八年级下册数学-第三单元测试卷

合集下载

人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(答案解析)

人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(答案解析)

一、选择题1.已知正方形ABCD 中,对角线4AC =,这个正方形的面积是( )A .8B .16C .82D .162 2.在ABCD 中AB BC ≠.F 是BC 上一点,AE 平分FAD ∠,且E 是CD 的中点,则下列结论:①AB BF =;②AF CF CD =+;③AF CF AD =+;④AE EF ⊥,其中正确的是( )A .①②B .②④C .③④D .①②④ 3.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组. 4.如图,已知四边形ABCD 中,R 、P 分别为BC 、CD 上的点,E 、F 分别为AP 、RP 的中点.当点P 在CD 上从点C 向点D 移动而点R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长不变C .线段EF 的长逐渐减小D .线段EF 的长与点P 的位置有关 5.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则平行四边形ABCD 的周长是( )A .60B .30C .20D .167.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .208.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º9.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( )A .若∠ACP=45°, 则CP=5B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=24510.如图所示,已知Rt ABC 中,90B ︒∠=,3AB =,4BC =,D F 、分别为AB AC 、的中点,E 是BC 上动点,则DEF 周长的最小值为( )A .240+B .213+C 13D .611.如图,长方形纸片ABCD ,点E ,M ,N 分别在边AB ,BC ,AD 上,将纸片分别沿EN ,EM 对折,使点A 落在点'A 处,点B 落在点'B 处,若''30A EB ∠=︒,则NEM ∠的度数为( )A .70︒B .75︒C .80︒D .85︒12.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .32aD .33a 二、填空题13.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.14.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,还需添加一个条件,这个条件可以是__________.(只要填写一种情况)15.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.16.如图,先将正方形纸片对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,则ABH ∠=______°.17.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.18.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).19.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.20.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.三、解答题21.如图,CD 是线段AB 的垂直平分线,M 是AC 延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM 的角平分线CN ,过点B 作CN 的垂线,垂足为E ;(2)求证:四边形BECD 是矩形;(3)AB 与AC 满足怎样的数量关系时,四边形BECD 是正方形?证明你的结论. 22.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且3AM =,4DN =,求四边形DEMN 的面积.23.如图,菱形ABCD 的边长为2.2BD =,E ,F 分别是边AD ,CD 上的两个动点,且满足2AE CF +=.(1)求证:BDE BCF △≌△;(2)判断BEF 的形状,并说明理由.24.已知,如图,在等腰直角三角形ABC 中,90C ∠=︒,D 是AB 的中点,点E ,F 分别是AC ,BC 上的动点,且始终满足CE BF =,(1)证明:DE DF =;(2)求EDF ∠的大小;(3)写出四边形ECFD的面积与三角形ABC的面积的关系式,并说明理由.25.在Rt ABC中,90∠=,以AC为一边向外作等边三角形ACD,点E为ABACB︒的中点,连接DE.DE CB;(1)证明://(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形,并说明理由.26.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据勾股定理,可得正方形的边长,进而可得正方形的面积.【详解】∵正方形ABCD 中,对角线4AC =,∴AB 2+BC 2=AC 2,∴2AB 2=42,∴AB 2=8.故选:A .【点睛】本题主要考查的是正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键. 2.C解析:C【分析】首先延长AD ,交FE 的延长线于点M ,易证得△DEM ≌△CEF ,即可得EM =EF ,又由AE 平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF ,进而可对各选项进行判断.【详解】解:延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M =∠EFC ,∵E 是CD 的中点,∴DE =CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM =EF ,∵AE 平分∠FAD ,∴AM =AF ,AE ⊥EF .即AF =AD +DM =CF +AD ;故③,④正确,②错误.∵AF 不一定是∠BAD 的角平分线,∴AB 不一定等于BF ,故①错误.故选:C .【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 3.C解析:C【分析】根据平行四边形的判定方法对①②③④分别作出判断即可求解.【详解】解:①AB ∥CD ,AD ∥BC ,根据两组对边分别平行的四边形是平行四边形即可得到四边形是平行四边形;②AB CD =,AD BC =,根据两组对边分别相等的四边形是平行四边形即可得到四边形是平行四边形;;③AO CO =,BO DO =,根据对角线互相平分的四边形是平行四边形即可得到四边形是平行四边形;④AB ∥CD ,AD BC =,无法判定四边形是平行四边形.故选:C【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定定理是解题关键. 4.B解析:B【分析】因为AR 的长度不变,根据中位线定理可知,线段EF 的长不变.【详解】解:因为AR 的长度不变,根据中位线定理可知,EF 平行与AR ,且等于AR 的一半. 所以当点P 在CD 上从C 向D 移动而点R 不动时,线段EF 的长不变.故选:B .【点睛】主要考查中位线定理.在解决与中位线定理有关的动点问题时,只要中位线所对应的底边不变,则中位线的长度也不变.5.C解析:C【分析】求得∠ADB=90°,即AD ⊥BD ,即可得到S ▱ABCD =AD•BD ;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE ,进而得出DB 平分∠CDE ;依据Rt △AOD 中,AO >AD ,即可得到AO >DE ;依据O 是BD 中点,E 为AB 中点,可得BE=DE ,利用三角形全等即可得OE ⊥BD 且OB=OD .【详解】解:在ABCD 中,∵∠BAD=∠BCD=60°,∠ADC=120°,DE 平分∠ADC ,∴∠ADE=∠DAE=60°=∠AED ,∴△ADE 是等边三角形,12AD AE AB ∴==, ∴E 是AB 的中点,∴DE=BE ,1302BDE AED ︒∴∠=∠=, ∴∠ADB=90°,即AD ⊥BD ,∴S ▱ABCD =AD•BD ,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠CDE-∠BDE=60°-30°=30°,∴∠CDB=∠BDE ,∴DB 平分∠CDE ,故②正确;∵Rt △AOD 中,AO >AD ,∵AD=DE ,∴AO >DE ,故③错误;∵O 是BD 的中点,∴DO=BO,∵E 是AB 的中点,∴BE=AE=DE∵OE =OE∴△DOE ≌△BOE(SSS)∴∠EOD=∠EOB∵∠EOD+∠EOB=180°∴∠BOE=90°∴OE 垂直平分BD ,故④正确;正确的有3个,故选择:C .【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,三角形全等判定与性质,熟练掌握平行四边形的性质,等边三角形的性质,直角三角形的性质定理和等边三角形判定定理,三角形全等判定方法和性质是解题的关键.6.C解析:C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵▱ABCD 中,AD ∥BC ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵在▱ABCD 中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.7.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.8.C解析:C【分析】由翻折可知:△BDF ≌△BCD ,所以∠EBD=∠CBD ,∠E=∠C=90°,由于△EDF 是等腰三角形,易证∠ABF=45°,所以∠CBD=12∠CBE=22.5°,从而可求出∠BDC=67.5°. 【详解】解:由翻折的性质得,∠DBC=∠EBD ,∵矩形的对边AD ∥BC ,∠E=∠C=90°,∴∠DBC=∠ADB ,∴∠EBD=∠ADB ,∵△EDF 是等腰三角形,∠E=90°,∴△EDF 是等腰直角三角形, ∴∠DFE=45°,∵∠EBD+∠ADB=∠DFE ,∴∠DBF=12∠DFE=22.5°, ∴∠CBD =22.5°,∴∠BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识.9.D解析:D【分析】四个选项,A、C选项CP为顶角的平分线, B、D选项CP为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D选项.【详解】解:∵∠C=90°,点P在边AB上.BC=6,AC=8,∴22228610AB AC BC+=+=,当CP为AB的中线时,152CP AB==,若∠ACP=45°,如图1,则CP为直角∠ACB的平分线,∵BC≠AC,∴CP与中线、高线不重合,不等于5,故A选项错误;若∠ACP=∠B,如图2∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACP =90°,∴∠APC=90°,即CP为AB的高线,∵BC≠AC,∴CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC⨯⨯=⨯⋅,解得245PC=,故D 选项正确,C 选项错误.故选:D .【点睛】本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.10.B解析:B【分析】先根据三角形的中位线定理可求得DF 的长为2,然后作出点F 关于BC 的对称点F′,连接DF′交BC 于点E ,此时DEF 周长的最小,由轴对称图形的性质可知EF=EF′,从而可得到ED+EF=DF′,再证明四边形DBMF 为矩形,得出FF′=3,然后在Rt △DFF′中,由勾股定理可求得DF′的长度,从而可求得三角形DEF 周长的最小值.【详解】解:如图,作点F 关于BC 的对称点F′,连接DF′交BC 于点E .此时DE+EF 最小∵点D 、F 分别是AB 和AC 的中点,BC=4,3AB =,∴DF=12BC=2,DF//BC ,BD=1.5, ∵点F 与点F′关于BC 对称,∴EF=EF′,FF′⊥BC ,FM= F′M , ∴DE+EF 最小值为DE+ EF′=DF′,90DFF ∠'=︒,∵DF//BC ,90B ∠=︒,∴90B BDF FMB ∠=∠=∠=︒,∴四边形DBMF 为矩形,∴BD=FM=1.5,∴FF′=3,在Rt △DFF′中,2'2222313DF DF FF +=+='∴△DEF 周长的最小值13故选:B【点睛】本题主要考查的是轴对称路径最短问题,以及勾股定理,矩形的判定,作出点F 关于BC的对称点,将DE+EF 转化为DF′的长是解题的关键.11.B解析:B【分析】先由翻折的性质得到'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图可得''''A EN B EM NEM A EB ∠+∠=∠+∠,然后根据180AEN NEM MEB ∠+∠+∠=︒,得到2''180NEM A EB ∠+∠=︒,进而可求出NEM ∠的度数.【详解】由翻折的性质可知:'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图知:''''A EN B EM NEM A EB ∠+∠=∠+∠,又∵180AEN NEM MEB ∠+∠+∠=︒,∴''180A EN B EM NEM ∠+∠+∠=︒,∴2''180NEM A EB ∠+∠=︒,又∵''30A EB ∠=︒,∴75NEM ∠=︒.故选:B .【点睛】本题主要考查的是翻折的性质,掌握翻折的性质是解题的关键.12.D解析:D【分析】首先证明△OBC 是等边三角形,在Rt △EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∴OB=OC ,∠BCD=90°,由翻折不变性可知:BC=BO ,∴BC=OB=OC ,∴△OBC 是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:, 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC 是等边三角形.二、填空题13.【分析】先判定△ADF≌△ECF即可得到AF=EF依据平行线的性质以及角平分线的定义即可得出AF⊥DM;再根据等腰三角形的性质即可得到DN=MN=3最后依据勾股定理即可得到AN与NE的长进而得出DE解析:【分析】先判定△ADF≌△ECF,即可得到AF=EF,依据平行线的性质以及角平分线的定义,即可得出AF⊥DM;再根据等腰三角形的性质,即可得到DN=MN=3,最后依据勾股定理即可得到AN与NE的长,进而得出DE的长.【详解】解:∵点F为边DC的中点,∴DF=CF=12CD=12AB=5,∵AD∥BC,∴∠ADF=∠ECF,∵∠AFD=∠EFC,∴△ADF≌△ECF(ASA),∴AF=EF,∵CD∥AB,∴∠ADC+∠DAB=180°,又∵AF平分∠BAD,DM平分∠ADC,∴∠ADN+∠DAN=90°,∴AF⊥DM,∵AF平分∠BAD,∴∠BAF=∠DAF,又∵DC∥AB,∴∠BAF=∠DFA,∴∠DAF=∠DFA,∴AD=DF=5,同理可得,AM=AD=5,又∵AN平分∠BAD,∴DN=MN=3,∴Rt△ADN中,4=,∴AF=2AN=8,EF=8,∴NE=AE-AN=12,∴Rt△DEN中,=故答案为:317.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,判定AF⊥DM,利用勾股定理进行计算是解决问题的关键.14.(答案不唯一)【分析】根据平行四边形的判定定理有一组对边平行且相等的四边形是平行四边形即可填写【详解】解:∵AD∥BCAD=BC∴四边形ABCD 是平行四边形故答案为:AD=BC(答案不唯一)【点睛】=(答案不唯一)解析:AD BC【分析】根据平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”即可填写.【详解】解:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形.故答案为:AD=BC(答案不唯一)【点睛】本题考查了平行四边形的判定,熟知平行四边形的判定定理是解题的关键,本题有多种答案,如可以根据平行四边形的定义填写AB∥CD等.15.或2【分析】根据菱形有一个内角为60°可以得到等边三角形分两种情况画出图形结合勾股定理求出AC的长【详解】解:∵四边形ABCD是菱形∴AC⊥BDOA=OCOB=ODAD=AB=2若∠BAD=60°∴解析:232【分析】根据菱形有一个内角为60°可以得到等边三角形,分两种情况,画出图形,结合勾股定理求出AC的长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AD=AB=2,若∠BAD=60°,∴△ABD是等边三角形,∴BD=2,∴OD=1,∴22-=,213∴AC=23;若∠ABC=60°,∴△ABC是等边三角形,∴AC=2;故答案为:32.【点睛】此题考查了菱形的性质和勾股定理,等边三角形的判定和性质,要记住菱形的对角线互相平分且垂直,菱形的四条边都相等.16.75【分析】由将正方形纸片对折折痕为MN可得MA=MD=由折叠得AB=AH 由四边形ABCD是正方形得AD=AB可推出AH=AD=2AM可求∠AHM=30°利用平行线性质可求∠BAH=30°在△AHB解析:75.【分析】由将正方形纸片对折,折痕为MN,可得MA=MD=1AD2,由折叠得AB=AH由四边形ABCD是正方形得AD=AB,可推出AH=AD=2AM,可求∠AHM=30°,利用平行线性质可求∠BAH=30°,在△AHB中,AH=AB由内角和可求∠ABH=75 即可.【详解】解:∵正方形纸片对折,折痕为MN,∴MN是AD的垂直平分线,∴MA=MD=1AD2,∵把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,∴AB=AH,∵四边形ABCD是正方形,∴AD=AB,∴AH=AD=2AM,∵∠AMH=90°,AM=1AH2,∴∠AHM=30°,∵MN ∥AB ,∴∠BAH=30°,在△AHB 中,AH=AB ,∴∠ABH=()()11180BAH 180307522︒-∠=︒-︒=︒. 故答案为:75.【点睛】 本题考查正方形折叠问题,涉及垂直平分线,正方形性质,等腰三角形性质,三角形内角和,关键是30°角所对直角边等于斜边一半逆用求角度.17.①②③【分析】根据SSS 即可判定△ABF ≌△CFB 根据全等三角形的性质以及等式性质即可得到EC =EA 根据∠EBF =∠EFB =∠EAC =∠ECA 即可得出BF ∥AC 根据E 不一定是BC 的中点可得BE =CE解析:①②③【分析】根据SSS 即可判定△ABF ≌△CFB ,根据全等三角形的性质以及等式性质,即可得到EC =EA ,根据∠EBF =∠EFB =∠EAC =∠ECA ,即可得出BF ∥AC .根据E 不一定是BC 的中点,可得BE =CE 不一定成立.【详解】解:由折叠可得,AD =AF ,DC =FC ,又∵平行四边形ABCD 中,AD =BC ,AB =CD ,∴AF =BC ,AB =CF ,在△ABF 和△CFB 中,AB CF AF CB BF FB =⎧⎪=⎨⎪=⎩,∴△ABF ≌△CFB (SSS ),故①正确;∴∠EBF =∠EFB ,∴BE =FE ,∴BC -BE =FA -FE ,即EC =EA ,故②正确;∴∠EAC =∠ECA ,又∵∠AEC =∠BEF ,∴∠EBF =∠EFB =∠EAC =∠ECA ,∴BF ∥AC ,故③正确;∵E 不一定是BC 的中点,∴BE =CE 不一定成立,故④错误;故答案为:①②③.【点睛】本题主要考查了折叠问题,全等三角形的判定与性质以及平行线的判定的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.19.【分析】由四边形ABCD是平行四边形得到∠ABC=∠D=102°再AD=AE=BE 得出∠EAB=∠EBA∠BEC=∠BCA继而得到∠ACB=2∠BAC再根据∠BAC+∠ACB=3∠BAC=180°-解析:26【分析】由四边形ABCD是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE,得出∠EAB=∠EBA,∠BEC=∠BCA,继而得到∠ACB=2∠BAC,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC求解即可.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,∠ABC=∠D=102°,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠BCA,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠BAC,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.20.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.三、解答题21.(1)如图所示,见解析;(2)见解析;(3)当AB=2AC时,矩形BECD是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD是AB的垂直平分线,推出∠CDB=90°,AC=BC,利用CN平分∠BCM求出∠DCN=∠DCB+∠BCN=90°,由BE⊥CN求得∠BEC=90°,即可得到结论;(3)当AB=2AC时,矩形BECD是正方形,由AD=BD,AB=2AC,求得BD=22AC,根据AD⊥CD,∠CDB=90°,推出BD=CD,由此得到矩形BECD是正方形.【详解】(1)解:如图所示,(2)证明:∵CD是AB的垂直平分线,∴CD⊥BD,AD=BD,∴∠CDB=90°,AC=BC,∴∠DCB=12∠ACB,∵CN平分∠BCM,∴∠BCN=12∠BCM,∵∠ACB+∠BCM=180°,∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°,∵BE⊥CN,∴∠BEC=90°,∴四边形BECD是矩形;(3)当AB2时,矩形BECD是正方形∵AD=BD,AB2AC,∴ BD=2AC , ∵ AD ⊥CD ,∠CDB =90°,∴ BD =CD ,∴ 矩形BECD 是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.22.(1)见解析;(2)24【分析】(1)依据平行四边形的性质,即可得到△AMB ≌△CND ;(2)依据全等三角形的性质,即可得出四边形DEMN 是平行四边形,再根据等腰三角形的性质,即可得到∠EMN 是直角,进而得到四边形DEMN 是矩形,即可得出四边形DEMN 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,OA OC =,∴BAC DCA ∠=∠,又点M ,N 分别为OA 、OC 的中点, ∴1122===AM AO CO CN , 在AMB 和CND △中, AB CD BAC DCA AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△CND(SAS)(2)∵△AMB ≌△CND ,∴BM=DN ,∠ABM=∠CDN ,又∵BM=EM ,∴DN=EM ,∵AB ∥CD ,∴∠ABO=∠CDO ,∴∠MBO=∠NDO ,∴ME ∥DN ,∴四边形DEMN 是平行四边形,∵BD=2AB ,BD=2BO ,∴AB=OB ,又∵M 是AO 的中点,∴BM ⊥AO ,∴∠EMN=90°,∴四边形DEMN 是矩形,∵AM=3,DN=4,∴AM=MO=3,DN=BM=4,∴MN=6,∴矩形DEMN 的面积=6×4=24.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及矩形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.(1)见解析;(2)等边三角形,理由见解析【分析】(1)由菱形ABCD 边长与对角线都是2,知ABD △和BCD △都是等边三角形.可得60BDE BCF ∠=∠=︒,BD BC =,可证BDE BCF △≌△;(2)由BDE BCF △≌△,得DBE CBF ∠=∠,BE BF =,利用=60DBF DBE DBF CBF ∠+∠=∠+∠︒.可证BEF 为等边三角形.【详解】(1)证明:∵菱形ABCD 的边长为2,2BD =,∴ABD △和BCD △都是等边三角形.∴60BDE BCF ∠=∠=︒,BD BC =,∵2AE DE AD +==,而2AE CF +=,∴DE CF =,∴BDE BCF △≌△;(2)解:BEF 为等边三角形.理由如下:∵BDE BCF △≌△,∴DBE CBF ∠=∠,BE BF =,∵60DBC DBF CBF ∠=∠+∠=︒°,∴60DBF DBE ∠+∠=︒.即60EBF ∠=︒.∴BEF 为等边三角形.【点睛】 本题考查菱形的性质,等边三角形的判定与性质,三角形全等判定与性质,掌握菱形的性质,等边三角形的判定与性质,三角形全等判定与性质是解题解题关键.24.(1)见解析;(2)90EDF ∠=︒;(3)12ABC ECFD S S =△四边形,理由见解析. 【分析】(1)连接CD ,证明ECD FBD △≌△即可得到结论;(2)根据ECD FBD △≌△,得到EDC FDB ∠=∠,即可推出结论;(3)由ECD FBD △≌△,得到ECD FBD S S =△△,利用ECD FCD FBD FCD S S S S +=+△△△△得到结论12BCD ABC ECFD S S S ==△△四边形. 【详解】解:(1)证明:连接CD ,如图所示:∵等腰直角三角形ABC 中,90C ∠=︒,D 是AB 的中点,∴12CD AB BD ==,45ECD B ∠=∠=︒, 在ECD 和FBD 中,CE BF ECD B CD BD =⎧⎪∠=∠⎨⎪=⎩,∴()ECD FBD SAS △≌△, ∴ED DF =;(2)ECD FBD △≌△,∴EDC FDB ∠=∠,∴EDC FDC FDB FDC ∠+∠=∠+∠,即90EDF CDB ∠=∠=︒;(3)结论:12ABC ECFD S S =△四边形 ∵ECD FBD △≌△,∴ECD FBD S S =△△,∴ECD FCD FBD FCD S S S S +=+△△△△,即12BCD ABC ECFD S S S ==△△四边形. 【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据题意选择恰当的证明方法是解题的关键.25.(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ;(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点,∴CE =12AB =AE . ∵△ACD 是等边三角形,∴AD =CD .在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE =30°.∵∠DCB =150°,∴∠EDC +∠DCB =180°.∴DE ∥CB .(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°,∵∠DCB =150°,∴∠DCB +∠B =180°,∴DC ∥BE ,又∵DE ∥BC ,∴四边形DCBE 是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.26.(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH ,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.。

