为什么选择旁路电容很重要
旁路电容使用和选择
简介旁路电容常见于电子设备的每个工作部分。
大多数工程师都知道要对系统、电路甚至每个芯片进行旁路。
很多时候我们选择旁路电容是根据过往的设计经验而没有针对具体电路进行优化。
本应用指南旨在对看似简单的旁路电容的设计思路进行探讨。
在分析为什么要使用旁路电容之后,我们会介绍有关电容基础知识、等效电路、电介质所用材料和电容类型。
接下来对旁路电容的主要功能和使用场合进行区分。
与仅工作在高频的电路不同,会产生大尖峰电流的电路有不同的旁路需求。
另外还会讨论一些有针对性的问题,如,运用多个旁路电容以及电路板布局的重要性。
最后,我们给出了四个具体的示例。
这四个例子涉及了高、低电流和高、低频率。
为什么要使用旁路电容非常常见(和相当令人痛心)的是用面包板搭建一个理想配置电路时,经常会遇到电路运行不稳定或者根本就不能运行的情况(见图1)。
来自电源、内部IC 电路或邻近IC 的噪声可能被耦合进电路。
连接导线和电路连接起到了天线的作用而电源电压产生变化,电流随之不稳定。
图2所示为通过示波器所观察到的电源引脚上的信号波形。
图2. 示波器所观察到的同相放大器直流电源引脚的波形我们可以看到,直流电压附近有很多高频噪音(约10mV P-P ) 。
此外,还有之前提到的幅度超出50mVr 的周期性电压脉冲。
因假定电源为稳定值(恒定为直流电压),那么任何干扰都将被直接耦合到电路并可能因此导致电路不稳定。
电源的第一道抗噪防线是旁路电容。
通过储存电荷抑制电压降并在有电压尖峰产生时放电,旁路电容消除了电源电压的波动。
旁路电容为电源建立了一个对地低阻抗通道,在很宽频率范围内都可具有上述抗噪功能。
要选择最合适的旁路电容,我们要先回答四个问题: 1、需要多大容值的旁路电容2、如何放置旁路电容以使其产生最大功效3、要使我们所设计的电路/系统要工作在最佳状态, 应选择何种类型的旁路电容?4、隐含的第四个问题----所用旁路电容采用什么样的封装最合适?(这取决于电容大小、电路板空间以及所选电容的类型。
去耦电容、旁路电容、滤波电容的选择和区别
区别去耦电容去除在期间切换时从⾼高配到配电⽹网中的RF能量量储能作⽤用,供局部化的直流电源,减少跨板浪涌电流在VCC 引脚通常并联⼀一个去耦电容,电容同交隔直将交流分量量从这个电容接地有源器器件在开关时产⽣生的⾼高频开关噪声江燕电源线传播,去耦电容就是提供⼀一个局部的直流给有源器器件,减少开关噪声在板上的传播并且能将噪声引导到地。
如果主要是为了了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;旁路路电容从元件或电缆中转移出不不想要的共模 RF 能量量。
这主要是通过产⽣生 AC 旁路路消除⽆无意的能量量进⼊入敏敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
在电路路中,如果电容起的主要作⽤用是给交流信号提供低阻抗的通路路,就称为旁路路电容;电⼦子电路路中,去耦电容和旁路路电容都是起到抗⼲干扰的作⽤用,电容所处的位置不不同,称呼就不不⼀一样了了。
对于同⼀一个电路路来说,旁路路(bypass)电容是把输⼊入信号中的⾼高频噪声作为滤除对象,把前级携带的⾼高频杂波滤除,⽽而去耦 (decoupling)电容也称退耦电容,是把输出信号的⼲干扰作为滤除对象。
滤波电容选择经过整流桥以后的是脉动直流,波动⽅方位很⼤大,后⾯面⼀一般⽤用⼤大⼩小两个电容⼤大电容⽤用来稳定输出,因为电容两端电压不不能突变,可以使输出平滑,⼩小电容⽤用来滤除⾼高频⼲干扰,使输出电压纯净,电容越⼩小,谐振频率越⾼高,可滤除的⼲干扰频率越⾼高容量量的选择⼤大电容,负载越重,吸收电流的能⼒力力越强,这个⼤大电容的容量量就要越⼤大⼩小电容,凭经验,⼀一般104 即可1、电容对地滤波,需要⼀一个较⼩小的电容并联对地,对⾼高频信号提供了了⼀一个对地通路路。
2、电源滤波中电容对地脚要尽可能靠近地。
3、理理论上说电源滤波⽤用电容越⼤大越好,⼀一般⼤大电容滤低频波,⼩小电容滤⾼高频波。
4、可靠的做法是将⼀一⼤大⼀一⼩小两个电容并联,⼀一般要求相差两个数量量级以上,以获得更更⼤大的滤波频段.滤波电容电源和地直接连接去耦电容1.为本集成电路路蓄能电容2.滤除该期间产⽣生的⾼高频噪声,切断其通过供电回路路进⾏行行传播的通路路3.防⽌止电源携带的噪声对电路路构成⼲干扰滤波电容的选⽤用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R其中: C 为滤波电容,单位为UF; T 为频率, 单位为Hz,R 为负载电阻,单位为Ω当然,这只是⼀一般的选⽤用原则,在实际的应⽤用中,如条件(空间和成本)允许,都选取C≥5T/R.PCB制版电容的选择⼀一般的10PF 左右的电容⽤用来滤除⾼高频的⼲干扰信号,0.1UF 左右的⽤用来滤除低频的纹波⼲干扰,还可以起到稳压的作⽤用。
共射放大电路旁路电容的作用
共射放大电路旁路电容的作用1.引言1.1 概述共射放大电路是一种常用的电子放大电路拓扑结构,具有广泛的应用范围,包括音频放大、射频放大等。
在共射放大电路中,旁路电容扮演着重要的角色。
旁路电容通过连接输入电阻和输入电容的并联电路,可以起到多种作用。
首先,旁路电容可以提高共射放大电路的低频增益。
由于共射放大电路存在输入电容,导致低频信号放大时出现通频增益下降的情况。
而通过在输入电阻与输入电容之间串联一个旁路电容,可以形成一个带通滤波器,可以让低频信号在这个频段内得到放大,从而提高低频增益。
其次,旁路电容还可以提高共射放大电路的高频响应。
在高频信号输入时,输入电容对高频信号的阻抗较小,容易形成短路,导致信号波通过输入电容而不再进入晶体管管子中。
而通过在输入电阻与输入电容之间并联一个旁路电容,可以形成一个高频分流通路,使得高频信号可以选择性地通过旁路电容而不经过输入电容,从而增强高频信号的放大。
此外,旁路电容还能够稳定共射放大电路的工作状态。
它可以提高共射放大电路的稳定性,使其对温度变化和晶体管参数变化等因素的影响减小。
在实际电路中,晶体管的参数可能存在一定的波动,而旁路电容的引入可以通过消除这些参数变化对电路增益的影响,从而提高了电路的稳定性。
综上所述,旁路电容在共射放大电路中发挥着重要的作用。
它可以提高低频增益、改善高频响应并增强电路的稳定性。
因此,在设计共射放大电路时,合理选择旁路电容的数值和位置,对于获得理想的电路性能具有非常重要的意义。
1.2 文章结构本文旨在探讨共射放大电路中旁路电容的作用。
文章结构如下:引言部分将对本文的主题进行概述。
首先,我们将简要介绍共射放大电路的基本原理,包括其工作原理和特点。
接着,我们将详细讨论旁路电容在共射放大电路中的作用及其对电路性能的影响。
在正文部分,我们将首先阐述共射放大电路的基本原理,包括输入和输出特性,以及其作为一种常见的放大电路的应用情况。
然后,我们将重点讨论旁路电容的作用,这是一种常见的在共射放大电路中应用的电容元件。
关于旁路电容的深度对话
关于旁路电容的深度对话编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。
来自Intersil公司的作者David Ritter和Tamara Schmitz参加了关于该主题的进一步对话。
本文是对话的第一部分。
Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。
下面请“聆听”并学习。
David: 有一种观念认为,当我们做旁路设计时,我们对低频成分要采用大电容(微法级),而对高频成分要采用小电容(纳法或皮法级)。
Tamara: 我赞成,那有什么错吗?David: 那听起来很好并且是有意义的,但是,问题在于当我在实验室中验证那个规则时并未得到我们想要的结果!我要向您发出挑战,Tamara博士。
Tamara: 好啊!我无所畏惧。
David: 让我们看看,你有一个电压调整器并且它需要电源。
电源线具有一些串联阻抗(通常是电感以及电阻),这样对于短路来说,它在瞬间提供的电流就不会出现大变化。
