(3)如果小矩形的长是6≤x ≤12cm ,求小矩形宽的范围.关系式为xky =解:(1)设函数∵函数图象经过(10,2) ∴102k= ∴k =20, ∴xy 20=(2)∵xy 20=∴xy =20, ∴2162022162=⨯-=-=xy S S E 正 (3)当x =6时,310620==y当x =12时,351220==y∴小矩形的长是6≤x ≤12cm ,小矩形宽的范围为cm y 31035≤≤二:是一个反比例函数图象的一部分,点(110)A ,,(101)B ,是它的两个端点.(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.解:(1)设k y x =,(110)A ,在图象上,101k∴=,即11010k =⨯=, 10y x∴=,其中110x ≤≤;(2)答案不唯一.例如:小明家离学校10km ,每天以km/h v 的速度去上学,那么小明从家去学校所需的时间10t v=. 三:如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积等于 .1 11010ABO xy答案:r=1S=πr²=π四:如图11,已知正比例函数和反比例函数的图像都经过点M(-2,1),且P(1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻,求平行四边形OPCQ解:(1)设正比例函数解析式为y kx=,将点M(2-,1-)坐标代入得12k,所以正比例函数解析式为12y x同样可得,反比例函数解析式为2yx(2)当点Q在直线DO上运动时,设点Q的坐标为1()2Q m m,,于是211112224OBQ S OB BQ m m m △, 而1(1)(2)12OAP S △,所以有,2114m ,解得2m =±所以点Q 的坐标为1(21)Q ,和2(21)Q , (3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,而点P (1-,2-)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值.因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标为2()Q n n,, 由勾股定理可得222242()4OQ n nn n,所以当22()0nn即20nn时,2OQ 有最小值4,又因为OQ 为正值,所以OQ 与2OQ 同时取得最小值, 所以OQ 有最小值2.由勾股定理得OP =5,所以平行四边形OPCQ 周长的最小值是2()2(52)254OP OQ .五:如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点8,与反比例函数y 一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C 作CE 上y 轴于E ,过点D 作DF 上X 轴于F . (1)求m ,n 的值;(2)求直线AB 的函数解析式;勾股定理:一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,•设其面积为S ,则第一步:6S=m ;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗请写出证明过程.解:(1)当S=150时,k=m =1502566S ===5, 所以三边长分别为:3×5=15,4×5=20,5×5=25; (2)证明:三边为3、4、5的整数倍, 设为k 倍,则三边为3k ,4k ,5k ,• 而三角形为直角三角形且3k 、4k 为直角边. 其面积S=12(3k )·(4k )=6k 2, 所以k 2=6S,k=6S (取正值),即将面积除以6,然后开方,即可得到倍数.二:一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张C .第6张D .第7张答案:C三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,且A 与B 相距350米,若小明的身高忽略不计,则乙楼的高度是 米.答案:40米四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A 和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X 同侧,50km AB A =,、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和1S PA PB =+,图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接BA '交直线X 于点P ),P 到A 、B 的距离之和2S PA PB =+. (1)求1S 、2S ,并比较它们的大小; (2)请你说明2S PA PB =+的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.20解:⑴图10(1)中过B 作BC ⊥AP,垂足为C,则PC =40,又AP =10,∴AC =30在Rt △ABC 中,AB =50 AC =30 ∴BC =40 ∴ BP =24022=+BC CP S 1=10240+⑵图10(2)中,过B 作BC ⊥AA ′垂足为C ,则A ′C =50, 又BC =40∴BA'=4110504022=+ 由轴对称知:PA =PA' ∴S 2=BA'=4110 ∴1S ﹥2S(2)如 图10(2),在公路上任找一点M,连接MA,MB,MA',由轴对称知MA =MA' ∴MB+MA =MB+MA'﹥A'B ∴S 2=BA'为最小(3)过A 作关于X 轴的对称点A', 过B 作关于Y 轴的对称点B'连接A'B',交X 轴于点P, 交Y 轴于点Q,则P,Q 即为所求 过A'、 B'分别作X 轴、Y 轴的平行线交于点G, A'B'=5505010022=+∴所求四边形的周长为55050+五:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.PX图(1)图(3)图(2)DC BGAF(1)求证:BG FG =;(2)若2AD DC ==,求AB 的长.解:(1)证明:90ABC DE AC ∠=°,⊥于点F ,ABC AFE ∴∠=∠.AC AE EAF CAB =∠=∠,, ABC AFE ∴△≌△AB AF ∴=.连接AG , AG =AG,AB =AF ,Rt Rt ABG AFG ∴△≌△. BG FG ∴=.(2)解:∵AD =DC,DF ⊥AC ,1122AF AC AE ∴==. 30E ∴∠=°.30FAD E ∴∠=∠=°,AF ∴=AB AF ∴==四边形:一:如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形.(1) 当AB ≠AC 时,证明四边形ADFE 为平行四边形;(2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类直接写出构成图形的类型和相应的条件.解:(1) ∵△ABE 、△BCF 为等边三角形,∴AB = BE = AE ,BC = CF = FB ,∠ABE = ∠CBF = 60°. ∴∠FBE = ∠CBA . ∴△FBE ≌△CBA .DCEBGAFEFDABC∴EF = AC .又∵△ADC 为等边三角形, ∴CD = AD = AC . ∴EF = AD. 同理可得AE = DF .∴四边形AEFD 是平行四边形.(2) 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形) 当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形).二:如图,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF 。

相关文档
最新文档