八年级数学下册第三章检测卷含答案

八年级数学下册第三章检测卷含答案

第三章检测卷时间:120分钟满分:150分一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确)1.某同学读了《庄子》“子非鱼安知鱼之乐”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()2.下面四个共享单车的手机APP图标中,属于中心对称图形的是()3.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N 的坐标为()A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第3题图第4题图4.如图,△ABC沿边BC所在直线向右平移得到△DEF,则下列结论中错误的是() A.△ABC≌△DEF B.AC=DF C.AB=DE D.EC=FC5.如图,小聪坐在秋千上旋转了80°,其位置从P点运动到了P′点,则∠OPP′的度数为()A.40°B.50°C.70°D.80°6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是()A.a=5,b=1 B.a=-5,b=1 C.a=5,b=-1 D.a=-5,b=-17.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7),则点Q(-3,1)的对应点F的坐标为()A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)8.如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()A.4个B.3个C.2个D.1个9.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED的面积为8,则平移的距离为()A.2 B.4 C.8 D.16第9题图第10题图第11题图10.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.点N C.点P D.点Q12.如图,将边长为2个单位的等边△ABC沿边BC所在直线向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.6 B.8 C.10 D.12第12题图第13题图第15题图13.如图,在正方形ABCD中,点E为DC边上的点,连接BE,将△BCE绕C点按顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为() A.10°B.15°C.20°D.25°14.如图,Rt△ABC向右翻滚,下列说法正确的有()(1)①→②是旋转;(2)①→③是平移;(3)①→④是平移;(4)②→③是旋转.A.1种B.2种C.3种D.4种15.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是() A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9二、填空题(本大题共5小题,每小题5分,共25分)16.2017年是香港回归祖国20周年,如图所示的香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转形成的,这四次旋转中旋转角最小是________度.第16题图第17题图第18题图17.将△ABC绕着点C按顺时针方向旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是________.18.如图是一个以A为对称中心的中心对称图形,若∠C=90°,∠B=45°,AC=1,则BB′=________.19.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC 沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.19题图第20题图20.如图,长方形ABCD的对角线AC=10,边BC=8,则图中五个小长方形的周长之和为________.三、解答题(本大题共7小题,各题分值见题号后,共80分)21.(8分)如图,经过△ABC平移后,顶点A移到了点D,请作出平移后的△DEF.22.(8分)如图,正方形网格中每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″.23.(10分)如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF =CE.求证:FD=BE.24.(12分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补全图形;(2)若EF∥CD,求证:∠BDC=90°.25.(12分)如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.26.(14分)如图,4×4的网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中按下列要求涂上阴影.(1)在图①中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图②中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.27.(16分)两块等腰直角三角形纸片AOB和COD按图①所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图②所示.(1)利用图②证明AC=BD,且AC⊥BD;(2)当BD与CD在同一直线上(如图③)时,若AC=7,求CD的长.参考答案与解析1.D 2.C 3.A 4.D 5.B 6.D7.C8.A9.A10.B11.B12.B13.B14.C15.B解析:∵△ABC是等边三角形,∴∠ABC=∠C=60°.∵将△BCD绕点B逆时针旋转60°得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,故选项A正确;∵△ABC 是等边三角形,∴AC=AB=BC=5.∵△BAE是由△BCD逆时针旋转60°得到,∴AE=CD,BD=BE,∠EBD=60°,∴△BDE是等边三角形,∴DE=BD=4,∴△AED的周长为AE +AD+DE=AD+CD+BD=AC+BD=9,故选项C与D正确;∵没有条件证明∠ADE=∠BDC,∴选项B错误,故选B.16.7217.80°18.2219.1320.28解析:∵长方形ABCD的对角线AC=10,BC=8,∴AB=AC2-BC2=102-82=6,由平移的性质可知五个小长方形的周长之和为2×(AB+BC)=2×14=28.21.解:如图,△DEF即为所求.(8分)22.解:(1)如图,△AB′C′即为所求.(4分)(2)如图,△A′B″C″即为所求.(8分)23.证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB =OD ,OA =OC .(3分)∵AF =CE ,∴OF =OE .(5分)在△DOF 和△BOE 中,OD =OB ,∠DOF =∠BOE ,OF =OE ,∴△DOF ≌△BOE (SAS),(8分)∴FD =BE .(10分)24.(1)解:补全图形,如图所示.(5分)(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.(7分)∵∠ACB =90°,∴∠DCE +∠BCD =90°,∴∠ECF =∠BCD .∵EF ∥DC ,∴∠EFC +∠DCF =180°,∴∠EFC =90°.(9分)在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC (SAS),∴∠BDC =∠EFC =90°.(12分)25.解:(1)∵将△ABC 沿AB 边所在直线向右平移3个单位得到△DEF ,∴CF =AD =BE =3.∵AB =5,∴DB =AB -AD =2.(4分)(2)作CG ⊥AB 于G .在△ACB 中,∵∠ACB =90°,AC =3,AB =5,∴由勾股定理得BC =AB 2-AC 2=4.(7分)由三角形的面积公式得12CG ·AB =12AC ·BC ,∴3×4=5·CG ,解得CG=125.(9分)∴S 梯形CAEF =12(CF +AE )·CG =12×(3+5+3)×125=665.(12分) 26.解:(1)答案如图所示(答案不唯一).(7分)(2)答案如图所示(答案不唯一).(14分)27.(1)证明:延长BD 交OA 于点G ,交AC 于点E .(1分)∵△AOB 和△COD 是等腰直角三角形,∴OA =OB ,OC =OD ,∠AOB =∠COD =90°,∴∠AOC +∠AOD =∠DOB +∠DOA ,∴∠AOC =∠DOB .(4分)在△AOC 和△BOD 中,⎩⎪⎨⎪⎧OA =OB ,∠AOC =∠BOD ,OC =OD ,∴△AOC ≌△BOD ,∴AC =BD ,∠CAO =∠DBO .(7分)又∵∠DBO +∠OGB =90°,∠OGB=∠AGE ,∴∠CAO +∠AGE =90°,∴∠AEG =90°,∴AC ⊥BD .(9分)(2)解:由(1)可知AC =BD ,AC ⊥BD .∵BD ,CD 在同一直线上,∴△ABC 是直角三角形.(12分)由勾股定理得BC =AB 2-AC 2=252-72=24.(14分)∴CD =BC -BD =BC -AC =17.(16分)。

人教版初中数学八年级数学下册第三单元《平行四边形》检测卷(答案解析)

人教版初中数学八年级数学下册第三单元《平行四边形》检测卷(答案解析)

C.四边形PECF 的周长是8D. -BD^EF<AB-X 选择题1. 如图,RlAABC 中,ZBAC = 90°, AB = AC, AD 丄 BC 于点 £>, ZABC 的平分线 分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连 DM ,下列结论:①DF = DN ;②zXDA/N 为等腰三角形:③DM 平分ZBMN :④AE = NC,其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个2. 图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD.已知图甲中,ZF = 45°> ZH = 15°,图乙中MN = 2.则图2中正方形的对角线AC 长为()A. 2迈B. 2>/3C. 2苗+1D. 2血+23. 如图,已知正方形ABCD 的边长为4,点P 是对角线BD±一动点(不与D, B 重合),PF 丄CD 于点F, PE 丄BC 于点E,连接AP, EF ・则下列结论错误的是()B. AP = EF 且 AP 丄D图1 图2A. PD = 2EC4・下列命题中,错误的是()A.有一个角是直角的平行四边形是正方形:B.对角线相等的菱形是正方形:C.对角线互相垂直的矩形是正方形:D. 一组邻边相等的矩形是正方形.5.如果平行四边形ABCD的对角线相交于点0,那么在下列条件中,能判断平行四边形ABCD为菱形的是()A. ZOAB = ZOBA:B. ZOAB = ZOBC:C. ZOAB = Z0CD ;D・ZOAB = ZOAD ・6.四边形ABCD中,对角线AC、BD交于点0・给出下列四组条件:①43 II CD, AD ll BC;②AB = CD, AD = BC;®AO = CO, BO = DO : @AB n CD,AD = BC.其中一左能判泄这个四边形是平行四边形的条件共有()A. 1 组:B. 2 组:C. 3 组:D. 4 组.7.如图.己知四边形&BCD是平行四边形,下列说法正确的是()••AA.若AB = AD,则平行四边形43CD是矩形B.若= 则平行四边形&BCD是正方形C.若4B丄BC,则平行四边形ABCD是矩形D.若AC丄BD,则平行四边形ABCD是正方形&下列结论中,菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对边相等且平行9.如图,在平行四边形ABCD中,DE平分N4DC, AD = 6, BE = 2、则平行四边形ABCD的周长是()C. 20D. 2410.如图,正方形ABCD的对角线相交于点O,正方形OMN0与ABCD的边长均为a, OM与CD相交于点E,与BC相交于点F,且满足DE = CF,则两个正方形重合部分的面积为()长比△AOB 的周长大10,则A3的长为()・12.如图,矩形纸片ABCD 中,43 = 4, AD = 3,折叠纸片使AD 边与对角线3D 重C. 2二.填空题13.如图,在RtA ABC 中,ZACB = 90。

初二数学第三章单元测试卷

初二数学第三章单元测试卷

初二数学第三章单元测试卷一、选择题:1.圆的面积公式为s=πr2,其中变量是()A.s B.πC.r D.s和r2.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm3.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.84.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.二、填空题5.三角形的面积公式中S=ah其中底边a保持不变,则常量是,变量是.6.某机器工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为Q=40﹣6t.当t=3时,Q=.7.地铁一号线的列车匀速通过某隧道时,列车在隧道内的长度y(米)与列车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①列车的长度为120米;②列车的速度为30米/秒;③列车整体在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是(填正确结论的序号).8.如图是桂林冬季某一天的气温随时间变化的图象,请根据图象填空:在时气温最低,最低气温为℃;当天最高气温是℃,在时达到;这一天的温差是℃(所有结果均取整数).9.如图,在△ABC中,边BC长为10,BC边上的高AD′为6,点D在BC上运动,设BD长为x(0<x<10),则△ACD的面积y与x之间的关系式.三、解答题:10.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?11.如图,在一个半径为18cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如挖去的圆半径为x(cm),圆环的面积y(cm2)与x的关系式是;(3)当挖去圆的半径由1cm变化到9cm时,圆环面的面积由cm2变化到cm2.12.李老师周末骑自行车去郊游,如图是他离家的距离y(千米)与时间t(时)之间关系的函数图象,李老师9时离开家,15时到家,根据这个函数图象,请你回答下列问题:(1)到达离家最远的地方是什么时间?离家多远?(2)他何时开始第一次休息?休息多长时间?(3)他从离家最远的地方回家用了多长时间?速度是多少?13.日常生活中,我们经常要煮开水,下表为煮开水的时间与水的温度的描述.时间1 2 3 4 5 6 7 8 9 10 11 12 13(分)25 29 32 43 52 61 72 81 90 98 100 100 100温度(℃)(1)根据上表的数据,我们得到什么信息?(2)在第9分钟时,水可以喝吗?为什么?在11分钟时呢?(3)根据表格的数据判断:在第15分钟时,水的温度为多少高呢?(4)随着加热时间的增长,水的温度是否会一直上升?说明你判断的依据.14.小明从家骑自行车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后,继续去学校.如图是他本次上学所用的时间(分钟)与离开家的距离(米)的图象.根据图象提供的信息回答下列问题:(1)小明家到学校的路程是米;(2)小明在书店停留了分钟;(3)本次上学途中,小明一共骑行了多少米?(4)求:整个上学的途中哪个时间段小明骑车速度最快?15.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x ≤30)提出概念所用时间(x) 2 5 7 10 12 13 14 17 20对概念的接受能力(y)47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?。

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。

新人教版初中数学八年级数学下册第三单元《平行四边形》检测卷(有答案解析)

新人教版初中数学八年级数学下册第三单元《平行四边形》检测卷(有答案解析)

一、选择题1.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .152.下列命题为假命题的是( )A .直角三角形斜边上的中线等于斜边的一半.B .两边及其一边的对角对应相等的两个三角形全等.C .等边三角形一边上的高线与这边上的中线互相重合.D .到线段两端点距离相等的点在这条线段的垂直平分线上.3.已知点()0,0A ,()0,4B ,()3,4C t +,()3,D t .记()N t 为ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则()N t 所有可能的值为( )A .6、7B .7、8C .6、7、8D .6、8、9 4.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .6B .8C .3D .45.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .436.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( )A .()8,2-B .()7,3-C .()8,3-D .()14,0 7.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③ 8.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .209.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .102D .32210.如图,矩形纸片ABCD 中,6AB =,10AD =,折叠纸片,使点A 落在BC 边上的点A 处,折痕为PQ ,当点1A 在BC 边上移动时,折痕的端点P 、Q 分别在AB 、AD 边上移动,则当1A B 最小时其值为( )A .2B .3C .4D .511.如图,长方形纸片ABCD ,点E ,M ,N 分别在边AB ,BC ,AD 上,将纸片分别沿EN ,EM 对折,使点A 落在点'A 处,点B 落在点'B 处,若''30A EB ∠=︒,则NEM ∠的度数为( )A .70︒B .75︒C .80︒D .85︒ 12.矩形不一定具有的性质是( ) A .对角线互相平分 B .是轴对称图形 C .对角线相等 D .对角线互相垂直参考答案二、填空题13.已知菱形的面积为962cm ,两条对角线之比为3∶4,则菱形的周长为__________. 14.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.15.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,还需添加一个条件,这个条件可以是__________.(只要填写一种情况)16.如图,先将正方形纸片对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,则ABH ∠=______°.17.如图:在ABC ∆中,13,12,AB BC ==点D E 、分别是,AB BC 的中点,连接DE CD 、,如果 2.5,DE =那么ABC ∆的周长是___.18.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________. 19.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.20.在ABCD 中,BE AD ⊥于E ,BF CD ⊥于F ,若60EBF ︒∠=,且3AE =,2DF =,则EC =_______.三、解答题21.综合与实践:问题情境:数学活动课上,老师和同学们一起以“矩形的旋转”开展数学活动.具体操作如下:第一步:如图1,将长与宽都相等的两个矩形纸片ABCD 和EFGH 叠放在一起,这时对角线AC 和EG 互相重合.第二步:固定矩形ABCD ,将矩形EFGH 绕AC 的中点O 逆时针方向旋转,直到点E 与点B 重合时停止.问题解决:(1)奋进小组发现:在旋转过程中,当边AB 与EF 交于点M ,边CD 与GH 交于点N ,如图2、图3所示,请写出线段AM 与CN 始终存在的数量关系,并利用图2说明理由.(2)奋进小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形MRNQ 时,如图3所示,请你猜测四边形MRNQ 的形状,并试着证明你的猜想.探索发现:(3)奋进小组还发现在问题(2)中的四边形MRNQ 中MQN ∠与旋转角AOE ∠存在着特定的数量关系,请你写出这一关系,无需说明理由.22.已知:线段,a b ,α∠(如图),用直尺和圆规作一个平行四边形,使它的两条对角线长分别等于线段,a b ,且两条对角线所成的一个角等于α∠.23.(1)如图,已知线段a ,c ,求作Rt ABC ,使得90C ∠=︒,BC a =,AB c =;(2)在Rt ABC 中,斜边AB 边上的中线长为5,7BC =,试比较AC ,BC 的大小. 24.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案25.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 在BD 上,且BE DF =,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H .(1)求证:AE CF =;(2)若AC 平分HAG ∠,判断四边形AGCH 的形状,并证明你的结论.26.下图所示的三种拼块A ,B ,C ,每个拼块都是由一些大小相同、面积为1个单位的小正方形组成,如编号为A 的拼块的面积为3个单位.现用若干个这三种拼块拼正方形,拼图时每种拼块都要用到,且这三种拼块拼图时可平移、旋转,或翻转.(1)若用1个A 种拼块,2个B 种拼块,4个C 种拼块,则拼出的正方形的面积为 个单位;(2)在图1和图2中,各画出了一个正方形拼图中1个A 种拼块和1个B 种拼块,请分别用不同的拼法将图1和图2中的正方形拼图补充完整.要求:所用的A ,B ,C 三种拼块的个数与(1)不同,用实线画出边界线,拼块之间无缝隙,且不重叠.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.2.B解析:B【分析】根据直角三角形斜边的中线的性质,三角形全等的判定,等边三角形的性质以及线段垂直平分线的性质对各选项分析判断即可得解.【详解】A 、直角三角形斜边上的中线等于斜边的一半,是真命题,不符合题意;B 、两边及其一边的对角对应相等的两个三角形全等,是假命题,符合题意.C 、等边三角形一边上的高线与这边上的中线互相重合,是真命题,不符合题意;D 、到线段两端点距离相等的点在这条线段的垂直平分线上,是真命题,不符合题意; 故选:B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.C解析:C【分析】分别求出t=1,t=1.5,t=2,t=0时的整数点,根据答案即可求出答案.【详解】解:当t=0时,A (0,0),B (0,4),C (3,4),D (3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A (0,0),B (0,4),C (3,5),D (3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A (0,0),B (0,4),C (3,5.5),D (3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点; 当t=2时,A (0,0),B (0,4),C (3,6),D (3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A 错误,选项B 错误;选项D 错误,选项C 正确;故选:C .【点睛】本题考查了平行四边形的性质.主要考查学生的理解能力和归纳能力.4.A解析:A【分析】想办法证明S 阴=S △ADE +S △DEC =S △AEC ,再由EF ∥AC ,可得S △AEC =S △ACF 解决问题;【详解】解:如图连接AF 、EC .∵BC=4CF ,S △ABC =24,∴S △ACF = 14×24=6, ∵四边形CDEF 是平行四边形,∴DE ∥CF ,EF ∥AC ,∴S △DEB =S △DEC ,∴S 阴=S △ADE +S △DEC =S △AEC ,∵EF ∥AC ,∴S △AEC =S △ACF =6,∴S 阴=6.故选:A .【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.5.D解析:D【分析】根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴BO == ∴2BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.6.A解析:A【分析】以AC 为对角线,可得AD ∥BC ,AD=BC ;以AB 为对角线,可得AD ∥BC ,AD=BC ;以AD 为对角线,可得AB ∥CD ,AB=CD .【详解】解:①以AD 为对角线时,可得AB ∥CD ,AB =CD ,∴A 点向左平移6个单位,再向下平移3个单位得B 点,∴C 点向左平移6个单位,再向下平移3个单位得D₁(-4,-8);②以AC 为对角线时,可得AD ∥BC ,AD=BC ,∴B 点向右平移6个单位,再向上平移3个单位得B 点,∴C 点向右平移6个单位,再向上平移3个单位得D₂(8,-2);③以AB 为对角线时,可得AD ∥BC ,AD=BC ,∴C 点向右平移3个单位,再向上平移5个单位得A ,∴B 点向右平移3个单位,再向上平移5个单位得D₃(2,2);综上可知,D 点的坐标可能为:D₁(-4,-8)、D₂(8,-2)、D₃(2,2),故选:A .【点睛】本题考查了坐标与图形的性质,利用平行四边形的判定:对边平行且相等的四边形是平行四边形,要分类讨论,以防遗漏.7.D解析:D【分析】①设∠EDC=x ,则∠DEF=90°-x 从而可得到∠DBE=∠DEB=180°-(90°-x )-45°=45°+x ,∠DBM=∠DBE-∠MBE=45°+x-45°=x ,从而可得到∠DBM=∠CDE ;③由△BDM ≌△DEF ,可知DF=BM ,由直角三角形斜边上的中线的性质可知BM=12AC ; ④可证明△BDM ≌△DEF ,然后可证明:△DNB 的面积=四边形NMFE 的面积,所以△DNB 的面积+△BNE 的面积=四边形NMFE 的面积+△BNE 的面积;【详解】解:①设∠EDC=x ,则∠DEF=90°-x ,∵BD=DE ,∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∴∠DBM=∠DBE-∠MBE=45°+x-45°=x .∴∠DBM=∠CDE ,故①正确;②由①得∠DBM=∠CDE ,如果BN=DN ,则∠DBM=∠BDN ,∴∠BDN=∠CDE ,∴DE 为∠BDC 的平分线,∴△BDE ≌△FDE ,∴EB ⊥DB ,已知条件∠ABC=90°,∴②错误的;③在△BDM 和△DEF 中,DBM CDE DMB DFE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDM ≌△DEF (AAS ),∴BM=DF ,∵∠ABC=90°,M 是AC 的中点,∴BM=12AC , ∴DF=12AC , 即AC=2DF ;故③正确.④由③知△BDM ≌△DEF (AAS )∴S △BDM =S △DEF ,∴S △BDM -S △DMN =S △DEF -S △DMN ,即S △DBN =S 四边形MNEF .∴S △DBN +S △BNE =S 四边形MNEF +S △BNE ,∴S △BDE =S 四边形BMFE ,故④错误;故选D .【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质,利用面积法证明S △BDE =S 四边形BMFE 是解题的关键.8.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴== 115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.9.C解析:C【分析】连接CE ,由矩形的性质和角平分线的性质可得AB=AE=3,可得ED=1,由勾股定理可求CE 的长,由三角形中位线定理可求FG 的长;【详解】连接CE ,如图所示:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=∠D=90°,AB=CD=3,AD=BC=4,AD ∥BC ,∴∠CBE=∠AEB ,∵BE 平分∠ABC.∴∠ABE=∠CBE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=3,∴ED=AD-AE=4-3=1,在Rt △CDE 中=∵点F 、G 分别为BC 、BE 的中点,∴FG 是△CBE 的中位线,FG=12 故选:C【点睛】本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出EC 的长度是解题的关键. 10.A解析:A【分析】根据翻折的性质,可得当Q 与D 重合时,A 1B 最小,根据勾股定理,可得A 1C ,从而可得答案.【详解】解:由折叠可知:当Q 与D 重合时,A 1B 最小,A 1D=AD=10,由勾股定理,得:A 1=8,∴A 1B=10-8=2,故选A .【点睛】本题考查了翻折变换,利用了翻折的性质得到当Q 与D 重合时,A 1B 最小是解题的关键. 11.B解析:B【分析】先由翻折的性质得到'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图可得''''A EN B EM NEM A EB ∠+∠=∠+∠,然后根据180AEN NEM MEB ∠+∠+∠=︒,得到2''180NEM A EB ∠+∠=︒,进而可求出NEM ∠的度数.【详解】由翻折的性质可知:'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图知:''''A EN B EM NEM A EB ∠+∠=∠+∠,又∵180AEN NEM MEB ∠+∠+∠=︒,∴''180A EN B EM NEM ∠+∠+∠=︒,∴2''180NEM A EB ∠+∠=︒,又∵''30A EB ∠=︒,∴75NEM ∠=︒.故选:B .【点睛】本题主要考查的是翻折的性质,掌握翻折的性质是解题的关键.12.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A 、B 、C 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题13.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x 和4x 由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x 和4x ,由题意可得:134962x x =,解得:x=±4(负值舍去) ∴对角线长分别为12cm 、16cm ,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长,则菱形的周长为40cm .故答案为:40cm .此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.14.10【分析】由菱形的性质和勾股定理求出CD=20证出平行四边形OCED为矩形得OE=CD=10即可【详解】解:∵DEACCEBD∴四边形OCED为平行四边形∵四边形ABCD是菱形∴AC⊥BDOA=O解析:10【分析】由菱形的性质和勾股定理求出CD=20,证出平行四边形OCED为矩形,得OE=CD=10即可.【详解】解:∵DE//AC,CE//BD,∴四边形OCED为平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD=8,∴∠DOC=90︒,CD=10,∴平行四边形OCED为矩形,∴OE=CD=10,故答案为:10.【点睛】本题考查了菱形的性质、矩形的判定与性质以及平行四边形判定与性质等知识;熟练掌握特殊四边形的判定与性质是解题的关键.15.(答案不唯一)【分析】根据平行四边形的判定定理有一组对边平行且相等的四边形是平行四边形即可填写【详解】解:∵AD∥BCAD=BC∴四边形ABCD 是平行四边形故答案为:AD=BC(答案不唯一)【点睛】解析:AD BC=(答案不唯一)【分析】根据平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”即可填写.【详解】解:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形.故答案为:AD=BC(答案不唯一)【点睛】本题考查了平行四边形的判定,熟知平行四边形的判定定理是解题的关键,本题有多种答案,如可以根据平行四边形的定义填写AB∥CD等.16.75【分析】由将正方形纸片对折折痕为MN可得MA=MD=由折叠得AB=AH 由四边形ABCD是正方形得AD=AB可推出AH=AD=2AM可求∠AHM=30°利用平行线性质可求∠BAH=30°在△AHB【分析】由将正方形纸片对折,折痕为MN ,可得MA=MD=1AD 2,由折叠得AB=AH 由四边形ABCD 是正方形得AD=AB ,可推出AH=AD=2AM ,可求∠AHM=30°,利用平行线性质可求∠BAH=30°,在△AHB 中,AH=AB 由内角和可求∠ABH=75︒即可.【详解】解:∵正方形纸片对折,折痕为MN ,∴MN 是AD 的垂直平分线 ,∴MA=MD=1AD 2, ∵把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,∴AB=AH ,∵四边形ABCD 是正方形 ,∴AD=AB ,∴AH=AD=2AM ,∵∠AMH=90°,AM=1AH 2, ∴∠AHM=30°,∵MN ∥AB ,∴∠BAH=30°,在△AHB 中,AH=AB , ∴∠ABH=()()11180BAH 180307522︒-∠=︒-︒=︒. 故答案为:75.【点睛】 本题考查正方形折叠问题,涉及垂直平分线,正方形性质,等腰三角形性质,三角形内角和,关键是30°角所对直角边等于斜边一半逆用求角度.17.30【分析】根据三角形的中位线性质求出AC 的长再求出ΔABC 的周长【详解】∵点DE 分别是ABBC 的中点∴DE 是ΔABC 的中位线∴DE=AC ∵DE=25∴AC=5∵AB=13BC=12∴C △ABC=A解析:30【分析】根据三角形的中位线性质,求出AC 的长,再求出ΔABC 的周长.【详解】∵点 D 、 E 分别是 AB 、 BC 的中点,∴DE 是ΔABC 的中位线,∴ DE=12AC ,∵ DE=2.5 ,∴ AC=5 ,∵ AB=13 , BC=12 ,∴ C△ABC=AB+BC+AC=13+12+5=30.故答案为:30.【点睛】本题考查了三角形的中位线性质定理,解题的关键是掌握,三角形的中位线平行于第三边,并且等于第三边的一半.18.9cm12cm34cm36cm【分析】(1)根据平行四边形对角线互相平分对边相等可得结果;(2)根据△AOB的周长和AB的长度得到AO+BO从而得到AC+BD【详解】解:(1)在平行四边形ABCD中解析:9cm 12cm 34cm 36cm【分析】(1)根据平行四边形对角线互相平分,对边相等可得结果;(2)根据△AOB的周长和AB的长度,得到AO+BO,从而得到AC+BD.【详解】解:(1)在平行四边形ABCD中,∵AC=18cm,BD=24cm,∴AO=12AC=9cm=CO,BO=12BD=12cm=DO,∵AB=13cm,∴CD=13cm,∴COD△的周长为CO+DO+CD=9+12+13=34cm,故答案为:9cm,12cm,34cm;(2)∵△AOB的周长为30cm,∴AB+AO+BO=30cm,∵AB=12cm,∴AO+BO=30-12=18cm,∴AC+BD=2AO+2BO=36cm.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,平行四边形的对边相等.19.【分析】过点P作PG⊥CB交CB的延长线于点G过点Q作QF⊥CB运用AAS定理证明△QBF≌△BPG根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形利用勾股定理求得线段BC的长然后结合全解析:10【分析】过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB,运用AAS定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB ∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,BC=228AB AC-=∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键20.【分析】由▱ABCD 中BE ⊥ADBF ⊥CD 可得∠D=120°继而求得∠A 与∠BCD 的度数然后由勾股定理求得ABBEBC 的长继而求得答案【详解】解:∵BE ⊥ADBF ⊥CD ∴∠BFD=∠BED=∠BFC【分析】由▱ABCD 中,BE ⊥AD ,BF ⊥CD ,可得∠D=120°,继而求得∠A 与∠BCD 的度数,然后由勾股定理求得AB ,BE ,BC 的长,继而求得答案.【详解】解:∵BE ⊥AD ,BF ⊥CD ,∴∠BFD=∠BED=∠BFC=∠BEA=90°,∵∠EBF=60°,∴∠D=120°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BCD=∠A=60°,∵在△ABE 中,∠ABE=30°,∴AB=2AE=2×3=6,∴CD=AB=6,=∴CF=CD-DF=6-2=4,∵在△BFC 中,∠CBF=30°,∴BC=2CF=2×4=8,∴【点睛】此题考查了平行四边形的性质、勾股定理以及含30°角的直角三角形的性质.此题难度适合,注意掌握数形结合思想的应用.三、解答题21.(1)AM CN =,理由见解析;(2)四边形MRNQ 为菱形,证明见解析;(3)MQN ∠=AOE ∠【分析】(1)结论:AM=CN .先证明(AAS)AOS COT ≌△△,推出AS CT =,OS OT =,34∠=∠,再证明(ASA)ESM GTN ≌△△即可解决问题.(2)过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .首先证明四边形QMRN 是平行四边形,再证明QM=QN 即可.(3)结论:∠MQN=∠AOE .理由三角形的外角的性质以及平行线的性质即可解决问题.【详解】(1)关系:AM CN =理由:如图:设EG 分别与AB 、CD 相交于点S 、T ;∵四边形ABCD 与EFGH 都是矩形,且点O 为对角线的中点;∴//AB CD ,//EF GH ,OA OC =,OE OG =;∴12∠=∠;又AOS COT ∠=∠∴(AAS)AOS COT ≌△△ ∴AS CT =,OS OT =;∴ES GT =;又//EF GH ,∴56∠=∠;又12∠=∠;∴34∠=∠∴(ASA)ESM GTN ≌△△ ∴SM TN =,则AS SM CT TN +=+即AM CN =(2)四边形MRNQ 为菱形.证明:过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .由题可知:矩形ABCD≌矩形EFGH∴AD=EH,AB∥CD,EF∥HG∴四边形QMRN为平行四边形,∵QK⊥EF,QL⊥CD,∴QK=EH,QL=AD,∠QKM=∠QLN=90°∴QK=QL,又∵AB∥CD,EF∥HG,∴∠KMQ=∠MQN,∠MQN=∠LNQ,∴∠KMQ=∠LNQ,∴△QKM≌△QLN(AAS)∴MQ=NQ∴四边形MRNQ为菱形.(3)结论:∠MQN=∠AOE.理由:如图中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.【点睛】本题属于四边形综合题,考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找确定的三角形解决问题,属于中考压轴题.22.见解析【分析】先作线段a、b的垂直平分线得到12a和12b,再作∠AOB=∠α,且OA=12a,OB=12b,然后在OA的反向延长线上截取OD=12a,在OB的反向延长线上截取OC=12b,则利用平行四边形的判定方法可判断四边形ABCD为平行四边形.【详解】解:如图,四边形ABCD为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23.(1)见解析;(2)BC<AC【分析】(1)画射线BD,以B为端点取BC=a,过点C作BD的垂线,再以点B为圆心,c为半径画弧,与该垂线交于点A即可;(2)根据直角三角形的性质得到AB,利用勾股定理求出AC,再比较大小即可.【详解】解:(1)如图,△ABC即为所作;(2)如图,直角三角形ABC 中,∠C=90°,D 为AB 中点,则CD=5,BC=7,∴AB=10,∴AC=22107-=51,∵7=49<51,∴BC <AC .【点睛】本题考查了尺规作图,直角三角形的性质,勾股定理,实数的大小比较,解题的关键是依据题意作出图形.24.(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-, ∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.25.(1)见解析;(2)四边形AGCH 是菱形,见解析【分析】(1)利用SAS 证明△AOE ≌△COF 即可得到结论;(2)四边形AGCH 是菱形.根据△AOE ≌△COF 得∠EAO=∠FCO ,推出AG ∥CH ,证得四边形AGCH 是平行四边形,再根据AD ∥BC ,AC 平分HAG ∠,得到GAC ACB ∠=∠,证得GA=GC ,即可得到结论.【详解】证明:(1)四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OB BE OD DF ∴-=-,即OE OF =,又AOE COF ∠=∠,AOE COF ∴≌,AE CF ∴=.(2)四边形AGCH 是菱形.理由:AOE COF ≌,EAO FCO ∴∠=∠,//AG CH ∴,四边形ABCD 是平行四边形,//AD BC ∴,∴四边形AGCH 是平行四边形,//AD BC ,HAC ACB ∠∠∴=,AC 平分HAG ∠,HAC GAC ∠∠∴=,∴GAC ACB ∠=∠,GA GC ∴=,∴平行四边形AGCH是菱形.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定定理,等角对等边证明边相等,熟记平行四边形的判定定理是解题的关键.26.(1)25;(2)补图见解析.【分析】(1)根据题意,知A 的拼块的面积为 3 个单位,B的面积为3个单位,C的面积为4个单位,即可得出;(2)图1用了3个A,2个B,1个C,图2用了4个A,1个B,1个C,和(1)不同即可.【详解】⨯+⨯+⨯=,(1)13234425∴正方形的面积为25;(2)答案不唯一,如:【点睛】本题主要考查了正方形的面积组合,读懂题意是解题的关键.。