它需要有一个局部电容供电,如图1所示。
图1:旁路电容的功能。
Tamara: 我到目前均赞成你的观点。
那就是旁路的定义。
Dave,接着说吧。
David: 例如,有些人可能用0.1 μF电容进行旁路。
他们也可能用一个1000pF的电容紧挨着它以处理更高的频率。
如果我们已经采用了一个0.1 μF的电容,那么,紧挨着它加一个1000pF电容就没有意义。
它会增加1%的容值,谁会在意?Tamara: 然而,除了电容值之外,有更多要研究的内容。
这两种数值的电容均不理想。
David: 我们必须考察0.1 μF的实际电路;它存在有效串联电阻(ESR)以及有效串联电感(ESL)。
Tamara: 有时候,你还要把介质损耗一项当成一个并联电阻来考虑,如图2所示。
图2:旁路电容的模型。
David: 现在,当我们遇到具有瞬态特性的这一损耗时,我们假设0.1 μF电容的ESL远远大约1000pF的电容。
为什么选择旁路电容很重要
电容 一样 ,这类 电容不 受压 电效应 影 时 ,负载 瞬 态会 降至 约7 mV,如 图 稳 定性 影 响 极 大 。一 般 而言 ,封 装尺 寸 0
而 且 将 低 ES R、低 ESL I 工 作 须 电流 限 制 电 阻 。此 项 技术 的 另一 好处 使 用 寿 命 要 比 传 统 的 铝 电解 电 容 长 。  ̄I : 宽
温度范 围特性 融于一 体 ,可以说 是旁 是 E R更 低 。 固态 钽 电 容的 电容 值 可以 大 多数 电 容 的 工 作 温 度 上 限 为 15 , S 0℃
命E电子 .21q5l 29 l 01s ̄
容 或 固 态 聚 合 物 钽 电容 相 比 ,往 往 体 的 电 流 ,因 而 产 生 大 约 8m V的 负 载 瞬 IV X R电容 与偏 置 电压 之 间的 关 系 。 0 O 5 积 更 大 且 ES R更 高 。 与 固 态 聚 合 物 钽 态 ,如 图 1 示 。 当 电 容 增 加 到 1 .F 电 容 的封 装 尺 寸和 电压 额 定值 对 其 电压 所 01 t
路 电 容 的 首 选 。 不 过 ,这 类 电 容 也 并 相 对 于温 度和 偏 置 电 压保 持 稳 定 ,因此 但 现 在 0S —CON型 电 容 可 以 在 最 高 非完美 无缺 。根据 电介质 材料 不同 , 选 择 标 准 仅包 括 容 差 、 工作 温 度 范 围 内 15 2 ℃的 温 度 范 围 内 工作 。
容 : 多 层 陶 瓷 电 容 、 固态 钽 电 解 电容 和 铝 电 解 电容 。
计 )。而0S —CON电容则采用有机半
与 陶 瓷 电 容 相 比 , 固 态 钽 电 容 对 导 体 电 解 质 和 铝 箔 阴 极 , 以 实 现 较 低 温 度 、 偏 置 和 振 动 效 应 的 敏 感 度 相 对 的 ES R。 这 类 电容 虽 然 与 固态 聚 合 物 较低 。新 兴 一种 固态 钽 电容 采 用 导 电 聚 钽 电容 相 关 , 但 实 际 上 要 比 钽 电容 早
电容的五个作用
电容的五个作用
电容在电路中有五个主要作用,包括滤波、分压、延时、耦合(隔直)和旁路。
1. 滤波:电容可以与电阻串联,结合分压定律,设计出高低通滤波器。
2. 分压:交流容抗与频率成反比,利用这一特性,电容可实现分压功能。
3. 延时:电容充电时间与串联的电阻和自身电容大小有关,通过控制这些参数可以实现不同的定值延时。
4. 耦合(隔直):电容能够隔离直流分量,常用于前后级传递,以去除偏置电压。
5. 旁路:电容可以滤除高频干扰信号,为交流电路中某些并联的元件提供低阻抗通路。
旁路电容又称为退耦电容,它能提供能量,使输出电压均匀,降低负载电压波动。
旁路电容应尽量靠近负载器件的供电电源管脚和地管脚,这样能更好地抑制电压或其他输信号因过大而导致的地电位抬高和噪声。
以上信息仅供参考,如有需要,建议咨询电子领域专业人士。
旁路电容使用和选择
简介旁路电容常见于电子设备的每个工作部分。
大多数工程师都知道要对系统、电路甚至每个芯片进行旁路。
很多时候我们选择旁路电容是根据过往的设计经验而没有针对具体电路进行优化。
本应用指南旨在对看似简单的旁路电容的设计思路进行探讨。
在分析为什么要使用旁路电容之后,我们会介绍有关电容基础知识、等效电路、电介质所用材料和电容类型。
接下来对旁路电容的主要功能和使用场合进行区分。
与仅工作在高频的电路不同,会产生大尖峰电流的电路有不同的旁路需求。
另外还会讨论一些有针对性的问题,如,运用多个旁路电容以及电路板布局的重要性。
最后,我们给出了四个具体的示例。
这四个例子涉及了高、低电流和高、低频率。
为什么要使用旁路电容非常常见(和相当令人痛心)的是用面包板搭建一个理想配置电路时,经常会遇到电路运行不稳定或者根本就不能运行的情况(见图1)。
来自电源、内部IC 电路或邻近IC 的噪声可能被耦合进电路。
连接导线和电路连接起到了天线的作用而电源电压产生变化,电流随之不稳定。
图2所示为通过示波器所观察到的电源引脚上的信号波形。
图2. 示波器所观察到的同相放大器直流电源引脚的波形我们可以看到,直流电压附近有很多高频噪音(约10mV P-P ) 。
此外,还有之前提到的幅度超出50mVr 的周期性电压脉冲。
因假定电源为稳定值(恒定为直流电压),那么任何干扰都将被直接耦合到电路并可能因此导致电路不稳定。
电源的第一道抗噪防线是旁路电容。
通过储存电荷抑制电压降并在有电压尖峰产生时放电,旁路电容消除了电源电压的波动。
旁路电容为电源建立了一个对地低阻抗通道,在很宽频率范围内都可具有上述抗噪功能。
要选择最合适的旁路电容,我们要先回答四个问题: 1、需要多大容值的旁路电容2、如何放置旁路电容以使其产生最大功效3、要使我们所设计的电路/系统要工作在最佳状态, 应选择何种类型的旁路电容?4、隐含的第四个问题----所用旁路电容采用什么样的封装最合适?(这取决于电容大小、电路板空间以及所选电容的类型。
电容(2)旁路电容工作原理深度解析
电容(2)旁路电容⼯作原理深度解析旁路电容(bypass capacitor)在⾼速数字逻辑电路中尤为常见,它的作⽤是在正常的通道(信号或电源,本⽂以电源旁路电容为例)旁边建⽴另外⼀个对⾼频噪声成分阻抗⽐较低的通路,从⽽将⾼频噪声成分从有⽤的信号⽤滤除,也因此⽽得名,如下图所⽰:通常我们见到的旁路电容位置如下图所⽰:如果是⾼密度BGA(Ball Grid Array)封装芯⽚,则旁路电容通常会放在PCB底层(芯⽚的正下⽅),这些旁路电容会使⽤过孔扇出(Fanout)后与芯⽚的电源与地引脚连接,如下图所⽰:更有甚者,很多⾼速处理器芯⽚(通常也是BGA封装)在出⼚时,已经将旁路电容贴在芯⽚上,如下图所⽰:台式电脑的CPU(Central Processing Unit)⼀般都是⽤CPU插槽进⾏安装,很多CPU芯⽚的背⾯(是芯⽚的背⾯,⽽不是贴芯⽚的PCB板背⾯)也会有很多旁路电容,如下图所⽰:总之,旁路电容的位置总是会与主芯⽚越来越靠近,原理图设计⼯程师在进⾏电路设计时,也通常会将这些旁路电容的PCB LAYOUT要点标记起来,⽤来指导PCB布局布线⼯程师,如下图所⽰:那么这⾥就有两个问题了:(1)为什么旁路电容⼀定要与主芯⽚尽可能地靠近?(2)为什么⼤多数旁路电容的值都是0.1uF(104)?这是巧合吗?要讲清楚这两个问题,⾸先我们应该理解旁路电容存在的意义,很多⼈分不清滤波电容、旁路电容,其实本质上两者是没有任何区别,只不过在细节上对电容的要求有所不同。
⽆论电容的应⽤场合名称叫什么,基本的(也是共同的)⼀点特性总是不会变的:储能。
电容的这⼀特性使得外部供电电源有所波动时,与电容并联的对象两端的电压所受的影响减⼩,如下图所⽰:上图中,我们⽤开关K1来模拟扰动的来源,很明显,每⼀次开关K1闭合或断开时,在电阻R1与R2的分压下,电阻R2两端的电压(V DD)都是会实时跟随变化的(即波动很⼤),只不过电压幅度不⼀致⽽已,我们认为开关的切换动作已经产⽣了电源噪声。
关于旁路电容和耦合电容详细说明