人教版初中数学八年级数学下册第三单元《平行四边形》测试(包含答案解析)

人教版初中数学八年级数学下册第三单元《平行四边形》测试(包含答案解析)
作法:①作 的角平分线,交 于点 ;
②以 为圆心, 长为半径作弧,交 于点 ;
③连接 .
则四边形 所求作的菱形.
根据小明设计的尺规作图过程
(1)使用直尺和圆规,补全图形(保留作图痕迹);
(2)求证四边形 为菱形.
24.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N, , .
(1)求证: .
18.如图,在正方形 中,有面积为4的正方形 和面积为2的正方形 、点 分别在边 上,点 在边 上,且组成的图形为轴对称图形,则正方形 的面积为__________.
19.如图, 两点分别位于山脚的两端,小明想测量 两点间的距离,于是想了个主意,先在地上取一个可以直接达到 两点的点C,找到 的中点D、E,并且测出 的长为 ,则 两点间的距离为_________ .
A. B. C. D.6
12.如图,菱形 中, , ,点E是线段 上一点(不与A,B重合),作 交 于点F,且 ,则 周长的最小值是()
A.6B. C. D.
二、填空题
13.三角形的三边长分别为 , , ,则该三角形最长边上的中线长为____.
14.如图,在菱形纸片 中, , ,将菱形纸片翻折,使点 落在 边的中点 处,折痕为 ,点 、 分别在边 、 上,则 _______.
(问题探究)
定义:如图 ,我们把满足 的五边形 叫做屋形.其中 叫做脊, 叫做腰, 叫做底.
性质:
边:屋形的腰相等,脊相等;
角:①屋形腰与底的夹角相等;②脊与腰的夹角相等;
对角线:①
②屋形有两组对角线分别相等,且其中一组互相平分.
对称性:屋形是以底的垂直平分线为对称轴的轴对称图形;
(1)请直接填写屋形对角线的性质①;

初二数学下册第三章练习题附答案

初二数学下册第三章练习题附答案

初二数学下册第三章练习题附答案1. 选择题1. 若 a<b,则 a³+3ab²的值是:A. a³B. a³+3a²bC. a³-3a²bD. a³+3ab²2. 若 2x+5>-1,则 x 的取值范围是:A. x<3B. x>3C. x>-3D. x<-33. 设 a²=9,则设 a 的值是:A. 3B. -3C. -9D. 94. 若 x-5>2 和 y+3<7 都成立,则 x+y 的最小值是:A. 10B. 0C. 9D. 55. 若 x²<4 and x²>1,则 x 的取值范围是:A. -1<x<2B. x<1 or x>2C. x<-2 or x>2D. -2<x<2答案:1. C 2. A 3. A 4. B 5. C2. 填空题1. 设 x=2,则 x²-4x+4 的值为________。

2. 若 2x-1=3x+4,则 x 的值为________。

3. 若 m=4n-2n,并且 m=12,则 n 的值为________。

答案:1. 0 2. -5 3. 33. 计算题1. 用方阵表示二次根式√(5+√5+1) 的值,并化简。

解答:设√(5+√5+1) 为 a,将方程两边平方,得到:a² = 5+√5+1再次移项和两边平方,得到:a² - 5 = √5+1继续移项和两次平方,得到:(a² - 5)² = (√5+1)²展开得到:a⁴ - 10a² + 25 = 5 + 2√5 + 1a⁴ - 10a² - 2√5 - 21 = 0所以,√(5+√5+1) 的值可以用 a 的解来表示。

人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(包含答案解析)

人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(包含答案解析)