关于旁路电容和耦合电容详细说明关于旁路电容和耦合电容<详细说明>2010-07-29 14:55从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻<特别是芯片管脚上的电感,会产生反弹>,这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合.去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以与驱动电流的变化大小来确定.旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别.<转> 去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz 取0.1μF,100MHz取0.01μF.分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔可以减少板层电容,但会增加电感.分布电感是指在频率提高时,因导体自感而造成的阻抗增加.电容器选用与使用注意事项:1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器.2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致.在各种滤波与网<选频网络>,电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格.3,电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器.4,优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境.~`我们知道,一般我们所用的电容最重要的一点就是滤波和旁路,我在设计中也正是这么使用的.对于高频杂波,一般我的经验是不要过大的电容,因为我个人认为,过大的电容虽然对于低频的杂波过滤效果也许比较好,但是对于高频的杂波,由于其谐振频率的下降,使得对于高频杂波的过滤效果不很理想.所以电容的选择不是容量越大越好.疑问点:1.以上都是我的经验,没有理论证实,希望哪位可以在理论在帮忙解释一下是否正确.或者推荐一个网页或者.2.是不是超过了谐振频率,其阻抗将大大增加,所以对高频的过滤信号,其作用就相对减小了呢?3.理想的滤波点是不是在谐振频率这点上?<没有搞懂中>4.以前只知道电容的旁路作用是隔直通交,现在具体于PCB设计中,电容的这一旁路作用具体体现在哪里?~在用电容抑制电磁骚扰时,最容易忽视的问题就是电容引线对滤波效果的影响.电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用.然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策.出现这种情况的一个原因是忽略了电容引线对旁路效果的影响.实际电容器的电路模型是由等效电感<ESL>、电容和等效电阻<ESR>构成的串联网络.理想电容的阻抗是随着频率的升高降低,而实际电容的阻抗是图1所示的网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR.在谐振点以上,由于ESL的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性.在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失.电容的谐振频率由ESL和C共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越差.ESL除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低.因此在实际工程中,要使电容器的引线尽量短.根据LC电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低.许多人认为电容器的容值越大,滤波效果越好,这是一种误解.电容越大对低频干扰的旁路效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差.表1是不同容量瓷片电容器的自谐振频率,电容的引线长度是1.6mm<你使用的电容的引线有这么短吗?>.表1电容值自谐振频率<MHz>电容值自谐振频率<MHz>1mF1.7 820 pF 38.50.1 mF 4680 pF 42.50.01 mF 12.6 560 pF 453300 pF 19.3 470 pF 491800 pF 25.5 390 pF 541100 pF 33 330 pF 60尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的.当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上.~从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻<特别是芯片管脚上的电感,会产生反弹>,这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合.去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以与驱动电流的变化大小来确定.去耦和旁路都可以看作滤波.正如ppxp所说,去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波.具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算.去耦电容一般都很大,对更高频率的噪声,基本无效.旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性.电容一般都可以看成一个RLC串联模型.在某个频率,会发生谐振,此时电容的阻抗就等于其ESR.如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线.具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF.一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.对于同一个电路来说,旁路<bypass>电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦<decoupling,也称退耦>电容是把输出信号的干扰作为滤除对象.在供电电源和地之间也经常连接去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰.我来总结一下,旁路实际上就是给高频干扰提供一个到地的能量释放途径,不同的容值可以针对不同的频率干扰.所以一般旁路时常用一个大贴片加上一个小贴片并联使用.对于相同容量的电容的Q值我认为会影响旁路时高频干扰释放路径的阻抗,直接影响旁路的效果,对于旁路来说,希望在旁路作用时,电容的等效阻抗越小越好,这样更利于能量的排泄.~数字电路输出信号电平转换过程中会产生很大的冲击电流,在供电线和电源内阻上产生较大的压降,使供电电压产生跳变,产生阻抗噪声<亦称开关噪声>,形成干扰源.一、冲击电流的产生:<1>输出级控制正负逻辑输出的管子短时间同时导通,产生瞬态尖峰电流<2>受负载电容影响,输出逻辑由"0"转换至"1"时,由于对负载电容的充电而产生瞬态尖峰电流.瞬态尖峰电流可达50ma,动作时间大约几ns至几十ns.二、降低冲击电流影响的措施:<1>降低供电电源内阻和供电线阻抗<2>匹配去耦电容三、何为去耦电容在ic<或电路>电源线端和地线端加接的电容称为去耦电容.四、去耦电容如何取值去耦电容取值一般为0.01~0.1uf,频率越高,去耦电容值越小.五、去耦电容的种类<1>独石<2>玻璃釉<3>瓷片<4>钽六、去耦电容的放置去耦电容应放置于电源入口处,连线应尽可能短.~旁路电容不是理论概念,而是一个经常使用的实用方法,在50--60年代,这个词也就有它特有的含义,现在已不多用.电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件.例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做"自偏",但是对<交流>信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容.后来也有的资料把它引申使用于类似情况.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF.一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出<主要是针对器件的工作>而设的"小水塘",在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件有源器件在开关时产生的高频开关噪声将沿着电源线传播.去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地.~`在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.旁路电容可将混有高频电流和低频电流的交流电中的高频成分旁路掉的电容,称做"旁路电容".例如当混有高频和低频的信号经过放大器被放大时,要求通过某一级时只允许低频信号输入到下一级,而不需要高频信号进入,则在该级的输出端加一个适当大小的接地电容,使较高频率的信号很容易通过此电容被旁路掉<这是因为电容对高频阻抗小>,而低频信号由于电容对它的阻抗较大而被输送到下一级放大对于同一个电路来说,旁路<bypass>电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦<decoupling,也称退耦>电容是把输出信号的干扰作为滤除对象.~去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz 取0.1μF,100MHz取0.01μF.~作为一名新手,经常接触到旁路电容和去耦电容的概念,但却搞不清楚他们的区别和作用.一般设计的板子上IC的每个电源管脚附近都会放置一个电容作去耦电容,以减小电源阻抗?那么此IC的某些高速信号是否会把此电容作为高频电流的旁路电容呢?请大侠详细解释一下旁路电容和去耦电容.我认为去耦电容和旁路电容没有本质的区别,电源系统的电容本来就有多种用途,从为去除电源的耦合噪声干扰的角度看,我们可以把电容称为去耦电容<Decoupling>,如果从为高频信号提供交流回路的角度考虑,我们可以称为旁路电容<By-pass>.而滤波电容则更多的出现在滤波器的电路设计里.电源管脚附近的电容主要是为了提供瞬间电流,保证电源/地的稳定,当然,对于高速信号来说,也有可能把它作为低阻抗回路,比如对于CMOS电路结构,在0-1的跳变信号传播时,回流主要从电源管脚流回,如果信号是以地平面作为参考层的话,在电源管脚的附近需要经过这个电容流入电源管脚.所以对于PDS<电源分布系统>的电容来说,称为去耦和旁路都没有关系,只要我们心中了解它们的真正作用就行了。
滤波电容、去耦电容、旁路电容作用及区别
滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。
各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。
交变电流的频率f越高,电容的阻抗就越低。
旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。
对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。
但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。
滤波电容:滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在Vcc引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。
(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
耦合电容和旁路电容的作用
耦合电容和旁路电容的作用
嘿,你问耦合电容和旁路电容的作用呀?这俩家伙在
电路里可重要着呢。
咱先说耦合电容吧。
它就像个小信使,在电路里传递
信号。
比如说,一个电路的一部分产生了信号,要传给另
一部分,这时候耦合电容就上场啦。
它能让信号顺利地通过,同时又能阻止直流电流过去。
就像一个检查站,只让
特定的东西通过。
要是没有耦合电容,信号可能就传不过去,或者传得乱七八糟的。
它能让不同部分的电路协调工作,就像乐队里的指挥,让各个乐器配合得好好的。
再说说旁路电容。
这家伙就像个小保镖,保护电路不
受干扰。
有时候电路里会有一些杂波或者干扰信号,旁路
电容就能把这些坏家伙给引走,不让它们影响正常的电路
工作。
就像你在路上走,旁边有个垃圾桶很臭,旁路电容
就像个屏风,把臭味挡住,让你能安心走路。
它能让电路
更稳定,工作得更顺畅。
我给你讲个事儿吧。
我有个朋友,他自己组装收音机。
一开始他不知道耦合电容和旁路电容的作用,随便装了几
个电容上去。
结果收音机的声音很杂,根本听不清。
后来
他请教了别人,知道了这两个电容的重要性。
他重新安装了合适的耦合电容和旁路电容,嘿,这下收音机的声音可清晰了。
他可高兴了,说以后组装电路一定要注意这些小零件的作用。
所以啊,耦合电容和旁路电容在电路里可重要啦,一个负责传递信号,一个负责排除干扰。
有了它们,电路才能正常工作,发挥出最大的作用。
加油哦!。
旁路电容与去耦电容的区别
旁路电容与去耦电容的区别在电路设计和电子设备中,旁路电容和去耦电容是常见的元件。
它们在电源管理和信号处理中起着至关重要的作用。
尽管这两者都是电容,但它们的使用方式和功能略有不同。
本文将介绍旁路电容和去耦电容之间的区别。
1. 旁路电容(Bypass Capacitor)旁路电容,也称为绕线电容或旁路电容,是在电路中并联连接的电容器。
它的主要作用是提供对高频噪音的有效滤波。
当信号经过旁路电容时,高频噪音被短接到地,从而阻止其进入信号线路。
旁路电容可以在通信设备、电源管理、模拟电路和数字电路中找到。
旁路电容的特点如下:•高频滤波:旁路电容可以过滤掉电路中的高频噪音,确保信号质量的稳定性。
•低阻抗:旁路电容在高频范围内具有较低的阻抗,可以提供一个低阻抗路径,使高频信号能够流经电容而不影响其他部分的电路。
•容量选择:旁路电容的容值通常根据需要选择,典型值范围从几个皮法到几微法。
2. 去耦电容(Decoupling Capacitor)去耦电容是一种用于消除电源噪声的电容器。
它的目的是提供短期电源电流需求,以保持电源电压的稳定性。
在集成电路和电子器件之间添加去耦电容可以有效地减少电源噪声对器件性能的影响。
去耦电容的特点如下:•稳定电源:去耦电容通过吸收和释放能量来保持电源电压的稳定性,以满足瞬时电流需求,同时减少电源噪声的影响。
•低频滤波:去耦电容常常用于消除电源线上的低频噪音,保持电源供应的平稳。
•容量选择:去耦电容的容值通常选择根据电路和器件的需求,可以是几微法到几毫法的范围。
3. 区别对比尽管旁路电容和去耦电容在某些方面有相似之处,但它们的主要功能和使用方式有所不同。
下表总结了旁路电容和去耦电容之间的主要区别。
区别旁路电容去耦电容主要功能高频噪音滤波电源电压稳定性滤波范围高频范围低频范围电阻低阻抗低阻抗容值范围几个皮法到几微法几微法到几毫法安装位置信号线旁电源线旁应用领域通信设备、电源管理、模拟电路和数字电路等集成电路和电子器件等虽然旁路电容和去耦电容的功能有所不同,但在某些情况下它们可以同时使用。