一、选择题1.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .152.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S =.其中正确结论的个数是( )A .1B .2C .3D .4 3.顺次连接菱形四边中点得到的四边形一定是( ) A .矩形B .平行四边形C .菱形D .正方形 4.已知矩形ABCD ,下列条件中不能判定这个矩形是正方形的是( ) A .AC BD ⊥ B .AC BD = C .AC 平分BAD ∠ D .ADB ABD ∠=∠ 5.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠; D .OAB OAD ∠=∠.6.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个7.如图,在123A A A △中,160A ∠=︒,230A ∠=︒,131A A =,3+n A 是1(1,2,3)n n A A n +=⋅⋅⋅的中点,则202120222023A A A △中最短边的长为( )A .100912B .101012 C .101112 D .1021128.顺次连接矩形ABCD 各边的中点,所得四边形是( )A .平行四边形B .正方形C .矩形D .菱形9.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠ 10.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 11.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,30ACD ∠=︒,若ABC 的周长比AOB 的周长大10,则AB 的长为( ).A .103B .53C .10D .2012.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A .3B .423C .2D .352二、填空题13.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)14.如图,△ABC 中,∠ACB =90°,AC =BC =4,D 是斜边AB 上一动点,将线段CD 绕点C 逆时针旋转90°至CE ,连接BE ,DE ,点O 是DE 的中点,连接OB 、OC ,下列结论:①△ADC ≌△BEC ;②OB =OC ;③DE >BC ;④AO 的最小值为2.其中正确的是_____________.(把你认为正确结论的序号都填上)15.生活中,有人喜欢把传送的便条折成形状,折叠过程如图所示(阴影部分表示纸条的反面):已知由信纸折成的长方形纸条(图①)长为25cm ,宽为cm x .如果能折成图④的形状,且为了美观,纸条两端超出点P 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点M 与点A 的距离(用x 表示)为______cm .16.正三角形ABC 中,已知AB =6,D 是直线AC 上的动点,CE ⊥BD 于点E ,连接AE ,则AE 长的取值范围是_______________.17.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.18.把一张矩形纸片ABCD 按如图方式折叠,使顶点B 和顶点D 重合,折痕为EF .若38CDF ∠=︒,则EFD ∠ 的度数是_________.19.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.20.如图,将Rt △ABC 沿着点B 到A 的方向平移到△DEF 的位置,BC =8,FO =2,平移距离为4,则四边形AOFD 的面积为__.三、解答题21.如图,四边形ABCD是矩形,对角线AC与BD相交于点O,∠AOD=60°,AD=2,求AC的长度.22.用总长度为4a的铁丝可围成一个长方形或正方形,小东同学认为围成一个正方形的面积较大.小东同学的看法对不对?请你用数学知识进行说理.∠(如图),用直尺和圆规作一个平行四边形,使它的两条对角23.已知:线段,a b,α∠.线长分别等于线段,a b,且两条对角线所成的一个角等于α24.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD中,点O是线段BC的中点,将将正方形ABCD绕点O顺时针旋转得''''(点A',B',C',D分别是点A,B,C,D的对应点).同学到正方形A B C D们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 25.如图,ABCD 的对角线AC ,BD 相交于点O ,E ,F 是AC 上的两点,并且AE CF =,连接DE ,BF .(1)求证:△≌△DOE BOF ;(2)若BD EF =,连接EB ,DF ,判断四边形EBFD 的形状,并说明理由. 26.如图,在正方形中ABCD ,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)若点G 在AD 上,且45GCE ︒∠=,判断线段GE BE GD 、、之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.2.C解析:C【分析】由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积,即可求证④.【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF =∠CFG +∠FCG ,又∵∠BGF =∠AGB +∠AGF ,∴∠CFG +∠FCG =∠AGB +∠AGF ,∵∠AGB =∠AGF ,∠CFG =∠FCG ,∴∠AGB =∠FCG ,∴AG ∥CF ,∴③正确;∵△CFG 和△CEG 中,分别把FG 和GE 看作底边,则这两个三角形的高相同. ∴35CFG CEG SFG S GE ==, ∵S △GCE =12×3×4=6, ∴S △CFG =35×6=185, ∴④不正确;正确的结论有3个,故选:C .【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.3.A解析:A画出图形,根据菱形的性质得到AC⊥BD,根据三角形中位线定理、矩形的判定定理证明结论.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵E,F,G,H是菱形各边的中点,∴EF∥BD,FG∥AC,∴EF⊥FG,同理:FG⊥HG,GH⊥EH,HE⊥EF,∴四边形EFGH是矩形.故选:A.【点睛】本题考查的是中点四边形,掌握菱形的性质定理、矩形的判定定理以及三角形的中位线定理是解题的关键.4.B解析:B【分析】根据矩形的性质及正方形的判定进行分析即可.【详解】⊥,解:四边形ABCD是矩形,AC BD∴矩形ABCD是正方形;四边形ABCD是矩形,∴,AD BC//∴∠=∠,DAC BCAAC平分BAD∠,∴∠=∠,BAC DAC∴∠=∠,BAC ACB=,∴AB BC∴矩形ABCD是正方形;ADB ABD∠=∠,=,∴AB AD∴四边形ABCD是矩形,∴矩形ABCD是正方形;【点睛】本题考查矩形的判定,解题的关键是掌握正方形的判定方法.5.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:D.【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.C解析:C【分析】求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;依据O是BD中点,E为AB中点,可得BE=DE,利用三角形全等即可得OE⊥BD且OB=OD.【详解】解:在ABCD中,∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE 是等边三角形, 12AD AE AB ∴==, ∴E 是AB 的中点,∴DE=BE ,1302BDE AED ︒∴∠=∠=, ∴∠ADB=90°,即AD ⊥BD ,∴S ▱ABCD =AD•BD ,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠CDE-∠BDE=60°-30°=30°,∴∠CDB=∠BDE ,∴DB 平分∠CDE ,故②正确;∵Rt △AOD 中,AO >AD ,∵AD=DE ,∴AO >DE ,故③错误;∵O 是BD 的中点,∴DO=BO,∵E 是AB 的中点,∴BE=AE=DE∵OE =OE∴△DOE ≌△BOE(SSS)∴∠EOD=∠EOB∵∠EOD+∠EOB=180°∴∠BOE=90°∴OE 垂直平分BD ,故④正确;正确的有3个,故选择:C .【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,三角形全等判定与性质,熟练掌握平行四边形的性质,等边三角形的性质,直角三角形的性质定理和等边三角形判定定理,三角形全等判定方法和性质是解题的关键.7.B解析:B根据已知条件和图形的变化可得前几个图形的最短边的长度,进而可得结论.【详解】解:在△A 1A 2A 3中,∠A 1A 3A 2=90°,∠A 2=30°,A 1A 3=1,A n+3是A n A n+1(n=1、2、3…)的中点,可知:A 4A 5//A 1A 3,A 3A 4=A 2A 4,∴∠A 3A 5A 4=90°,∠A 4A 3A 2=∠A 2=30°,∴△A 1A 2A 3是含30°角的直角三角形,同理可证△A n A n+1A n+2是含30°角的直角三角形.△A 1A 2A 3中最短边的长度为A 1A 3=1=012, △A 3A 4A 5中最短边的长度为A 4A 5=12=112, △A 5A 6A 7中最短边的长度为A 5A 7=21142=, …, 所以△A n A n+1A n+2中最短边的长度为1212n -,则△A 2019A 2020A 2021中最短边的长度为120211221122n --==101012. 故选:B .【点睛】 本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律.也考查了直角三角形斜边的中线,三角形的中位线,平行线的性质,含30°角的直角三角形的性质,以及等腰三角形的性质等知识.8.D解析:D【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可.【详解】如图,设矩形ABCD 各边的中点依次为E ,F ,G ,H ,∴EF ,FG ,GH ,HE 分别是△ABC ,△BCD ,△CDA ,△DAB 的中位线,∴EF=12AC ,FG=12BD ,GH=12AC ,EH=12BD , ∵四边形ABCD 是矩形,∴AC=BD ,∴EF=FG=GH=HE ,∴四边形EFGH 是菱形,【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.9.D解析:D【分析】先证明△ADF≌△BEF,得到AD=BE,推出四边形AEBD是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD中,AD∥BC,∴∠DAB=∠EBA,∵点F是AB的中点,∴AF=BF,∵∠AFD=∠BFE,∴△ADF≌△BEF,∴AD=BE,∵AD∥BE,∴四边形AEBD是平行四边形,∠=∠时,得到AB=BD,无法判定四边形AEBD是菱形,故该选项不符合A、当BAD BDA题意;B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;∠时,四边形AEBD是菱形,故该选项符合题意;D、当DE平分ADB故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.10.C解析:C【分析】根据矩形和菱形的性质即可得出答案.解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.11.A解析:A【分析】由矩形的性质和已知条件求出,BC=10,即可得出答案.【详解】解:∵四边形ABCD是矩形,∴AO=CO=DO=BO,AD=BC,∠ABC=90°,AB∥CD,∴∠BAC=∠ACD=30°,∴,∵△ABC的周长=AB+AC+BC=AB+AO+OC+BC,△AOB的周长=AB+AO+BO,又∵ABC的周长比△AOB的周长长10,∴AB+AC+BC-(AB+AO+BO)=BC=10,∴故选:A.【点睛】本题考查了矩形的性质、含30°角的直角三角形的性质等知识,熟练掌握矩形的性质,求出BC的长是解题的关键.12.D解析:D【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B的长,然后由勾股定理可得方程:x2+22=(4-x)2,解此方程即可求得AG 的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=3,∴BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∠DA′G=∠A=90°,∴∠BA′G =90°,BG =AB-AG =4-x ,A′B =BD-A′D =5-3=2,∵在Rt △A′BG 中,A′G 2+A′B 2=BG 2,∴x 2+22=(4-x )2,解得:x =32, ∴AG =32, ∴在Rt △ADG 中,DG=. 故选:D .【点睛】 此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.二、填空题13.②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥ 解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB,∵∠FCB>∠ECF,∴∠DCF>∠ECF,故①错误,∵FK∥AB,FD∥CK,∴四边形DFKC是平行四边形,∵AD=2CD,F是AD中点,∴DF=CD,∴四边形DFKC是菱形,∴∠DFC=∠KFC,∵AE∥FK,∴∠AEF=∠EFK,∵FE=FC,FK⊥EC,∴∠EFK=∠KFC,∴∠DFE=3∠AEF,故③正确,∵四边形EBCN是平行四边形,∴S△BEC=S△ENC,∵S△EHC=2S△EFC,S△EHC>S△ENC,∴S△BEC<2S△CEF,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.14.①②【分析】先证明∠ACD=∠BCE根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°于是∠EBD=90°然后根据直角三角形斜边中线性质可证得OB=O解析:①②【分析】先证明∠ACD=∠BCE,根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°,于是∠EBD=90°,然后根据直角三角形斜边中线性质可证得;根据OB=OC可知点O在BC的垂直平分线OB=OC;利用三角形三边关系可得DE BC上,找到点O的起始位置及终点位置,即可求出OA的最小值.【详解】解:∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE 是由CD 旋转得到.∴CE=CD则在△ACD 和△BCE 中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,故①正确;∴∠EBC=∠A=45°,∴∠EBD=90°,∵点O 是DE 的中点, ∴11,,22OC DE OB DE == ∴OB =OC ;故②正确; ∴2DE OC OC OB BC ==+≥,故③错误;如图2,∵CA=CB=4,∠ACB=90°,∴AB=42,当D 与A 重合时,△CDE 与△CAB 重合,O 是AB 的中点P ;当D 与B 重合时,△CDE 与△CBM 重合,O 是BM 的中点Q ;前面已证OB =OC ,所以点O 在BC 的垂直平分线上,∴当D 在AB 边上运动时,O 在线段PQ 上运动,∴当O 与P 重合时,AO 的值最小为1222AB = 故④错误;故答案是:①②.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及直角三角形斜边中线性质,垂直平分线的判定定理,本题的关键是熟练掌握三角形全等的判定定理以及性质.难点是判断点O 的运动路线.15.【分析】按图中方式折叠后可得到除去两端纸条使用的长度为5个宽由此解题即可【详解】解:根据折叠的过程发现中间的长度有5个宽则在开始折叠时起点与点的距离为:故答案为:【点睛】本题考查翻折变换(折叠问题) 解析:2552x - 【分析】按图中方式折叠后,可得到除去两端,纸条使用的长度为5个宽,由此解题即可.【详解】解:根据折叠的过程,发现中间的长度有5个宽,则在开始折叠时起点M 与点A 的距离为:2552x -, 故答案为:2552x -. 【点睛】本题考查翻折变换(折叠问题),是重要考点,难度较易,掌握相关知识是解题关键. 16.≤AE≤【分析】取BC 中点O 利用勾股定理以及直角三角形的性质分别求得AO 和OE 再利用三角形三边关系即可求解【详解】解:取BC 中点O 连接OAOE ∵△ABC 正三角形且AB=6∴AO ⊥BCBO=OC=BC解析:333-≤AE ≤333+【分析】取BC 中点O ,利用勾股定理以及直角三角形的性质分别求得AO 和OE ,再利用三角形三边关系即可求解.【详解】解:取BC 中点O ,连接OA 、OE ,∵△ABC 正三角形,且AB=6,∴AO ⊥BC ,BO=OC=12BC=12AB=3, ∴==,在△OAE 中,OA-OE<AE< OA+OE ,当O 、A 、E 在同一直线上时,取等号,∴OA-OE ≤AE ≤OA+OE ,∴3≤AE 3≤,故答案为:3≤AE 3≤.【点睛】本题考查了等边三角形的性质,直角三角形的性质,三角形三边的关系,注意,直角三角形斜边上的中线等于斜边的一半.17.①②③【分析】根据SSS 即可判定△ABF ≌△CFB 根据全等三角形的性质以及等式性质即可得到EC =EA 根据∠EBF =∠EFB =∠EAC =∠ECA 即可得出BF ∥AC 根据E 不一定是BC 的中点可得BE =CE解析:①②③【分析】根据SSS 即可判定△ABF ≌△CFB ,根据全等三角形的性质以及等式性质,即可得到EC =EA ,根据∠EBF =∠EFB =∠EAC =∠ECA ,即可得出BF ∥AC .根据E 不一定是BC 的中点,可得BE =CE 不一定成立.【详解】解:由折叠可得,AD =AF ,DC =FC ,又∵平行四边形ABCD 中,AD =BC ,AB =CD ,∴AF =BC ,AB =CF ,在△ABF 和△CFB 中,AB CF AF CB BF FB =⎧⎪=⎨⎪=⎩,∴△ABF ≌△CFB (SSS ),故①正确;∴∠EBF =∠EFB ,∴BE =FE ,∴BC -BE =FA -FE ,即EC =EA ,故②正确;∴∠EAC =∠ECA ,又∵∠AEC =∠BEF ,∴∠EBF =∠EFB =∠EAC =∠ECA ,∴BF ∥AC ,故③正确;∵E 不一定是BC 的中点,∴BE=CE不一定成立,故④错误;故答案为:①②③.【点睛】本题主要考查了折叠问题,全等三角形的判定与性质以及平行线的判定的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD 是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.19.【分析】画出图形证明四边形EFGH是平行四边形得到∠EHG=45°计算出MG得到四边形EFGH的面积从而得到结果【详解】解:如图四边形ABCD是平行四边形EFGH分别是各边中点过点G作EH的垂线垂足解析:【分析】画出图形,证明四边形EFGH是平行四边形,得到∠EHG=45°,计算出MG,得到四边形EFGH的面积,从而得到结果.【详解】解:如图,四边形ABCD是平行四边形,E、F、G、H分别是各边中点,过点G作EH的垂线,垂足为M,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF∥HG∥AC,EH∥FG∥BD,∴四边形EFGH是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM 为等腰直角三角形,又∵HG=3,∴MG=233222=, ∴四边形EFGH 的面积=MG EH ⋅=62,∴平行四边形ABCD 的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.20.【分析】根据平移的性质判断AD =CF =BE =4AD ∥CF 再根据平行四边形的面积和三角形面积公式解答即可【详解】如图连接CF 由平移的性质知AD =CF =BE =4AD ∥CF ∴四边形ACFD 为平行四边形∴=解析:28【分析】根据平移的性质,判断AD =CF =BE =4,AD ∥CF ,再根据平行四边形的面积和三角形面积公式解答即可. 【详解】如图,连接CF . 由平移的性质知,AD =CF =BE =4,AD ∥CF ,∴四边形ACFD 为平行四边形.∴ACFD S =AD •BC =4×8=32,∵FO =2,∴S △FOC =12OF •BE =1242⨯⨯=4, ∴AOFD S 四边形=ACFD FOC S S -=32-4=28.故答案为28.【点睛】本题考查图形的平移以及平行四边形的判定.根据题意得出AOFD S 四边形=ACFD FOC SS -是解答本题的关键. 三、解答题21.4【分析】根据矩形的性质和等边三角形的性质,可以得到OA 的长,从而可以求得AC 的长.【详解】解:∵四边形ABCD 是矩形,∴OA =OC =OB =OD ,∵∠AOD =60°,AD =2,∴△AOD 是等边三角形,∴OA =OD =2,∴AC =2OA =4,即AC 的长度为4.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记性质并判断出△AOB 是等边三角形是解题的关键.22.对,见解析【分析】设长方形的长为x ,则宽为4222a x a x -=-,由长方形面积公式求得(2)S x a x =-长方形,2S a =正方形,由两者左侧22(2)()0S S a x a x a x -=--=->正方形长方形,即S S >正方形长方形即可.【详解】解:小东同学的看法对,理由如下,设长方形的长为x ,则宽为4222a x a x -=-, 2x a x ≠-,x a ∴≠,长方形面积为:(2)S x a x =-长方形,若铁丝围成正方形,则其边长为a ,2S a =正方形,∴()()2222220S S a x a x a ax x a x -=--=-+=->正方形长方形, 即S S >正方形长方形,所以正方形的面积较大.小东同学认为围成一个正方形的面积较大.小东同学的看法对.【点睛】本题考查周长一定,围成的长方形中,正方形面积最大问题,掌握求长方形与正方形面积公式,作差后利用公式因式分解是解题关键.23.见解析【分析】先作线段a 、b 的垂直平分线得到12a 和12b ,再作∠AOB=∠α,且OA=12a ,OB=12b ,然后在OA 的反向延长线上截取OD=12a ,在OB 的反向延长线上截取OC=12b ,则利用平行四边形的判定方法可判断四边形ABCD 为平行四边形.【详解】解:如图,四边形ABCD 为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.(1)证明见解析;(2)证明见解析;(3)2'='DD OC . 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形.(2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒. 180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC . 如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,D D′=NC′=ON+OC′=2a , ∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.25.(1)见解析;(2)矩形,见解析【分析】(1)已知四边形ABCD 是平行四边形,根据平行四边形的性质可得OA =OC ,OB =OD ,由AE =CF 即可得OE =OF ,利用SAS 即可证明△BOE ≌△DOF ;(2)四边形BEDF 是矩形.由(1)得OD =OB ,OE =OF , 根据对角线互相平方的四边形为平行四边形可得四边形BEDF 是平行四边形, 再由BD =EF ,根据对角线相等的平行四边形为矩形即可判定四边形EBFD 是矩形.【详解】(1)证明:四边形ABCD 是平行四边形, OB OD ∴=,OA OC =. 又AE CF =,OA AE OC CF ∴-=-,即OE OF =,在DOE △和BOF 中,OE OF DOE BOF OD OB =⎧⎪∠=∠⎨⎪=⎩,∴△≌△DOE BOF .(2)四边形EBFD 是矩形,理由如下: BD ,EF 相交于点O ,OD OB =,OE OF =,∴四边形EBFD 是平行四边形.又BD EF =,∴四边形EBFD 是矩形.【点睛】本题考查了三角形全等的性质和判定,平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.26.(1)见解析;(2)GE=BE+GD ,理由见解析【分析】(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF ;(2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD .【详解】解:(1)证明:∵四边形ABCD 是正方形,∴BC=CD ,∠B=∠CDA ,∴∠B=∠CDF ,在△CBE 与△CDF 中,BC CD B CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△CBE ≌△CDF (SAS ),∴CE=CF ;(2)GE=BE+GD ,理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF .∵∠GCE=45°,∴∠BCE+∠DCG=45°,∴∠GCF=∠DCF+∠DCG=45°,在△ECG 与△FCG 中,CE CF GCE GCF GC GC ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ),∴GE=GF ,∴GE=DF+GD=BE+GD .【点睛】本题主要考查正方形的性质以及全等三角形的判定和性质,证两条线段相等往往转化为证明这两条线段所在三角形全等,在第二问中也考查了通过全等找出和GE 相等的线段,从而得出线段GE ,BE ,GD 之间的数量关系.。

部编版八年级下册数学 第三单元检测卷及答案

部编版八年级下册数学 第三单元检测卷及答案

部编版八年级下册数学第三单元检测卷及答案一、选择题(每小题3分,共30分)1. 解 $4x + 2 = 10$ 得:A. $x=2$B. $x=-2$C. $x=\dfrac{1}{2}$D. $x=-\dfrac{1}{2}$2. 下列哪个三角形一定是等腰三角形?A. $\triangle ABC$,$AB = BC$,$\angle ABC=60^{\circ}$B. $\triangle DEF$,$DE = 2DF$,$\angle DEF=45^{\circ}$C. $\triangle GHI$,$GH=HI$,$\angle GHI=120^{\circ}$D. $\triangle JKL$,$JK =3KL$,$\angle JSK=30^{\circ}$3. 若 $x>0$,则 $\left( \dfrac{1}{2} \right) \, \log_{10}x=\,\_\_\_\_$A. $\log_{10} \sqrt{x}$B. $\log_{10} \dfrac{1}{\sqrt{x}}$C. $\log_{10} 2 + \log_{10} x$D. $\log_{10} 2 - \log_{10} x$4. 已知 $a$,$b$ 同号,且 $\dfrac{a}{b}<1$,则下列说法正确的是:A. $a$,$b$ 都小于 $0$。

B. $a$ 大于 $0$,$b$ 小于 $0$。

C. $a$ 小于 $0$,$b$ 大于 $0$。

D. $a$,$b$ 都大于 $0$。

5. 若 $a\times 2^x \times 5^y = \dfrac{1}{100}$,且 $x+y=3$,则 $a=$A. $\dfrac{1}{5}$B. $\dfrac{1}{10}$C. $- \dfrac{1}{10}$D. $- \dfrac{1}{5}$6. 如果 $\triangle ABC$ 的三个顶点 $A(-2,5)$,$B(4,3)$,$C(-1,0)$,则角 $B$ 对应的是哪个顶点?A. $A$B. $B$C. $C$7. 下列哪条直线不过点 $(1,3)$?A. $5x-3y=12$B. $-3x-2y=-9$C. $2y=-5-x$D. $y=\dfrac{1}{2}x+ \dfrac{5}{2}$8. 将 $\dfrac{1}{10}$ 变成百分数,结果是A. $0.1 \%$B. $1 \%$C. $10 \%$D. $100 \%$9. 作一条直线,使其上有且仅有两个点与直线 $y=2x-1$ 的距离相等,且这两个点的横坐标之差为 $6$,那么这条直线的解析式是A. $y=-2x+5$B. $y=\dfrac{1}{2}x-1$C. $y=2x-7$D. $y=\dfrac{1}{2}x+1$10. 设 $a$,$b$ 是互质的正整数,$a>b,a+b<10$,则 $a$ 和$b$ 的可能取值个数是A. $2$B. $3$C. $4$D. $5$二、填空题(每小题4分,共40分)11. 方程的解是 $\dfrac{2}{3}$,那么方程 $3x\, - \, 2 \, = \, 0$ 的解是\underline{\hspace{1cm}}.12. 锐角三角函数 $\sin$ 的值域是\underline{\hspace{1cm}}.13. 把 $3ab-5a^2b^2$ 化成 $a$,$b$ 的和或差的形式得\underline{\hspace{1cm}}.14. 能够用三线测量法测得的物体高度有\underline{\hspace{1cm}}.15. 若 $\log_{10}3=0.4771$,$\log_{10}5=0.6989$,则$\log_{5}3=$\underline{\hspace{1cm}}.16. 计算:$1+\dfrac{1}{3}+\dfrac{1}{5}+\cdots+\dfrac{1}{31}$=\underline{\hsp ace{1cm}}.17. 一架直升机在$150$ 米高空飞行时,发现正在下降的石头,在石头掉落前 $7$ 秒直升机经过了石头,求石头从何处落下,假设石头从自由落体运动,取 $g=10m/s^2$,答案保留 $1$ 位小数,单位:米\underline{\hspace{1cm}}.18. 如图,在平面直角坐标系 xy 面内,点 $O$ 是两条互相垂直的坐标轴的交点,$OABC$ 为一单位正方形,$D$,$E$,$F$ 分别是线段 $OA$,$OC$,$BC$ 上的点,则 $\triangle DEF$ 的面积为\underline{\hspace{1cm}}.19. 边长为 $2$ 的正方形三角纸,两直角边 $b$ 和 $c$ 之差为$1.5$,则其斜边长为\underline{\hspace{1cm}}.20. 设等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,则当$n=4$ 时,此数列的通项公式为 $a_n=$\underline{\hspace{1cm}},$S_7=$\underline{\hspace{1cm}}.三、解答题(每空格2分,小题共20分)21. 解不等式 $2x-5 \leq 3x+2<4-2x$.22. 解直角三角形 $\triangle ABC$,已知 $\sin AB=\dfrac{3}{5}$,$\tan A= \dfrac{3}{4}$,求 $\cos BC$.23. 根据图形,用三线测量法测得物体高度为 $h$,测量时两三角仪分别丈量角度为 $10^{\circ}$ 和 $70^{\circ}$,请给出这幅图中所有的长度.24. 把 $6\dfrac{1}{3} \%$ 写成最简分数,与 $18\%$ 和$0.12$ 比较,写出从小到大排列的结果.25. 数列 $\{a_n\}$ 是等差数列,$a_5=14$,$a_9=26$,求$a_{10}$.参考答案:1. A2. A3. B4. B5. B6. B7. A8. B9. D 10. C11. $\dfrac{2}{3}$ 12. $[-1,1]$ 13. $a(3-5ab)$ 14. $3$ 15. $0.4307$16. $\dfrac{2251}{5796}$ 17. $127.5$ 18. $\dfrac{1}{2}$ 19. $\sqrt{5}$ 20. $7$,$28$21. $-3 \leq x<\dfrac{5}{3}$22. $\dfrac{4}{5}$23. $A C=\dfrac{h}{\tan 10^{\circ}}, B F=\dfrac{h}{\tan70^{\circ}}, A B=\dfrac{h}{\sin 10^{\circ}}, E F=\dfrac{h}{\sin80^{\circ}}$24. $\dfrac{19}{300}, 0.12, 0.18$25. $28$。

北师大版八年级数学下册第三章测试卷及答案

北师大版八年级数学下册第三章测试卷及答案

北师大版八年级数学下册第三章测试卷及答案一、选择题(共10小题,每小题3分,共30分)1.在以下生活现象中,属于旋转变换的是( )A .钟表的指针和钟摆的运动B .站在电梯上的人的运动C .坐在火车上睡觉的旅客D .地下水位线逐年下降2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(-2,1),则点B 的对应点的坐标为( )A .(5,3)B .(-1,-2)C .(-1,-1)D .(0,-1)4.如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(-5,2),(-2,-2),(5,-2),则点D 的坐标为( )A .(2,2)B .(2,-2)C .(2,5)D .(-2,5)5.若P 与A(1,3)关于原点对称,则点P 落在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A′B′C,点B 的对应点B′在边AC 上(不与点A ,C 重合),则∠AA′B′的度数为( )A .αB .α-45°C .45°-αD .90°-α7.如图,在△AOB 中,BO =32,将△AOB 绕点O 逆时针旋转90°,得到△A′OB′,连接BB′,则线段BB′的长为( )A .1 B. 2 C. 32 D.322 8.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD.下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠CC .AD ∥BC D .AD =BC9.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O′A′B′,点A 的对应点A′在直线y =34x 上,则点B 与其对应点B′之间的距离为( )A.94B .3C .4D .5 10. 如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 3二.填空题(共8小题,每小题3分,共24分)11.将线段AB 平移1 cm ,得到线段A′B′,则点B 到点B′的距离是_________.12. 一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是__________.( 填序号)13.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_______.14.如图,等边三角形AOB 绕点O 逆时针旋转到△A′OB′的位置,OA′⊥OB ,则△AOB 旋转了____度.15.如图,△ABC 的顶点分别为A(3,6),B(1,3),C(4,2).若将△ABC 绕点B 顺时针旋转90°,得到△A′BC′,则点A 的对应点A′的坐标为________.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=________.17.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4.若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC =________.18.如图,将Rt △ABC 沿着直角边CA 所在的直线向右平移得到Rt △DEF ,已知BC =a ,CA =b ,FA =13b ,则四边形DEBA 的面积等于__________.三.解答题(共7小题, 66分)19.(8分) 如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 的对应点C 1的坐标为(4,0),画出△A 1B 1C 1;(2)若△A 2B 2C 2是△ABC 关于原点O 中心对称的图形,写出△A 2B 2C 2各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 3B 3C 3,画出△A 3B 3C 3.20.(8分) 如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O 为AD边的中点.若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.21.(8分) 如图,已知线段AB和点A′.尺规作图:作出由线段AB平移得到的线段A′B′,其中点A的对应点为A′.(不写作法,保留作图痕迹)22.(8分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD 绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向外作等边三角形BCD,连接AD,把△ABD绕着D点按顺时针方向旋转60°后到△ECD的位置,A,C,E三点恰好在同一直线上.若AB=6,AC=4,求∠BAD 的度数和AD的长.24.(10分) 如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C 并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.25.(14分) 如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B,C,F,D在同一条直线上,且点C与点F重合(在图③至图⑥中统一用F表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF沿BD向右平移到图④的位置,使点B与点F重合,请你求出平移的距离;(2)将图③中的△ABF绕点F顺时针方向旋转30°到图⑤的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图③中的△ABF沿直线AF翻折到图⑥的位置,AB1交DE于点H,请证明:AH=DH.参考答案1-5ABCAB 6-10CDCCD11. 1cm12. ②③④13. 1414. 15015. (4,1)16. 20°17. 218. 23ab 19. 解:(1)如图,△A 1B 1C 1为所作.(2)A 2(3,-5),B 2(2,-1),C 2(1,-3).(3)如图,△A 3B 3C 3为所作.20.解:(1)旋转后的图形如图所示.(2)如图,连接OC.由题意可知,点C 的旋转路径是以O 为圆心,OC 的长为半径的半圆.∵OC =12+22=5,∴点C 在旋转过程中经过的路径长为5π.21. 解:如图,线段A′B′即为所求.(画法不唯一)22. (1)解:补全图形,如图所示.(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.∵∠ACB =90°,∴∠DCE +∠BCD =90°.∴∠ECF =∠BCD.∵EF ∥DC ,∴∠EFC +∠DCF =180°.∴∠EFC =90°,在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC.∴∠BDC =∠EFC =90°.23.解:∵△BAD 绕D 点顺时针旋转60°得到△CED ,∴AD =DE ,∠ADE =60°,∴△ADE 为等边三角形,∴∠E =60°,∵∠BAC =120°,∴∠BAC +∠E =180°,∴AB ∥DE ,∴∠BAD =∠ADE =60°.∵△ABD ≌△ECD ,∴CE =AB =6,∴AE =AC +CE =4+6=10,∵△ADE 为等边三角形,∴AD =AE =10.24. 解:(1)∵AC =BC ,∠A =30°,∴∠CBA =∠CAB =30°.∵∠ADC =45°,∴∠BCD =∠ADC -∠CBA =15°.(2)①由旋转的性质,得CB =C′B=AC ,∠C′BD′=∠CBD =∠A =30°,∴∠CC′B=∠C′CB=75°. ②证明:∵AC =C′B,∠C′BD′=∠A ,∴∠CEB =∠C′CB-∠CBA =45°,∴∠ACE =∠CEB -∠A =15°,∴∠BC′D′=∠BCD =∠ACE ,在△C′BD′和△CAE 中,⎩⎪⎨⎪⎧∠BC′D′=∠ACE ,C′B=CA ,∠C′BD′=∠A ,∴△C′BD′≌△CAE(ASA).25. 解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm(2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS).∴AH =DH。