旁路电容和耦合电容详解讲解
关于旁路电容和耦合电容精讲从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合. 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定.旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF.分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔可以减少板层电容,但会增加电感.分布电感是指在频率提高时,因导体自感而造成的阻抗增加.电容器选用及使用注意事项:1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器.2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致.在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格.3,电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器.4,优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境.我们知道,一般我们所用的电容最重要的一点就是滤波和旁路,我在设计中也正是这么使用的.对于高频杂波,一般我的经验是不要过大的电容,因为我个人认为,过大的电容虽然对于低频的杂波过滤效果也许比较好,但是对于高频的杂波,由于其谐振频率的下降,使得对于高频杂波的过滤效果不很理想.所以电容的选择不是容量越大越好.疑问点:1.以上都是我的经验,没有理论证实,希望哪位可以在理论在帮忙解释一下是否正确.或者推荐一个网页或者网站.2.是不是超过了谐振频率,其阻抗将大大增加,所以对高频的过滤信号,其作用就相对减小了呢?3.理想的滤波点是不是在谐振频率这点上???(没有搞懂中)4.以前只知道电容的旁路作用是隔直通交,现在具体于PCB设计中,电容的这一旁路作用具体体现在哪里?在用电容抑制电磁骚扰时,最容易忽视的问题就是电容引线对滤波效果的影响.电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用.然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策.出现这种情况的一个原因是忽略了电容引线对旁路效果的影响. 实际电容器的电路模型是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网络. 理想电容的阻抗是随着频率的升高降低,而实际电容的阻抗是图1所示的网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR.在谐振点以上,由于ESL的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性.在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失. 电容的谐振频率由ESL和C共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越差.ESL 除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低.因此在实际工程中,要使电容器的引线尽量短.根据LC电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低.许多人认为电容器的容值越大,滤波效果越好,这是一种误解.电容越大对低频干扰的旁路效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差.表1是不同容量瓷片电容器的自谐振频率,电容的引线长度是 1.6mm(你使用的电容的引线有这么短吗?).表1电容值自谐振频率(MHz) 电容值自谐振频率(MHz)1m F 1.7 820 pF 38.50.1m F 4 680 pF 42.50.01m F 12.6 560 pF 453300pF 19.3 470 pF 491800 pF 25.5 390 pF 541100pF 33 330 pF 60 尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的.当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上.从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合.去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定.去耦和旁路都可以看作滤波.正如ppxp所说,去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波.具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算.去耦电容一般都很大,对更高频率的噪声,基本无效.旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性.电容一般都可以看成一个RLC串联模型.在某个频率,会发生谐振,此时电容的阻抗就等于其ESR.如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线.具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF.一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰,在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象.在供电电源和地之间也经常连接去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰.我来总结一下,旁路实际上就是给高频干扰提供一个到地的能量释放途径,不同的容值可以针对不同的频率干扰.所以一般旁路时常用一个大贴片加上一个小贴片并联使用.对于相同容量的电容的Q值我认为会影响旁路时高频干扰释放路径的阻抗,直接影响旁路的效果,对于旁路来说,希望在旁路作用时,电容的等效阻抗越小越好,这样更利于能量的排泄.数字电路输出信号电平转换过程中会产生很大的冲击电流,在供电线和电源内阻上产生较大的压降,使供电电压产生跳变,产生阻抗噪声(亦称开关噪声),形成干扰源.一、冲击电流的产生:(1)输出级控制正负逻辑输出的管子短时间同时导通,产生瞬态尖峰电流(2)受负载电容影响,输出逻辑由“0”转换至“1”时,由于对负载电容的充电而产生瞬态尖峰电流. 瞬态尖峰电流可达50ma,动作时间大约几ns至几十ns.二、降低冲击电流影响的措施:(1)降低供电电源内阻和供电线阻抗(2)匹配去耦电容三、何为去耦电容在ic(或电路)电源线端和地线端加接的电容称为去耦电容.四、去耦电容如何取值去耦电容取值一般为0.01~0.1uf,频率越高,去耦电容值越小.五、去耦电容的种类(1)独石 (2)玻璃釉 (3)瓷片 (4)钽六、去耦电容的放置去耦电容应放置于电源入口处,连线应尽可能短.旁路电容不是理论概念,而是一个经常使用的实用方法,在50 -- 60年代,这个词也就有它特有的含义,现在已不多用.电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件.例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容.后来也有的资料把它引申使用于类似情况.