八年级数学下第三单元试卷

八年级数学下第三单元试卷

一、选择题(每题3分,共30分)1. 下列选项中,不是二次函数图象特点的是()A. 图象是开口向上或向下的抛物线B. 图象与x轴有两个交点C. 图象与y轴有一个交点D. 图象与x轴有一个交点2. 若二次函数y=ax²+bx+c(a≠0)的图象开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a>0B. a<0C. a=0D. a无限制3. 已知二次函数y=ax²+bx+c(a≠0)的图象开口向上,且顶点坐标为(-1,3),则下列选项中,一定是该函数图象上一点坐标的是()A. (1,0)B. (-2,0)C. (0,0)D. (-1,0)4. 若二次函数y=ax²+bx+c(a≠0)的图象与x轴有两个交点,且这两个交点的横坐标之和为-2,则b的取值范围是()A. b>0B. b<0C. b=0D. b无限制5. 已知二次函数y=ax²+bx+c(a≠0)的图象与y轴的交点坐标为(0,3),则c 的值为()A. 3B. -3C. 0D. 无法确定6. 若二次函数y=ax²+bx+c(a≠0)的图象开口向上,且顶点坐标为(-2,1),则该函数的对称轴方程是()A. x=-2B. y=1C. x=2D. y=-17. 下列函数中,是二次函数的是()A. y=x³+2xB. y=x²+2x+1C. y=3x²D. y=x²+x8. 已知二次函数y=ax²+bx+c(a≠0)的图象与x轴有两个交点,且这两个交点的横坐标分别为1和3,则该函数图象的顶点坐标是()A. (1,0)B. (2,0)C. (3,0)D. (1,3)9. 若二次函数y=ax²+bx+c(a≠0)的图象开口向上,且顶点坐标为(0,-4),则该函数图象与y轴的交点坐标是()A. (0,-4)B. (0,0)C. (0,4)D. (-4,0)10. 下列选项中,不是二次函数图象特征的是()A. 图象是开口向上或向下的抛物线B. 图象与x轴有两个交点C. 图象与y轴有一个交点D. 图象与x轴有一个交点,且与y轴的交点坐标为(0,1)二、填空题(每题5分,共20分)11. 二次函数y=ax²+bx+c(a≠0)的图象开口向上,且顶点坐标为(-1,2),则该函数的对称轴方程是__________。

八年级(下)数学第三单元测试卷

八年级(下)数学第三单元测试卷

八年级(下)数学第三单元测试卷 姓名 学号 一、填空题 (每空3分,共36分)1.数据93 68 95 85 71 61 78 94的极差是 。

2.数据分组后,各组的频率之和等于 。

3.已知一组数据的频数是5,数据总数为20个,则这组数据的频率是 。

4.从某服装厂即将出售的一批休闲装中抽检80件,其中不合格的休闲装有6 件,则抽检中合格的频率是 。

5.一个样本,分组后落在第二组的频数是12,频率是0.24,则这个样本的容量是 。

6.某商店2020年年2月三种不同品牌钢笔的售出量如右表:B 品牌钢笔的的频数是 ,它的实际意义是 。

7.已知一个样本含20个,68,69,70,66,68,65,64,65,69,62,67,63,65,64,61,65,66.在列频数分布表时,如果取组距为2,那么应分成 组,64.5-66.5这一小组的频数为 ,其频率为 .8.为了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图,已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为 ,参加这次测试的学生是 人.二、选择题(每题3分,共24分)9.( )将数据分组后落在各小组内的数据的个数叫做A .众数B .中位数C .频数D .频率10.( )对某班学生睡眠时间进行调查后,将所得的数据分成5组,第一组的频率是0.16,第二、三、四组的频率之和为0.64,则第五组的频率是A .0.38B .0.30C .0.20D .0.19.11.( )某班50名同学中,2月份出生的同学人数的频率是0.1,则这个班2月份生日的同学有 A .3位 B .4位 C . 5位 D .6位12.( )一组数据的极差为80,若取组距为9,则分成的组数应是( )A .7B . 8C .9D .10.13.( )对八年级某班45名同学的一次数学单元测试成绩进行统计,如果频数分布直方图中80.5~90.5分这一组的频数是9,那么这个班的学生这次数学测试成绩在80.5~90.5分之间的频率是 A .0.2 B .0.25 C .0.3 D .0.414.( )数据6,8,x ,14的平均数是9,则数据8出现的频数是A .1B .2C .6D .815.( )绘制的频数分布直方图中,各小长方形的高等于相应各组的A .平均数B .频数C .频率D .组距16.( )已知样本 75 61 71 76 67 81 61 73 71 77 79 72 65 57 73 73 66 77 69 81,那么这个样本数据落在66.5~71.5内的频率是A .0.15B .0.2C .0.25D .0.3钢笔品牌 售出支数 A 18 B 34 C 15三、解答题1.(10分)为了了解中学生的体能情况,某校抽取了50名八年级学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频数分布直方图如图所示.已知图中从左到右前四个小组的频率分别为0.04,0.12,0.4,0.28,根据直方图提供的信息解答下列问题:(1)前四个小组的频数各是多少?(2)第五小组的频率是多少?(3)在这次跳绳中,跳绳次数的中位数落在第几个小组内?(4)将频数分布直方图补全,并分别标出各个小组的频数,并在频数分布直方图中频数分布直方图画出频数分布折线图.2.(18分)为了解我校初中三年级300名男生的身体发育情况,从中抽测了部份男生的身高进行分组(㎝)频数频率156.5~161.5 2 a161.5~166.5 3 0.15166.5~171.5 b 0.20171.5~176.5 c 0.30176.5~181.5 5 d这次共抽查了名男生;(2) 表中a= ,b=,c=,d=;(3)估计极差为;(4) 该校初中三年级男生身高在171.5~176.5(cm)范围内的人数为 .(5) 估计这个样本的男生的平均身高;与标准质量差(g ) +4 +7 -3 -8 +9篮球编号 1 2 3 4 5 3.(12分)某单位对全体职工的年龄进行了调查统计,结果如下(单位:岁):21 32 44 50 46 55 60 59 38 4919 52 34 35 48 52 39 41 44 4638 43 45 46 24 21 32 30 28 27将数据适当分组,列出频数分布表,绘制相应的频数分布直方图.解 最大值是 ,最小值是 ,极差是 岁;取组距为10岁,可以分成 组 (温馨提示:以上不要弄错,若错的话,后面的都错了)附加题(3分×4+8=20分)1.已知一组数据:10、8、6、10、8、13、11、12、10、10、7、9、8、12、9、11、12、9、10、11,则频率为0.2的范围是 ( )A.6~7B.10~11C.8~9D.12~132.在一组160个数据的频数分布直方图中,共有11个小长方形,若中间一个小长方形的高等于其它10个小长方形高的和的41,则中间一组的频率是 ( ) A .32 B .0.2 C .40 D .0.253.已知样本容量为40,在样本频数分布直方图中,如图所示.各小长方形的高的比是AE :BF :CG :DH =1:3:4:2,那么第三组频率为_______________.4.检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的记为负数,检查结果如下表,则最接近标准质量的是 号篮球,最偏离标准质量的是 号篮球,这次测量结果的极差是 .5.从2001年2月21日零时起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3分钟为0.2元(不足3分钟的按3分钟计算),以后每分钟加收0.1元(不足1分钟的按1分钟计算),上星期天,一位学生调查了A、B、C、D、E、五位同学某天打本地网营业区内电话的通话时间情况,原始数据如表1:表一(1)问D同学这天的通话费是多少?(2)设通话时间为t(分),试根据表1填写频数(落在某一时间段上的通话次数)分布表(表2)(3)调整前执行的原电话收费标准是:每3分钟为0.2元(不足3分钟的按3分钟计算),问:这五名位同学这天的实际平均通话费,与用原电话收费标准算出的平均通话费相比,是增多了,还是减少了?若增多,多多少?若减少,少多少?表二。

(好题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

(好题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

一、选择题1.如图,在△ABC 中,AB=3,BC=5.2,∠B=60°,将△ABC 绕点A 逆时针旋转△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .0.8B .2C .2.2D .2.82.下列图形是中心对称图形但不是轴对称图形的是( )A .B .C .D . 3.在平面直角坐标系中,把点()5,4P -向右平移8个单位得到点1P ,再将点1P 绕原点顺时针旋转90︒得到点2P ,则点2P 的坐标是( )A .()4,3-B .()4,3C .()4,3--D .()4,3- 4.如图,点A ,B 的坐标分别为(1,1)、(3,2),将△ABC 绕点A 按逆时针方向旋转90°,得到△A'B'C',则B'点的坐标为( )A .(﹣1,3)B .(-1,2)C .(0,2)D .(0,3) 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 6.下列说法中正确的是( )A .如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形;B .如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形;C .如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形;D .如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形;7.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)-8.窗棂即窗格是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.9.如图,将ABC沿BC的方向平移1cm得到DEF,若ABC的周长为6cm,则四边形ABFD的周长为()A.6cm B.8cm C.10cm D.12cm10.下列美丽的图案,不是中心对称图形的是()A.B.C.D.11.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.12.下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是()A .B .C .D .二、填空题13.把直线3y x =-向上平移后得到直线AB ,若直线AB 经过点(,)C a b ,且36,a b +=则直线AB 的表达式为_______14.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.15.已知点P(-3,2)关于原点的对称点是_______.16.在平面直角坐标系中,点(2,4)-关于原点对称的点的坐标为______.17.如图,点B 在x 轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB 绕点O 旋转150°得到△OA′B′,则点A′的坐标为_____18.如图,在Rt ABC △中,90BAC ∠=︒,将ABC ∆绕点A 顺时针旋转90︒后得到AB C ''△(点B 的对应点是B ',点C 的对应点是C '),连接CC '.若32CC B ''∠=︒,则BCA ∠=______︒.19.如图,在平面直角坐标系xOy 中,点A (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m 的取值范围是_____.20.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是_____.三、解答题21.如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ;(3)画出ABC 向右平移8个单位长度后A B C '''的位置;(4)A B C '''的面积为______.22.三角形ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点,()1,4A -,()4,1B --,()1,1C .将三角形ABC 向右平移3个单位长度,再向下平移2个单位长度得到三角形111A B C .(1)画出平移后的三角形;(2)直接写出点1A ,1B ,1C 的坐标:1A (______,______),1B (______,______),1C (______,______);(3)请直接写出三角形ABC 的面积为_________.23.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为)(3,5A -,)(2,1B -,)(1,3C -.(1)ABC 的面积是______.(2)画出ABC 绕着点O 按顺时针方向旋转90°得到的222A B C △.24.如图,将ABC 绕点B 顺时针旋转90°得到DBE (点A ,点C 的对应点分别为点D ,点E ).(1)根据题意补全图形;(2)连接DC ,CE ,如果∠BCD =45°.用等式表示线段DC ,CE ,AC 之间的数量关系,并证明.25.已知:点A、B在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A_______,B________;(2)点A平移到点(0,-1),请说出是怎样平移的,并写出点B平移后的坐标.(3)求△AOB的面积.26.如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD的度数为°;(2)如图2,当α=60°时,求∠AMD的度数;(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD,不用证明;若不确定,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C根据旋转的性质得到△ABD 为等边三角形,得到BD=AB=3,再根据线段和差计算得到答案即可.【详解】∵△ABC 绕点A 逆时针旋转△ADE ,∴AB=AD ,∵∠B=60°,∴△ABD 为等边三角形,即BD=AB=3,∴CD=BC-BD=5.2-3=2.2;故选:C .【点睛】此题考查旋转的性质,等边三角形的判定及性质,线段的和差计算,掌握旋转的性质证得△ABD 为等边三角形是解题的关键.2.C解析:C【分析】根据中心对称图形与轴对称图形的定义求解.【详解】解:A 、是轴对称图形不是中心对称图形,不符合题意;B 、既是轴对称图形也是中心对称图形,不符合题意;C 、是中心对称图形不是轴对称图形,符合题意;D 、是轴对称图形不是中心对称图形,不符合题意;故选C .【点睛】本题考查轴对称与中心对称的应用,熟练掌握轴对称与中心对称的意义是解题关键. 3.D解析:D【分析】把点()5,4P -向右平移8个单位得到点()13,4P ,再将点1P 绕原点顺时针旋转90︒得到点2P 即可求解.【详解】解:把点()5,4P -向右平移8个单位得到点()13,4P ,再将点1P 绕原点顺时针旋转90︒得到点2P ()4,3-,故选:D .【点睛】本题考查点的坐标变换,掌握点的坐标变换规律是解题的关键.4.D【分析】根据题意画出图形,然后结合直角坐标系即可得出B'的坐标.【详解】解:如图,根据图形可得:点B′坐标为(0,3),故选:D.【点睛】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.5.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既不是轴对称图形,也不是中心对称图形,故此选项错误;故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.C解析:C【分析】根据旋转对称图形、轴对称图形、中心对称图形的定义及性质判断各选项即可得出答案.【详解】A、如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,故选项不符合题意;B、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,但不是轴对称图形,故选项不符合题意;C、如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,故选项符合题意;D、如果一个图形是旋转对称图形,那么这个图形不一定也是中心对称图形,当一个旋转对称图形没有旋转180︒则不是中心对称图形,故选项不符合题意;故选:C.【点睛】本题考查了旋转对称图形、轴对称图形、中心对称图形,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.7.C解析:C【分析】根据平移的性质,以及点A,B的坐标,可知点A的横坐标加上了1,纵坐标加上了1,所以平移方法是:先向左平移1个单位,再向上平移3个单位,根据点B的平移方法与A点相同,即可得到答案.【详解】∵A(-2,-1)平移后对应点A'的坐标为(-3,2),∴A点的平移方法是:先向左平移1个单位,再向上平移3个单位,∴B点的平移方法与A点的平移方法是相同的,∴B(0,-2)平移后B'的坐标是:(0-1,-2+3)即(-1,1).故选:C.【点睛】本题考查了坐标与图形的变化-平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.8.C解析:C【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可.【详解】选项A既是中心对称图形,也是轴对称图形;选项B既是中心对称图形,也是轴对称图形;选项C是中心对称图形,但不是轴对称图形;选项D既是中心对称图形,也是轴对称图形.故选:C.【点睛】本题考查中心对称图形与轴对称图形的概念.判定轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后,对称轴两旁的部分可重合;判定中心对称图形的关键是寻找对称中心,图形绕对称中心旋转180°后,与原图形重合.9.B解析:B【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.【详解】∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=6,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:B.【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.10.B解析:B【详解】解:A是中心对称图形,不符合题意;B不是中心对称图形,符合题意;C是中心对称图形,不符合题意;D是中心对称图形,不符合题意,故选B.【点睛】本题考查中心对称图形,正确识图是解题的关键.11.B解析:B【分析】观察四个选项中的图形,根据轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合;找出既是轴对称图形又是中心对称图形的那个即可得出结论.【详解】A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D不是轴对称图形,是中心对称图形.故选:B.【点睛】此题考查中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.12.C解析:C【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、是中心对称图形,故本选项正确;D 、不是中心对称图形,故本选项错误;故选C .【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题13.【分析】利用平移规律列式计算即可【详解】设直线y=-3x 向上平移了m 个单位∴直线的解析式为y=-3x+m ∵直线经过点∴b=-3a+m ∵∴b=-3a+6∴-3a+m=-3a+6∴m=6∴直线AB 的解析解析:36y x =-+.【分析】利用平移规律,列式计算即可.【详解】设直线y= -3x 向上平移了m 个单位,∴直线的解析式为y= -3x+m ,∵直线AB 经过点(,)C a b ,∴b=-3a+m ,∵36,a b +=∴b=-3a+6,∴-3a+m=-3a+6,∴m=6,∴直线AB 的解析式为y=-3x+6,故答案为:y=-3x+6.【点睛】本题考查了一次函数的平移,熟记平移规律,灵活确定函数的表达式是解题的关键. 14.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P 1、P 2、P 3、P 4、P 5、P 6、P 7的坐标,可以得出规律,继而可求出点2021P 的坐标.【详解】解:根据题意得:点P 1(0,2)、P 2(2,-2)、P 3(-4,2)、P 4(4,0)、P 5(-2,0)、P 6(0,0)、P 7(0,2),,∴每6次为一个循环,∵202163365÷=,∴点2021P 的坐标与点P 5的坐标相同,即为(-2,0),故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.15.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.16.【分析】关于原点对称的点的横纵坐标都互为相反数据此解答【详解】点关于原点对称的点的坐标为故答案为:【点睛】此题考查关于原点对称的点的坐标特点:横纵坐标都互为相反数解析:(2,4)-【分析】关于原点对称的点的横纵坐标都互为相反数,据此解答.【详解】点(2,4)-关于原点对称的点的坐标为(2,4)-,故答案为:(2,4)-.【点睛】此题考查关于原点对称的点的坐标特点:横纵坐标都互为相反数.17.(0-4)或()【分析】根据直角三角形两锐角互余求出∠AOB=60°然后分①顺时针旋转点A′在y轴负半轴根据OA′的长度写出点A′的坐标即可;②逆时针旋转时求出OA′与x轴负半轴夹角为30°过点A′解析:(0,-4)或(23,2 )【分析】根据直角三角形两锐角互余求出∠AOB=60°,然后分①顺时针旋转,点A′在y轴负半轴,根据OA′的长度写出点A′的坐标即可;②逆时针旋转时,求出OA′与x轴负半轴夹角为30°,过点A′作A′C⊥x轴于C,根据直角三角形30°角所对的直角边等于斜边的一半求出A′C,再利用勾股定理列式求出OC,然后写出点A′的坐标即可.【详解】解:∵∠ABO=90°,∠A=30°,∴∠AOB=60°,①若是顺时针旋150°,如图,点A′在y轴负半轴,则OA′=OA=4,所以,点A′的坐标为(0,-4);②若是逆时针旋转150°,如图,∵旋转角为150°,∴OA′与x轴负半轴夹角为30°,过点A′作A′C⊥x轴于C,则A′C=12OA′=12×4=2,由勾股定理得,OC===所以,点A′的坐标为(2-),综上所述,点A′的坐标为(0,-4)或(2-).故答案为:(0,-4)或(2-).【点睛】本题考查了坐标与图形变化-旋转,主要利用了直角三角形两锐角互余,直角三角形30°角所对的直角边等于斜边的一半以及勾股定理,难点在于分情况讨论.18.13【分析】先利用旋转的性质得AC=AC′∠B=∠AB′C∠CAC′=90°则可判断△ACC′为等腰直角三角形利用等腰直角三角形的性质得∠ACC′=∠AC′C=45°然后利用三角形外角性质得∠AB′解析:13【分析】先利用旋转的性质得AC=AC′,∠B=∠AB′C,∠CAC′=90°,则可判断△ACC′为等腰直角三角形,利用等腰直角三角形的性质得∠ACC′=∠AC′C=45°,然后利用三角形外角性质得∠AB′C=77°,从而得到∠B的度数,即可得到∠BCA.【详解】解:∵△ABC绕点A顺时针旋转90°后得到△AB′C′,∴AC=AC′,∠B=∠AB′C,∠CAC′=90°,∴△ACC′为等腰直角三角形,∴∠ACC′=∠AC′C=45°,∵∠CC′B′=32°,∴∠AB′C=∠B′CC′+∠CC′B=45°+32°=77°,∴∠B=77°,∴∠BCA=90°-77°=13°.故答案为:13.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O顺时针旋转90°与直线x=2交于CD两点则点A(2m)在线段CD上结合点CD的纵坐标即可求出m的取值范围【详解】如图将阴影区域绕着点O顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,结合点C,D的纵坐标,即可求出m的取值范围.【详解】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,又∵点D的纵坐标为﹣2.5,点C的纵坐标为﹣3,∴m的取值范围是﹣3≤m≤﹣2.5,故答案为﹣3≤m≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.20.【分析】根据旋转的性质即可得到∠BCQ=120°当DQ⊥CQ时DQ的长最小再根据勾股定理即可得到DQ的最小值【详解】解:如图由旋转可得∠ACQ=∠B=60°又∵∠ACB=60°∴∠BCQ=120°∵解析:3【分析】根据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ的最小值.【详解】解:如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=2,当DQ ⊥CQ 时,DQ 的长最小,此时,∠CDQ =30°,∴CQ =12CD =1, ∴DQ =22213-=,∴DQ 的最小值是3,故答案为3.【点睛】本题主要考查线段最小值问题,关键是利用旋转、等边三角形的性质及勾股定理求解.三、解答题21.(1)见解析;(2)见解析;(3)见解析;(4)9.5【分析】(1)根据网格特点以A 为锐角顶点,对边为1,临直角边为5构造格点直角三角形,即可解答;(2)根据网格特点以A 为锐角顶点,对边为1,临直角边为5构造格点直角三角形,即可解答;(3)根据平移的性质,向右8个单位长度描出对应顶点,即可画出A B C '''; (4)由矩形法即可求出三角形面积.【详解】解:(1)如图所示,AP 是BC 的垂线;P 为所求格点;(2)如图所示,1//AQ BC ,1Q 、2Q 为所求格点;(3)如图所示,A B C '''为所求;(4)A B C '''的面积11119544151432222=⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:192. 【点睛】 此题主要考查了应用设计与作图,正确掌握相关性质以及结合网格画出对应点是解题关键.22.(1)见解析;(2)()12,2A ,()11,3B --,()14,1C -;(3)192【分析】(1)作出A 、B 、C 的对应点111,,A B C 并两两相连即可;(2)根据图形得出坐标即可;(3)根据割补法得出面积即可.【详解】解:(1)如图所示,111A B C 即为所求.(2)根据图形可得:()12,2A ,()11,3B --,()14,1C -(3)△ABC 的面积=5×5−12×3×5−12×2×3−12×2×5=192. 【点睛】本题考查作图-平移变换,熟练掌握由平移方式确定坐标的方法及由直角三角形的边所围成的图形面积的算法是解题关键.23.(1)3;(2)见解析【分析】(1)用割补法即可得出△ABC 的面积;(2)依据旋转的性质,找出A 、B 、C 的对应点A 2、B 2、C 2,然后用线段顺次连接即可得到△ABC 绕着点O 按顺时针方向旋转90°得到的△A 2B 2C 2.【详解】解:(1)△ABC 的面积是2×4-12×2×2-12×4×1-12×1×2=3, 故答案为:3;(2)如图,【点睛】本题考查了作图-旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24.(1)见解析;(2)222DC CE AC +=;证明见解析【分析】(1)根据旋转的定义即可作图;(2)根据旋转的性质得到ABC DBE ≌,△CBE 是等腰直角三角形,得到45BCE ∠=︒,由已知条件可得90DCE ∠=︒,根据勾股定理和等量替换即可证明.【详解】(1)根据题意补全图形(2)结论:222DC CE AC +=.证明:由题意可知ABC DBE ≌,90CBE ∠=︒.∴ AC DE =,BC BE =.∴△CBE 是等腰直角三角形.∴45BCE ∠=︒.∵45BCD ∠=︒,∴90DCE ∠=︒.在Rt △DCE 中222DC CE DE +=.∴222DC CE AC +=.【点睛】此题主要考查旋转与几何综合,解题的关键是熟知旋转的性质、全等三角形的性质、勾股定理及等腰直角三角形的性质.25.(1)(-1,2),(3,-2);(2)把点A先向下平移3个单位长度,再向右平移1个单位长度,(4,-5);(3)S△AOB=2【分析】(1)直接根据图中点的坐标即可求得答案;(2)由A( -1,2)对应点的对应点 ( 0,-1)得平移平移规律,即可得到答案;(3)将图中ABC分补成一个长方形减去三个三角形和一个小长方形的面积即可得出答案.【详解】解:(1)A(-1,2),B(3,-2);故答案为:(-1,2),(3,-2);(2)∵点A(-1,2)平移到点(0,-1)∴把点A先向下平移3个单位长度,再向右平移1个单位长度,∵B(3,-2)∴平移后的B点坐标为:(4,-5);(3)11144442121231681232 222AOBS=⨯-⨯⨯-⨯⨯-⨯-⨯⨯=----=.【点睛】本题考查平面直角坐标系相关,结合平面直角坐标系的坐标确定方法以及整体减去部分求图形面积的方法和点的平移规律进行分析.26.(1)90;(2)120°;(3)存在,∠AMD=180°﹣α【分析】(1)如图1中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,得∠AMK=∠BOK=90°可得结论.(2)如图2中,设OA交BD于K.只要证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=60°可得结论.(3)如图3中,设OB交AC于K.只要证明△BOD≌△AOC,可得∠OBD=∠OAC,由∠AKO=∠BKM,推出∠AOK=∠BMK=α.可得∠AMD=180°-α;【详解】解:(1)如图1中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=90°,∴∠AMD=180°-90°=90°.故答案为90.(2)如图2中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=60°,∴∠AMD=180°-60°=120°,(3)如图3中,设OB交AC于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKO=∠BKM,∴∠AOK=∠BMK=α.∴∠AMD=180°-α.【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等.。