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于 10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF.一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件有源器件在开关时产生的高频开关噪声将沿着电源线传播.去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地.在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等.由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等.本文介绍电容器的主要参数及应用,可供读者选择电容器种类时用.1、标称电容量(CR):电容器产品标出的电容量值.云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容量居中(大约在0005μF10μF);通常电解电容器的容量较大.这是一个粗略的分类法.2、类别温度范围:电容器设计所确定的能连续工作的环境温度范围,该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等.3、额定电压(UR):在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值.电容器应用在高压场合时,必须注意电晕的影响.电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿.在交流或脉动条件下,电晕特别容易发生.对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不的超过直流电压额定值.4、损耗角正切(tgδ):在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率.这里需要解释一下,在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如下图所示.图中C为电容器的实际电容量,Rs是电容器的串联等效电阻,Rp是介质的绝缘电阻,Ro是介质的吸收等效电阻.对于电子设备来说,要求Rs愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角δ要小.这个关系用下式来表达: tgδ=Rs/Xc=2πf×c×Rs 因此,在应用当中应注意选择这个参数,避免自身发热过大,以减少设备的失效性.5、电容器的温度特性:通常是以20℃基准温度的电容量与有关温度的电容量的百分比表示.补充:1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容).电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件.电容的特性主要是隔直流通交流.电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关.容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等.2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种.电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF).其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率.如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF3、电容容量误差表符号 F G J K L M允许误差±1% ±2% ±5% ±10% ±15% ±20%如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%.6使用寿命:电容器的使用寿命随温度的增加而减小.主要原因是温度加速化学反应而使介质随时间退化.7绝缘电阻:由于温升引起电子活动增加,因此温度升高将使绝缘电阻降低.电容器包括固定电容器和可变电容器两大类,其中固定电容器又可根据所使用的介质材料分为云母电容器、陶瓷电容器、纸/塑料薄膜电容器、电解电容器和玻璃釉电容器等;可变电容器也可以是玻璃、空气或陶瓷介质结构.以下附表列出了常见电容器的字母符号.电容分类介绍名称:聚酯(涤纶)电容(CL)符号:电容量:40p--4u额定电压:63--630V主要特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路名称:聚苯乙烯电容(CB)符号:电容量:10p--1u额定电压:100V--30KV主要特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路名称:聚丙烯电容(CBB)符号:电容量:1000p--10u额定电压:63--2000V主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路名称:云母电容(CY)符号:电容量:10p--0.1u额定电压:100V--7kV主要特点:高稳定性,高可靠性,温度系数小应用:高频振荡,脉冲等要求较高的电路名称:高频瓷介电容(CC)符号:电容量:1--6800p额定电压:63--500V主要特点:高频损耗小,稳定性好应用:高频电路名称:低频瓷介电容(CT)符号:电容量:10p--4.7u额定电压:50V--100V主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路名称:玻璃釉电容(CI)符号:电容量:10p--0.1u额定电压:63--400V主要特点:稳定性较好,损耗小,耐高温(200度) 应用:脉冲、耦合、旁路等电路名称:铝电解电容符号:电容量:0.47--10000u额定电压:6.3--450V主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等名称:钽电解电容(CA)铌电解电容(CN)符号:电容量:0.1--1000u额定电压:6.3--125V主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容名称:空气介质可变电容器符号:可变电容量:100--1500p主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等名称:薄膜介质可变电容器符号:可变电容量:15--550p主要特点:体积小,重量轻;损耗比空气介质的大应用:通讯,广播接收机等名称:薄膜介质微调电容器符号:可变电容量:1--29p主要特点:损耗较大,体积小应用:收录机,电子仪器等电路作电路补偿名称:陶瓷介质微调电容器符号:可变电容量:0.3--22p主要特点:损耗较小,体积较小应用:精密调谐的高频振荡回路名称:独石电容最大的缺点是温度系数很高,做振荡器的稳漂让人受不了,我们做的一个555振荡器,电容刚好在7805旁边,开机后,用示波器看频率,眼看着就慢慢变化,后来换成涤纶电容就好多了.独石电容的特点:电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好等.应用范围:广泛应用于电子精密仪器.各种小型电子设备作谐振、耦合、滤波、旁路.容量范围:0.5PF--1UF耐压:二倍额定电压.里面说独石又叫多层瓷介电容,分两种类型,1型性能挺好,但容量小,一般小于0.2U,另一种叫II型,容量大,但性能一般.就温漂而言:独石为正温糸数+130左右,CBB为负温系数-230,用适当比例并联使用,可使温漂降到很小. 就价格而言:钽,铌电容最贵,独石,CBB较便宜,瓷片最低,但有种高频零温漂黑点瓷片稍贵.云母电容Q值较高,也稍贵.。
去耦和旁路的概念和原理
去耦和旁路的概念和原理
去耦和旁路的概念和原理:
去耦(decoupling)和旁路(bypass)是两种常见的电路设计和优化技术,它们的主要目的是减少或消除电路内部的干扰。
去耦电容:
去耦电容也被称为退耦电容,其主要作用是降低电路之间的交叉干扰。
当系统中某个组件的信号变化会影响其他组件时,我们就称这两个组件之间发生了耦合。
去耦电容通过提供一个低阻抗路径,允许高频噪声从一个敏感的电路部分传输到地的过程中被旁路掉,从而减轻对敏感电路的影响。
去耦电容的位置通常是远离需要保护的电路元件,并且其值通常会较大,如10uF或更大。
旁路电容:
旁路电容的设计是为了过滤掉不需要的信号频率成分,特别是那些高于系统带宽的高频分量。
这种电容通常用于将高频噪声或其他不需要的成分从信号源路由到地,以防止它们影响系统的性能。
旁路电容的大小取决于它所服务的电路的特性,包括所需的滤波频率范围。
在许多情况下,旁路电容也被用作去耦电容,但它们的主要目标是旁路而不是降低耦合。
总结来说,去耦电容主要是为了降低电路间的交叉干扰,而旁路电容则是用来隔离不需要的信号频率成分。
两者虽然目的不同,但在某些情况下可以互为补充。
耦合电容和旁路电容
耦合电容和旁路电容
耦合电容和旁路电容是电子工程中常见的两种电容类型。
耦合电容是一种将信号从一个电路传输到另一个电路的电容,它
可以阻挡直流分量,但它可以允许交流分量通过。
它的容量范围一般
介于0.01个微波到几十个微波。
耦合电容常用于滤波器,增益回路,
和信号分离应用等场合,可以消除许多电路中发射的干扰电流或电荷。
旁路电容是一种将电路中的电流流而不进入元件的电容,它们可
以阻止多余的电流进入电路,从而延迟回路反应并提高系统效率。
一
般来说,旁路电容适用于直流操作下的回路电路,是将大电流从回路
中免受损害的有效方式。
去耦电容和旁路电容--电容值选择方法
旁路电容定义可将混有高频电流和低频电流的交流信号中的高频成分旁路掉的电容,称做“旁路电容”。
例如当混有高频和低频的信号经过放大器被放大时,要求通过某一级时只允许低频信号输入到下一级,而不需要高频信号进入,则在该级的输出端加一个适当大小的接地电容,使较高频率的信号很容易通过此电容被旁路掉(这是因为电容对高频阻抗小),而低频信号由于电容对它的阻抗较大而被输送到下一级放大旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象。
去耦电容电路电源和地之间的有两个作用一方面是集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。
数字电路中典型的去耦电容值是0.1μF。
这个电容的分布电感的典型值是5μH。
0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。
1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。
每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。
最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。
要使用钽电容或聚碳酸酯电容。
去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。
去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF。
旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。
高速PCB中旁路电容的分析
高速PCB中旁路电容的分析关键字:旁路电容插入损耗高频响应环流问题1 引言随着系统体积的减小,工作频率的提高,系统的功能复杂化,这样就需要多个不同的嵌入式功能模块同时工作。
只有各个模块具有良好的EMC和较低的EMI,才能保证整个系统功能的实现。
这就要求系统自身不仅需要具有良好的屏蔽外界干扰的性能,同时还要求在和其他的系统同时工作时,不能对外界产生严重的EMI。
另外,开关电源在高速数字系统设计中的应用越来越广泛,一个系统中往往需要用到多种电源。
不仅电源系统容易受到干扰,而且电源供应时产生的噪声会给整个系统带来严重的EMC问题。
因此,在高速PCB设计中,如何更好的滤除电源噪声是保证良好电源完整性的关键。
本文分析了电容的滤波特性,电容的寄生电感电容的滤波性能带来的影响,以及PCB中的电流环现象,继而针对如何选择旁路电容做出了一些总结。
本文还着重分析了电源噪声和地弹噪声的产生机理并在其基础上对旁路电容在PCB中的各种摆放方式做出了分析和比较。
2 电容的插入损耗特性、频率响应特性与电容的滤波特性2.1 理想电容的插入损耗特性EMI电源滤波器对干扰噪声的抑制能力通常用插入损耗(Insertion Loss)特性来衡量。
插入损耗的定义为:没有滤波器接入时,从噪声源传输到负载的噪声功率P1和接入滤波器后,噪声源传输到负载的噪声功率P2之比,用dB(分贝)表示。
图1是理想电容的插入损耗特性,可以看出,1μF电容对应的插入损耗曲线斜率接近20dB/10倍频。
观察其中某一条插入损耗特性,当频率增加时,电容的插入损耗值是增加的,也就是说P1/P2值是增加的,这意味着系统通过电容滤波以后,能够传输到负载的噪声减少,电容滤除高频噪声的能力增强。
从理想电容的公式分析,当电容一定时,信号频率越高,回路阻抗越低,也即电容易于滤除高频的成分。
从两个方面得出的结论是相同的。
再观察不同电容所对应的曲线,在频率很低的情况下,各种电容所对应的插入损耗值是近似相同的,但是随着频率的增加,小电容的插入损耗值增加的幅度较大电容要慢一些,P1/P2值增加得也就较慢,也就是说大电容更容易滤除低频噪声。
关于滤波电容、去耦电容、旁路电容作用及其原理
关于滤波电容、去耦电容、旁路电容作⽤及其原理原⽂:⼀、关于滤波电容、去耦电容、旁路电容作⽤及其原理从电路来说,总是存在驱动的源和被驱动的负载。
如果负载电容⽐较⼤,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿⽐较陡峭的时候,电流⽐较⼤,这样驱动的电流就会吸收很⼤的电源电流,由于电路中的电感,电阻(特别是芯⽚管脚上的电感,会产⽣反弹),这种电流相对于正常情况来说实际上就是⼀种噪声,会影响前级的正常⼯作。
这就是耦合。
去藕电容就是起到⼀个电池的作⽤,满⾜驱动电路电流的变化,避免相互间的耦合⼲扰。
旁路电容实际也是去藕合的,只是旁路电容⼀般是指⾼频旁路,也就是给⾼频的开关噪声提⾼⼀条低阻抗泄防途径。
⾼频旁路电容⼀般⽐较⼩,根据谐振频率⼀般是0.1u,0.01u等,⽽去耦合电容⼀般⽐较⼤,是10u或者更⼤,依据电路中分布参数,以及驱动电流的变化⼤⼩来确定。
去耦和旁路都可以看作滤波。
去耦电容相当于电池,避免由于电流的突变⽽使电压下降,相当于滤纹波。
具体容值可以根据电流的⼤⼩、期望的纹波⼤⼩、作⽤时间的⼤⼩来计算。
去耦电容⼀般都很⼤,对更⾼频率的噪声,基本⽆效。
旁路电容就是针对⾼频来的,也就是利⽤了电容的频率阻抗特性。
电容⼀般都可以看成⼀个RLC串联模型。
在某个频率,会发⽣谐振,此时电容的阻抗就等于其ESR。
如果看电容的频率阻抗曲线图,就会发现⼀般都是⼀个V形的曲线。
具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,⼀个⽐较保险的⽅法就是多并⼏个电容。
去耦电容在集成电路电源和地之间的有两个作⽤:⼀⽅⾯是本集成电路的蓄能电容,另⼀⽅⾯旁路掉该器件的⾼频噪声。
数字电路中典型的去耦电容值是0.1µF。
这个电容的分布电感的典型值是5µH。
它的并⾏共振频率⼤约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声⼏乎不起作⽤。
1µF、10µF的电容,并⾏共振频率在20MHz以上,去除⾼频噪声的效果要好⼀些。