八年级下册数学第三单元测试卷

八年级下册数学第三单元测试卷

八年级下册数学第三单元测试卷一、选择题(每小题3分,共30分)1. 下列计算正确的是( )A.$(a + b)^{2} = a^{2} + b^{2}$B.$(a - b)^{2} = a^{2} - b^{2}$C.$(a + b)^{2} = a^{2} + 2ab + b^{2}$D.$(a - b)^{2} = a^{2} - 2ab + b^{2}$2. 下列各式中,能用同底数幂的乘法法则进行运算的是( )A.$(\frac{1}{2}x)^{m} \cdot (\frac{1}{2}x)^{n}$B.$a^{m} \cdot a^{n} = a^{m + n}$C.$(a^{m})^{n} = a^{mn}$D.$a^{m} \cdot a^{n} = a^{m + n}$3. 下列各式中,正确的是( )A.$a^{3} \cdot a^{4} = a^{7}$B.$a^{3} \div a^{4} = a^{-1}$C.$(a^{3})^{4} = a^{7}$D.$a^{3} + a^{4} = a^{7}$4. 下列计算正确的是( )A.$a^{5} \div a^{5} = 0$B.$3a - 2b = ab$C.$(x + y)^{2} = x^{2} + y^{2}$D.$(x - 1)^{2} = x^{2} - 1$5. 下列计算正确的是( )A.$( - 3a)^{2} = 9a^{2}$B.$a^{6} \div a^{2} = a^{3}$C.$- (x - 1) = - x + 1$D.$2x + 3y = 5xy$6. 下列计算正确的是( )A.$3a + 2b = 5ab$B.$(x - 1)^{2} = x^{2} - 1$C.$(x + y)^{2} = x^{2} + y^{2}$D.$( - m - n)^{2} = m^{2} + n^{2}$7. 下列各式中,合并同类项后结果正确的是( )A.$3x + 2y = 5xy$B.$5m^{2}n - m^{2}n = 4m^{2}n$C.$5m^{2}n - m^{2}n = 4m^{2}^ {n+1}$D.$3x + 2y = 5xy$8. 下列运算中,计算结果正确的是( )A.$4a + a = 4a^{2}$B.$a^{6} \div a^{2} = a^{3}$C.($- 3a$)$\mspace{2mu}^{3} = - 9a^{3}$D.$a \cdot a^{4} = a^{5}$9. 下列计算正确的是( )A.$( - x - y)(x + y) = x^{2} + y^{2}$B.$(x + y)^{2} = x^{2} + y^{2}$C.$(x - y)^{2} = x^{2} - y^{2}$D.$x \cdot x^{4} = x^{5}$10. 下列计算正确的是( )A.$a^{- 3} \cdot a^{- 4} = a^{- 7}$B.$a^{- 3} \div a^{- 4} = a^{- 7}$C.$(a^{- 3})^{4} = a^{- 7}$D.$a^{- 3} + a^{- 4} = a^{- 7}$二、填空题(每小题3分,共9分)11. 下列各式中,正确的是( )A.$a^{- p} = \frac{1}{a^{p}}$B.$a^{- p} = \frac{1}{a^{p}}(p \neq 0)$C.$x = x$D.$\sqrt{x^ {2}} = x$12. 下列计算正确的是( )A.$a^{- p} \cdot a^{- q} = a。

(好题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(含答案解析)

(好题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(含答案解析)

一、选择题1.在平面直角坐标系中,A (0,3),B (4,0),把△AOB 绕点O 旋转,使点A ,B 分别落在点A ′,B ′处,若A ′B ′∥x 轴,点B ′在第一象限,则点A 的对应点A ′的坐标为( ) A .(912,55-) B .(129,55-) C .(1612,55-) D .(1216,55-) 2.将点(3,1)绕原点顺时针旋转90︒得到的点的坐标是( )A .(3,1)--B .(1,3)-C .(3,1)-D .(1,3)- 3.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是( )A .B .C .D .4.如图,将矩形ABCD 绕点C 顺针旋转90°到矩形A B C D ''''的位置,若4,2AB AD ==,则图中阴影部分的面积为( )A .4233π- B .4433π- C .8233π- D .8433π- 5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 6.在平面直角坐标系xOy 中,ABC 与A B C '''关于原点O 成中心对称的是( ) A . B .C.D.7.如图,点A,B的坐标分别为(1,1)、(3,2),将△ABC绕点A按逆时针方向旋转90°,得到△A'B'C',则B'点的坐标为()A.(﹣1,3)B.(-1,2)C.(0,2)D.(0,3)8.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.9.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个10.如图,点D是等腰直角三角形ABC内一点,AB=AC,若将△ABD绕点A逆时针旋转到△ACE的位置,则∠AED的度数为()A.25°B.30°C.40°D.45°11.如图,已知ABC 和A B C '''关于点O 成中心对称,则下列结论错误的是( ).A .ABC ABC '''∠=∠B .AOB A OB ''∠=∠C .AB A B ''=D .OA OB '= 12.如图,△ABC 沿线段BA 方向平移得到△DEF ,若AB =6,AE =2.则平移的距离为( )A .2B .4C .6D .8二、填空题13.如图,在Rt ABC 和Rt CDE △中,90ACB DCE ∠=∠=︒,30A ∠=︒,45E ∠=︒,B ,C ,E 三点共线,Rt ABC △ 不动,将Rt CDE △绕点C 逆时针旋转()0360a α︒<<︒,当DE //BC 时,α=____________.14.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.15.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.16.如图,在ABC ∆中,90,3,4ACB AC BC ∠=︒==,将ABC ∆绕点C 顺时针旋转90︒得到'''A B C ∆,若P 为AB 边上一动点,旋转后点P 的对应点为点P',则线段'PP 长度的取值范围是________.17.如图,在平面直角坐标系xOy 中,点A (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m 的取值范围是_____.18.点P (m +2,2m +1)向右平移1个单位长度后,正好落在y 轴上,则m =_____. 19.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm20.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是_____.三、解答题21.已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC =BD ;②∠APB =60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,则AC 与BD 间的等量关系为 ,∠APB 的大小为22.如图1,已知ABC 中,1,90,AB BC ABC ==∠=︒把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为,DE 长直角边为DF ),将直角三角板DEE 绕D 点按逆时针方向旋转.(1)在图1中.DE 交AB 于,M DF 交BC 于N .①求证:DM DN =;②在这一过程中,直角三角板DEF 与三角形ABC 的重叠部分为四边形,DMBN 请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积.(2)继续旋转至如图2的位置,延长AB 交DE 于,M 延长BC 交DF 于,N DM DN =是否仍然成立?(请写出结论,不用证明.)(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于,M DM DN =是否仍然成立?(请写出结论,不用证明.)23.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分別是()2,1A -,()1,2B -,()3,3C -(1)将ABC 向上平移4个单位长度得到111A B C △,请画出111A B C △;(2)请画出与ABC 关于y 轴对称的222A B C △;(3)请写出1A 、2A 的坐标.24.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点A 的坐标是(3,1)--.(1)将ABC 关于x 轴对称得到111A B C △,画出111A B C △,并写出点1B 的坐标; (2)把111A B C △平移,使点B 平移到2(3,4)B ,请作出111A B C △平移后的222A B C △,并写出2A 的坐标;(3)已知ABC 中有一点(,)D a b ,求222A B C △中的对应点2D 的坐标.25.如图,在正方形ABCD 中,点E 是AB 边上的一点(与A ,B 两点不重合),将BCE 绕着点C 旋转,使CB 与CD 重合,这时点E 落在点F 处,联结EF .(1)按照题目要求画出图形;(2)若正方形边长为3,1BE =,求AEF 的面积;(3)若正方形边长为m ,BE n =,比较AEF 与CEF △的面积大小,并说明理由. 26.如图,已知ABC 的三个顶点在小方格顶点上(小方格的边长为1个单位长度),按下列要求画出图形和回答问题:(1)在图中画出:ABC 绕点C 按顺时针方向旋转90︒后的图形111A B C △; (2)在图中画出:(1)中的111A B C △关于直线MN 的轴对称的图形222A B C △; (3)在(2)中的222A B C △可以用原ABC 通过怎样的一次运动得到的?请你完整地描述这次运动的过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设A′B′交y轴于T′,利用勾股定理可求出A′B′的长度,再利用三角形面积公式求出OT的长度,最后再利用勾股定理即可求出A′T′的长度,即可求出A′点坐标.【详解】解:如图,设A′B′交y轴于T′.∵A(0,3),B(4,0),∴OA=3,OB=4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′=22OA OB +=2234+=5,∵A OB S ''=12•OA ′•OB ′=12•A ′B ′•OT ′, ∴OT ′=125, ∴A ′T ′=22OA OT '-=221293()55-=, ∴A ′(-95,125). 故选:A .【点睛】 本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.2.B解析:B【分析】根据旋转的性质即可确定点坐标.【详解】解:点绕原点旋转90度的坐标变换规律:横、纵坐标互换位置,且纵坐标变为相反数, 则点(3,1)绕原点O 顺时针旋转90°得到的点的坐标为(1,-3),如图,故选:B .【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°. 3.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A 、是轴对称图形不是中心对称图形,故不符合题意;B 、是轴对称图形不是中心对称图形,故不符合题意;C 、既不是轴对称图形也不是中心对称图形,故符合题意;D 、既是轴对称图形又是中心对称图形,故不符合题意;故选:C .【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;4.C解析:C【分析】连接CE ,由矩形的性质可知90A B C A D C ''''∠=∠=︒,在Rt EB C '中,可证4,2CE CD AB CB BC AD ''======,结合余弦定义解得60ECB '∠=︒,继而由正弦定义解得23B E '=,最后根据阴影面积=扇形DCE 面积Rt EB C '-面积解题.【详解】解:连接CE ,矩形A B CD '''中,90A B C A D C ''''∠=∠=︒在Rt EB C '中,4,2CE CD AB CB BC AD ''======21cos 42B C ECB CE ''∠=== 60ECB '∴∠=︒3sin 60B E CE '∴︒== 23B E '∴=22604160418=22323360236023S B C B E πππ⨯⨯''∴-⋅=-⨯⨯=-阴影, 故选:C .【点睛】本题考查旋转、特殊角的三角函数值、扇形面积等知识,是重要考点,难度较易,掌握相关知识是解题关键.5.A解析:A【分析】根据轴对称图形和中心对称图形的定义即可判断结论;【详解】A是轴对称图形也是中心对称图形,故本项正确;B不是轴对称图形,也不是中心对称图形,故本项错误;C是轴对称图形不是中心对称图形,故本项错误;D不是轴对称图形,是中心对称图形,故本项错误;故选:A.【点睛】本题考查轴对称图形,中心对称图形,熟记相关概念是解题的关键.6.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.7.D解析:D【分析】根据题意画出图形,然后结合直角坐标系即可得出B'的坐标.【详解】解:如图,根据图形可得:点B′坐标为(0,3),故选:D.【点睛】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.8.B解析:B【分析】据中心对称图形的概念,结合图形特征即可求解.【详解】A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项成文;故选:B.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:线段,长方形,正方形是轴对称图形,也是中心对称图形,符合题意;正五角星,等边三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:A.【点睛】考查了中心对称图形与轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.10.D解析:D【分析】由题意可以判断△ADE 为等腰直角三角形,即可解决问题.【详解】解:如图,由旋转变换的性质知:∠EAD=∠CAB ,AE=AD ;∵△ABC 为直角三角形,∴∠CAB=90°,△ADE 为等腰直角三角形,∴∠AED=45°,故选:D .【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.11.D解析:D【分析】根据三角形和中心对称的性质求解,即可得到答案.【详解】∵ABC 和A B C '''关于点O 成中心对称∴ABC A B C '''∠=∠AOB A OB ''∠=∠AB A B ''=OA OA '=OB OB '=∴OA OB '=错误,其他选项正确故选:D .【点睛】本题考查了三角形和中心对称图形的知识;解题的关键是熟练掌握三角形和中心对称图形的性质,从而完成求解.12.B解析:B【分析】根据平移变换的性质解决问题即可.【详解】解:∵AB =6,AE =2,∴BE =AB ﹣AE =6﹣2=4,∴平移的距离为4,故选:B.【点睛】此题考查平移的要素:距离,平移前后对应点所连的线段的长度即为平移的距离.二、填空题13.45º或225º【分析】根据旋转方向与旋转角的度数范围可得当DE ∥BC 时画出两种符合条件的图形分别利用平行线的性质与三角形内角得定理即可求得相应的旋转角的度数【详解】解:此题可分两种情况:如图1:∵解析:45º或225º【分析】根据旋转方向与旋转角的度数范围,可得当DE ∥BC 时,画出两种符合条件的图形,分别利用平行线的性质与三角形内角得定理即可求得相应的旋转角的度数.【详解】解:此题可分两种情况:如图1:∵90DCE ∠=︒,45E ∠=︒,∴45D ∠=︒.∵DE ∥BC ,∴45BCD D ∠=∠=︒.∵90ACB ∠=︒.∴45ACD ACB BCD ∠=∠-∠=︒.即旋转角α的度数为45º.如图2:∵DE ∥BC ,∴45BCE E ∠=∠=︒.∴225?ACD ACB BCE DCE ∠=∠+∠+∠=.即旋转角α的度数为225º.综上所述,旋转角α的度数为45º或225º.故答案为:45º或225º.【点睛】此题考查了旋转角的计算,掌握旋转角的定义并能运用平行线的性质正确求出旋转角的度数是解题的关键.14.25【分析】由旋转的性质可得∠C=∠CAB=AB 由等腰三角形的性质可得∠C=∠CAB ∠B=∠ABB 由三角形的外角性质和三角形内角和定理可求解【详解】解:∵AB=CB ∴∠C=∠CAB ∴∠ABB=∠C+解析:25【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B ,由三角形的外角性质和三角形内角和定理可求解.【详解】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C ,∵∠B+∠C+∠CAB=180°,∴3∠C=180°-105°,∴∠C=25°,∴∠C'=∠C=25°,故答案为:25.【点睛】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.15.【分析】按程序先作y 轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P 变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成解析:(2,2017)--【分析】按程序先作y 轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P 变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】解:完成1次图形变换,点P (2,3)-关于y 轴的对称点(2,3),横坐标2-2=0,纵坐标3-1=2,P 1(0,2),完成2次图形变换,点P 1 (0,2)关于y 轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P 2(-2,1),完成3次图形变换,点P 2(-2,1)关于y 轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P 3(0,0),完成4次图形变换,点P 3(0,0)关于y 轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P 4(-2,-1),……,完成2020次图形变换,点P 2019(0,3-2019)关于y 轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P 2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.16.【分析】过点C 作CH ⊥AB 于H 利用勾股定理求出AB 结合直角三角形的面积即可求出CH 由旋转易得为等腰直角三角形从而得出求出CP 的取值范围即可求出结论【详解】解:过点C 作CH ⊥AB 于H ∵在中∴AB=∵=解析:5PP '≤≤【分析】过点C 作CH ⊥AB 于H ,利用勾股定理求出AB ,结合直角三角形的面积即可求出CH ,由旋转90︒易得PCP '△为等腰直角三角形,从而得出PP '=,求出CP 的取值范围即可求出结论.【详解】解:过点C 作CH ⊥AB 于H ,∵在ABC 中,90,3,4ACB AC BC ∠=︒==∴225AC BC +∵ABC S =12AC·BC=12AB·CH ∴12×3×4=12×5CH 解得CH=125由旋转90︒易得PCP '△为等腰直角三角形, 所以2PP CP '=, ∵P 在线段AB 上移动,故当点P 与点B 重合时,CP 最大值等于CB 等于4;当点P 与点H 重合时,CP 最小值等于CH 等于125, ∴1222425CP ≤≤则122425PP '≤≤ 故答案为:122425PP '≤≤ 【点睛】此题考查的是勾股定理、旋转的性质、等腰直角三角形的性质,掌握勾股定理、旋转的性质、等腰直角三角形的性质是解题关键.17.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O 顺时针旋转90°与直线x =2交于CD 两点则点A (2m )在线段CD 上结合点CD 的纵坐标即可求出m 的取值范围【详解】如图将阴影区域绕着点O 顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O 顺时针旋转90°,与直线x =2交于C ,D 两点,则点A (2,m )在线段CD 上,结合点C,D 的纵坐标,即可求出m 的取值范围.【详解】如图,将阴影区域绕着点O 顺时针旋转90°,与直线x =2交于C ,D 两点,则点A (2,m )在线段CD 上,又∵点D 的纵坐标为﹣2.5,点C 的纵坐标为﹣3,∴m 的取值范围是﹣3≤m ≤﹣2.5,故答案为﹣3≤m ≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.18.-3【详解】点P (m+22m+1)向右平移1个单位长度后正好落在y 轴上则故答案为:-3解析:-3【详解】点P (m+2,2m+1)向右平移1个单位长度后(3,21)m m ++ ,正好落在y 轴上,则30,3m m +==-故答案为:-319.【分析】根据已知条件由勾股定理可得AB=5当时OD 最小由等积法可得代入数据可得即可求出线段最大值【详解】在中∴AB=∵∴OD 最小时最大当时OD 最小即OD 为的高∴即解得:∴线段最大值为:=cm 故答案为 解析:85【分析】根据已知条件由勾股定理可得AB=5,当1B O AB ⊥时,OD 最小,由等积法可得AO OB AB OD =,代入数据可得125OD =,即可求出线段1B D 最大值. 【详解】 在Rt AOB 中,34AO cm BO cm ==,,∴22345+=,∵11B D B O OD =-,14B O BO cm ==,∴OD 最小时,1B D 最大,当1B O AB ⊥时,OD 最小,即OD 为AOB 的高,∴AO OB AB OD =,即345OD ⨯=, 解得:125OD =, ∴线段1B D 最大值为:1245-=85cm , 故答案为:85. 【点睛】 本题主要考查了勾股定理,线段的最值问题,根据图形分析线段取得最值的情况是解题的关键.20.【分析】根据旋转的性质即可得到∠BCQ =120°当DQ ⊥CQ 时DQ 的长最小再根据勾股定理即可得到DQ 的最小值【详解】解:如图由旋转可得∠ACQ =∠B =60°又∵∠ACB =60°∴∠BCQ =120°∵ 解析:3【分析】根据旋转的性质,即可得到∠BCQ =120°,当DQ ⊥CQ 时,DQ 的长最小,再根据勾股定理,即可得到DQ 的最小值.【详解】解:如图,由旋转可得∠ACQ =∠B =60°,又∵∠ACB =60°,∴∠BCQ =120°,∵点D 是AC 边的中点,∴CD =2,当DQ ⊥CQ 时,DQ 的长最小,此时,∠CDQ =30°,∴CQ =12CD =1, ∴DQ 22213-=,∴DQ 的最小值是3,故答案为3.【点睛】本题主要考查线段最小值问题,关键是利用旋转、等边三角形的性质及勾股定理求解.三、解答题21.(1)①见解析,②见解析;(2)AC =BD ,α【分析】(1)①根据△AOB 和△COD 都是等边三角形,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ;②由△AOC ≌△BOD ,可得∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可;(2)根据∠AOB=∠COD=α,求出∠AOC=∠BOD ,根据SAS 推出△AOC ≌△BOD ,根据全等三角形的性质得出AC=BD ,∠CAO=∠DBO ,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB ,推出∠APB=∠AOB 即可.【详解】证明:(1)①∵△AOB 和△COD 都是等边三角形,∴OA=OB ,OC=OD ,∠AOB =∠COD =60°,∴∠AOC =∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴AC =BD ,∠CAO =∠DBO ,②设AC 与BO 交于E ,∵△AOC ≌△BOD ,∴∠CAO =∠DBO ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB =∠DBO+∠APB ,∴∠APB =∠AOB =60°.(2)AC=BD ,∠APB=α,理由如下:∵∠AOB=∠COD=α,∴∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD ,∴AC=BD ,∠CAO=∠DBO ,设AC 与BO 交于E ,∵∠AEO=∠BEP ,∴∠CAO+∠AOB=∠DBO+∠APB ,∴∠APB=∠AOB=α,故答案为AC=BD ,α.【点睛】本题考查三角形旋转,三角形全等判定与性质,三角形内角和,掌握三角形旋转,三角形全等判定与性质,三角形内角和是解题关键.22.(1)①见解析;②不变,14;(2)成立;(3)成立 【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)成立.同样利用(1)中的证明方法可以证出△DMB ≌△DNC ;(3)结论仍然成立,方法同(1).【详解】解:()1①如图,连接DB ,在Rt ABC ∆中,,,AB BC AD DC ==45,90,45A C BDC ABD CBD ∴∠=∠=︒∠=︒∠=∠=︒45,ABD C ∴∠=∠=︒,DB DC AD ∴==90,MDB BDN CDN BDN ∠+∠=∠+∠=,MDB NDC ∴∠=∠,BMD CND ∴∆≅∆DM DN ∴=;②四边形DMBN 的面积不发生变化;由①知,,BMD CND ∆≅∆BMD CND S S ∆∴∆=DBN DMB DBN DNC DMBN S S S S S ∆∆∆∆∴=+=+四边形 1111112224DBC ABC S S ∆∆===⨯⨯⨯= ()2DM = DN 仍然成立.理由如下:连接BD 由(1)知BD ⊥AC ,BD= CD ,∴∠ABD=∠ACB = 45°,∴∠ABD+∠MBD= 180°,∠ACB+∠NCD= 180°,∴∠MBD=∠NCD ,∵BD ⊥AC ,∴∠MDB +∠MDC = 90° ,又∠NDC +∠MDC = 90°,∴∠MDB=∠NDC ,在△MDB 和△NDC 中,∵∠MBD=∠NCD ,BD= CD ,∠MDB= ∠NDC.∴△MDB ≌△NDC (ASA)∴DM = DN ,()3DM = DN 成立,理由如下:连接BD ,由(1) 知BD ⊥AC ,BD= AD ,∴∠BAD=∠ABD = 45°,∴∠MBD=∠NCD= 45°,∵BD ⊥AC ,∴∠MDB +∠NDB = 90° ,又∠NDC +∠NDB = 90°,∴∠MDB=∠NDC ,在△MDB 和△NDC 中∵∠MBD=∠NCD ,BD= CD ,∠MDB= ∠NDC.∴△MDB ≌△NCD (ASA),∴DM = DN .【点睛】本题考查了利用ASA 求三角形全等,还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理,勾股定理和面积公式的利用等知识.23.(1)见解析;(2)见解析;(3)1(2,3)A ,2(2,1)--A .【分析】(1)根据平移的性质先作出三角形三个顶点,然后连线作图;(2)根据轴对称的性质,先做出三角形三个顶点关于x 轴的对称点,然后连线作图; (3)根据图形写出相应的点的坐标【详解】解:(1)如图所示:111A B C △,即为所求:(2)如图所示:222A B C △,即为所求:(3)1(2,3)A ,2(2,1)--A .【点睛】本题考查平移及轴对称作图,认真审题,正确作出图形对应的顶点是解题关键. 24.(1)图见解析,点B 1的坐标为(-2,4);(2)图见解析,A 2的坐标为(2,1);(3)D 2的坐标为(a+5,-b ).【分析】(1)分别作出点A 、B 、C 关于x 轴对称得到的对应点,再顺次连接可得;(2)根据B 1(-2,4)和2(3,4)B ,可得平移方式为向右平移5个单位,分别作出△A 1B 1C 1向右平移5个单位所得对应点,再顺次连接可得;(3)根据图形的变换方式即可得出D 点的变换方式,从而可得点2D 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,点B 1的坐标为(-2,4);(2)如图所示,△A 2B 2C 2即为所求,A 2的坐标为(2,1);(3)△A 2B 2C 2中的对应点D 2的坐标为(a+5,-b ).【点睛】本题考查坐标与图形变换—轴对称和平移.理解点的变换和对应图形变换的关系是解题关键.25.(1)见解析;(2)4;(3)CEF AEF S S >△△,见解析【分析】(1)根据题意去旋转BCE ,画出图象;(2)由旋转的性质得1DF BE ==,求出AE 和AF 的长,即可求出AEF 的面积; (3)用(2)的方法表示出AEF 的面积,再用四边形AECF 的面积减去AEF 的面积得到CEF △的面积,比较它们的大小.【详解】(1)如图所示:(2)根据旋转的性质得1DF BE ==,∴312AE =-=,314AF =+=, ∴142AEF S AE AF ∆=⨯⨯=; (3)根据旋转的性质得DF BE n ==, 221111()()2222AEF AE AF m S n m n m n =⨯⨯=-+=-△, ∵CBE CDF S S =△△,∴AECF ABCD S S =四边形四边形, ∴2222211112222CEF AEF AECF S S S m m n m n ⎛⎫=-=⎪⎝--=+⎭四边形△△, ∵0n >, ∴222211112222m n m n +>-, ∴CEF AEF S S >△△.【点睛】本题考查旋转的性质,解题的关键是掌握图形旋转的性质,以及利用割补法求三角形面积的方法.26.(1)图见解析;(2)图见解析;(3)将ABC 沿着BC 翻折一次可得到222A B C △.【分析】(1)先根据旋转的定义画出点111,,A B C ,再顺次连接即可得;(2)先根据轴对称的定义画出点222,,A B C ,再顺次连接即可得; (3)先根据旋转和轴对称的性质可得1122A B B A A B ==,1122AC C C A A ==,BC 与22B C 重合,再根据翻折的定义即可得.【详解】(1)先根据旋转的定义画出点111,,A B C ,再顺次连接即可得111A B C △,如图所示: (2)先根据轴对称的定义画出点222,,A B C ,再顺次连接即可得222A B C △,如图所示: (3)由旋转和轴对称的性质得:1122A B B A A B ==,1122AC C C A A ==,BC 与22B C 重合,则将ABC 沿着BC 翻折一次即可得到222A B C △.【点睛】本题考查了画旋转图形、画轴对称图形、图形的翻折,熟练掌握图形的运动是解题关键.。

初二数学下第三单元测试卷

初二数学下第三单元测试卷

初二数学下第三单元测试卷一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.1415B. 2.718C. πD. 0.333332. 如果一个三角形的三边长分别为a、b、c,且满足a + b > c,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 1或-14. 以下哪个表达式是同类二次根式?A. √2 和2√2B. √3 和3√2C. √4 和2√2D. √5 和2√55. 一个数的立方根是它本身,这个数可以是:A. 1B. -1C. 0D. 1, -1, 0二、填空题(每题2分,共10分)6. 圆的周长公式是 C = __________。

7. 如果一个数的平方是25,那么这个数是 __________。

8. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是__________。

9. 一个数的立方是-8,这个数是 __________。

10. 一个数的绝对值是5,这个数可以是 __________。

三、计算题(每题5分,共20分)11. 计算下列各数的平方根:√16,√0.25。

12. 计算下列各数的立方根:∛-27,∛8。

13. 计算下列各数的绝对值:|-5|,|-(-3)|。

14. 计算下列各数的乘方:2³,(-3)⁴。

四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是2米、3米和4米,求它的体积。

16. 一个直角三角形的两条直角边分别为6厘米和8厘米,求它的斜边长度。

17. 一个圆的半径是7厘米,求它的周长和面积。

五、应用题(每题15分,共30分)18. 某工厂需要制作一个长方体的水箱,已知水箱的底面积为24平方米,高为3米,问这个水箱最多能装多少水?19. 某学校计划在操场上画一个半径为10米的圆作为跳远的起跳区,如果每平方米需要用2千克的油漆,那么需要多少千克的油漆来画这个圆?六、附加题(10分)20. 一个数的平方加上这个数的立方等于100,求这个数。

八年级数学下第三章单元测试题及答案

八年级数学下第三章单元测试题及答案

第三章图形的平移与旋转单元测试卷(自我综合评价)一、选择题:(每小题3分,共36分)1、在下列四个汽车标志图案中,是中心对称图形的是()2.把点A(-2,1)向上平移2个单位长度,再向下平移3个单位长度后得到点B,点B的坐标为()A、(-5,3)B、(1,3)C、(1,-3)D、(-5,-1)3、下列说法错误的是()A、平移不改变图形的形状、大小和位置B、旋转不改变图形的形状和大小,只改变图形的位置C、一个图形和它经过旋转后所得的图形中,对应点到旋转中心的距离相等D、成中心对称的两个图形中,对应点连线的中点是对称中心4、如右上图,将△ABC向右平移后得到△DEF,BE=3cm,EF=7cm.,则CF 的长为()A、3cmB、4cmC、7 cmD、10cm5、下列图形中,绕某个点旋转180°能与自身重合的图形有()①正方形②等边三角形③长方形④角⑤平行四边形⑥圆A、2个B、3个C、4个D、5个6、如右图,ΔABC和ΔADE均为正三角形,则图中可看作是旋转关系的三角形是( )A、ΔABC和ΔADEB、ΔABC和ΔABDC、ΔABD和ΔACED、ΔACE和ΔADE7、把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3) B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)8.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位9、如图,△AOB绕点O逆时针旋转60°到△COD的位置,若∠AOB=40°,OB=4,则下列结论中错误的是()A、∠AOC=60°B、∠AOD=20°C、BD=4D、AC=410、如图,已知直角坐标系中的点A、B的坐标分别为A(2,4)、B(4,0),且P为AB的中点.若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标是()A.(3,2) B.(6,2) C.(6,4) D.(3,5)11、如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,将△BCE绕正方形的中心O按顺时针方向旋转到△CDF的位置,则旋转角是() A、45°B、60°C、90°D、120°题9 题10 题11 12、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3 C.4 D.5二、填空题(每小题3分,共12分)13、点(3,﹣2)先向右平移2个单位,再向上平移4个单位,所得的点关于以y轴为对称点的坐标为14、将点M(3a-9,1+a)向左平移3个单位后落在y轴上,则a=________15、在平面直角坐标系内,点P(2,-3)关于原点对称的点P`的坐标为_______16、(2014江西中考)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位长度后,得到△A`B`C`,连接A`C,则△A`B`C的周长为__________三、解答题:(共52分)17、(6分)如图在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90º后的图形△A¹B¹C¹18、(9分)如图,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E,旋转后能与重合。

初二八年级数学下册:第三单元检测卷

初二八年级数学下册:第三单元检测卷

第三单元检测卷时间:120分钟一、积累运用(28分)1.下列加点字注音完全正确的一项是()(2分)A.俨.然(yǎn)溯.洄(shù)器皿.(mǐn)豁.然开朗(huò)B.垂髫.(tiáo) 佁.然(yǐ) 箬.篷(ruò) 袒.胸露乳(tǎn)C.窈窕.(tiǎo) 阡.陌(xiān) 参差.(cī) 辗.转反侧(zhǎn)D.俶.尔(chù) 好逑.(qiú) 篆.章(zhuàn) 落英缤.纷(bīng)2.下列加点词语解释有误的一项是()(2分)A.欣然规.往(规:打算,计划)B.心乐.之(乐:以……为乐)C.神情与苏、黄不属.(属:属于)D.溯洄..从之(溯洄:逆流而上)3.下列各组句子中,加点词语意思相同的一项是()(2分)A.才.通人/卿今者才.略B.明灭可.见/不可.久居C.便扶.向路/济困扶.危D.乃记.之而去/桃花源记.4.下列各句朗读节奏划分有误的一项是()(2分)A.忽逢/桃花林,夹岸/数百步B.其岸/势犬牙差互C.盖/简桃核/修狭者/为之D.蒹葭/苍苍,白露/为霜5.下列文学常识表述有误的一项是()(2分)A.《桃花源记》选自《陶渊明集》。

陶渊明,又名潜,字元亮,号五柳先生,是我国文学史上第一位田园诗人。

B.“唐宋八大家”,即唐代的韩愈、柳宗元、欧阳修和宋代的苏轼、苏洵、苏辙、王安石、曾巩。

C.“记”是古代的一种文体,可以记叙描写,也可以抒情议论,并通过记事、记物、记人、写景来抒发作者的感情或见解。

D.《诗经》是我国最早的一部诗歌总集,收录了从西周初年至春秋中叶五百多年的诗歌305篇,又称《诗三百》。

6.古诗文默写。

(每空1分,共6分)(1)青青子衿,____________。

(2)海内存知己,______________。

(3)《桃花源记》中描写桃花源社会环境安定和平的语句是:______________,______________。

新人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(答案解析)

新人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(答案解析)