ldo的旁路电容
ldo的旁路电容好啦,今天我们聊聊“LDO旁路电容”这个话题。
你可能会想:“啥是LDO旁路电容?难不成又是某种电子元件的高大上名字?”放心,咱们今天不讲深奥的技术原理,也不讲什么学术论文。
我们就来点儿轻松的,边喝杯茶边聊的那种风格。
你要是懂了,脑袋里肯定也能冒出一个“哦,原来是这个意思”那种清爽感。
什么是LDO?这个嘛,其实就是低压差线性稳压器(Low Dropout Regulator)的缩写,翻译成白话就是,LDO就是用来“稳住电压”的一个小帮手。
就像你路上碰到一个热心大哥,他稳稳地拉住你,不让你摔倒。
LDO就干这个事儿,把电压稳得跟老母鸡照顾小鸡似的,给设备提供稳定的电压。
对了,LDO这个名字听起来是不是有点像什么高科技玩意儿?其实它只是个小小的稳压器。
至于“旁路电容”嘛,那可就更简单了,就是加在LDO旁边,给它当个辅助帮手,确保整个电路系统能够更平稳、更安稳地运行。
那问题来了,旁路电容到底是干嘛的呢?我们要是直接从字面上理解,旁路电容就是旁路——意思是电流要是想跳过LDO,找别的路走,旁边的电容就会提供一个临时的“安全通道”,保证电流能够顺利通过,不会乱跑。
你想,电流就像一群小兔子,跑得飞快,一不小心就跑偏了,偏到其他线路上去了,这不就麻烦了嘛。
旁路电容就像一个网,帮忙把这些兔子赶回到正道上。
再说了,旁路电容这个小配件其实是有大作用的。
你可别看它小小的,没它可不行。
它不仅能过滤掉电源噪声,还能降低高频信号的干扰。
说白了,它就是在你的电路中,起到“净化空气”的作用。
就好比你在一个吵闹的市场中购物,周围是各种嘈杂的声音,如果你戴个耳塞,整个人顿时清净了不少,能更专注地挑选心仪的商品。
旁路电容就像那个耳塞,让你电路中的信号更加清晰、稳定。
不加旁路电容,LDO的工作就会变得不那么完美。
你知道的,电路里的电压波动、噪声过多,就像人心浮气躁,做事总是心不在焉。
旁路电容的存在就能让这个问题迎刃而解。
它把这些“杂音”吸收掉了,让LDO能够更精准地工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么选择旁路电容很重要
设计人员在选择旁路电容,以及电容用于滤波器、积分器、时序电路和实际电容值非常重要的其他应用时,都必须考虑这些因素。
若选择不当,则可能导致电路不稳定、噪声和功耗过大、产品生命周期缩短,以及产生不可预测的电路行为。
电容技术
电容具有各种尺寸、额定电压和其他特性,能够满足不同应用的具体要求。
常用电介质材料包括油、纸、玻璃、空气、云母、聚合物薄膜和金属氧化物。
每种电介质均具有特定属性,决定其是否适合特定的应用。
在电压调节器中,以下三大类电容通常用作电压输入和输出旁路电容:多层陶瓷电容、固态钽电解电容和铝电解电容。
多层陶瓷电容
多层陶瓷电容(MLCC)不仅尺寸小,而且将低ESR、低ESL和宽工作温度范围特性融于一体,可以说是旁路电容的首选。
不过,这类电容也并非完美无缺。
根据电介质材料不同,电容值会随着温度、直流偏置和交流信号电压动态变化。
另外,电介质材料的压电特性可将振动或机械冲击转换为交流噪声电压。
大多数情况下,此类噪声往往以微伏计,但在极端情况下,机械力可以产生毫伏级噪声。
电压控制振荡器(VCO)、锁相环(PLL)、RF功率放大器(PA)和其他模拟电路都对供电轨上的噪声非常敏感。
在VCO和PLL中,此类噪声表现为相位噪声;在RF PA中,表现为幅度调制;而在超声、CT扫描以及处理低电平模拟信号的其他应用中,则表现为显示伪像。
尽管陶瓷电容存在上述缺陷,但由于尺寸小且成本低,因此几乎在每种电子器件中都会用到。
不过,当调节器用在噪声敏感的应用中时,设计人员必须仔细评估这些副作用。
固态钽电解电容
与陶瓷电容相比,固态钽电容对温度、偏置和振动效应的敏感度相对较低。
新兴一种固态钽电容采用导电聚合物电解质,而非常见的二氧化锰电解质,其浪涌电流能力有所提高,而且无须电流限制电阻。
此项技术的另一好处是ESR更低。
固态钽电容的电容值可以相对
于温度和偏置电压保持稳定,因此选择标准仅包括容差、工作温度范围内的降压情况以及最大ESR。
导电聚合物钽电容具有低ESR特性,成本高于陶瓷电容而且体积也略大,但对于不能忍受压电效应噪声的应用而言可能是唯一选择。
不过,钽电容的漏电流要远远大于等值陶瓷电容,因此不适合一些低电流应用。
固态聚合物电解质技术的缺点是此类钽电容对无铅焊接过程中的高温更为敏感,因此制造商通常会规定电容在焊接时不得超过3个焊接周期。
组装过程中若忽视此项要求,则可能导致长期稳定性问题。
铝电解电容
传统的铝电解电容往往体积较大、ESR和ESL较高、漏电流相对较高且使用寿命有限(以数千小时计)。
而OS-CON电容则采用有机半导体电解质和铝箔阴极,以实现较低的ESR。
这类电容虽然与固态聚合物钽电容相关,但实际上要比钽电容早10年或更久。
由于不存在液态电解质逐渐变干的问题,OS-CON型电容的使用寿命要比传统的铝电解电容长。
大多数电容的工作温度上限为105℃,但现在OS-CON型电容可以在最高125℃的温度范围内工作。
虽然OS-CON型电容的性能要优于传统的铝电解电容,但是与陶瓷电容或固态聚合物钽电容相比,往往体积更大且ESR更高。
与固态聚合物钽电容一样,这类电容不受压电效应影响,因此适合低噪声应用。
为LDO电路选择电容
1 输出电容
低压差调节器(LDO)可以与节省空间的小型陶瓷电容配合使用,但前提是这些电容具有低等效串联电阻(ESR);输出电容的ESR会影响LDO控制环路的稳定性。
为确保稳定性,建议采用至少1μF且ESR最大为1Ω的电容。
输出电容还会影响调节器对负载电流变化的响应。
控制环路的大信号带宽有限,因此输出电容必须提供快速瞬变所需的大多数负载电流。
当负载电流以500mA/μs的速率从1mA 变为200mA时,1μF电容无法提供足够的电流,因而产生大约80mV的负载瞬态,如图1所示。
当电容增加到10μF时,负载瞬态会降至约70mV,如图2所示。
当输出电容再次增加并达到20μF时,调节器控制环路可进行跟踪,主动降低负载瞬态,如图3所示。
这些示例都采用线性调节器ADP151,其输入和输出电压分别为5V和3.3V。
图1 瞬态响应(COUT=1μF)
图2 瞬态响应(COUT=10μF)
图3 瞬态响应(COUT=20μF)
2 输入旁路电容
在VIN和GND之间连接一个1μF电容可以降低电路对PCB布局的敏感性,特别是在长输入走线或高信号源阻抗的情况下。
如果输出端上要求使用1μF以上的电容,则应增加输入电容,使之与输出电容匹配。
3 输入和输出电容特性
输入和输出电容必须满足预期工作温度和工作电压下的最小电容要求。
陶瓷电容可采用各种各样的电介质制造,温度和电压不同,其特性也不相同。
对于5V应用,建议采用电压额定值为6.3~10V的X5R或X7R电介质。
Y5V和Z5U电介质的温度和直流偏置特性不佳,因此不适合与LDO一起使用。
图4所示为采用0402封装的1μF、10V X5R电容与偏置电压之间的关系。
电容的封装尺寸和电压额定值对其电压稳定性影响极大。
一般而言,封装尺寸越大或电压额定值越高,电压稳定性也就越好。
X5R电介质的温度变化率在-40~+85℃温度范围内为±15%,与封装或电压额定值没有函数关系。
图4 电容与电压的特性关系
要确定温度、元件容差和电压范围内的最差情况下电容,可用温度变化率和容差来调整标称电容,见公式1。
CEFF=CBIAS×(1-TVAR)×(1-TOL) (1)
其中,CBIAS是工作电压下的标称电容;TVAR是温度范围内最差情况下的电容变化率(百分率);TOL是最差情况下的元件容差(百分率)。
本例中,X5R电介质在–40~+85℃范围内的TVAR为15%;TOL为10%;CBIAS 在1.8 V时为0.94μF,如图4所示。
将这些值代入公式1,即可得出:
CEFF=0.94μF×(1-0.15)×(1-0.1)=0.719μF
在工作电压和温度范围内,ADP151的最小输出旁路电容额定值为0.70μF,因而此电容符合该项要求。