一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .243.如图,已知正方形ABCD 的边长为4,点Р是对角线BD 上一动点(不与D ,B 重合),PF CD ⊥于点F ,PE BC ⊥于点E ,连接AP ,EF .则下列结论错误的是( )A .2PD EC =B .AP EF =,且AP EF ⊥C .四边形PECF 的周长是8D .12BD EF AB ≤< 4.顺次连接菱形四边中点得到的四边形一定是( )A .矩形B .平行四边形C .菱形D .正方形 5.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个6.如图,在正方形 ABCD 内有一个四边形AECF ,AE EF ⊥, CF EF ⊥且8AE CF ==,12EF =,则图中阴影分的面积为( )A .100B .104C .152D .3047.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG 的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =( )A .2B .2C .3D .58.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .249.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .102D .32210.如图所示,已知Rt ABC 中,90B ︒∠=,3AB =,4BC =,D F 、分别为AB AC 、的中点,E 是BC 上动点,则DEF 周长的最小值为( )A .240+B .213+C .13D .611.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+ 12.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC 3D 3二、填空题13.如图,Rt ABC △中,90,5∠=︒=B AB ,D 为AC 的中点, 6.5=BD ,则BC 的长为__________.14.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________.15.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.16.已知Rt ABC ,90C ∠=︒,4cm AC =,3cm BC =,若PAB △与ABC 全等,PC ________.17.如图在矩形ABCD 中,对角线,AC BD 相交于点O ,若30,2ACB AB ︒∠==,则BD 的长为_______.18.如图,正方形ABCD 中,点E ,F 分别在BC 和AB 上,BE=2,AF=2,BF=4,将△BEF 绕点E 顺时针旋转,得到△GEH ,当点H 落在CD 边上时,F ,H 两点之间的距离为______.19.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.20.如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的周长记作C 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的周长记作C 2.照此规律作下去,则C 2020=__.参考答案三、解答题21.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.22.已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分BCD ∠、CF 平分GCD ∠,//EF BC 交CD 于点O .(1)求证:OE OF =;(2)若点O 为CD 的中点,求证:四边形DECF 是矩形.23.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?24.已知点()0,6B ,点C 为x 轴正半轴上一动点,连接BC ,分别以OC 和BC 为边长作等边ODC △和EBC ,连接DE .(1)如图(a ),当D 点在OBC 内部时,求证:BO DE =;(2)如图(b ),当D 点在OBC 外部时,上述结论是否还成立?请说明理由.(3)当D 点恰好落在EBC 的边上时,利用图(c )探究分析后,直接写出ODC △的高的长度为______.25.如图,点E 在正方形ABCD 的边AB 上,点F 在边BC 的延长线上,且90EDF ∠=︒.求证:DE DF =.26.已知:如图,在ABCD 中,延长DC 至点E ,使得DC CE =,连接AE ,交边BC 于点F .连接AC ,BE .(1)求证:四边形ABEC 是平行四边形.(2)若2AFC D ∠=∠,求证:四边形ABEC 是矩形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分∠ABC 时,四边形DBFE 是菱形,理由:∵DE ∥BC ,∴∠DEB=∠EBC ,∵∠EBC=∠EBD ,∴∠EBD=∠DEB ,∴BD=DE ,∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 是平行四边形,∵BD=DE ,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选:D .【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.2.C解析:C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.3.A解析:A【分析】由三个直角的四边形是矩形,由此判断四边形PECF 是矩形,得到EC PF =,再结合正方形的性质,解得PD =,由此判断A ;过点P 作PN AB ⊥垂足为N ,过P 作//PM EF 交DC 于点M ,连接AM ,由角平分线的性质得到PN PE =,继而结合勾股定理证明AP EF =、证明四边形PEFM 是平行四边形,即可得到EF PM AP ==,设BE x =,结合勾股定理证明222PM A M P A +=,即可判断B ;根据等腰直角三角形的性质计算四边形PECF 的周长即可判断C ;设BE x =,由勾股定理解得EF 的长,再结合04x ≤≤,解得EF 与BD AB 、的数量关系即可判断D .【详解】解:A. ,PE BC PF CD ⊥⊥90PEC PFC ∴∠=∠=︒90C ∠=︒∴四边形PECF 是矩形EC PF ∴=正方形ABCD 中45PDF ∠=︒PD ∴==故A 错误;B.过点P 作PN AB ⊥垂足为N ,过P 作//PM EF 交DC 于点M ,连接AM ,BD 平分ABC ∠,PN AB ⊥,PE BC ⊥PN PE ∴=222222,AP AN PN EF EC PE =+=+且,AN EC PN PE ==AP EF ∴=//,//PM EF PE CD∴四边形PEFM 是平行四边形EF PM AP ∴==设BE x =,则,42PE FC MF x DM x ====-,4EC PF x ==-22(4)AP EF PM x x ===+-222216(42)AD MD AM x +==+-222AP PM AM +=AP PM ∴⊥AP EF ∴⊥故B 正确;C. BPE 为等腰直角三角形PE BE ∴=4PE PF BE EC BC ∴+=+==故四边形PECF 的周长为2()8PE PF +=, 故C 正确;D.设BE x =EF ∴=2222(4)28+16=2(2)4x x x x x +-=--+04x ≤≤42EF ∴≥12EF BD ∴≥ 4EF <EF AB ∴<12BD EF AB ∴≤< 故D 正确,故选:A .【点睛】本题考查四边形的综合题,涉及勾股定理、矩形的判定与性质、正方形的判定与性质、平行四边形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键. 4.A解析:A【分析】画出图形,根据菱形的性质得到AC ⊥BD ,根据三角形中位线定理、矩形的判定定理证明结论.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,∵E ,F ,G ,H 是菱形各边的中点,∴EF ∥BD ,FG ∥AC ,∴EF ⊥FG ,同理:FG ⊥HG ,GH ⊥EH ,HE ⊥EF ,∴四边形EFGH 是矩形.故选:A .【点睛】本题考查的是中点四边形,掌握菱形的性质定理、矩形的判定定理以及三角形的中位线定理是解题的关键.5.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 6.B解析:B【分析】由题意可证四边形AECF 是平行四边形,可得AO =CO ,EO =FO =12EF =6,由勾股定理可求AO =10,可得AC =20,由阴影分的面积=S 正方形ABCD -S ▱AECF 可求解.【详解】解:连接AC ,∵AE ⊥EF ,CF ⊥EF ,∴AE ∥CF ,且AE =CF ,∴四边形AECF 是平行四边形,∴AO =CO ,EO =FO =12EF =6, ∴AO 22AE EO +10,∴AC =20, ∴阴影分的面积=S 正方形ABCD -S ▱AECF =20202⨯-8×12=104, 故选:B .【点睛】本题考查了正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.7.A解析:A【分析】延长GE 交AB 于点R ,连接AE ,设AG 交DE 于点M ,过点E 作EN ⊥AG 于N ,先计算出RG=6,∠ARG=90︒,AR=2,根据勾股定理求出210AG =,得到HG=10,利用1122AEG S EG AR AG EN =⋅⋅=⋅⋅,求出210EN =,即可利用勾股定理求出NG 、EH .【详解】如图,延长GE 交AB 于点R ,连接AE ,设AG 交DE 于点M ,过点E 作EN ⊥AG 于N , ∵矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,∴RG=BF=BC+CF=2+4=6,∠ARG=90︒,AR=AR-CE=4-2=2,∴222222061AG AR RG =+==+,∵H 是AG 中点,∴HG=10,∵1122AEG S EG AR AG EN =⋅⋅=⋅⋅, ∴21204EN ⨯=,∴210EN =, 在Rt △ENG 中,22610EG EN NG =-= , ∴105NH NG HG =-=, ∴222NH EH EN +==,故选:A .【点睛】此题考查矩形的性质,勾股定理,线段中点的性质,三角形面积法求线段长度,熟记矩形的性质及熟练运用勾股定理是解题的关键.8.C解析:C【分析】根据角平分线的性质以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出平行四边形ABCD的周长.【详解】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵在平行四边形ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在平行四边形ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴平行四边形ABCD的周长=6+6+4+4=20.故选:C.【点睛】本题考查了平行四边形的性质,角平分线的性质,准确识图并熟练掌握性质是解题的关键.9.C解析:C【分析】连接CE,由矩形的性质和角平分线的性质可得AB=AE=3,可得ED=1,由勾股定理可求CE 的长,由三角形中位线定理可求FG的长;【详解】连接CE,如图所示:∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠D=90°,AB=CD=3,AD=BC=4,AD∥BC,∴∠CBE=∠AEB,∵BE 平分∠ABC.∴∠ABE=∠CBE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=3,∴ED=AD-AE=4-3=1,在Rt △CDE 中 EC=22221310DE CD +=+=∵点F 、G 分别为BC 、BE 的中点, ∴FG 是△CBE 的中位线,FG=12CE=102 故选:C【点睛】本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出EC 的长度是解题的关键. 10.B解析:B【分析】先根据三角形的中位线定理可求得DF 的长为2,然后作出点F 关于BC 的对称点F′,连接DF′交BC 于点E ,此时DEF 周长的最小,由轴对称图形的性质可知EF=EF′,从而可得到ED+EF=DF′,再证明四边形DBMF 为矩形,得出FF′=3,然后在Rt △DFF′中,由勾股定理可求得DF′的长度,从而可求得三角形DEF 周长的最小值.【详解】解:如图,作点F 关于BC 的对称点F′,连接DF′交BC 于点E .此时DE+EF 最小∵点D 、F 分别是AB 和AC 的中点,BC=4,3AB =,∴DF=12BC=2,DF//BC ,BD=1.5, ∵点F 与点F′关于BC 对称,∴EF=EF′,FF′⊥BC ,FM= F′M , ∴DE+EF 最小值为DE+ EF′=DF′,90DFF ∠'=︒,∵DF//BC ,90B ∠=︒,∴90B BDF FMB ∠=∠=∠=︒,∴四边形DBMF 为矩形,∴BD=FM=1.5,∴FF′=3,在Rt △DFF′中,DF =='∴△DEF 周长的最小值故选:B【点睛】本题主要考查的是轴对称路径最短问题,以及勾股定理,矩形的判定,作出点F 关于BC 的对称点,将DE+EF 转化为DF′的长是解题的关键.11.D解析:D【分析】只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE最小=,BEF ∴∆的周长最小值为4+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.12.D解析:D【分析】首先证明△OBC 是等边三角形,在Rt △EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∴OB=OC ,∠BCD=90°,由翻折不变性可知:BC=BO ,∴BC=OB=OC ,∴△OBC 是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:33, 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC 是等边三角形. 二、填空题13.12【分析】根据直角三角形斜边上的中线等于斜边的一半可求出再根据勾股定理求解即可【详解】解:∵D 为的中点∴∴故答案是:12【点睛】考查了勾股定理和直角三角形斜边上的中线熟悉相关性质是解题的关键解析:12.【分析】根据直角三角形斜边上的中线等于斜边的一半,可求出AC ,再根据勾股定理求解即可.【详解】解:∵90B ∠=︒,D 为AC 的中点, 6.5=BD∴22 6.513AC BD ==⨯=, ∴222212135BC AC AB ===--,故答案是:12.【点睛】考查了勾股定理和直角三角形斜边上的中线,熟悉相关性质是解题的关键.14.60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB 再以E 为圆心EA 为半径作圆与正方形的交点即为满足条件的P 点分类讨论即可【详解】如图所示在正方形ABCD 中∠AEB=105°∵点P 在正解析:60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB ,再以E 为圆心,EA 为半径作圆,与正方形的交点即为满足条件的P 点,分类讨论即可.【详解】如图所示,在正方形ABCD 中,∠AEB=105°,∵点P 在正方形的边上,且AE=EP ,∴可以E 为圆心,EA 为半径作圆,与正方形的交点即为满足条件的P 点,①当P 在AD 上时,如图,AE=EP 1,∵∠EBA=45°,∴∠EAB=180°-45°-105°=30°,∠EAP 1=60°,△EAP 1为等边三角形,∴此时∠AEP 1=60°;②当P 在CD 上时,如图,AE=EP 2,AE=EP 3,由①可知∠DEP 1=180°-105°-60°=15°,∴此时∠DEP 1=∠DEP 2=15°,∠CEP 2=∠AEP 1=60°,∴此时∠AEP 2=60°+15°+15°=90°;∠AEP 3=2∠AED=2×(180°-105°)=150°,故答案为:60°或90°或150°.【点睛】本题考查正方形的性质以及等腰三角形的判定,熟练运用尺规作图的方式进行等腰三角形的确定是解题关键.15.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.16.5cm 或cm 或cm 【分析】利用勾股定理列式求出AB 然后分①点P 与点C 在AB 的两侧时AP 与BC 是对应边时四边形ACBP 是矩形然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时根据对称性可知AB ⊥P解析:5cm 或245cm 或75cm . 【分析】利用勾股定理列式求出AB ,然后分①点P 与点C 在AB 的两侧时,AP 与BC 是对应边时,四边形ACBP 是矩形,然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时,根据对称性可知AB ⊥PC ,再利用三角形的面积列式计算即可得解;②点P 与点C 在AB 的同侧时,利用勾股定理求出BD ,再根据PC=AB-2BD 计算即可得解.【详解】解:在Rt ABC 中,90C ∠=︒,4cm AC =,3cm BC =,由勾股定理得,5AB cm ===,如图,①点P 与点C 在AB 的两侧时,若AP 与BC 是对应边,则四边形ACBP 1是矩形, ∴P 1C=AB=5cm ,若AP 与AC 是对应边,则△ABC 和△ABP 关于直线AB 对称,∴AB ⊥PC设AB 与P 2C 相交于点D ,则S △ABC =12×5•CD=12×3×4, 解得CD=125, ∴P 2C=2CD=2×125=245, ②点P 3与点C 在AB 的同侧时,由勾股定理得,22221293()55BD BC CD =-=-=, 过点P 3作P 3E ⊥AB ,垂足E ,连接P 3C ,如图,则有12×5•P 3E=12×3×4, ∴P 3E=125∴P 3E=CD 又P 3E ⊥AB ,CD ⊥AB ,∴P 3E//CD ,∴四边形P 3CDE 是平行四边形,又∠CDE=90°∴四边形P 3CDE 是矩形,∴P 3C=DE∵3P AB △≌ABC∴P 3A=BC ,∠P 3AB=∠CBA又∠P 3EA=∠CDB=90°∴△P 3AE ≌△CBD∴AE=BD∴P 3C=AB-2BD=5-2×95=75, 综上所述,PC 的长为5cm 或245cm 或75cm . 故答案为:5cm 或245cm 或75cm . 【点睛】 本题考查了全等三角形的对应边相等的性质,勾股定理,轴对称性,难点在于分情况讨论,作出图形更形象直观.17.4【分析】根据30度所对的直角边等于斜边的一半求出AC=4利用矩形的性质得到BD=AC=4即可【详解】在矩形中∵四边形是矩形故答案为:4【点睛】此题考查矩形的性质直角三角形30度角的性质熟记各性质是解析:4【分析】根据30度所对的直角边等于斜边的一半求出AC=4,利用矩形的性质得到BD=AC=4即可.【详解】在矩形ABCD 中,90ABC ︒∠=,30,2ACB AB ︒∠==,2224AC AB ∴==⨯=,∵四边形ABCD 是矩形,4BD AC ∴==.故答案为:4.【点睛】此题考查矩形的性质,直角三角形30度角的性质,熟记各性质是解题的关键. 18.【分析】根据旋转的可证明△BEF ≌△CHE 作FM ⊥CD 于M 分别求出FMMH 的长利用勾股定理即可求解【详解】∵将△BEF 绕点E 顺时针旋转得到△GEH 点H 落在CD 边上∵BE=2AF=2BF=4∴GH=B解析:【分析】根据旋转的可证明△BEF ≌△CHE ,作FM ⊥CD 于M ,分别求出FM,MH 的长,利用勾股定理即可求解.【详解】∵将△BEF 绕点E 顺时针旋转,得到△GEH ,点H 落在CD 边上,∵BE=2,AF=2,BF=4∴GH=BF=EC=4,=∴在Rt △HEC 中,2=∴BE=CH又∵∠B=∠C=90°,BF=CE=4∴△BEF ≌△CHE作FM ⊥CD 于M ,故四边形AFMD 是矩形,∴DM=AF=2,MH=CM-CH=2,FM=AD=6∴FH=2226210+=故答案为:210.【点睛】此题主要考查正方形的性质与全等三角形的判定与性质,解题的关键是熟知勾股定理、正方形的性质、矩形的性质及全等三角形的判定定理.19.8【分析】过C 作于点F 根据正方形的性质找出对应相等的边和角求证出得到即可求三角形的面积【详解】如图所示过C 作于点F 四边形ABCD 是正方形又又在和中故答案为8【点睛】此题考查了正方形的性质和三角形全等 解析:8【分析】过C 作CF l ⊥于点F ,根据正方形的性质找出对应相等的边和角,求证出ABE BCF ≅得到 4CF BE ==即可求三角形的面积.【详解】如图所示,过C 作CF l ⊥于点F ,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,又AE BE ⊥,CF BF ⊥,90AEB BFC ∴∠=∠=︒,又18090ABE CBF ABC ∠+∠=︒-∠=︒,18090ABE BAE AEB ∠+∠=︒-∠=︒,CBF BAE ∴∠=∠,∴在ABE △和BCF △中, AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE BCF ∴≅,4CF BE ∴==,12BCE S BE CF ∴=⨯⨯1442=⨯⨯8=, 故答案为8.【点睛】此题考查了正方形的性质和三角形全等的判定,以及三角形面积的公式,难度一般. 20.【分析】先计算出C1C2的长进而得到规律最后求出C2020的长即可【详解】解:∵E 是BC 的中点ED ∥AB ∴DE 是△ABC 的中位线∴DE =AB =AD =AC =∵EF ∥AC ∴四边形EDAF 是菱形∴C1=4 解析:201812【分析】先计算出C 1、C 2的长,进而得到规律,最后求出C 2020的长即可.【详解】解:∵E 是BC 的中点,ED ∥AB ,∴DE 是△ABC 的中位线,∴DE =12AB =12,AD =12AC =12, ∵EF ∥AC ,∴四边形EDAF 是菱形,∴C 1=4×12, 同理C 2=4×12×12=4×212, …C n =4×12n, ∴20202020201811422C =⨯=.故答案为:201812.【点睛】 本题考查了中位线的性质,菱形的判定与性质,根据题意得到规律是解题关键.三、解答题21.(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.22.(1)见解析;(2)见解析【分析】(1)由角平分线的定义及平行线的性质可证得DCE FEC ∠=∠,EFC DCF ∠=∠,得OE OC =,OF OC =,即可得出结论;(2)先证得四边形DECF 是平行四边形,再利用角平分线的定义可求得90ECF ∠=︒,则可证得四边形DECF 为矩形.【详解】证明:(1)∵CE 平分BCD ∠、CF 平分GCD ∠∴BCE DCE ∠=∠,DCF GCF ∠=∠∵EF ∥BC ,∴BCE FEC ∠=∠,EFC GCF ∠=∠∴DCE FEC ∠=∠,EFC DCF ∠=∠∴OE OC =,OF OC =,∴OE OF =.(2)∵点O 为CD 的中点,∴OD OC =,又OE OF =,∴四边形DECF 是平行四边形∵CE 平分BCD ∠、CF 平分GCD ∠, ∴12DCE BCD ∠=∠,12DCF DCG ∠=∠ ∴()11=9022DCE DCF BCD DCG BCG ∠+∠=∠+∠∠=︒ ∵DCE DCF ECF ∠+∠=∠, ∴90ECF ∠=︒∵四边形DECF 是平行四边形,∴平行四边形DECF 是矩形.【点睛】本题主要考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定以及平行线的性质等知识,掌握相关性质定理正确推理论证是解题关键.23.(1)t =2;(2)t =3或65t =. 【分析】(1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米).∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒),当∠APQ=90°时,有∠AQP=30°,即AQ=2AP,∴6-t=2·2t,解得6 5t=(秒),∴当t=3或65t=时,△PAQ是直角三角形.【定睛】本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.24.(1)证明见解析;(2)还成立,理由见解析;(3)3或9.【分析】(1)利用“SAS”证明BCO ECD≅△△即可解答;(2)同(1)利用“SAS”证明BCO ECD≅△△即可解答;(3)分当D点恰好落在EBC的边BC上或边BE上两种情况讨论,利用全等三角形的性质以及三角形中位线或含30度角的直角三角形的性质求解即可.【详解】证明:(1)在等边ODC△与等边EBC中,CO CD=,CB CE=,60OCD BCE∠=∠=︒,∴OCD DCB DCB BCE∠+∠=∠+∠,即OCB DCE∠=∠,在BCO与ECD中,CO CDOCB DCEBC EC=⎧⎪∠=∠⎨⎪=⎩,∴()BCO ECD SAS≅△△,∴BO DE=;(2)还成立.理由:连接DE,与(1)同理,CO CD =,CB CE =,60OCD BCE ∠=∠=︒,∴OCD DCB BCE DCB ∠-∠=∠-∠,即OCB DCE ∠=∠,在BCO 与ECD 中,CO CD OCB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴()BCO ECD SAS ≌△△, ∴BO DE =;(3)当D 点恰好落在EBC 的边BC 上时,如图,作DG ⊥OC 于G ,由(2)知BCO ECD ≌△△,∴∠EDC=∠BOC=90︒,∵△EBC 是等边三角形,∴D 点恰好是边BC 的中点,∵DG ⊥OC ,∴DG 是△BOC 的中位线,∴DG=12BO=3; 当D 点恰好落在EBC 的边BE 上时,如图,作DF ⊥OC 于F ,由(2)知BCO ECD ≌△△,∴∠EDC=∠BOC=90︒,∠ECD=∠BCO ,∵△EBC 是等边三角形,∴D 点恰好是边BE 的中点,∴∠ECD=∠BCD=∠BCO=30︒,∴BC=2BO=12,∴2263BC BO -=∵△DOC 是等边三角形,∴DC=OC=3,FC=OF=33∴229DC CF -=,综上,ODC △的高的长度为3或9.故答案为:3或9.【点睛】本题是三角形综合题,考查了坐标与图形的性质、全等三角形的判定和性质、等边三角形的性质、直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题. 25.见解析【分析】利用ASA 证明△ADE ≌△CDF 即可得到结论.【详解】 证明:四边形ABCD 是正方形, AD CD ∴=,90A DCF ADC ∠=∠=∠=︒,又90EDF ∠=︒,ADC EDC EDF EDC ∴∠-∠=∠-∠.ADE CDF .在ADE 与CDF 中,ADE CDF AD CDA DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADE CDF ASA ∴△≌△.DE DF ∴=.【点睛】此题考查全等三角形的判定及性质,正方形的性质,熟记正方形的性质是解题的关键. 26.(1)见解析;(2)见解析【分析】(1)根据题意可得到//AB CE ,从而再证明AB CE =即可得出结论;(2)结合(1)的结论可以得到//BC AD ,BCE D ∠=∠,再根据2AFC D ∠=∠推出FEC FCE ∠=∠,从而得到FC FE =即可得出结论.【详解】(1)∵四边形ABCD 是平行四边形,∴//AB CD ,AB CD =,即//AB CE ,∵DC CE =,∴AB CE =,∴四边形ABEC 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴//BC AD ,BCE D ∠=∠,∵四边形ABEC 是平行四边形,又∵AFC FEC BCE ∠=∠+∠,∴当2AFC D ∠=∠时,则有FEC FCE ∠=∠,∴FC FE =,AE BC =,∴四边形ABEC 是矩形.【点睛】本题考查平行四边形的性质与判定,矩形的判定,熟练掌握基本的性质定理以及判定方法是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学-第三单元测试卷
姓名 学号
一、填空题 (每空3分,共36分)
1.数据93 68 95 85 71 61 78 94的极差是 。

2.数据分组后,各组的频率之和等于 。

3.已知一组数据的频数是5,数据总数为20个,则这组数据的频率是 。

4.从某服装厂即将出售的一批休闲装中抽检80件,其中不合格的休闲装有6 件,则抽检中合格的频率是 。

5.一个样本,分组后落在第二组的频数是12,频率是0.24,则这个样本的容量是 。

6.某商店2009年2月三种不同品牌钢笔的售出量如右表:
B 品牌钢笔的的频数是 ,它的实际意义是 。

7.已知一个样本含20个,68,69,70,66,68,65,64,65,69,62,67,63,65,64,61,65,66.在列频数分布表时,如果取组距为2,那么应分成 组,64.5-66.5这一小组的频数为 ,其频率为 . 8.为了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图,已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为 ,参加这次测试的学生是 人.
二、选择题(每题3分,共24分)
9.( )将数据分组后落在各小组内的数据的个数叫做
A .众数
B .中位数
C .频数
D .频率
10.( )对某班学生睡眠时间进行调查后,将所得的数据分成5组,第一组的频率是0.16,第
二、三、四组的频率之和为0.64,则第五组的频率是 A .0.38 B .0.30 C .0.20 D .0.19.
11.( )某班50名同学中,2月份出生的同学人数的频率是0.1,则这个班2月份生日的同学
钢笔品牌
售出支数 A 18 B 34 C
15
有A.3位B.4位C.5位D.6位
12.()一组数据的极差为80,若取组距为9,则分成的组数应是()
A.7 B.8 C.9 D.10.
13.()对八年级某班45名同学的一次数学单元测试成绩进行统计,如果频数分布直方图中
80.5~90.5分这一组的频数是9,那么这个班的学生这次数学测试成绩在80.5~90.5分之间的频
率是A.0.2 B.0.25 C.0.3 D.0.4
14.()数据6,8,x,14的平均数是9,则数据8出现的频数是
A.1B.2C.6D.8
15.()绘制的频数分布直方图中,各小长方形的高等于相应各组的
A.平均数B.频数C.频率D.组距
16.()已知样本75 61 71 76 67 81 61 73 71 7779 72 65 57 73 73
66 77 69 81,那么这个样本数据落在66.5~71.5内的频率是
A.0.15B.0.2C.0.25D.0.3
三、解答题
1.(10分)为了了解中学生的体能情况,某校抽取了50名八年级学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频数分布直方图如图所示.已知图中从左到右前四个小组的频率分别为
0.04,0.12,0.4,0.28,根据直方图提供的信息解答下列问题:
(1)前四个小组的频数各是多少?
(2)第五小组的频率是多少?
(3)在这次跳绳中,跳绳次数的中位数落在第几个小组内?
(4)将频数分布直方图补全,并分别标出各个小组的频数,并在频数分布直方图中频数分布直方图画出频数分布折线图.
2.(18分)为了解我校初中三年级300名男生的身体发育情况,从中抽测了部份男生的身高进行分析,请根据下面给出的频率分布表中提供的信息,解答下列问题:
(1)这次共抽查了名男生;
(2) 表中a= ,b=,c=,d=;
(3)估计极差为;
(4) 该校初中三年级男生身高在171.5~176.5(cm)范围内的人数为.
(5) 估计这个样本的男生的平均身高;
3.(12分)某单位对全体职工的年龄进行了调查统计,结果如下(单位:岁):
21 32 44 50 46 55 60 59 38 49
19 52 34 35 48 52 39 41 44 46
38 43 45 46 24 21 32 30 28 27
将数据适当分组,列出频数分布表,绘制相应的频数分布直方图.
解最大值是,最小值是,极差是岁;取组距为10岁,可以分成组
(温馨提示:以上不要弄错,若错的话,后面的都错了)
附加题(3分×4+8=20分)
1.已知一组数据:10、8、6、10、8、13、11、12、10、10、7、9、8、12、9、11、12、9、10、11,则频率为0.2的范围是()
A.6~7
B.10~11
C.8~9
D.12~13
2.在一组160个数据的频数分布直方图中,共有11个小长方形,若中间一个小长方形的高等于其
与标准质量差(g ) +4 +7 -3 -8 +9
篮球编号 1 2 3 4 5它10个小长方形高的和的
4
1
,则中间一组的频率是 ( ) A .32 B .0.2 C .40 D .0.25
3.已知样本容量为40,在样本频数分布直方图中,如图所示.各小长方形的高的比是AE :BF :CG :DH =1:3:4:2,那么第三组频率为_______________. 4.检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的记为负数,检查结果如下表,则最接近标准质量的是 号篮球,最偏离标准质量的是 号篮球,这次测量结
果的极差是 .
5.从2001年2月21日零时起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3分钟为0.2元(不足3分钟的按3分钟计算),以后每分钟加收0.1元(不足1分钟的按1分钟计算),上星期天,一位学生调查了A 、B 、C 、D 、E 、五位同学某天打本地网营业区内电话的通话时间情况,原始数据如表1:
表一
(1)问D 同学这天的通话费是多少?
(2)设通话时间为t (分),试根据表1填写频数(落在某一时间段上的通话次数)分布表(表2) (3)调整前执行的原电话收费标准是:每3分钟为0.2元(不足3分钟的按3分钟计算),问:这五名位同学这天的实际平均通话费,与用原电话收费标准算出的平均通话费相比,是增多了,还是减少了?若增多,多多少?若减少,少多少?
A B C D E 第一次通话时间 3分 3分45秒 3分55秒 3分20秒 6分 第二次通话时间 0 4分 3分40秒 4分50秒 0 第三次通话时间
5分
2分
表二。

相关文档
最新文档